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Essential boundedness for solutions of the
Neumann problem on general domains

A.F.M. ter Elst, Hannes Meinlschmidt, Joachim Rehberg

Abstract

Let the domain under consideration be bounded. Under the suppositions of very weak Sobolev
embeddings we prove that the solutions of the Neumann problem for an elliptic, second order
divergence operator are essentially bounded, if the right hand sides are taken from the dual of a
Sobolev space which is adapted to the above embedding.

1 Introduction

If A is a pure second-order elliptic operator with Dirichlet boundary conditions and real measurable co-
efficients on a bounded connected open set Ω ⊂ Rd, then it is not too hard to show that the resolvent
operator A−1 maps Lq(Ω) into L∞(Ω) if q > d. It is a famous result of Stampacchia ([Sta65] Theo-
rem 4.4) that A−1 extends to a continuous operator from W−1,q(Ω) into L∞(Ω) if q > d. Inspecting
the proof, it is becomes clear that this result extends without difficulties from the pure Dirichlet case to
the case of mixed boundary conditions, as long as the Dirichlet part of the boundary is large enough
to imply a Poincaré inequality. It is also possible to extend the result to merely Neumann boundary
conditions if a positive scalar is added to the operator, and hence the resulting operator is coercive. The
idea how to do this can be found in the book of Tröltzsch ([Trö10] Section 7.2.2). What remains open
is the pure divergence form operator with pure Neumann boundary condition. It is clear that a ‘naive’
generalisation cannot work, since one can add to any solution of such a Neumann problem an arbitrary
constant and again obtains a solution.
The main theorem of this paper is as follows.

Theorem 1.1. Let Ω ⊂ Rd be a bounded connected open set. Let r ∈ (2,∞) and suppose that
W 1,2(Ω) ⊂ Lr(Ω). Let µ : Ω → Rd×d be a bounded measurable function. Suppose there exists a
ν > 0 such that

Re
d∑

k,`=1

µ(x) ξk ξ` ≥ ν |ξ|2

for all ξ ∈ Cd and almost all x ∈ Ω. DefineA : W 1,2(Ω)→ (W 1,2(Ω))∗ by

A(u, v) =

∫
Ω

µ∇u · ∇v.

Let q ∈ (d,∞) and suppose that 1
2
− 1

q
> 1

r
. If u ∈ W 1,2(Ω) withAu ∈ (W 1,p(Ω))∗, where p is the

dual exponent of q, then u ∈ L∞(Ω).
More precisely, for all T ∈ (W 1,p(Ω))∗ with T (1) = 0 there is a unique u ∈ W 1,2(Ω) with

∫
Ω
u =

0 satisfying Au = T . Moreover, there exists a c > 0 independent of T such that ‖u‖L∞(Ω) ≤
c ‖T‖(W 1,p(Ω))∗ .

We emphasise that the Sobolev embedding W 1,2(Ω) ⊂ Lr(Ω) assumption is very weak. If 2∗ is the
first Sobolev exponent, that is 1

2∗
= 1

2
− 1

d
, then it follows from scaling that r ≤ 2∗. The assumption
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1
2
− 1

q
> 1

r
implies that q > d. It is well known that there is a connection between Sobolev embeddings

and solvability of Neumann problems. We exemplarily refer to Maz’ya and Poborchiı̆ [MP07, MP09]
and [Maz11], Section 6.10.
If d ≥ 3, then the optimal case in our assumption is r = 2∗, the first Sobolev exponent. Then the
condition 1

2
− 1

q
> 1

r
is merely the condition q > d, as in the Stampacchia theorem for the Dirichlet

boundary condition. This optimal assumption is satisfied for example by any open bounded set which is
the finite union of connectedW 1,2-extension domains, such as for example Lipschitz domains. Another
example is that of a connected John domain ([Boj88], Section 6). If the domain has cusps, then the
full Sobolev embedding is usually not available, but the embedding W 1,2(Ω) ⊂ Lr(Ω) still holds
for some r ∈ (2, 2∗) if the cusps are of polynomial type by [AF03], Theorem 4.51. We also refer
to Maz’ya [Maz11], Section 6.9 for more geometric conditions. It is also known that the embedding
cannot hold true for any r > 2 if the boundary of Ω has cusps of exponential sharpness, see [AF03]
Theorem 4.48. Note that in the case of Dirichlet boundary conditions, one always has the optimal
embeddings W 1,2

0 (Ω) ⊂ L2∗(Ω) if d ≥ 3, and W 1,2
0 (Ω) ⊂ Lr(Ω) for all r ∈ (2,∞) if d = 2.

The proof of Theorem 1.1 follows the ideas of Stampacchia and uses truncations of Sobolev functions.
It relies on the Stampacchia lemma ([KS80] Chapter II, Appendix B, Lemma 2.1) and at its heart lies a
uniform estimation of the Poincaré constants of the truncations of mean value free Sobolev functions,
Lemma 3.3 below.
We also prove that the pure Neumann operator A admits optimal Sobolev regularity in the setting of
Theorem 1.1 for q sufficiently close to 2. This means that the domain of the part of the operator A in
(W 1,p(Ω))∗ coincides with W 1,q

⊥ (Ω), the mean value free functions in W 1,q(Ω), where again p is the
dual exponent to q. The result relies on interpolation and the Šneı̆berg stability theorem. We refer to
Theorem 4.3 below.
The outline of this paper is as follows. In Section 2 we show that a Sobolev embedding implies a
Poincaré inequality on any Lp-space. We use this in Section 3 to adapt the argument of Stampacchia
to deduce the boundedness as stated in Theorem 1.1. In Section 4 we derive optimal Sobolev regularity
results forA and some consequences of these based on the results in Section 2.

We conclude with an example. We formally attach the following boundary value problem to the equation
Au = T with T ∈ (W 1,p(Ω))∗ as in Theorem 1.1:

− div(µ∇u) = f in Ω,

−n · µ∇u = g on ∂Ω,

where f ∈ Ls(Ω) and g ∈ Lt(∂Ω;Hd−1) for appropriate values of s and t, where n is the normal.
Since T is only supposed to be a functional on W 1,p(Ω), inhomogeneous boundary data is allowed.
For the foregoing boundary value problem, T takes the form

T (v) =

∫
Ω

f v +

∫
∂Ω

g τv dHd−1,

where τ is the trace operator onto ∂Ω. If the domain Ω is sufficiently regular to allow the application
of the divergence theorem and to admit a suitable trace operator, this formulation and its connection to
Au = T can be made rigorous, see Ciarlet ([Cia78], Chapter 1.2) or [GGZ74], Chapter 2.2. A particular
case would be that of a Lipschitz graph domain Ω.

2 Sobolev and Poincaré

We first show that a Sobolev type embedding extrapolates to compactness of the inclusion mapW 1,p(Ω) ⊂
Lp(Ω).
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Essential boundedness for solutions of the Neumann problem on general domains 3

Lemma 2.1. Let Ω ⊂ Rd be open and bounded. Let q ∈ (1,∞) and suppose there exists a δ > 0
such that W 1,q(Ω) ⊂ Lq+δ(Ω). Let p ∈ (1,∞). Then the inclusion W 1,p(Ω) ⊂ Lp(Ω) is compact.
Moreover, there exists a δ′ > 0 such that W 1,p(Ω) ⊂ Lp+δ

′
(Ω).

Proof. We show that there exists an s > p such that W 1,p(Ω) ⊂ Ls(Ω). Then the compactness
of the inclusion W 1,p(Ω) ⊂ Lp(Ω) follows as in [Dan02] Lemma 7.1. Suppose that p ∈ (1, q) (the
case p ∈ (q,∞) is similar). Fix r ∈ (1, p). It follows from Liu–Tai [LT97] Theorem 9 that the real
interpolation space (W 1,1(Ω),W 1,∞(Ω))1− 1

t
,t = W 1,t(Ω) for all t ∈ (1,∞). Here W 1,∞(Ω) is the

Sobolev space of all L∞(Ω) functions whose weak partial derivatives are also L∞(Ω) functions. Let
θ ∈ (0, 1) be such that 1

p
= 1−θ

r
+ θ

q
. Then by complex interpolation

[
W 1,r(Ω),W 1,q(Ω)

]
θ

=
[(
W 1,1(Ω),W 1,∞(Ω)

)
1− 1

r
,r
,
(
W 1,1(Ω),W 1,∞(Ω)

)
1− 1

q
,q

]
θ

(1)

=
(
W 1,1(Ω),W 1,∞(Ω)

)
1− 1

p
,p

= W 1,p(Ω),

where we used the reiteration theorem [BL76] Theorem 4.7.2 in the second step. The inclusions
W 1,r(Ω) → Lr(Ω) and W 1,q(Ω) → Lq+δ(Ω) are continuous. Hence by complex interpolation one
deduces that W 1,p(Ω) ⊂ Ls(Ω), where 1

s
= 1−θ

r
+ θ

q+δ
< 1−θ

r
+ θ

q
= 1

p
. Note that s > p as

required.

Arguing as in Ziemer [Zie89] Theorem 4.4.2 one obtains a Poincaré inequality from the compact inclu-
sion W 1,p(Ω) ⊂ Lp(Ω).

Proposition 2.2. Let Ω ⊂ Rd be open, bounded and connected. Let p ∈ (1,∞) and suppose that the
inclusion W 1,p(Ω) ⊂ Lp(Ω) is compact. Let Ω0 ⊂ Ω be measurable and suppose that the Lebesgue
measure |Ω0| > 0. Then there exists a c > 0 such that

‖u‖p ≤ c ‖∇u‖p

for all u ∈ W 1,p(Ω) with
∫

Ω0
u = 0.

Proof. Suppose not. Then for all n ∈ N there exists a un ∈ W 1,p(Ω) such that ‖un‖p > n ‖∇un‖p
and

∫
Ω0
un = 0. Without loss of generality ‖un‖p = 1 for all n ∈ N. Then ‖∇un‖p ≤ 1

n
. So the

sequence (un)n∈N is bounded in W 1,p(Ω). Passing to a subsequence if necessary there exists a
u ∈ W 1,p(Ω) such that limun = u weakly in W 1,p(Ω). Then limun = u strongly in Lp(Ω) and∫

Ω0
u = 0. Moreover ‖u‖p = 1 and u 6= 0. Next ‖∇u‖p ≤ lim infn→∞ ‖∇un‖p = 0. Since Ω is

connected it follows that u is constant by [Zie89] Corollary 2.1.9. Because
∫

Ω0
u = 0 and |Ω0| > 0

one deduces that u = 0. This is a contradiction.

If Ω ⊂ Rd is a bounded open set and p ∈ (1,∞), then we define

W 1,p
⊥ (Ω) =

{
u ∈ W 1,p(Ω) :

∫
Ω

u = 0
}
.

It follows from Proposition 2.2 that W 1,p
⊥ (Ω) equipped with the norm u 7→ ‖∇u‖p is a Banach space.

Corollary 2.3. Let Ω ⊂ Rd be open, bounded and connected. Let p ∈ (1,∞) and suppose that the
inclusion W 1,p(Ω) ⊂ Lp(Ω) is compact. Define ||| · ||| : W 1,p(Ω) → [0,∞) by |||u||| = ‖∇u‖p +∣∣ ∫

Ω
u
∣∣. Then one has the following.

(a) The function ||| · ||| is a norm on W 1,p(Ω) which is equivalent to ‖ · ‖W 1,p(Ω).

DOI 10.20347/WIAS.PREPRINT.2574 Berlin 2019
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(b) The map

P : u 7→ u− 1
|Ω|

∫
Ω

u

is a projection from W 1,p(Ω) onto W 1,p
⊥ (Ω). In particular,

u 7→
(

1
|Ω|

∫
Ω

u, u− 1
|Ω|

∫
Ω

u
)

is a topological isomorphism from W 1,p(Ω) onto C⊕W 1,p
⊥ (Ω).

Proof. By Proposition 2.2 there exists a c > 0 such that ‖u‖p ≤ c ‖∇u‖p for all u ∈ W 1,p
⊥ (Ω). If

u ∈ W 1,p(Ω), then

‖u‖p ≤
∥∥u− 1

|Ω|

∫
Ω

u
∥∥
p

+
∥∥ 1
|Ω|

∫
Ω

u
∥∥
p

≤ c
∥∥∇(u− 1

|Ω|

∫
Ω

u
)∥∥

p
+ |Ω|−1+ 1

p

∣∣∣ ∫
Ω

u
∣∣∣

= c ‖∇u‖p + |Ω|−1+ 1
p

∣∣∣ ∫
Ω

u
∣∣∣

and the lemma follows easily.

Proposition 2.4. Let Ω ⊂ Rd be open, bounded and connected. Let p ∈ (1,∞) and suppose that
the inclusion W 1,p(Ω) ⊂ Lp(Ω) is compact. Then for all T ∈ (W 1,p(Ω))∗ there exist κ ∈ C and
f1, . . . , fd ∈ Lq(Ω) such that

〈T, u〉(W 1,p(Ω))∗×W 1,p(Ω) = κ

∫
Ω

u+
d∑
j=1

∫
Ω

fj ∂ju

for all u ∈ W 1,p(Ω), where q is the dual exponent of p.

Proof. Using Corollary 2.3(b) it suffices to show that for all S ∈ (W 1,p
⊥ (Ω))∗ there exist f1, . . . , fd ∈

Lq(Ω) such that

〈S, u〉(W 1,p
⊥ (Ω))∗×W 1,p

⊥ (Ω) =
d∑
j=1

∫
Ω

fj ∂ju

for all u ∈ W 1,p
⊥ (Ω), where u 7→ ‖∇u‖p is the norm on W 1,p

⊥ (Ω). Consider the subspace M =
{∇u : u ∈ W 1,p

⊥ (Ω)} in Lp(Ω)d. Define F : M → C by F (∇u) = Su. Then F is well-defined and

continuous. Therefore by Hahn–Banach there exists an extension F̃ ∈ (Lp(Ω)d)∗ of F . The rest of
the proof is straight forward.

3 Proof of Theorem 1.1

In this section we prove Theorem 1.1. Let Ω ⊂ Rd be a bounded connected open set. Let µ : Ω →
Rd×d be a bounded measurable function. We suppose that µ is elliptic, that is there exists a ν > 0
such that

Re
d∑

k,`=1

µ(x) ξk ξ` ≥ ν |ξ|2

DOI 10.20347/WIAS.PREPRINT.2574 Berlin 2019



Essential boundedness for solutions of the Neumann problem on general domains 5

for all ξ ∈ Cd and almost all x ∈ Ω. Let r > 2 and suppose that W 1,2(Ω) ⊂ Lr(Ω).
DefineA : W 1,2(Ω)→ (W 1,2(Ω))∗ by

A(u, v) =

∫
Ω

µ∇u · ∇v.

Recall that W 1,p
⊥ (Ω) =

{
u ∈ W 1,p(Ω) :

∫
Ω
u = 0

}
for all p ∈ (1,∞). If q ∈ (1,∞) then we define

W−1,q
∅ (Ω) =

(
W 1,p(Ω)

)∗
,

where p is the dual exponent of q. Moreover, we define

W−1,q
⊥ (Ω) =

{
T ∈ W−1,q

∅ (Ω) : T (1) = 0
}
.

Clearly Au ∈ W−1,2
⊥ (Ω) for all u ∈ W 1,2(Ω) and kerA = C1 since Ω is connected. Define

A⊥ : W 1,2
⊥ (Ω) → W−1,2

⊥ (Ω) by A⊥u = Au. Then A⊥ is injective. We next show that it is also
surjective and W−1,2

⊥ (Ω) = (W 1,2
⊥ (Ω))∗, up to isomorphy.

Proposition 3.1. The mapA⊥ is a topological isomorphism.

Proof. Define the form b : W 1,2
⊥ (Ω)×W 1,2

⊥ (Ω)→ C by

b(u, v) =

∫
Ω

µ∇u · ∇v.

Then b is a continuous coercive sesquilinear form by Lemma 2.1 and Proposition 2.2. LetB : W 1,2
⊥ (Ω)→

(W 1,2
⊥ (Ω))∗ be such that b(u, v) = 〈Bu, v〉(W 1,2

⊥ (Ω))∗×W 1,2
⊥ (Ω) for all u, v ∈ W 1,2

⊥ (Ω). Then B is sur-

jective by the Lax–Milgram theorem. Let T ∈ W−1,2
⊥ (Ω). Then T ∈ W−1,2

∅ (Ω) = (W 1,2(Ω))∗. Let

T̃ = T |W 1,2
⊥ (Ω). Then T̃ ∈ (W 1,2

⊥ (Ω))∗. Hence there is a u ∈ W 1,2
⊥ (Ω) such that Bu = T̃ . If

v ∈ W 1,2
⊥ (Ω), then

〈Au, v〉W−1,2
∅ (Ω)×W 1,2(Ω) = b(u, v) = 〈Bu, v〉(W 1,2

⊥ (Ω))∗×W 1,2
⊥ (Ω) = T̃ (v) = T (v).

Since 〈Au,1〉W−1,2
∅ (Ω)×W 1,2(Ω) = 0 = T (1) it follows by linearity and Corollary 2.3(b) that A⊥u =

Au = T .

As a main tool for the proof of Theorem 1.1 we need truncations of Sobolev functions, which we consider
next.
For all u ∈ W 1,2(Ω,R) and k ∈ [0,∞) define ζu,k = (sgnu) (|u| − k)+. If no confusion is possible
then we write ζk = ζu,k. Moreover, define Ak = {x ∈ Ω: |u(x)| > k} = [|u| > k].

Lemma 3.2. Let u ∈ W 1,2(Ω,R). Then one has the following.

(a) ζk ∈ W 1,2(Ω) for all k ∈ [0,∞).

(b) 1Ak
Dju = 1Ak

Djζk for all j ∈ {1, . . . , d} and k ∈ [0,∞).

(c) The map k 7→ ζk is continuous from [0,∞) into W 1,2(Ω).

(d) If k ∈ [0,∞), then the map v 7→ ζv,k is continuous from W 1,2(Ω,R) into W 1,2(Ω).

Proof. ‘(a)’ and ‘(b)’. Note that ζk = (u+− k)+− (u−− k)+. Then the statements follow from [GT83]
Lemma 7.6.
‘(c)’. This follows from the Lebesgue dominated convergence theorem.
‘(d)’. This follows from (a) and [MM79] Theorem 1.
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A key estimate for the proof of Theorem 1.1 is the next lemma.

Lemma 3.3. Let u ∈ W 1,2
⊥ (Ω,R). Then there exists a γ ≥ 0 such that ‖ζk‖2 ≤ γ ‖∇ζk‖2 for all

k ∈ [0,∞).

Proof. We split the proof into two cases depending whether u is bounded or not.
Case 1. Suppose u is unbounded. If k ∈ [0,∞) and ‖∇ζk‖2 = 0, then ζk is constant and conse-
quently u is bounded, which is a contradiction. Hence ‖∇ζk‖2 6= 0 for all k ∈ [0,∞). Since both
k 7→ ‖ζk‖2 and k 7→ ‖∇ζk‖2 are continuous on [0,∞) by Lemma 3.2(c), it suffices to show that

lim sup
k→∞

‖ζk‖2

‖∇ζk‖2

≤ 1. (2)

Suppose that (2) is false. Then there exists a sequence (kn)n∈N in R such that kn ≥ n for all n ∈ N
and ‖ζkn‖2 > ‖∇ζkn‖2 for all n ∈ N. Define vn = ‖ζkn‖−1

2 ζkn for all n ∈ N. Then vn ∈ W 1,2(Ω),
‖vn‖2 = 1 and ‖∇vn‖2 ≤ 1 for all n ∈ N. So the sequence (vn)n∈N is bounded inW 1,2(Ω). Passing
to a subsequence if necessary we may assume that there is a v ∈ W 1,2(Ω) such that lim vn = v
weakly in W 1,2(Ω). Then lim vn = v in L2(Ω). So ‖v‖2 = 1 and in particular v 6= 0. But v(x) =
limn→∞ vn(x) = 0 for almost every x ∈ Ω. This is a contradiction.
Case 2. Suppose u is bounded. Without loss of generality we may assume that u 6= 0. Let k ∈
[0, ‖u‖∞) and suppose that ‖∇ζk‖2 = 0. Then ζk is constant, say δ. If δ = 0, then |u| ≤ k a.e.,
which is not possible since k < ‖u‖∞. Suppose δ > 0. Note that ζk(x) ≤ 0 < δ for all x ∈ Ω with
u(x) ≤ k. So u(x) = k + δ for all x ∈ Ω. But then

∫
Ω
u 6= 0. Similarly δ < 0 gives a contradiction.

Hence ‖∇ζk‖2 6= 0 for all k ∈ [0, ‖u‖∞).
Arguing as in Case 1 and using Lemma 3.2(c) it follows that for all k1 ∈ (0, ‖u‖∞) there exists a
c1 > 0 such that ‖ζk‖2 ≤ c1 ‖∇ζk‖2 for all k ∈ [0, k1].
Finally we show that there exist k0 ∈ (0, ‖u‖∞) and c0 > 0 such that ‖ζk‖2 ≤ c0 ‖∇ζk‖2 for all
k ∈ (k0,∞). If |u| = ‖u‖∞ a.e., then |[u = ‖u‖∞]| = 1

2
|Ω| > 0, where we use that

∫
Ω
u = 0. Then

w = 1[u=‖u‖∞] u = u ∨ 0 ∈ W 1,2(Ω). Using [GT83] Lemma 7.7 we deduce that ∇w = 0 a.e. and
this implies that |[u = ‖u‖∞]| ∈ {0, |Ω|}, which is a contradiction. Hence there is a k0 ∈ (0, ‖u‖∞)
such that |[|u| ≤ k0]| > 0. Write Ω0 = [|u| ≤ k0]. By Lemma 2.1 and Proposition 2.2 there exists
a c0 > 0 such that ‖v‖2 ≤ c0 ‖∇v‖2 for all v ∈ W 1,2(Ω) with

∫
Ω0
v = 0. If k ∈ (k0,∞), then

ζk(x) = 0 for all x ∈ Ω0, so
∫

Ω0
ζk = 0. Hence ‖ζk‖2 ≤ c0 ‖∇ζk‖2.

For all u ∈ W 1,2
⊥ (Ω,R) define γu ∈ [0,∞) to be the minimum of all γ ≥ 0 such that ‖ζk‖2 ≤

γ ‖∇ζk‖2 for all k ∈ [0,∞). Recall that r > 2 is such that W 1,2(Ω) ⊂ Lr(Ω).

Proposition 3.4. Let u ∈ W 1,2
⊥ (Ω,R) and q > d with 1

2
− 1

q
> 1

r
. Further let f1, . . . , fd ∈ Lq(Ω) and

suppose that 〈Au, v〉W−1,2
∅ (Ω)×W 1,2(Ω) =

∑d
j=1(fj, ∂jv)2 for all v ∈ W 1,2(Ω). Then u ∈ L∞(Ω).

Moreover

‖u‖∞ ≤ 2( 1
2
− 1

q
)/δ E

ν

√(
1 + γ2

u

)
|Ω|δ

(
d∑
j=1

∥∥fj∥∥2

q

) 1
2

,

where δ = 1
2
− 1

q
− 1

r
> 0 and ν is the ellipticity constant of µ. Finally, E > 0 is such that ‖v‖r ≤

E ‖v‖W 1,2(Ω) for all v ∈ W 1,2(Ω).

Proof. For all k ∈ [0,∞) define ζk = (sgnu) (|u| − k)+ ∈ W 1,2(Ω) and Ak = [|u| > k] as before.
Let k ∈ [0,∞). Then

ν
∥∥∇ζk∥∥2

2
≤
∫

Ω

µ∇ζk · ∇ζk =

∫
Ω

µ∇u · ∇ζk =
d∑
j=1

∫
Ak

fj ∂jζk

DOI 10.20347/WIAS.PREPRINT.2574 Berlin 2019
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≤
( d∑
j=1

∫
Ak

|fj|2
)1/2∥∥∇ζk∥∥2

≤ ν

2

∥∥∇ζk∥∥2

2
+

1

2ν

d∑
j=1

∫
Ak

|fj|2.

Hence ∥∥∇ζk∥∥2

2
≤ 1

ν2

d∑
j=1

∫
Ak

|fj|2 ≤
|Ak|1−

2
q

ν2

d∑
j=1

∥∥fj∥∥2

q
.

By assumption W 1,2(Ω) ⊂ Lr(Ω). Then(∫
Ak

(
|u| − k

)r) 2
r

=
∥∥ζk∥∥2

Lr(Ω)

≤ E2
∥∥ζk∥∥2

W 1,2(Ω)
= E2

(∥∥ζk∥∥2

2
+
∥∥∇ζk∥∥2

2

)
≤ E2

(
1 + γ2

u

) |Ak|1− 2
q

ν2

d∑
j=1

∥∥fj∥∥2

q
.

Next let h, k ∈ [0,∞) with h > k. Then Ah ⊂ Ak and

(h− k)2 |Ah|
2
r ≤

(∫
Ah

∣∣|u| − k∣∣r) 2
r

≤
(∫

Ak

∣∣|u| − k∣∣r) 2
r

≤ E2
(
1 + γ2

u

) |Ak|1− 2
q

ν2

d∑
j=1

∥∥fj∥∥2

q
.

Equivalently

|Ah| ≤
1

(h− k)r

(E
ν

)r(
1 + γ2

u

) r
2

( d∑
j=1

∥∥fj∥∥2

q

) r
2

|Ak|(1−
2
q

) r
2 .......

Due to (1− 2
q
) r

2
= (1

2
− 1

q
)r > 1 by assumption, it now follows from the Stampacchia lemma ([KS80]

Chapter II, Appendix B, Lemma 2.1) that u ∈ L∞(Ω) and

‖u‖∞ ≤ 2( 1
2
− 1

q
)/δ E

ν

√(
1 + γ2

u

)
|Ω|δ

(
d∑
j=1

∥∥fj∥∥2

q

) 1
2

.

This completes the proof of the proposition.

Proof of Theorem 1.1. Let u ∈ W 1,2(Ω) be such that Au ∈ (W 1,p(Ω))∗, where p is the dual expo-
nent of q. By Lemma 2.1 the inclusion W 1,p(Ω) ⊂ Lp(Ω) is compact. Hence by Proposition 2.4 there
exist κ ∈ C and f1, . . . , fd ∈ Lq(Ω) such that

〈Au, v〉(W 1,p(Ω))∗×W 1,p(Ω) = κ

∫
Ω

v +
d∑
j=1

∫
Ω

fj ∂jv

for all v ∈ W 1,p(Ω). Choosing v = 1 one deduces that κ = 0 and Au ∈ W−1,2
⊥ (Ω). Without loss

of generality we may assume that u ∈ W 1,2
⊥ (Ω). Moreover, we may also assume that u is real valued.

Now apply Proposition 3.4 to obtain u ∈ L∞(Ω).
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If we start with T ∈ W−1,q
⊥ (Ω), then there exists a unique u ∈ W 1,2

⊥ (Ω) such that Au = T by
Proposition 3.1. ThenAu ∈ W−1,q

⊥ (Ω) ⊂ (W 1,p(Ω))∗, so u ∈ L∞(Ω) by the above.
For the estimate it suffices to show that the map T 7→ u has closed graph in the space W−1,q

⊥ (Ω) ×
L∞(Ω). Let T, T1, T2, . . . ∈ W−1,q

⊥ (Ω) and u ∈ L∞(Ω). Suppose that limTn = T in W−1,q
⊥ (Ω)

and lim(A⊥)−1Tn = u in L∞(Ω). Then limTn = T in W−1,2
⊥ (Ω), so lim(A⊥)−1Tn = (A⊥)−1T

in W 1,2
⊥ (Ω) and hence also in L2(Ω). But lim(A⊥)−1Tn = u in L∞(Ω) and therefore also in L2(Ω).

Consequently (A⊥)−1T = u as required.

4 Interpolation and maximal Sobolev regularity

In this section, we use the structure ofW 1,p
⊥ (Ω) as a complemented subspace ofW 1,p(Ω) to establish

interpolation results. Optimal Sobolev regularity for the pure Neumann operator A⊥ for p close to 2
also follows. This is particularly interesting for space dimension d = 2. The first step is to show that
W 1,p
⊥ (Ω) and W−1,p

⊥ (Ω) form an interpolation scale with respect to p.

Proposition 4.1. Let Ω ⊂ Rd be open and bounded. Let p0, p1 ∈ (1,∞), θ ∈ (0, 1) and set
1
p

= 1−θ
p0

+ θ
p1

. Then[
W 1,p0
⊥ (Ω),W 1,p1

⊥ (Ω)
]
θ

=
(
W 1,p0
⊥ (Ω),W 1,p1

⊥ (Ω)
)
θ,p

= W 1,p
⊥ (Ω)

and [
W−1,p0
⊥ (Ω),W−1,p1

⊥ (Ω)
]
θ

=
(
W−1,p0
⊥ (Ω),W−1,p1

⊥ (Ω)
)
θ,p

= W−1,p
⊥ (Ω).

Proof. It follows from (1) that [
W 1,p0(Ω),W 1,p1(Ω)

]
θ

= W 1,p(Ω).

Arguing as in (1), but using the reiteration theorem for real interpolation [BL76], Theorem 3.5.3 one
deduces similarly (

W 1,p0(Ω),W 1,p1(Ω)
)
θ,p

= W 1,p(Ω).

Note that for all r ∈ (1,∞) the projection P in Corollary 2.3(b) maps W 1,r(Ω) onto W 1,r
⊥ (Ω), so

W 1,r
⊥ (Ω) is a complemented subspace of W 1,r(Ω). We further observe that W 1,pi

⊥ (Ω) = W 1,pi(Ω)∩
W

1,min(p0,p1)
⊥ (Ω) for i = 1, 2. Thus, interpolation theory for complemented subspaces ([Tri78] Theo-

rem 1.17.1.1) shows that[
W 1,p0
⊥ (Ω),W 1,p1

⊥ (Ω)
]
θ

=
(
W 1,p0
⊥ (Ω),W 1,p1

⊥ (Ω)
)
θ,p

= W 1,p(Ω) ∩W 1,min(p0,p1)
⊥ (Ω) = W 1,p

⊥ (Ω).

Concerning the dual spaces, it is easy to see that for all q ∈ (1,∞) the operator T 7→ T − 1
|Ω| 〈T,1〉1

is a projection from W−1,q(Ω) onto W−1,q
⊥ (Ω). Hence the assertion follows with the same argument

and the duality properties of the real and complex interpolation functors, see [Tri78] Subsections 1.11.2
and 1.11.3.

The first result derived from Proposition 4.1 together with Theorem 1.1 is the following mapping property
forA−1

⊥ on the W−1,p
⊥ (Ω) spaces for all p > 2. Note that we do not require that p > d.

Corollary 4.2. Let Ω ⊂ Rd be a bounded connected open set. Let r ∈ (2,∞) and suppose that
W 1,2(Ω) ⊂ Lr(Ω). Let further q ∈ (d,∞) and suppose that 1

2
− 1

q
> 1

r
. Let p ∈ (2, q). Let

µ : Ω→ Rd×d be a bounded measurable elliptic function and letA : W 1,2(Ω)→ (W 1,2(Ω))∗ be the
associated operator. Then A−1

⊥ maps W−1,p
⊥ (Ω) into Ls(Ω), where 1

s
= 1−θ

r
and θ ∈ (0, 1) is such

that 1
p

= 1−θ
2

+ θ
q
.
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Proof. The operator A−1
⊥ maps W−1,2

⊥ (Ω) continuously into W 1,2
⊥ (Ω) ⊂ Lr(Ω) by Proposition 3.1.

Moreover,A−1
⊥ maps W−1,q

⊥ (Ω) continuously into L∞(Ω) by Theorem 1.1. Now use complex interpo-
lation and Proposition 4.1.

Due to Proposition 4.1 and the work from the previous sections, a maximal Sobolev regularity result for
p close to 2 follows by an application of the Šneı̆berg stability theorem.

Theorem 4.3. Let Ω ⊂ Rd be a bounded connected open set. Let r ∈ (2,∞) and suppose
that W 1,2(Ω) ⊂ Lr(Ω). Let µ : Ω → Rd×d be a bounded measurable elliptic function and let
A : W 1,2(Ω) → (W 1,2(Ω))∗ be the associated operator. Then there exists a δ > 0 such that A⊥
is a topological isomorphism between W 1,p

⊥ (Ω) and W−1,p
⊥ (Ω) for all p ∈ (2− δ, 2 + δ).

Proof. Under the assumptions,A⊥ is a topological isomorphism between W 1,2
⊥ (Ω) and W−1,2

⊥ (Ω) by
Proposition 3.1. Proposition 4.1 shows that these spaces are simultaneous interpolation spaces in the
W 1,p
⊥ (Ω) and W−1,p

⊥ (Ω) scale. The Šneı̆berg stability theorem [Sne74] implies that there is a δ > 0
such thatA⊥ remains an isomorphism betweenW 1,p

⊥ (Ω) andW−1,p
⊥ (Ω) for all p ∈ (2−δ, 2+δ).

There exist quantitative results on the size of δ derived from the Šneı̆berg result in Theorem 4.3. We
refer to [ABES19], Appendix A. The most crucial information is that one can choose δ to depend only
on the ellipticity constant and the upper bound ‖µ‖∞ of the coefficient function µ of A. Moreover, for
all p ∈ (2 − δ, 2 + δ), the operator norm ‖A−1

⊥ ‖W−1,p
⊥ (Ω)→W 1,p

⊥ (Ω) can be estimated by a multiple of

‖A−1
⊥ ‖W−1,2

⊥ (Ω)→W 1,2
⊥ (Ω). By Lax-Milgram, the latter can be estimated by 1/ν, where ν is the ellipticity

constant of µ.
Theorem 4.3 yields further corollaries for d = 2.

Corollary 4.4. Adopt the notation and assumptions of Theorem 4.3. Let d = 2. Let q ∈ (2, 2 + δ) and
suppose that 1

2
− 1

q
> 1

r
. Then W 1,s(Ω) ⊂ L∞(Ω) for all s ≥ q.

Proof. It follows from Theorem 1.1 thatA−1
⊥ W

−1,q
⊥ (Ω) ⊂ L∞(Ω). ButA−1

⊥ W
−1,q
⊥ (Ω) = W 1,q

⊥ (Ω) by
Theorem 4.3. Since W 1,q(Ω) = W 1,q

⊥ (Ω) + C1 the corollary follows.

The parameter δ in the previous corollary depends on the coefficient function µ via the Šneı̆berg the-
orem. If Ω is smooth enough so that the full Sobolev embedding for W 1,2(Ω) is available, then no
coefficient function is needed (at least in the formulation of the corollary).

Corollary 4.5. Let Ω ⊂ R2 be a bounded connected open set. Suppose that W 1,2(Ω) ⊂ Lr(Ω) for
all r ∈ (2,∞). Then W 1,s(Ω) ⊂ L∞(Ω) for all s ∈ (2,∞).

Proof. Choose µ = I . Let δ > 0 be as in Theorem 4.3. Let s ∈ (2,∞). Then there exists a q ∈
(2, 2 + δ) ∩ (2, s]. Now apply Corollary 4.4.

The third corollary concerns Hölder regularity of solutions u of A⊥u = T with T ∈ W−1,q
⊥ (Ω) for

q > 2 and a uniform estimate. We do not pass through Theorem 1.1 for this result. The price to pay is
a Sobolev embedding assumption for the Hölder space similar to the one in Theorem 1.1.

Corollary 4.6. Let Ω ⊂ R2 be a bounded connected open set. Suppose that for all q ∈ (2,∞) there
exists an α ∈ (0, 1) such that W 1,q(Ω) ⊂ Cα(Ω). Let µ : Ω → Rd×d be a bounded measurable
elliptic function and let A : W 1,2(Ω) → (W 1,2(Ω))∗ be the associated operator. Then one has the
following.

(a) For all q ∈ (2,∞) there exists an α ∈ (0, 1) such thatA−1
⊥ W

−1,q
⊥ (Ω) ⊂ Cα(Ω).
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(b) For all q ∈ (2,∞) and R > 0 the set{
A−1
⊥ (T ) : T ∈ W−1,q

⊥ (Ω) and ‖T‖W−1,q
∅ (Ω) ≤ R

}
is compact in C(Ω).

Proof. ‘(a)’. Since Cα(Ω) ⊂ L∞(Ω) ⊂ Lr(Ω) for all α ∈ (0, 1) and r ∈ (1,∞), it follows from
Lemma 2.1 that there exists an r ∈ (2,∞) such that W 1,2(Ω) ⊂ Lr(Ω). Let δ > 0 be as in
Theorem 4.3. Let s ∈ (2, 2+δ)∩(2, q]. By assumption there exists anα ∈ (0, 1) such thatW 1,s(Ω) ⊂
Cα(Ω). ThenA−1

⊥ W
−1,q
⊥ (Ω) ⊂ A−1

⊥ W
−1,s
⊥ (Ω) = W 1,s

⊥ (Ω) ⊂ Cα(Ω).
‘(b)’. This follows from statement (a) and the Arzelà–Ascoli theorem.

The situation for the Hölder-Sobolev embedding assumption in Corollary 4.6 is similar to the assumption
on the Sobolev embedding in Theorem 1.1. It is satisfied for example when for all q ∈ (2,∞) the
domain Ω is a connected W 1,q-extension domain and then one can choose α = 1 − 2/q, but there
are also examples of (non-extension) domains with sufficiently regular cusps where the assumption is
satisfied in the weaker form, see [AF03] Theorem 4.53. Note however that the optimal embedding for
W 1,q(Ω) into the Hölder space of order 1 − 2/q implies the W 1,r-extension property for all r > q,
see [Kos98] Theorem A.
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