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Abstract

For a Voronoï finite volume discretization of the van Roosbroeck system 
with general charge carrier statistics we compare three thermodynamically 
consistent numerical fluxes known in the literature. We discuss an extension 
of the Scharfetter-Gummel scheme to non-Boltzmann (e.g. Fermi-Dirac) 
statistics. It is based on the analytical solution of a two-point boundary 
value problem obtained by projecting the continuous differential equation 
onto the interval between neighboring collocation points. Hence, it serves as 
a reference flux. The exact solution of the boundary value problem can be 
approximated by computationally cheaper fluxes which modify certain 
physical quantities. One alternative scheme averages the nonlinear diffusion 
(caused by the non-Boltzmann nature of the problem), another one 
modifies the effective density of states. To study the differences between 
these three schemes, we analyze the Taylor expansions, derive an error 
estimate, visualize the flux error and show how the schemes perform for a 
carefully designed p-i-n benchmark simulation. We present strong 
evidence that the flux discretization based on averaging the nonlinear 
diffusion has an edge over the scheme based on modifying the effective 
density of states.

1 Introduction
The van Roosbroeck system [1] (also known as the semiconductor device equa-
tions) has become a standard model to describe the flow of electrons and holes
in semiconductor devices. Its numerical approximation is very well understood if
Boltzmann statistics accurately describes the electron and hole densities. In this
case, one refers to the semiconductor as non-degenerate. Scharfetter and Gummel
[2] presented in the late 1960ies a flux discretization scheme which could deal
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with the numerical challenges such as stability and preservation of maximum
principles posed by these equations, see for example [3, 4, 5]. The generalization
to non-Boltzmann statistics (in degenerate semiconductor materials), however,
presents very similar challenges which are not satisfactorily solved yet. Hence,
the goal of this paper is to study the influence of three thermodynamically
consistent flux approximations used in a Voronoï finite volume discretization of
the van Roosbroeck system when assuming more general statistics functions. We
will compare these schemes analytically and numerically to assess their quality
for semiconductor device simulations.

A very general and computationally rather expensive finite volume flux
approximation was studied in [6]. In order to determine the numerical flux
between two control volumes this method needs to solve an integral equation.
This integral equation is a reformulation of a nonlinear two-point boundary value
problem which one obtains from projecting the continuity equation for the charge
carriers onto the interval between two nodes belonging to neighboring cells. For
so-called Blakemore statistics [7] the integral equation is known to simplify to a
nonlinear algebraic equation which can be solved with a few Newton steps [8].
No corresponding simplification is known for more general statistics. For this
reason several ideas were proposed. In [9], piecewise approximations (e.g. Padé
interpolants) for the statistics function are discussed. However, this approach
may still be rather costly. Hence, modified Scharfetter-Gummel schemes which
only approximately solve the two-point boundary value problem may yield a good
compromise between efficiency and accurateness by averaging certain quantities.

Several such schemes have been suggested to deal with more general statistics
[10, 11, 12]. Unfortunately, these discretizations are not consistent with the
thermodynamic equilibrium, i. e. they do not satisfy an analogous discrete version
of the continuous property that the fluxes vanish if the quasi Fermi potentials
are constant. Thermodynamic consistency is extremely important to avoid
unphysical steady state dissipation. Furthermore, the consistent discretization of
dissipative effects is crucial when coupling the semiconductor device equations
to heat transport models.

Bessemoulin-Chatard suggested a scheme which averages the diffusion en-
hancement in such a way that the resulting flux approximation is thermody-
namically consistent [13]. The diffusion enhancement can be interpreted as a
measure for how far the system is from the Boltzmann regime. It leads to a
nonlinear diffusion coefficient whose particular form is induced by the statistical
distribution function for the charge carrier densities, e. g., the Fermi-Dirac inte-
gral of order one half. Using this flux, Bessemoulin-Chatard proved convergence
of a semi-implicit finite volume scheme. This diffusion enhanced scheme was
translated into the context of semiconductor device models in [14], making the
dependency on the diffusion enhancement explicit.

It is also possible to derive another class of schemes by modifying the effective
density of states. This so-called inverse activity scheme was introduced in [15] for
the numerical solution of the generalized Nernst-Planck system which is similar
to the van Roosbroeck system. A variant of this scheme for Fermi-Dirac statistics
is described in [16, 17]. Here the adaption to general statistics is realized via
averaging the inverse activity coefficient. Even though any such average will
yield a thermodynamically consistent scheme, we will focus on two practical
choices: an arithmetic and geometric mean of the inverse activity coefficients at
neighboring nodes. However, some of our results apply to any average for the
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inverse activity coefficient that satisfies very mild additional assumptions.
We continue this paper by introducing the van Roosbroeck system in Section

2 and present its discretization as well as the different flux approximations in
Section 3. In order to compare these schemes, we study their Taylor series
expansions in Section 4, derive a general error estimate in Section 5, compare the
flux error visually in Section 6 and finally analyze the influence of the different
numerical fluxes to the coupled van Roosbroeck system by simulating a carefully
chosen device setup consisting of a p-doped, intrinsic and n-doped region (p-i-n
device) in Section 7.

This publication is supplemented with a Mathematica notebook, Matlab files
and simulation data, which can be used to verify the presented results [18].

2 The van Roosbroeck system
The van Roosbroeck system describes the charge carrier flow and the electrostatic
potential in a semiconductor device. It consists of three coupled nonlinear partial
differential equations: one for the electrostatic potential ψ and two continuity
equations, one for the electron and one for the hole density which we denote
with n and p. We consider a homogeneous material and some domain Ω ⊆ Rd
for d ∈ {1, 2, 3}.

Then the stationary van Roosbroeck system is given by

−∇ · (ε0εr∇ψ) = q (p− n+ C) , (1a)
∇ · jn = qR, (1b)
∇ · jp = −qR. (1c)

The constants q, ε0 and εr denote the elementary charge, the vacuum dielectric
permittivity and the relative permittivity of the semiconductor, respectively.
The recombination rate R depends on the electron and hole densities and the
doping profile C may vary spatially.

The electron density and the hole density are related to the electrostatic
potential ψ as well as the quasi Fermi potentials of electrons and holes ϕn and
ϕp via a statistical distribution function F , namely by

n = NcF
(
q(ψ − ϕn)− Ec

kBT

)
and p = NvF

(
q(ϕp − ψ) + Ev

kBT

)
. (2)

The effective densities of states for electrons in the conduction band Nc and
holes in the valence band Nv as well as the corresponding band-edge energies
Ec and Ev are material parameters and assumed to be constant in this paper.
However, in applications they can vary with the material (for example due to
abrupt or graded heterojunctions). The temperature T is also assumed to be
constant; in general it can be space or even time dependent. The Boltzmann
constant is denoted with kB .

Common examples for the statistical distribution function F can be found in
Figure 1. Our most important reference cases are the the Boltzmann function
F(η) = exp(η), the Fermi-Dirac integral of order one half F(η) = F1/2(η) and
the Blakemore function F(η) = (exp(−η) + γ)−1 with γ ≥ 0. For large negative
arguments all of these functions have a Boltzmann tail. Choosing a parameter
of γ = 0.27, we can approximate the Fermi-Dirac integral with a Blakemore
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Figure 1: Left: Standard statistical distribution functions for classical 3D
semiconductors as well as organic semiconductors described by a Gaussian density
of states with variance σ (the energetic disorder). Both can be approximated with
the help of the Blakemore or the Boltzmann distribution function. Right column:
visualization of different statistical distribution functions F and corresponding
diffusion enhancements g.

function fairly accurately up to η ≤ 1.5, see Figure 1. For γ = 0, Blakemore
reduces to Boltzmann. Thus, we can think of γ as a parameter controlling how
close we are to the Boltzmann regime. Finally, we assume that F is analytic
with

0 < F ′(η) ≤ F(η) ≤ exp(η) (3)

for all η ∈ R. This assumption is reasonable for virtually all realistic device
setups.

The current densities in (1b) and (1c) are given by

jn = −qµnn∇ϕn, jp = −qµpp∇ϕp. (4)

These fluxes can also be written in drift-diffusion form

jn = −qµnn∇ψ + qDn∇n, jp = −qµpp∇ψ − qDp∇p. (5)

The diffusion coefficients Dn and Dp are related to the carrier mobilities µn and
µp by a generalized Einstein relation (UT = kBT/q denotes the thermal voltage)

Dn

µn
= UT g (ηn) ,

Dp

µp
= UT g (ηp) (6)

where
ηn = F−1

(
n

Nc

)
, ηp = F−1

(
p

Nv

)
(7)

and g denotes a nonlinear function of the form

g(ξ) =
F(ξ)

F ′(ξ) ,
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leading in general to a nonlinear diffusion coefficient. As proposed in [19], we
call this function diffusion enhancement. If we want to stress the dependency on
the charge carrier density, we can rewrite the diffusion enhancement equivalently
to g(n/Nc) = (n/Nc)(F−1)′(n/Nc) in the case of electrons for example. For
the Boltzmann approximation, we immediately see that g(ξ) = 1, which gives
the classical Einstein relation Dn = qµn/(kBT ). For the Blakemore distribu-
tion function, we have g(ξ) = 1 + γ exp(ξ). In general, for non-exponential
distribution functions we note by our assumptions (3) that g(ξ) ≥ 1. The
diffusion enhancement measures how well the semiconductor can be described
by Boltzmann statistics. The larger the diffusion enhancement, the less accurate
it is to assume Boltzmann statistics. For crystalline semiconductors assuming
Boltzmann statistics becomes inaccurate for large densities (e.g. due to high
doping or low temperatures). On the other hand, for organic semiconductors
this effect becomes already prevalent for low or moderate densities [20, 21]. The
diffusion enhancement functions for different distribution functions are shown in
Figure 1.

The system (1) is supplied with mixed Dirichlet-Neumann boundary condi-
tions. Since we focus on the flux approximation, we refer the reader for more
details to [22, 23].

3 Discretization of the van Roosbroeck system
There are various approaches to discretize the van Roosbroeck system. Histor-
ically, the first numerical discretizations of the van Roosbroeck system were
based on finite differences [2, 23]. Due to their inflexibility on arbitrary domains,
another promising technique is based on finite elements [24, 25]. However, finite
elements are known to run into stability issues when drift dominates diffusion
[26, 27, 28] in which case one has to work with a different set of basic variables
or stabilize this method. Unfortunately, there appears to be no stabilized finite
element method which is provably guaranteed to satisfy the maximum principle
or does not produce spurious oscillations [29]. In order to obtain stable dis-
cretizations of van Roosbroeck system even though the solution rapidly varies
several order of magnitudes, finite volume schemes are well-established [23, 30].
Hence, we focus on a Voronoï finite volume technique here. More details con-
cerning its use in the context of semiconductor device simulation can be found
in [5, 16, 22, 23].

We start by partitioning the domain Ω into non-intersecting, convex polyhe-
dral control volumes ωK such that Ω =

⋃N
K=1 ωK . With each control volume

we associate a node xK ∈ ωK . For every boundary intersecting control volume,
we demand that this node lies on the boundary xK ∈ ∂Ω ∩ ωK . Assuming that
the partition is admissible in the sense of [30], that is the edge xKxL of length
hKL is orthogonal to ∂ωk ∩ ∂ωL, the normal vectors to ∂ωK can be calculated
by nKL = (xL − xK)/‖xL − xK‖. The notation is explained visually in Figure
2. In order to keep the following discretization of the van Roosbroeck system
readable, we introduce two abbreviations used as arguments of the function F ,

ηn (ψ,ϕn) =
q (ψ − ϕn)− Ec

kBT
and ηp (ψ,ϕp) =

Ev − q (ψ − ϕn)

kBT
. (8)

We note that these definitions are consistent with (7). With the help of both
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xK xL

ωK
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ϕn;L
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j
nKL

Figure 2: Two adjacent control volumes ωK and ωL with corresponding notation.

of these expressions, we derive a finite volume based discretization of the van
Roosbroeck system. For each control volume ωK , we consider the three equations:

∑

ωL∈N (ωK)

|∂ωK ∩ ∂ωL|DK,L =q|ωK | (CK −NcF (ηn (ψK , ϕn;K)) +NvF (ηp (ψK , ϕp;K))) ,

(9a)

−q|ωK |Nc
d

dt
F (ηn (ψK , ϕn;K)) +

∑

ωL∈N (ωK)

|∂ωK ∩ ∂ωL|jn;K,L = q|ωK |RK ,

(9b)

q|ωK |Nv
d

dt
F (ηp (ψK , ϕp;K)) +

∑

ωL∈N (ωK)

|∂ωK ∩ ∂ωL|jp;K,L = −q|ωK |RK .

(9c)

We denote with N (ωK) the set of all control volumes neigboring ωK . In 2D, the
measure |∂ωK ∩ ∂ωL| corresponds to the length of the boundary line segment
and in 3D to the area of the intersection of the boundary surfaces. Furthermore,
in 2D the measure |ωK | is given by the area and in 3D by the volume of the
control volume ωK . The unknowns ψK , ϕn;K and ϕp;K are function evaluations
of the electrostatic potential as well as the quasi Fermi potentials for electrons
and holes evaluated at node xK . Accordingly, RK and CK are defined as

CK = C(xK) and RK = R
(
NcF (ηn (ψK , ϕn;K)) , NvF (ηp (ψK , ϕp;k))

)
.

Note that the doping profile C and the recombination rate R are known a
priori. The numerical fluxes DK,L, jn;K,L and jp;K,L approximate respectively
−ε0εr∇ψ · nKL, jn · nKL and jp · nKL on the interfaces between two adjacent
control volumes ωK and ωL. These fluxes can be expressed as functions depending
nonlinearly on the values ψK , ϕn;K , ϕp;K and ψL, ϕn;L, ϕp;L. The electrostatic
displacement flux is approximated by

DK,L = −ε0εr
ψL − ψK
‖xL − xK‖

.

3.1 Generalized Scharfetter-Gummel schemes
From now on, we restrict ourselves to the electron flux since analogous considera-
tions hold true for the hole flux. By construction of our mesh, it suffices to study

6



the one-dimensional flux jn along the edge xKxL. We make now the assumption
that the flux is constant between both nodes and denote it again with jn. This
leads for general distribution functions F to the ordinary differential equation

d

dx
jn =

d

dx

(
− qµnNcF (ηn (ψ,ϕn))

d

dx
ϕn

)
= 0 (10)

along the edge xKxL with boundary conditions

ϕn (xK) = ϕK and ϕn (xL) = ϕL (11)

where ϕK and ϕL are the values of the quasi Fermi potentials at the nodes xK
and xL. Integrating twice leads to the integral equation [6, 8] for the constant
and unknown current, namely

ηL∫

ηK

(
jn/j0
F(η)

+
ψL − ψK
UT

)−1

dη = 1, (12)

where j0 = qµnNc
UT
hKL

and the integration limits are given by ηK = ηn (ψK , ϕK)

and ηL = ηn (ψL, ϕL). For strictly monotonously increasing F(η) this equation
has always a unique solution [9]. Since this scheme does not put any additional
assumptions on F other than (3), we will refer to it as exact or generalized
Scharfetter-Gummel scheme.

This integral equation can be solved analytically for the Boltzmann ap-
proximation, F(η) = exp(η), yielding the classical Scharfetter-Gummel scheme
[2],

jSG = B

(
ψL − ψK
UT

)
eηL −B

(
−ψL − ψK

UT

)
eηK , (13)

for the non-dimensionalized edge current jSG = jn/j0. The Bernoulli function is
given by B(x) := x/(ex − 1).

In [8], it was shown that for the Blakemore approximation for the Fermi-
Dirac integral of order one half, F (η) = 1

exp(−η)+γ , the integral equation can be
integrated, leading to a fixed point equation

jGENSG = B

(
γjGENSG +

ψL − ψK
UT

)
eηL −B

(
−
[
γjGENSG +

ψL − ψK
UT

])
eηK

(14)
for the non-dimensionalized edge current jGENSG = jn/j0. The right-hand side is
a Scharfetter-Gummel expression where the argument of the Bernoulli function
is shifted by γjGENSG. Hence, for γ = 0 the generalized flux jGENSG reduces
to the classical Scharfetter-Gummel scheme (13) since the Blakemore function
reduces to the Boltzmann function.

Since the Bernoulli function is strictly decreasing, this fixed point equation
possesses a unique solution jGENSG. If we want to use the flux given by (14)
in the discrete system (9), we need to solve for the flux jGENSG twice (once for
electrons and once for holes) on each discretization edge xKxL. A few Newton
steps are sufficient to solve this equation iteratively [8]. Even though the implicit
equation (14) is restricted to the Blakemore approximation, it provides a useful
scheme in the context of organic semiconductors. There the Blakemore function
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arises naturally as a model for materials with δ-shaped density of states [20, 31],
describing a single transport level and approximating the Gauss-Fermi integral
shown in Figure 1.

Unfortunately, for a general statistical distribution function (e.g. for Fermi-
Dirac statistics), no corresponding equation has been derived so far. Therefore,
in [9] it was proposed to use piecewise approximations of F of Blakemore type or
Padé functions in order to obtain piecewise integrable expression from the local
boundary value problem. However, this is computationally not cheap. Hence,
we introduce modified Scharfetter-Gummel schemes next.

3.2 Modified Scharfetter-Gummel schemes
Instead of trying to solve the integral equation (12) analytically for more general
statistics such as Fermi-Dirac statistics, one can also average certain quantities
in the flux expressions (4) and (5) in a clever way, which allows to keep the
Scharfetter-Gummel structure. We are going to present two such Boltzmannifi-
cation techniques, which can be physically interpreted as either modifying the
thermal voltage UT or the effective density of states Nc. For this reason we call
the following schemes modified Scharfetter-Gummel schemes.

Bessemoulin-Chatard [13] derived a finite volume scheme for convection-
diffusion problems by averaging the nonlinear diffusion term appropriately. This
idea was cast in a physical framework in [14], introducing a logarithmic average
of the nonlinear diffusion enhancement

gKL =
ηL − ηK

logF (ηL)− logF (ηK)
(15)

along the discretization edge. Using the generalized Einstein relation (6), one
immediately observes that the diffusion enhancement g can be seen as a modifica-
tion factor for the thermal voltage UT . Replacing UT in the Scharfetter-Gummel
expression (13) by U∗T = UT gKL, we deduce the following (non-dimensionalized)
modified Scharfetter-Gummel scheme

jDESG = −gKL
(
F (ηK)B

(
−ψL − ψK
UT gKL

)
−F (ηL)B

(
ψL − ψK
UT gKL

))
, (16)

approximating the current along the edge. A problematic aspect of this scheme is
that even though the diffusion enhancement factor gKL is bounded from below by
one, it is not straightforward to compute it on a computer when ηK approaches
ηL. In this case one needs to use a suitable regularization strategy.

Instead of replacing the thermal voltage by a suitable average along the
edge, it is also possible to approximate F(η) along the edge by an exponential
(local Boltzmann approximation) and modify the effective density of states Nc
accordingly, that is

NcF(η) ≈ N∗c exp(η).

This choice makes it possible to keep the original Scharfetter-Gummel flux (13),
only replacing Nc with N∗c . One choice for the modified density of states is

N∗c (η∗) = Nc
F(η∗)

exp(η∗)
,
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where η∗ ∈ [ηK , ηL], assuming ηK ≤ ηL. In practice, we might consider taking
the arithmetic or the geometric mean between Nc(ηK) and Nc(ηL), which leads
to two more non-dimensionalized modified Scharfetter-Gummel schemes, namely

jIACT =− βKL
(
B

(
−ψL − ψK

UT

)
eηK −B

(
ψL − ψK
UT

)
eηL

)
, (17)

where the inverse activity coefficient is either given by

βKL =
1

2

( F (ηK)

exp(ηK)
+
F (ηL)

exp(ηL)

)
(18)

or

βKL =

√
F (ηK)F (ηL)

exp(ηK) exp(ηL)
. (19)

Sometimes such a prefactor is also referred to as degeneracy factor. The idea
behind this scheme was introduced in [15] for the numerical solution of the
generalized Nernst-Planck system which is similar to the van Roosbroeck system
(1). For the Boltzmann distribution function both inverse activity coefficients
become one. For non-exponential distribution functions, on the other hand, they
are less than one due to our assumptions (3).

3.3 Thermodynamic consistency
All of the presented schemes are consistent with the thermodynamic equilibrium
in the following sense: Setting the electron current in (5) to zero and using
the generalized Einstein relationship, we deduce ∇ϕn = 0 and thus for the
electrostatic potential (scaled by UT ) that

∇ψ = ∇η.

Thermodynamic consistency means that we require our numerical current ap-
proximation to satisfy an analogous relationship. Namely, setting any of the
previously introduced fluxes to zero

j = j(ηL, ηK , ψL, ψK) = 0

shall imply
δψKL = δηKL, (20)

where
δηKL := ηL − ηK and δψKL :=

ψL − ψK
UT

. (21)

Indeed, setting the inverse activity current in (17) to zero and using the
identity B(−x) = exB(x) yields (20). This works for any average of the inverse
activity coefficient βKL. For the diffusion enhanced scheme (20) follows when
setting the current in (16) to zero. Upon rearranging one obtains

log

(F(ηL)

F(ηK)

)
=
δψKL
gKL

=
log (F(ηL)/F(ηK))

δηKL
δψKL

9



which simplifies again to δψKL = δηKL. This scheme is only thermodynamically
consistent when averaging the diffusion enhancement as done in (15). The
consistency for the exact scheme can be directly inferred from (12) when setting
the current jn equal to zero. Even though the thermodynamic consistency
is imperative to obtain accurate numerical simulation results, many authors
introduced schemes which do no possess this property [10, 11, 12].

4 Flux expansions
In order to assess the quality of the different flux discretization schemes, we start
by looking at their expansions. To this end, it will be useful to introduce the
average

η̄KL =
ηL + ηK

2
. (22)

The original values ηK and ηL relate to the new values η̄KL and δηKL as follows

ηL = η̄KL −
δηKL

2
and ηK = η̄KL +

δηKL
2

.

Since only the electrostatic potential difference appears in the numerical fluxes, we
can think of the non-dimensionalized flux depending on the following quantities

j = j(η̄KL, δηKL, δψKL) = jn(η̄KL, δηKL, δψKL)/j0.

We expand the fluxes around η̄KL in terms of the differences δηKL and δψKL,
which decrease on finer meshes. For a Mathematica notebook to verify the
following series expansions, we refer to [18].

4.1 Generalized Scharfetter-Gummel scheme
We would like to derive expansions for the most general discretization scheme
when the flux is given implicitly by the integral equation (12). Since in this case
no additional assumptions on F , apart from (3), are made, we can compare the
exact flux to the modified ones to study their quality. We consider the generalized
Scharfetter-Gummel as the reference flux. We transform integral equation (12)
into an implicit equation for the non-dimensionalized flux j = jn/j0, namely

G(j, δψKL, δηKL) :=
1

2
δηKL

1∫

−1

F
(
η̄KL + 1

2δηKLξ
)

j + δψKLF
(
η̄KL + 1

2δηKLξ
)dξ − 1 = 0. (23)

Expanding the flux around δψKL = 0 and omitting the argument η̄KL, we find

j(δψKL, δηKL) = j(0, δηKL)+j′(0, δηKL)δψKL+
1

2
j′′(0, δηKL)δψ2

KL+
1

6
j′′′(ξ, δηKL)δψ3

KL

(24)
for some ξ ∈ [0, δψKL]. The derivative is taken with respect to δψKL. The
zeroth-order term on the right-hand side we can compute directly from (23) via

j(0, δηKL) =
1

2
δηKL

∫ 1

−1

F
(
η̄KL +

1

2
δηKLξ

)
dξ

= F(η̄KL)δηKL +
1

24
F ′′(η̄KL)δη3

KL +O(δη5
KL).

(25)
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Since Equation (23) is only given in implicit form, we need to compute j′ via
implicit differentiation. We find

j′(0, δηKL) = −
(
∂G(j, δηKL, δψKL)

∂δψKL

/
∂G(j, δηKL, δψKL)

∂j

)∣∣∣∣∣
δψKL=0

= −



∫ 1

−1
F2(η̄KL+1/2δηKLξ)

(j+δψKLF(η̄KL+1/2δηKLξ))2
dξ

∫ 1

−1
F(η̄KL+1/2δηKLξ)

(j+δψKLF(η̄KL+1/2δηKLξ))2
dξ



∣∣∣∣∣∣
δψKL=0

= −
∫ 1

−1
F2(η̄KL + 1

2δηKLξ)dξ∫ 1

−1
F(η̄KL + 1

2δηKLξ)dξ

= −F(η̄KL)−
( F ′(η̄KL)2

12F(η̄KL)
+
F ′′(η̄KL)

24

)
δη2
KL +O(δη4

KL),

(26)

where for the final line we have made the additional assumption that δηKL is
small. Finally, by differentiating the implicit derivative (the term in parentheses
in (26)) once more, we obtain

j′′(0, δηKL) =
1

6

F ′(η̄KL)2δη2
KL

j(0)
+O(δη4

KL/j(0))

=
1

6

F ′(η̄KL)2δηKL
F(η̄KL)

+O(δη3
KL).

(27)

Inserting (25), (26) and (27) into (24) leads to

j(δψKL, δηKL) = −F(η̄KL)δψKL + F(η̄KL)δηKL

+
1

12

F ′(η̄KL)2

F(η̄KL)
δψ2

KLδηKL

−
( F ′(η̄KL)2

12F(η̄KL)
+
F ′′(η̄KL)

24

)
δψKLδη

2
KL

+
1

24
F ′′(η̄KL)δη3

KL

+O(δη5
KL) +O(δψKLδη

4
KL) +O(δψ2

KLδη
3
KL) +O(δψ3

KL).
(28)

Note we have expanded all third-order terms except the O(δψ3
KL) term as it does

not appear in any of the following flux expansions. Furthermore, the first-order
terms can be rewritten to −F(η̄KL)ϕL−ϕKUT

since by (8) and (21), we have

ϕL − ϕK
UT

=
ψL − ψK
UT

− (ηL − ηK).

This constitutes a central difference approximation for the electron current (4):

jn = j0j ≈ −qµNcF(η̄KL)
ϕL − ϕK
hKL

. (29)
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4.2 Inverse activity schemes
Before expanding the inverse activity fluxes, we rewrite the inverse activity
scheme in terms of the new variables:

jIACT = βKLe
η̄KL

{
e
δηKL

2 B (δψKL)− e−
δηKL

2 B (−δψKL)
}

= βKLe
η̄KL

{ ∞∑

k=0

(δηKL/2)
k

k!
B (δψKL)−

∞∑

k=0

(−δηKL/2)
k

k!
B (−δψKL)

}

= βKLe
η̄KL

{ ∞∑

k=0

(δηKL/2)
2k

(2k)!
[B (δψKL)−B (−δψKL)]

−
∞∑

k=0

(−δηKL/2)
2k+1

(2k + 1)!
[B (δψKL)−B (−δψKL)]

}
.

Using the properties of the Bernoulli function

B(x)−B(−x) = −x and B(x) +B(−x) = x coth(x/2),

we can simplify this expression to

jIACT = βKLe
η̄KLδψKL

{
− cosh(δηKL/2) + sinh(δηKL/2) coth(δψKL/2)

}
.

Assuming an arithmetic mean for the inverse activity coefficient βKL leads to
the expansion

βKL =
1

2

(F(ηK)

eηK
+
F(ηL)

eηL

)

= e−η̄KL
{
F(η̄KL) +

1

2

(
F ′′(η̄KL)− 2F ′(η̄KL) + F(η̄KL)

)
δη2
KL +O(δη4

KL)

}
.

On the other hand, a geometrically averaged inverse activity coefficient can be
expanded to

βKL =

√
F(ηK)F(ηL)

eηKeηL

= e−η̄KL
{
F(η̄KL) +

1

2

(
F ′′(η̄KL)− F

′(η̄KL)2

F(η̄KL)

)
δη2
KL +O(δη4

KL)

}
.

Hence, using the following expansions

cosh(x/2) = 1 +O(x2), sinh(x/2) =
x

2
+O(x3), x coth(x) = 1 +

1

3
x2 +O(x4),

(30)
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we derive for an arithmetically averaged activity coefficient

jIACT(δψKL, δηKL) = −F(η̄KL)δψKL + F(η̄KL)δηKL

+
1

12
F(η̄KL)δψ2

KLδηKL

−
(

5

8
F(η̄KL)−F ′(η̄KL) +

1

2
F ′′(η̄KL)

)
δψKLδη

2
KL

+

(
1

2
F ′′(η̄KL)−F ′(η̄KL) +

13

24
F(η̄KL)

)
δη3
KL

+O
(
δψ4

KL

)
+O

(
δψ2

KLδη
3
KL

)
+O

(
δη4
KL

)

(31)
and for a geometrically averaged activity coefficient

jIACT(δψKL, δηKL) = −F(η̄KL)δψKL + F(η̄KL)δηKL

+
1

12
F(η̄KL)δψ2

KLδηKL

−
(

1

2
F ′′(η̄KL)− 1

2

F ′(η̄KL)2

F(η̄KL)
+

1

8
F(η̄KL)

)
δψKLδη

2
KL

+

(
1

2
F ′′(η̄KL)− 1

2

F ′(η̄KL)2

F(η̄KL)
+

1

24
F(η̄KL)

)
δη3
KL

+O
(
δψ4

KL

)
+O

(
δψ2

KLδη
3
KL

)
+O

(
δη4
KL

)
.

(32)
We note that by our assumption (3) the fractions in this expansion are well-
defined.

4.3 Diffusion enhanced scheme
Finally, we can apply similar ideas to the diffusion enhanced scheme. On
expanding the distribution function F , we obtain

jDESG = gKL

{
F(η̄KL + δηKL/2)B

(
δψKL
gKL

)
−F(η̄KL − δηKL/2)B

(
−δψKL
gKL

)}

= gKL

{
−δψKL
gKL

∞∑

k=0

F (2k)(η̄KL)

(2k)!

(
δηKL

2

)2k

+
δψKL
gKL

coth

(
δψKL
2gKL

) ∞∑

k=0

F (2k+1)(η̄KL)

(2k + 1)!

(
δηKL

2

)2k+1
}
.

The averaged diffusion enhancement coefficient gKL can be expanded as follows

gKL =
F(η̄KL)

F ′(η̄KL)
−
(

1

3

F ′(η̄KL)

F(η̄KL)
+

1

6

F(η̄KL)F ′′′(η̄KL)

F ′(η̄KL)2
− 1

2

F ′′(η̄KL)

F ′(η̄KL)

)
δη2
KL

+O(δη4
KL).

(33)
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Combining both equations, gives similarly as before

jDESG(δψKL, δηKL) = −F(η̄KL)δψKL + F(η̄KL)δηKL

+
1

12

F ′(η̄KL)2

F(η̄KL)
δψ2

KLδηKL

− 1

8
F ′′(η̄KL)δψKLδη

2
KL

+

(
1

2
F ′′(η̄KL)− 1

3

F ′(η̄KL)2

F(η̄KL)
− 1

8

F(η̄KL)F ′′′(η̄KL)

F ′(η̄KL)

)
δη3
KL

+O
(
δψ4

KL

)
+O

(
δψ2

KLδη
3
KL

)
+O

(
δη5
KL

)
.

(34)

4.4 Comparison
When comparing the expansions (31), (32) and (34) with the expansion of the
exact scheme (28), we can make several observations. There are no zeroth
and second-order terms. All first-order terms agree and constitute a central
difference approximation of the flux in the sense of (29) thus showing that
these discretizations are consistent. Almost all third-order terms are different
with the interesting exception of the O(δψ2

KLδηKL) term which appears in the
diffusion enhanced as well as in the exact scheme. Introducing the diffusion
enhancement factor g, the error between the prefactor in (28) and (34) as well
as the corresponding term in (31) and (32) may be written as

1

12

(
1− 1

g(η̄KL)2

)
F(η̄KL).

We point out that the diffusion enhancement enters quadratically. For Boltz-
mann statistics the difference vanishes. However, since for physically relevant
applications far from the Boltzmann regime the diffusion enhancement g is
considerably larger than unity, we deduce that the error from this third-order
term is larger for the inverse activity schemes. While this already indicates that
the diffusion enhanced flux discretization might hold some advantage over the
inverse activity flux discretizations, the argument is not fully conclusive since
not all third-order terms cancel. For example, there are no O(δψ3

KL) terms in
the expansions of the modified schemes. This follows from the final expansion in
(30) and the structure of the fluxes (31), (32) and (34). Except for the linear
term only even powers of δψKL enter these expansions.

The third-order prefactors are compared numerically in Figure 3 for Boltz-
mann, Blakemore, Fermi-Dirac statistics. For all third-order prefactors the
deviation from the reference flux (28) is shown in the range of −5 ≤ η̄KL ≤ 5.
The O(δψ2

KLδηKL) prefactor is the same for both inverse activity schemes. In
the plotted range the magnitude of all prefactors for the geometrically aver-
aged inverse activity scheme is almost always larger than the prefactors for
the arithmetically averaged inverse activity scheme. For Boltzmann statistics
all schemes yield the same Scharfetter-Gummel flux (13). Hence, these errors
(numerically) vanish. Similarly, since for large negative arguments all functions
F are approximated accurately by the Boltzmann approximation, all schemes
agree in this regime and the error is small.
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Figure 3: Errors of third-order prefactors between modified and exact schemes
in the range of −5 ≤ η̄KL ≤ 5 for different choices of F . For Matlab files to
generate these figures see [18].

Since neither modified Scharfetter-Gummel scheme is third-order accurate,
we derive a second-order accurate error estimate in the next section which helps
us to better judge the quality of the different schemes.

5 Error estimate
Since from the previous section it is not really clear which modified Scharfetter-
Gummel scheme is the best, we derive now an error estimate, bounding the
error between the modified schemes and the exact one with a second-order
O(δψKLδηKL) term.

Theorem 1. Suppose the inverse activity coefficient satisfies

βKL = e−η̄KL
{
F(η̄KL) +O(δη2

KL)
}
. (35)

Neglecting third-order terms, the error between the modified fluxes and the exact
integral flux j as determined by (23) can be bounded by

|jIACT − j| ≤
1

2
F(η̄KL)|δψKLδηKL|, (36)

|jDESG − j| ≤
1

2
F ′(η̄KL)|δψKLδηKL| =

1

2

F(η̄KL)

g(η̄KL)
|δψKLδηKL|. (37)
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Proof. First we note that using expansions (30) we can derive for the inverse
activity flux as well as for diffusion enhanced flux (16) the expansions

jIACT = −F(η̄KL)δψKL +
δψKL

2
coth

(
δψKL

2

)
F(η̄KL)δηKL

+O(δψKLδη
2
KL) +O(δη3

KL)

(38)

as well as

jDESG = −F(η̄KL)δψKL +
δψKL

2
coth

(
δψKL
2gKL

)
F ′(η̄KL)δηKL

+O(δψKLδη
2
KL) +O(δη3

KL).

(39)

Next, it is useful to note that

1 ≤ x

2
coth(x/2) ≤ 1 +

|x|
2

(40)

for any x ∈ R. Hence, we can bound the inverse activity flux discretization by

jIACT ≤ −F(η̄KL)δψKL +

(
1 +

1

2
|δψKL|

)
F(η̄KL)δηKL +O(δψKLδη

2
KL) +O(δη3

KL)

jIACT ≥ −F(η̄KL)δψKL + F(η̄KL)δηKL +O(δψKLδη
2
KL) +O(δη3

KL).

From this we deduce the following bounds for the error

jIACT − j ≤
1

2
F(η̄KL)|δψKLδηKL|+O(δψKLδη

2
KL) +O(δη3

KL) +O(δψ3
KL) +O(δψ2

KLδηKL)

j − jIACT ≤ O(δψKLδη
2
KL) +O(δη3

KL) +O(δψ3
KL) +O(δψ2

KLδηKL).

That is, neglecting third-order terms and using (3), we have the error estimate

|jIACT − j| ≤
1

2
F(η̄KL)|δψKLδηKL|.

On the other hand, applying (40) to the diffusion enhanced flux (39), we derive
(neglecting third-order terms straight away)

jDESG = −F(η̄KL)δψKL + gKL

(
δψKL
2gKL

)
coth

(
δψKL
2gKL

)
F ′(η̄KL)δηKL

≤ −F(η̄KL)δψKL +

(
gKL +

1

2
|δψKL|

)
F ′(η̄KL)δηKL

= −F(η̄KL)δψKL + F(η̄KL)δηKL +
1

2
|δψKL| δηKLF ′(η̄KL) +O(δη3

KL)

where we have used (33) in the last line. Similarly, we find

jDESG ≥ −F(η̄KL)δψKL + F(η̄KL)δηKL +O(δη3
KL).

From both previous estimates we obtain, neglecting third-order terms,

|jDESG − j| ≤
1

2
F ′(η̄KL)|δψKLδηKL|.

Finally, we note that due to the definition of the diffusion enhancement

g(ηn) =
F(ηn)

F ′(ηn)
,

the claim follows.
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Figure 4: Logarithmic absolute errors between the generalized Scharfetter-
Gummel and the diffusion enhanced scheme (left), the arithmetically averaged
inverse activity scheme (middle) and the geometrically averaged one (right) for
δψKL = UT (first row) and δψKL = 5UT (second row). The dashed lines show
where generalized and modified schemes agree exactly. The bold black lines
highlight the same contour levels in all the plots. For Matlab files to generate
these figures see [18].

The previous theorem shows that the main difference between both error
estimates is that the diffusion enhancement appears favorably in the error bound
of the diffusion enhanced scheme. So if we are far from the Boltzmann regime
(where the diffusion enhancement is significantly larger than one), the second
error bound is guaranteed to perform better. This is not just a theoretical result
but has direct consequences for numerical computations as we will see in the
next section with the help of an example. It is also important to note that in
the proof the concrete form of the inverse activity coefficient did not matter.
For any inverse activity coefficient which admits an expansion of the form (35)
the result holds. Thus, this result applies to even more general averages for the
inverse activity coefficient than just the arithmetic or the geometric mean.

6 Numerical flux comparison
In order to see the implications of Theorem 1, we plot the error between the
modified and the generalized Scharfetter-Gummel flux approximation schemes
in this section. We think of the generalized Scharfetter-Gummel as the reference
solution since it solves the two-point boundary value problem exactly. So ideally,
we would like to come as close as possible to the generalized Scharfetter-Gummel
scheme using one of the modified ones. One of the simplest non-Boltzmann
distribution function is the Blakemore approximation. As discussed before, it
has the additional advantage that we do not need to solve the integral equation
(12). It suffices to solve the implicit equation (14). For this reason, we focus on
the Blakemore distribution function in this and the following section.

Figures 4 and 5 show the logarithmic absolute errors between the inverse
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Figure 5: Logarithmic absolute errors between the generalized Scharfetter-
Gummel and the diffusion enhanced scheme (left), the arithmetically averaged
inverse activity scheme (middle) and the geometrically averaged one (right) for
η̄KL = 1.5 (first row) and η̄KL = 5 (second row). The dashed lines show where
generalized and modified schemes agree exactly. The bold black lines highlight
the same contour levels in all the plots. For Matlab files to generate the figures
see [18].

activity and the diffusion enhanced flux approximation scheme (for electrons)
with respect to the generalized Scharfetter-Gummel scheme. To be more precise,
for the diffusion enhanced and generalized Scharfetter-Gummel flux, for example,
the error is defined by

sign(jDESG − jGENSG) log(1 + |jDESG − jGENSG|).

Figure 4 shows the error depending on ηK and ηL for a fixed value of the
potential difference δψKL. The figures illustrate the fact that for large negative
ηK and ηL all schemes agree since they coincide with the classical Scharfetter-
Gummel scheme in this regime. Additionally, they agree when there is no diffusion
(pure drift current) in which case ηK = ηL as well as when δψKL = δηKL, due
to the consistency with the thermodynamic equilibrium which we discussed in
Section 3.3. Both of these special cases are indicated by the dashed lines. The
thick black lines highlight the same contour levels. The chosen value for δψKL
has a moderate influence on the error, mostly by shifting the dashed line along
which the schemes are thermodynamically consistent.

On the other hand, Figure 5 shows the errors in terms of δηKL and δψKL
for a fixed value of η̄KL. Again, the dashed lines indicate where ηK = ηL as
well as δψKL = δηKL. This time, however, the value for η̄KL drastically changes
the behavior of the error. The diffusion enhancement for these values is given
by g(1.5) = 2.21 and g(5) = 41.07, indicating that for these choices of η̄KL
the Boltzmann approximation is clearly no longer valid. For the first value the
Blakemore distribution function is still a good approximation of the Fermi-Dirac
distribution function [7], see Figure 1. The second choice illustrates the case of
large diffusion enhancement as is typical for organic semiconductors with large
disorder or semiconductors operating a cryogenic temperatures [32].
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From Figure 5, it is clear that the diffusion enhancement is closest to the
reference solution, the generalized Scharfetter-Gummel scheme. Both inverse
activity schemes yield larger errors of approximately the same size which do
not seem to depend on η̄KL very much. This behavior is explained by our error
estimates in Theorem 1 since the diffusion enhancement enters inversely in the
bound for the diffusion enhanced flux whereas in the bound for the inverse
activity flux it does not enter at all.

7 Benchmark simulation
Up to now we have only discussed local flux approximations but did not study
the impact on the fully coupled van Roosbroeck system. In this section, we
carefully design a relatively simple benchmark which shows that the local flux
approximations can have a strong influence on the total current flowing through
a device or even the electrostatic potential.

7.1 Designing the benchmark
Since all schemes are consistent with the thermodynamic equilibrium, we can
only expect large differences between the schemes when considering a system
which is far from equilibrium. In the case of electrons, this corresponds to
maximizing the absolute value of the non-dimensionalized difference in quasi
Fermi potentials δϕKL := (ϕL − ϕK)/UT , which for electrons is given by

δϕKL = −δηKL + δψKL. (41)

Assuming that the electrostatic potential is linear, we can relate the local
potential difference δψKL between two neighboring cells in a one-dimensional
device to the global bias δψ, using the formula

δψKL =
hKL
h

δψ.

As before hKL denotes the local distance between nodeK and L. The total length
of the device is given by h. From this we can deduce that we need a large global
bias and a coarse mesh. On the other hand, for electrons the difference δηKL
needs to have the opposite sign of the electrostatic potential difference δψKL.
This behavior can be clearly observed in Figure 5, where the signed logarithmic
absolute errors between the different schemes are compared. Whenever δηKL
and δψKL are large and have opposite signs, the flux error becomes large. A
large difference in δηKL corresponds to a large density contrast.

We point out that the electrostatic potential difference in (41) is normalized
with the thermal voltage UT = kBT/q. Hence, one can also increase the quasi
Fermi potential difference by decreasing the temperature T .

7.2 A p-i-n device
To study the differences of the previous schemes, we simulate a simple diode,
depicted in Figure 6, consisting of p-doped, intrinsic and n-doped regions. The
example is chosen in such a way that we incorporate the observations from
the previous subsection to guarantee that the device is sufficiently far from
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2µm 2µm 2µm

0.5µm

NA = 4.35 ⇥ 1017/cm3 ND = 4.20 ⇥ 1018/cm3

NI = 0.00/cm3

Figure 6: The p-i-n device used for the numerical calculations. The p-contact is
on the left and the n-contact is on the right.
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Figure 7: The IV curves computed with the different schemes for different mesh
refinements. The reference solution (black) was computed using the generalized
Scharfetter-Gummel scheme on refinement level 12. For the data sets see [18].
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thermodynamic equilibrium (large global bias, coarse mesh and the fact that
at least some local δηKL and δψKL have opposite signs). We study a gallium
arsenide p-i-n diode, using the following parameters for the calculations: band
gap Ec − Ev = 1.424 eV, density of states Nc = 4.35× 1017 cm−3, Nv = 9.14×
1018 cm−3, mobilities µn = 8500 cm2/(Vs), µp = 400 cm2/(Vs), temperature T =
300 K, relative permittivity εr = 12.9, n-doping ND = 4.35×1017 cm−3, p-doping
NA = 4.20 × 1018 cm−3, intrinsic region NI = 0 cm−3 and no recombination
R = 0. Each subregion is 2µm long. The calculations were carried out with
the software package ddfermi [33]. All of the discussed schemes have been
implemented in this package.

To be able to compare all three schemes, we choose the Blakemore distribution
function since in this case the integral equation (12) simplifies to the implicit
equation (14). In Figure 7, we show the IV curves (total current for a given
bias) for the different schemes and mesh resolutions. The total current is a
global and highly relevant quantity from the engineering point of view. For
large biases, we can see that the schemes behave quite differently. The reference
solution has been computed with the generalized Scharfetter-Gummel scheme
using refinement level 12. The refinement level n corresponds to a uniform mesh
width

hn =
2

3 · 2n − 1
µm. (42)

That is, for each new refinement level the uniform mesh size is halved.
For the coarsest refinement level the generalized Scharfetter-Gummel scheme

already shows the classical p-i-n behavior, blocking the current up to a threshold
value and then exhibiting a linear current growth. The diffusion enhanced and
the inverse activity scheme (using the arithmetic mean for the inverse activity
coefficient) do not capture the asymptotics accurately. The best seems to be
the inverse activity scheme with geometrically averaged coefficient. However,
this effect does not prevail on finer meshes as the next two refinement levels
reveal. More clearly, this can be seen when studying the L∞ error for the
total current taken with respect to the bias value, see the left graph in Figure
8. The first nine refinement levels are shown. Except for the first refinement
level the diffusion enhanced scheme yields the smallest error among all modified
schemes. However, we need to bear the following in mind: Whereas the exact
scheme (which unsurprisingly gives the smallest error for any given mesh width)
is already fairly accurate on the coarsest mesh, the modified schemes have still a
relatively large error margin. Even though it is more costly to implement, this
additional accuracy might be indispensable for 3D simulations where one may
only work with coarse meshes. Eventually all schemes converge quadratically.
However both inverse activity schemes converge more slowly than the diffusion
enhanced and the exact scheme.

Figure 8 shows a convergence plot for the spatial L∞ error of the electrostatic
potential. Here, the diffusion enhanced scheme seems to behave only significantly
better on coarse meshes. This behavior is expected as all schemes should
eventually converge to the same solution as the mesh width tends to zero. We
point out that the Poisson equation is not directly influenced by the different
current approximations. They only enter in the right-hand side via the charge
carrier densities.
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8 Conclusion and Outlook
In this paper, we have compared three charge carrier flux approximations for more
general statistics than the Boltzmann approximation. The diffusion enhancement,
a key indicator for how valid the Boltzmann approximation is, helped to judge
the quality of the different flux approximations. We compared two types of
modified schemes with the exact solution of the local two-point boundary value
problem. It was shown that for the diffusion enhanced scheme even a third-order
term agreed with the expansion of the exact flux. Furthermore, a second-order
accurate error estimate revealed that the bound for the diffusion enhancement
scheme depends more favorably on the diffusion enhancement than the inverse
activity schemes, making a strong case for the former scheme. Finally, we
analyzed the impact of the local flux approximations on the solution of the
fully coupled van Roosbroeck system. For this we designed and studied a p-
i-n benchmark, which proved that under certain conditions the local fluxes
have a direct impact on the solution and the overall current. The L∞ errors
for the total current and the electrostatic potential showed that among the
presented modified Scharfetter-Gummel schemes the diffusion enhanced one
converged fastest. Hence, it appears that all in all the diffusion enhanced
scheme bears significant advantages over the inverse activity scheme. These
results are particularly important when the diffusion enhancement is large. This
effect appears, for example, in organic semiconductors or when conventional
semiconductors have to operate at cryogenic temperatures. Furthermore, if
computational resources are limited (say for complex 3D geometries) the extra
accuracy is crucial.

Several points can be the focus of future research: Firstly, the impact of
the different flux approximations on multidimensional devices may be studied.
Secondly, the stability of the linear systems which need to be solved during the
Newton iterations can be analyzed for each flux approximation. And finally,
the implementation aspect is worth looking into. This may not be trivial for
the diffusion enhanced scheme as the computation of the diffusion enhancement
factor (15) leads to numerical complications if the denominator becomes small.
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