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Abstract

The frame-indifferent thermodynamically-consistent model of thermoviscoelas-
ticity at large strain is formulated in the reference configuration by using the con-
cept of the second-grade nonsimple materials. We focus on physically correct vis-
cous stresses that are frame indifferent under time-dependent rotations. Also elastic
stresses are frame indifferent under rotations and respect positivity of the determi-
nant of the deformation gradient. The heat transfer is governed by the Fourier law
in the actual deformed configuration, which leads to a nontrivial description when
pulled back to the reference configuration. The existence of weak solutions in the
quasistatic setting, that is inertial forces are ignored, is shown by time discretization.

1. Introduction

For a long time, thermoviscoelasticity was considered as a quite difficult prob-
lem even at small strains, mainly because of the nonlinear coupling with the heat-
transfer equation which has no obvious variational structure; hence special tech-
niques had to be developed. It took about two decades after the pioneering work
by DAFERMOS [14] in one space dimension that first three-dimensional studies oc-
curred (cf. for example [7,12,43]). The basic new ingredient was the L'-theory
for the nonlinear heat equation developed in [9,11]. At large strains, in simple
materials, the problem is still recognized to be very difficult even for the case of
mere viscoelasticity without coupling with temperature, and only few results are
available if the physically relevant frame-indifference is respected, as articulated by
BaLL [2], see also [3,4]. In particular, local-in-time existence [27] or existence of
measure-valued solutions [15, 18] are known for simple materials. Further examples
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in this direction are [52] for a general three-dimensional theory, but not respecting
frame indifference and the determinant constraints, or [34] for a one-dimensional
theory using the variational structure. While the static theory for large-strain elas-
ticity developed rapidly after [2], there are still only few result for time-dependent
processes respecting frame indifference as well as the determinant constraint. The
first cases were restricted to rate-independent processes, such as elastoplasticity
(cf. [31,36]) or crack growth (cf. [16], see [35, Sec.4.2] for a survey. Recently the
case of viscoplasticity was treated in [38].

The main features of the model discussed in this work can be summarized in
brief as follows: the thermoviscoelastic continuum is formulated at large strains in a
reference configuration, that is the Lagrangian approach. The concepts of 2nd-grade
nonsimple material is used, which gives higher regularity of the deformation. The
heat transfer is modeled by the Fourier law in the actual deformed configuration,
but transformed (pulled back) into the reference configuration for the analysis. Our
model respects both static frame-indifference of the free energy and dynamic frame
indifference for the dissipation potential. Moreover, the local non-selfpenetration
is realized by imposing a blowup of the free energy if the determinant of the de-
formation gradient approaches 0 from above, however we do not enforce global
non-selfpenetration. Also, we neglect inertial effects; cf. Remark 6.6 for more de-
tailed discussion.

Let us highlight the important aspects of the presented model and their conse-
quences:

() The temperature-dependence of the free energy creates adiabatic effects involv-
ing the rate of the deformation gradient. To handle this, the Kelvin—Voigt-type
viscosity is used to control the rate of the deformation gradient. In addition,
we separate the purely mechanical part, cf. (2.15) below, which allows us to
decouple the singularities of large-strain elasticity from the heat equation.

(P) The heat transfer itself [and also the viscosity from ()] is clearly rate depen-
dent and the technique of rate-independent processes supported by a variation-
ally efficient energetic-solution concept cannot be used (which also prevents us
from excluding possible global selfpenetration).

(v) The equations for the solid continuum need to be formulated and analyzed
in the fixed reference configuration but transport processes (here only the heat
transfer) happen rather in the actual configuration and the pull-back procedure
needs the determinant of the deformation gradient to be well away from 0. To
achieve this, we exploit the concept of 2nd-grade nonsimple materials together
with the results of HEALEY and KROMER [24], which allow us to show that
the determinant for the deformation gradient is bounded away from O, see
Section 3.1.

(&) The transport coefficients depend on the deformation gradient because of the
reasons in point (y). For this, measurability in time is needed and thus the con-
cept of global quasistatic minimization of deformation (as in rate-independent
systems [35] or in viscoplasticity in [38]) would not be satisfactory; therefore
we rather control the time derivative of the deformation, which can be done
either by inertia (which is neglected in our work) or by the Kelvin—Voigt-type
viscosity from ().
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(€) The viscosity from () must satisfy time-dependent frame indifference as
explained in [1], thus it is dependent on the rate of the right Cauchy—Green
tensor rather than on the rate of the deformation gradient itself. However, the
adiabatic heat sources/sinks involve terms where the rate of the deformation
gradient occurs directly. To control the latter by the former, we exploit results of
NEFF [39] in the extension by PoMPE [41] for generalized Korn’s inequalities,
see Section 3.2. Here, again the mentioned concept of 2nd-grade nonsimple
materials is used to control the determinant of the deformation gradient, see

).

As mentioned above, our model heavily relies on the strain-gradient theories
to describe materials, referred as nonsimple, or also multipolar or complex. This
concept has been introduced long time ago, cf. [51] or also for example [8, 19,28,40,
46,50] and in the thermodynamical concept also [6]. In the simplest scenario, which
is also used here, the stored-energy density depends only on the strain F = Vy
and on the first gradient V F of the strain. This case is called 2nd-grade nonsimple
material. Possible generalization using only certain parts of the 2nd gradient in the
spirit of [25] still need to be explored.

The structure of the paper is as follows: in Section 2 we present the model
in physical and mathematical terms. After the precise definition of our notion of
solution, Theorem 2.2 provides the main existence result for global-in-time solu-
tions for the large-strain thermoviscoelastic system, while Corollary 2.3 gives the
corresponding existence result for viscoelasticity at large strain and at constant
temperature, which, to the knowledge of the authors, is also new. A related result
for isothermal large-strain viscoelasticity is derived in [20], but there the limit of
small strains is treated.

After proving some auxiliary results about local invertibility of deformations
and the Euler—Lagrange equations, a generalized Korn’s inequality, and about Chain
rules in Section 3, we start the proof of the main result in Section 4 by introducing
certain regularizations as well as a time-incremental approach. This is particularly
constructed in such a split (sometimes called staggered) way that the deformation is
first updated at fixed temperature from the previous time level and then the temper-
ature is updated, where in some terms the old and in others the new deformation is
used. Another important step in the analysis is the usage of an energy-like variable
w = 10(Vy, 0) instead of temperature 6, which enables us to exploit the balance-
law structure of the heat equation; cf. [30,32] for arguments for the preference of
energy in favor of temperature. After proving existence and a-priori estimates for
such approximate solutions in Section 4, we continue by convergence in Section 5
by limiting the time discretization. Thus, as an intermediate result, Proposition 5.1
provides the existence of solutions (ye, 6;) of the regularized problem. Eventually,
in Section 6 we finally show that the limite; — Ofor (y, , 6;,) — (v, 8) canbe con-
trolled in such a way that (y, ) are the desired solutions. We conclude with a few re-
marks concerning potential generalizations and further applications of the methods.
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2. Modeling of Thermoviscoelastic Materials in the Reference Configuration

We will use the Lagrangian approach and formulate the model in the reference
(fixed) domain £2 C RY being bounded with a Lipschitz boundary I'. In fact,
occasionally we will assume " smooth in order to reveal the classical formulation
of the problem, cf. (2.13)—(2.14) based on the arguments (2.28)—(2.29) below. We
assume d = 2 although, of course, the rather trivial case d = 1 works too if p = 2
is assumed, additionally to p > d, in (2.30) below. We will consider a fixed time
horizon T > 0 and use the notation / := [0, T], Q := 1 x§2,and X' := I x I". For
readers’ convenience, Table 1 summarizes the main nomenclature used throughout
the paper.

y deformation, y(z, x) € R4, W thermal energy,
6 absolute temperature, ¢ potential of dissipative forces,
(+)" time derivative, & rate of dissipation (=heat production),
Y = ¢ + ¢ free energy, K = K(#) material heat conductivity,
oel = dp Y elastic stress, K = KC(F, 6) pulled-back heat
ovi = 0. viscous stress, conductivity,
F = Vy deformation gradient, ~ C = F'F right Cauchy—Green tensor,
G=VF=V? y « heat-transfer coefficient on I,
valued in R4*4*d g : Ix2 — R? a time-dependent
w heat part of internal energy, dead force,
cy = cy(F, 0) heat capacity, fiIxIN— RY a boundary traction,
g heat flux, £ an external mechanical loading,
M = &g + 'H main £2 the reference domain,
mechanical energy, I’ the boundary of 2, " = Ip N I,
hel = 0gA7 elastic hyperstress, [ := [0, T] the fixed time interval,
S = A (VF)thepotential of he|, Q := I x £2,
‘H strain-gradient energy, Y:=IxT,
®.p1 coupling energy, Yo, Viq sets of admissible deformations,
¥ = M + @ free energy, GLt(d) := {A e R4 det A > 0},
& = M + W total energy, SO(d) :={A eGLt(d); ATA=1
=AAT).

Table 1. Summary of the basic notation used throughout the paper.

To introduce our model in a broader context, we may define the fotal free energy
and the fotal dissipation potential

W(y,0) = / ¥ (Vy,0) + A (V*y) dx and
22

R(y,y,0) = /Q ¢(Vy,Vy, ) dx, (2.1)
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respectively. The mechanical evolution part can then be viewed as an abstract gra-
dient flow

Dy-R(y, y,0) +DyW(y,0) = £(t) with (£(1), y)

=/g(x,t)'y(X)dx+/ fx,0)-y(x)dS, (2.2)
(2} IN

cf. also [34,52] for the isothermal case and [29] for the general case. The sum of the
conservative and the dissipative parts corresponds to the Kelvin—Voigt rheological
model in the quasistatic variant (neglecting inertia). The notation “9 ” is used for
partial derivatives (here functional or later in Euclidean spaces), while (-)" will
occasionally be used for functions of only one variable.

Writing (2.2) locally in the classical formulation, one arrives at the nonlinear
parabolic 4th-order partial differential equation expressing quasistatic momentum
equilibrium

divo+g=0 with o =0y + ge — div e, (2.3)

where the viscous stress is oy = oyi(F, F ,0) and the elastic stress is og =
oel(F, 0), while ] is a so-called hyperstress arising from the 2nd-grade nonsimple
material concept, cf. for example [40,46,51]. In view of the local potentials used
in (2.2), we have

0i(F, F,0)=00(F, F,0), oa(F,0)=0py/(F,0), and ha(G)=#"(G),
(2.4)

where G € R4*4*4 j5 a placeholder for VF.
An important physical requirement is static and dynamic frame indifference.

For the elastic stresses, static frame indifference means that
0el(RF,0) = Roe(F,0) and bhei(RG) = Rbe(G) (2.52)

for all R € SO(d), F and G. For the viscous stresses, dynamic frame indifference
means that

0vi(RF, RFERF,0) = Row(F, F, ) (2.5b)

for all smoothly time-varying R:t — R(t) € SO(d), cf. [1]. Note that R may
depend on ¢ but not on x € 2, since frame-indifference relates to superimposing
time-dependent rigid-body motions.

In terms of the thermodynamic potentials ¢, v, and 7, these frame indiffer-
ences read as

W(RF,0) = ¥ (F,0), #(RVF)=#(VF), and (2.6a)
¢(RF,(RF),0) = C(RF, RF+RF,0) = ¢(F, F, 6) (2.6b)
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for R, F and V F as above. These frame indifferences imply the existence of reduced
potentials v, ¢, and 7 such that

¢(F,F,0)=¢(C,C.0), W(F,0) =v(C,0), and #(G)=#B) Q2.7

where B = GT-G € R@x)x(dxd) and C ¢ ngﬁi is the right Cauchy—Green tensor
C = FTF with time derivative C = FTF + FTF. More specifically, denoting
G = [Gq;j] the placeholder for %Fai with Fy; the placeholder for aix,-ya’ the
exact meaning is [G T - Gliju == Zgzl GuijGyn and [FTF],:,' = ZZ:I FyiFyj.
The ansatz (2.7) also means that

0el(F, 0) := dpy (F; 0) = 2F 3% (F ' F,0) = 2Fa. ¥ (C,0), (2.8a)

hel(G) := a6 (G) = 2Gag# (G- G) = 2Gdg.#(B), (2.8b)

ovi(F, F,0) = 2,¢(F, F,0) = 2F9.L(F'F, FTF+FTF,0)
=2F).2(C, C,0). (2.8¢)

The simplest choice, which is adopted in this paper for avoiding unnecessary

technicalities, is that the viscosity oy; is linear in C. This is the relevant model-
ing choice for non-activated dissipative processes with rather moderate rates (in
contrast to activated processes like plasticity having nonsmooth potentials that are
homogeneous of degree 1 in a small-rate approximation). This linear viscosity leads

to a potential which is quadratic in C, viz.
. 1. .
Z(C,C,0) :=§C:D(C,6)C. (2.9)

Although for this choice the material viscosity is linear, the geometrical nonlinearity
arising from large strains is still a vital part of the problem due to the requirement of

frame indifference. Note that oy;(F, F , 0) necessarily depends on F' if we express
C in terms of the velocity gradients F, even if DD is constant: oi(F, F,0) =
2FD(C, 0)(F T F+FTF). While we will be able to handle general dependence on

F, it will be a crucial restriction that Fis ovi(F, F , 0) is linear.
Furthermore, the specific dissipation rate can be simply identified in terms of
¢ as

E(F, F,0) = oy(F, F,0):F = 2F0.L(FF, FTF+FTF,0). F
= 0:C(F'F, FTF+FTF,0): (FTF+FTF)
=09:2(C, C,0):C. (2.10)

For our choice (2.9), we simply have &(F, F 0) =D(C, G)C.':C" = ZE(C, C 0) =
2C(F, F,0).
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In brief, the standard thermodynamical arguments start from the free energy
density ¥ and the definition of entropy vias = —d,y (here .7# does play no role
as it is chosen to be independent of 6) and the entropy equation

Os =& —div g (2.11)
with the dissipation rate & from (2.10) and the heat flux g. We further use the
formula s = —agel/f 0 — B%OW:F and the Fourier law formulated in the reference
configuration

g =—K(F,0)V0, (2.12)

which will be specified later in (2.24). Altogether, we arrive at the coupled system
div(0wi(Vy, V3. 0) + 0ci(Vy. ) — divhe(V?y)) + ¢

with owi(F. F.6) = 0, ¢(F, F.6) and ou(F.6) = 0,9/ (F.6),
(2.13a)

cv(Vy, 0)0 = div(K(Vy, 0)V0) + E(Vy, V3, 0) + 097, ¥(Vy, 0):V5
with ¢y (F,0) = —980291#(F, 0) and & from (2.10) (2.13b)
on Q. We complete (2.13) by some boundary conditions. For simplicity, we only
consider a mechanically fixed part I/ time independent undeformed (that is iden-

tity) while the whole boundary is thermally exposed with a phenomenological
heat-transfer coefficient « = 0:

(0vi(Vy, V3,0) + 01 (Vy, 0))ii — divg(het (V2y)ii) = £ on I'v, (2.14a)

y(x) = x (identity) on Ip, (2.14b)
het(V2y): (7 @ 1) = 0 on I, (2.14c)
K(Vy,0)VO -1+ k6 = k6, on I, (2.144d)

where 7 is the outward pointing normal vector, and 6, is a given external tempera-
ture. Moreover, following [10] the surface divergence “divg” in (2.14a) is defined as
divg(-) = tr(VS (-)), where tr(-) denotes the trace and V; denotes the surface gradient
given by Vv = (I — n®n)Vv = Vv — g%ifi See (2.29) for a short mathematical
derivation of the boundary conditions (2.14a) and (2.14c), and [48, pp.358-359]
for the mechanical interpretation in second-order materials.

In order to facilitate the subsequent mathematical analysis, we assume a rather
weak thermal coupling through the free energy (together with the coupling through
the temperature-dependent viscous dissipation). To distinguish the particular cou-
pling thermo-mechanical term from the purely mechanical one, we consider the
explicit ansatz

V(F,0)=¢(F)+¢(F,0) with ¢(F,0)=0. (2.15)
In applications, the internal energy e given by Gibbs’ relation

e=e(F,0)=Y(F,0)+60s =y (F,0)—00py(F,0) =y(F,0) —00¢(F,0)
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is often balanced. Here, we rather use the thermal part of the internal energy w :=
e — ¢(F). In view of the ansatz (2.15), we have

w="10(F,0) =y (F,0) =009 (F,0) —y(F,0) =¢(F,0) —03¢(F,0).
(2.16)

Note that 10 (F, -) is the primitive function of the specific heat ¢y (F, -) calibrated
as 1o (F, 0) = 0, in accord with the fact that w = ¢ — @(F) = e — ¥ (F, 0). The
heat-transfer equation (2.13b) simplifies as

W — div (K(Vy, 0)V6) = £(Vy, V3, 0) + 8:¢(Vy, 0):V with w = to(F, 0).
2.17)

In particular, the purely mechanical stored energy ¢ does not occur in (2.16) and
does not influence the heat production and transfer in (2.17). This is crucial because
in the first step of the analysis we are not able to control the determinant of Vy,
but drp(Vy, ) blows up for det Vy \ 0. In contrast, we are able to assume that
F — 0p¢(F, 0) behaves globally nicely, see (2.30b) and (2.30c).

The energetics of the system (2.13)—(2.14) can be best described by introducing
additional energy functionals as follows:

H(y) = / H (V2y) dx strain-gradient energy,
! (2.18a)
M(y) = H)+Pe1(y) with Dei(y) := / ®(Vy)dx  main mech. energy,
? (2.18b)
Pepi(y, 0) 1= /Q ¢(Vy,0)dx coupling energy, (2.18c)
V(y,0) =M©G)+ Pepi(y,6) free energy, (2.184)
R, ,0) = / ¢(Vy, Vy, 0)dx dissipation potential,
¢ (2.18e)
W(y,0) := /Q to(Vy, 6)dx thermal energy,  (2.18f)
Ey,0) = M(y)+W(,0) total energy. (2.18g)

A mechanical energy balance is revealed by testing (2.13a) by y and (2.13b) by 1,
and using the boundary conditions after integration over £2 and using the Green
formula twice together with another (d —1)-dimensional Green formula over I" for
(2.13a) and once again Green’s formula for (2.13b). The last mentioned technique
is related with the concept of nonsimple materials; for the details about how the
boundary conditions are handled see for example [44, Sect.2.4.4]. This test of
(2.13a) gives the mechanical energy balance:

. . d . .
E(Vy,Vy,0)+ 0o:Vy dx + —H(y) = / g-ydx + f-y ds. (2.19)
7 S N — dr P IN ———
dissipation  mechanical power of the power of
rate power bulk force the traction
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Using 0¢] = dr@ + dr¢ and integrating in time leads to the relation
t
M)+ [ ([ 6009500+ 0569y, 0:95) ax e
0Je Mo

t
= MGO) + /O (€, 3) dr, (2.20)

which will be very useful for obtaining a priori estimates in the sections to follow.

Next, we test the heat equation in its simplified form (2.17) together with the
boundary conditions (2.14d) by the constant function 1 (that is we merely integrated
over £2) and add the result to (2.20). After major cancellations we obtain the total
energy balance:

d . .
—&(y,0) :/ g-y dx + f-y dS—/ k(6—6,) dS. (2.21)
dt 2 — IN —— MN— —~

power of mecha- power of power of the

nical bulk load  the traction external heating

In particular, we see that the total energy is conserved up to the work induced by
the external loadings or the flux of heat through the boundary.

From the entropy equation (2.11), we can read the total entropy balance (the
Clausius—Duhem inequality):

i[s(l,x)dx:/ Md
dr Jo

1 Ve
f——ICVGV d)c+/lC -n dS
r

KvVe-vo Kve |
5 + ———dx + f n dS
02 r
~—
entropy-production
rate

f —154s. (2.22)

entropy ﬂux
through boundary

This articulates, in particular, the second law of thermodynamics that the total
entropy in the isolated systems (that is here ¢ = 0 on I') is nondecreasing with
time provided X = K(Vy, 0) is positive semidefinite and the dissipation rate is
non-negative.

It is certainly a very natural modeling choice that Fourier’s law is formulated
in the actual (also called the deformed) configuration in a simple form, namely the
actual heat flux is given by

G=—K(0)V.0, wherez = y(x)and0(z) =0(y '(2)) forz € y(2) (2.23)

with the heat-conductivity tensor K = K(x, 0) considered as a material parame-
ter possibly dependent on x € 2. We transform (that is pull back) this Fourier
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law to the reference configuration via § = (Cof F7)q, because fluxes should
be considered as (d—1)-forms. Writing Fourier’s law in material coordinates as
g(x) = K(x)V6 a comparison with (2.23) leads to the usual transformation rule
for 2nd-order contra-variant tensors, namely

K(x, F,0) = (Cof FN)K(x,0)F~ "
_ (Cof FT)K(x, 6)Cof F

det F
= (detF)F'K(x,0)F~" (2.24)

if det F > 0, whereas the case det F < 0 is considered nonphysical, so K is
then not defined. Here we used the standard shorthand notation F~ T = [F~1]T =
[F 717! and also the algebraic formula F~! = (Cof F)/det F. In what follows,
we omit explicit x-dependence for notational simplicity. Let us emphasize that in
our formulations V@ is not treated as a vector, but a contravariant 1-form. Starting
from 6 (x) = 8(y(x)) the chain-rule gives VO(x) = Vy(x) T Vy@(y(x)). It should
be noted that (2.23) is a rather formal argumentation, assuming injectivity of the
deformation y and thus existence of y~!, which is however not guaranteed in our
model; anyhow, handling only local non-selfpenetration while ignoring possible
global selfpenetration is our modeling approach often accepted in engineering, too,
see for example [49, p.433], [47, Sec.3.1], and [48, p.293].

For the isotropic case K(0) = s(0)I, relation (2.24) can also be written by
using the right Cauchy—Green tensor C = FTF as IC = det(F)s(0)C~!, cf. for
example [17, Formula (67)] or [23, Formula (3.19)] for the mass instead of the heat
transport. In principle, K in (2.23) itself may also depend on C = F T F, which we
omitted to emphasize that /C in (2.24) will depend on F even if K itself will not.

In what follows, we will use the (standard) notation for the Lebesgue L?”-
spaces and W57 for Sobolev spaces whose kth distributional derivatives are in
LP-spaces and the abbreviation H* = WX, The notation W];’p will indicate the
closed subspace of W!” with zero traces on I'p and set p’ = p/(p—1). Thus, for
example,

HY(2;RY) = {v e L2(2: RY); Vv e LY (2;RT), v|p, =0}, (2.25)

For the fixed time interval I = [0, T'], we denote by L? (I; X) the standard Bochner
space of Bochner-measurable mappings / — X with X a Banach space. Also,
WK-P(I; X) denotes the Banach space of mappings from L”(I; X) whose k-th
distributional derivative in time is also in L”(/; X). The dual space to X will be
denoted by X*. Moreover, Cy,(I; X) denotes the Banach space of weakly continu-
ous functions / — X. The scalar product between vectors, matrices, or 3rd-order

TR IENTRL] [}

tensors will be denoted by “-”, “:”, or “:”, respectively. Finally, in what follows,
K denotes a positive, possibly large constant.
We consider an initial-value problem, imposing the initial conditions

v(0,)=y9 and 6(0,-) =6y on £2. (2.26)

Having in mind the form (2.17) of the heat equation, we can now state the
following definition for a weak solution:
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Definition 2.1 (Weak solution). A couple (y,0) : Q = [0,T]x2 — RY x R is
called aweak solution to the initial-boundary-value problem (2.13) & (2.14) & (2.26)
if (y,0) € Co(I; W2P(2; RY)) x LY(I; WI1(2)) with Vy e L*(Q; R4*9), if
ming det Vy > 0 and y|z, = identity, and if it satisfies the integral identity

T
//(avi(Vy,V)'),G)+061(Vy,0)):Vz+be1(V2y):sz dx dr
0 JR
= / gz dxdr + / fzdSde (2.27a)
0 N

for all smooth z : Q — R¢ with z = 0 on Zp together with y(0, -) = yo, and if

/ K(Vy,0)V0-Vv — (£(Vy, V3, 0) + 8;¢(Vy,0): Vy)v — 10(Vy, 6)d dx d
0

+/ KOV dez:/ KOV der+[ 10(Vy0, 60)v(0) dx (2.27b)
X P 2

for all smooth v: Q — R with v(T) = 0, where 1V is defined in (2.16).

At first sight, it seems that (2.27a) is not suited to apply the test function z = y,
which is the natural and necessary choice for deriving energy bounds. Obviously,
we will not be able to obtain enough control on V2y. However, using the abstract
chain rules provided in Section 3.3 this problem can be handled by extending
H(y) = f o (V32 y) dx to a lower semicontinuous and convex functional on
HY(£2; RY) by setting it oo outside W2P(82; RY), see the rigorous proof of (5.9)
in Step 3 of the proof of Proposition 5.1.

It will be somewhat technical to see that the weak formulation (2.27a) is indeed
selective enough, in the sense that for sufficiently smooth solutions one can in-
deed obtain the classical formulation (2.13) together with the boundary conditions
(2.14), cf. also [44, Sect.2.4.4]. In particular, abbreviating o = 0vi(Vy, Vy, 8) +
oe1(Vy, 0), integrating by part once, and using the boundary conditions (2.14a,c)
yields

/ ((a— div ber (V2y)):Vz — g~z> dx dr
0

= [ f-zdSdr — / el (V2y) (Vz@h) dS dt. (2.28)
2N P

We now want to show how the strong form (2.13a) and the associated boundary
conditions (2.14a,c) follow from (2.28). For this goal, we apply Green’s formula
in the opposite direction to remove V in front of the test function z. Using also the
orthogonal decomposition of Vz = V,z+ %z ®1 involving the surface gradient V,z

and writing shortly ) for het(V2y) € R4*4%d relation (2.28) leads to the identity

—div o +div’h — g)-z dx dr
0

= / ((a— div h) (z®n) — []E(Vz@ﬁ)) dx dr + f-zdSdr
x N
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= / ((o— divh)i-z + (b : (i®@n)) - a—i + bn: Vsz)) dsdr — f-zdSdt
> on N

Using the surface divergence divg and the projection P, : A > A — A @ 7i to
the tangential part, we obtain the integration by parts formula (cf. [10] or [48,
pp-358-359])

/A:VSzdSzf(PsA):VszdSz—/ divg(P,A) - zdS,
r r r

where the surface I" is now assumed to be sufficiently smooth. Using this with
A = bii for the previous relation we find

/ (=div o +div’h — g)-z dx dr
0

2/ ((o—div it — divg(By (b)) — f)~zdet
D)

N

+ /(h:(ﬁ@)ﬁ)).a—dedr, (2.29)
> on

where we have used z = 0 on Xp = X\ XN. Now, taking z’s with a compact
support in Q, we obtain the equilibrium (2.13a) in the bulk. Next taking z’s with
zero traces on X but general %, we obtain (2.14c). Note that the latter condition
implies Py(hii) = bii — (b : (i®#H)) ® ii = hi. Hence, taking finally general s,
we obtain (2.14a), as P can be dropped because of (2.14c).

Moreover, also note that, from the integral identity (2.27b), one can read
t(Vy(0),6(0)) = to(Vyp, 0g) from which 8(0) = 6y follows when taken the
invertibility of WO (F, -) and y(0) = yq into account.

Now we exploit the decomposition (2.15) of i into ¢ and ¢, which allows us
to impose coercivity assumptions for the purely elastic part ¢ that are independent
of those for ¢:

dpeld,oo[N[2,00[, s >2, ¢ = pd/(p—d) a, K, T > 0:
@: GLT(d) — RT twice continuously differentiable, V F € GLt(d):
@(F) Z2|F|° +72/(det F)7, (2.30a)
¢: GL+(d)><R+ — R twice continuously differentiable,
VF,F eGL"(d), 6 = 0:
|6 (F,0)—¢(F,0)| < K(1+|F ">+ F|*/?)| F-F, (2.30b)
2pd(F,0) S K, [002,¢(F.0)| <K, §<-005,0(F,0) <K,  (2.300)
. R4 _ R convex, continuously differentiable, VG € RY*4x4.
EIG|P < (G) £ K(+IGIP), (2.30d)

7:REXd yrdxd y R 5 RY s continuous and V (C, C, ) € REXd xRxRIxd.

sym sym sym sym

T(C. -, 0): R — RY quadratic(cf. (2.9)), «|C> £T(C.C.0) < K|CP,
(2.30e)
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K:R — R4*4 5 continuous, uniformly positive definite, and bounded; (2.30f)
ge LX(Q:;RY), feLl?’(Zn:iRY), k>0, (2.30g)
Y0 € Vig == {y € WHP(2:RY); ylpy, =identity}, det(Vyo) 2%, .  (2.30h)
0, e LX), 6,20, 6oL (), 6p=0, ¥(Vyy 0y €L (), (2.301)

where GLT (d) denotes the set of matrices in R?*¢ with positive determinant. The
last assumption in (2.30c) means that ¢y together with ¢ I are bounded, which is a
major restriction. However, it allows for a rather simple estimation in Lemma 6.3;
for alternative, more general situations dealing with increasing c¢y(-) we refer to
[26, Sec.8.3].

The function w = 10(F, 0) defined in (2.16) satisfies 10 (F, 0) = 0 by (2.15).
Moreover, we have dgt0(F,0) = —98§9¢(F ,0). Hence assumption (2.30c) im-
plies, for all F € GL*(R?), the two-sided estimates

20 S1W(F,0) < KO foralld =0,

2.31)
€101—602| = [V (F, 01)—10(F, 0,)| < K|01—6| forall 61,6, = 0.

Assumptions (2.30b,c) make the thermomechanical coupling through ¢ rather
weak in order to allow for a simple handling of the mechanical part independently
of the temperature. These restrictive assumptions are needed for our specific and
simple way of approximation method rather than for the problem itself. E.g. the
assumption in (2.30b) is used to facilitate the estimate (4.12), which allows us to
control the difference between [, ¢(Vy¥, 6) dx and [, ¢(Vy*~!, 0) dx in terms of
MGF), M1, and [ Vyk—Vyk-! ||%2. Moreover, after having derived uniform
bounds on |V y¥| it will be exploited to show that the thermo-coupling stress df ¢ is
bounded. Finally, (2.30d) and (2.30h) make the stored energy finite at time t = 0.

It will be important that 9,¢ (F, 6) vanishes for & = 0 [which follows from
(2.15)], so that temperature stays non-negative if 6y = 0 and 6, = 0, as assumed.

We now state our main existence results, which will be proved in the following
Sections 4—6. The method will be constructive, avoiding non-constructive Schauder
fixed-point arguments, however some non-constructive attributes such as selections
of converging subsequences will remain. More specifically, the proof is obtained
by first making the a priori estimates for time-discretized solutions in Proposi-
tion 4.2, and then deriving an existence result for time-continuous solutions of
an e-regularized problem, see Proposition 5.1. Finally, Proposition 6.4 provides
convergence for ¢ — 0.

Theorem 2.2 (Existence of energy-conserving weak solutions). Assume that the
conditions in (2.30) hold. The original initial-boundary-value problem (2.13)-
(2.14)—(2.26) with K from (2.24) possesses at least one weak solution (y, 0) in
the sense of Definition 2.1. In addition, these solutions satisfy VO € L' (Q; R?) for
all1 < r < (d+2)/(d+1), the mechanical energy balance (2.19), and the total
energy balance (2.21).

As mentioned in the introduction, a lot of publications are devoted to the simpler
isothermal viscoelasticity at large strain, yet, in the multi-dimensional case, they
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do not satisfy all the necessary physical requirements. It is therefore worthwhile to
present a version of our existence result by restricting it to this isothermal case, for
which a lot of assumptions are irrelevant or simplify. In particular, (2.15) simplifies
as Y (F,0) = ¢(F). Of course, our theory only works because we are using a
non-degenerate second-grade material, where the energy contribution H(y) :=
/, o (V2y) dx generates enough regularity to handle the geometric and physical
nonlinearities. To the best of the authors knowledge, even the result for isothermal
viscoelasticity is new.

A similar regularization approach to isothermal large-strain viscoelasticity was
considered in [20], where the H(y) is multiplied with a small parameter that van-
ishes slower than the loading. Hence, the authors are able to show that their solutions
are sufficiently close to the identity which allows them to exploit a simpler Korn’s
inequality obtained by a perturbation argument. Hence, to the best of the authors’
knowledge the following result is the first that allows for truly large strains:

Corollary 2.3 (Viscoelasticity at constant temperature). Let ¢ satisfy (2.30a), and
let (2.30d-e,g-h) be satisfied withz = Z(C, é) and with y = . Then, the initial-
boundary-value problem (2.13a)—(2.14a)—(2.26) (with 6 ignored) possesses at least
one weak solution y in the sense that the integral identity (2.27a) holds. In addition,
the mechanical energy balance (2.20) holds with & = &(F, F ) and without the last
term involving 9.

Before going into the proof of our main result, we show that our conditions are
general enough for a series of nontrivial applications:

Example 2.4 (Classical thermomechanical coupling). The classical example of a
free energy in thermomechanical coupling is given in the form

V(F,0) = ¢@(F) —a®) ¢1(F) + cf(1—logh), (2.32)

that is ¢ (F, 0) involves a term in the product form —a(6)¢;(F). For the purely
mechanical part we may take the polyconvex energy ¢ (F) = c1|F|* 4+ c2/(det F)4
for det F > 0 and oo otherwise. For the thermomechanical coupling we obtain
cey(F,0) = —980201#(F, 0) = ¢ + a”(0)p1(F), thus to have positivity of the heat
capacity ¢y, we assume a”’ () = 0 and ¢1(F) = 0. Moreover, we have

w =10(F,0) = c + (0a' (0)—a(6))¢i(F) and dr¢(F,60) = a(®)¢}|(F).

Thus, we see that all assumptions in (2.30) can easily be satisfied, for example by
choosing a(0) = (1+0)~% with @ > 0, which is smooth bounded and convex, and
taking any ¢ € C2(R9*9).

Example 2.5 (Phase transformation in shape-memory alloys). An interesting exam-
ple of a free energy i occurs in the modeling of austenite-martensite transformation
in so-called shape-memory alloys:

Y (F,0) = (1-a(0)p, (F) + a@)gy (F) + ¥0(0),
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cf. for example [42] and references therein. Here a denotes the volume fraction of
the austenite versus martensite which is supposed to depend only on temperature.
Of course, this is only a rather simplified model. For, ¥o(0) = cO(1—1og0) it
complies with the ansatz (2.32) with ¢ (F) = ¢, (F) and 1 (F) = ¢, (F)—¢, (F).
The heat capacity then reads as

ov(F,0) = 0a"0) g, —eyu](F) — 09 (©0).

To ensure its positivity, 1o has to be strictly concave in such a way that yj(0) <
K /6 and then inf (r gy 0a” (0)[¢, —¢y1(F) + K > 0 has to (and can) be ensured
by suitable modeling assumptions.

Remark 2.6 (Thermal expansion). Multiplicative decomposition F = Fg) Fy, with
the “thermal strain” Fy, = I/ (0) and the elastic strain F,] which enters the elastic
part of the stored energy ¢. This would lead to

Y (F,0) = BO)p(Fe) +¢©) = B(6) p(w(O)F) — ¢ (6). (2.33)

Unfortunately, (2.33) is inconsistent with the ansatz (2.15) because the contribution
¢ which has been important for our analysis due to uniform coercivity, cannot be
identified in (2.33).

3. A Few Auxiliary Results

In this subsection we provide a series of auxiliary results that are crucial to
tackle the difficulties arising from large-strain theory. First, we show how the theory
developed by HEALEY and KROMER [24] allows us to derive a positive lower bound
for det Vy from the a priori bounds for the elastic energy M(y, 0). This can then
be used to establish the validity of the Euler—Lagrange equations and a useful A-
convexity result, which is needed for obtaining optimal energy estimates. Second,
we provide a version of Korn’s inequality from PoMPE [41] that allows us to obtain
dissipation estimates via D(y, y,0) = c0||)'1||i[,(9). Finally, in Section 3.3 we
provide abstract chain rules as derived in [37, Sec.2.2] that allow us to derive
energy balances like (2.20) from the corresponding weak equations.

3.1. Local Invertibility and Euler—Lagrange Equations

A crucial point in the large-strain theory is the blow-up of the energy density
Y(F,0) for det F N\ 0. Thus, it is desirable to find a suitable positive lower
bound for det Vy(t, x). The following theorem is an adaptation of the result in [24,
Thm.3.1].

Theorem 3.1 (Positivity of determinant). Assume that the mechanical energy
M:W2P(2; RY) — R satisfies the assumptions in (2.30a) and (2.30d). Then,
for each Cyy > 0 there exists Cyx > 0 such that all y € Yiq with M(y) £ Cy
satisfy

Iyllw2r = Cuk, lIyllicri-a/p = Cuk, detVy(x)
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‘

> YY) Mlerap < Ck. (3.1)

Q

HK

Proof. We give the full proof, since our mixed boundary conditions are not covered
in [24]. From M(y) < Cy and the coercivities of ¢ and 7 we obtain det Vy = 0
almost everywhere in £2 and the a priori bounds

- 1
IVyllzs + 11(det(Vy)) Il + IV2y e £ CYp.

Together with the Dirichlet boundary conditions in }ig we obtain an a priori bound
for y in W2P(£2; R?) and hence also in C1*(£2; RY), where A = 1 — d/p > 0.
This proves the first two assertions.

In particular, the function 6: x +— det(Vy(x)) is Holder continuous as well with
18llce < Cz(vzl)' Since §2 is a bounded Lipschitz domain, there exist a radius r, > 0
and a constant oy, > 0 such that for all x € 2 the sets B, (x) N £2 contain an interior
cone C(x) = {x—i—z ;0 < |z] < 1y, %z € A(x)} where the set A(x) C S9!
of cone directions has a surface measure f Ax) 1dS 2 . Thus, using the Holder
continuity

§(y) £8(x) + Cl(é)lx—yV‘ forall x, y € £2,

A=1-d/p =2 d/q [see (2.30)], and |y—x| = r < r, for y € C(x), we can
estimate as follows:

s / dy > / ! d
= y =
M= g sy veCw) (8(x) + Cp lx—y[*)*

1\

T rd=1 dr T rd=1 dr
® ara 40 2 o @ d
weA) Jr=0 (8(x) + C;,/rd/7) r=0 CH(8(x)7 +rd)
=clog (1 +rd/8(x)7) with ¢® = o,/ (dCP).

This yields the lower bound §(x)? = rf exp (—C I(V;) / c(S)), viz. the third assertion
in (3.1).
The last assertion follows via the implicit function theorem. O

The most important part of the above result is that the determinant of Vy
is bounded away from 0. Hence, the function f +— @(F), which blows up for
det F \ 0, is evaluated only in a compact subset of GLT (d) € R?*¢ such that 9y ¢
and 8°¢ exist. Again following [24, Cor. 3.3] we obtain the Gateaux differentiability
of M and as well as a useful A-semiconvexity result.

Proposition 3.2 (Gateaux derivative and A-semiconvexity). Assume that M satis-
fies (2.30a) and (2.30d). Then, at each point y € Yiq with M(y) < oo the Gateaux
derivative of M in all directions h € )y = { v e WEP(2: RY); vl } exists
and has the form

DM()[h] = / (D%(sz)fvzh + app(Vy): Vh) dx (3.2)
2



Thermoviscoelasticity in Kelvin—Voigt Rheology at Large Strains 17

Moreover, for each Cpr > 0 there exists A(Cpy) > 0 such that for all y, y@ ¢
Via with M(yP) < Cy and [VyD = Vy@ | g.rey S 1/Cy we have
A (Cpr)—convexity

M@G?) 2 MyD) + DMD)[y@ —y D]

—ACIIVYP-vy V|7, (3.3)

(2;Rd)
Proof. We decompose M = H+ @, see (2.18b). The differentiability of the con-
vex functional y +— H(y) on W2P(£2; RY) is standard and follows from (2.30d).
For treating ®¢] we use the embedding WP (2) c CH*(£2) and exploit the result
det Vy(x) = 1/Cpng from Theorem 3.1. Forall i € WI%]’DP(Q; RY) wefindat, > 0

such that det (V(y+th)(x)) > 1/(2Cuk) for all t € [—ty,1,] and all x € £2.
Hence,

.1
D@ (y)[h] = tlg% ;(q)el (y+th)

1
— Da(y)) = }g%/g ;(w(Verch) — ¢(Vy))dx,

and the limit passage is trivial as the convergence in the integrand is uniform.
To derive (3.3) we observe that the convexity of .7 implies

HO®) 2 HOD) + [ DAY DR = 7y 0) d
2

To treat the functional @, we apply Theorem 3.1 to yI) and y®, which implies
the pointwise bounds

IVyP(x)] £ Cux  and  det VyY)(x) = 1/Cpk.
Clearly there is a § > 0 such that

VF, F, e R vs e[0,1]:

|Fil, |F>| < Cuk, |Fa—Fi] £6

_ >
det Fy,det F» 2 1/Cyuk } = det ((1 ) +SF2) = 1/C2ChHK)-

We denote by — A . the minimum of the smallest eigenvalue of the matrices 812F ro(F)

where F € R?* runs through the compact set given by |F| < Cyx and det F >
1/(2Cyk). Hence, assuming ||Vy® —Vy® || « < § we find

Pa(y?) — e (yV) = DB (y )y =y
= [ (63) = 0750 ~ 07y 1 (73D -9y ) aa
2
1 1
=/Q§/ 0B%Fw((l—s)Vy(l)+sVy(2))[Vy(z)—Vy(l),Vy(z)—Vym]dsdx
S=
Ay @ _gy0p2
Z—— [ [Vy*¥=Vy | dx.
2 Ja

This establishes the result with A(Cjpy) := max{Cyk, 1/8, Ax/2}. O



18 ALEXANDER MIELKE & ToMAS ROUBICEK

3.2. A Generalized Korn’s Inequality

The following result will be crucial to show that the nonlinear viscosity de-
pending on F = Vy really controls the H'-norm of the rate y. It relies on Neff’s
generalization [39] of the Korn inequality, in the essential improvement obtained
by PompE [41].

Theorem 3.3 (Generalized Korn’s inequality). For a fixed A € 10, 1[ and positive
constants K > 1 define the set

Fx :={F e C*"2; R |Fllen K, min det F(x) > 1/K }.

Then, for all K > 1 there exists a constant cx > 0 such that for all F € Fg we
have

Vv e H'(2; RY) with v|r, = 0: / |FTVU+(VU)TF|2dx > cxllvll3,-
2
(3.4)

Proof. In [41, Thm.2.3] it is shown that (3.4) holds for each fixed F € Fg with
ck possibly dependent on F'. Let us denote by c(F) > 0 the best possible constants
for the given F. By a perturbation argument it is easy to see that the mapping
F > ¢(F) is continuous with respect to the L> norm in C°(£2; R?*%). Since Fg
is a compact subset of C 0(£2; R?*4) the infimum of ¢ on F is attained at some
F, € Fg by WeierstraB3’ extremum principle. Because of ¢(F) 2 ¢(Fy) > 0, we
conclude that (3.4) holds with cx = ¢(Fy). 0O

We emphasize that estimate (3.4) is not valid if F is not continuous, see [41,
Thm. 4.2]. This shows that the W??-regularity of y is crucial to control the rate
of the strain Vy, which is necessary to handle the thermomechanical coupling.
The following corollary combines Theorems 3.1 and 3.3, by using the compact
embedding W27 (£2; RY) c C1*(£2; RY).

Corollary 3.4 (Uniform generalized Korn’s inequality on sublevels). Given any
Cy > Othere existsacg > 0such that forall y € YViq with M(y) < Cy we have

Vv e H'(2;RY) with v|p, = 0:

2 _
/Q|(Vy)TVU+(Vv)TVy| dx = eg[vl3,:. (3.5)

3.3. Chain Rules for Energy Functionals

Abstract chain rules for energy functionals 7: X — Ry, := RU{oo} on a Ba-
nach space concern the question under what conditions for an absolutely continuous
curve z:[0, T] — X the composition ¢t — 7 (z(t)) is absolutely continuous and
satisfies %J(z(t)) = (E(1), z(t)) for & € 37 (z(t)), where 9 denotes a suitable
subdifferential. In particular, this implies

1

J(z(t) = T (z(10)) +/ (E@),zm)dt for0=19<n=T.

fo
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The case that X is a Hilbert space and 7 is convex and lower semicontinuous
goes back to [13, Lem. 3.3], see also [5, Lemma 4.4].

Proposition 3.5 (Chain rule for convex functionals in a Hilbert space). Let X be a
Hilbert space and J: X — Ry := RU{00} a lower semicontinuous and convex
Sfunctional. If the functions 7:[0, T] — X and E:[0, T1 — X* satisfy
ze HY([0,T]; X), & e L*([0,T]; X*), and
E(t) € 0J (z(t)) almost everywhere in [0, T,
where 07 denotes the convex subdifferential, then
t > J(z(0)) liesin W0, T) and
d .
EJ(Z(I)) = (E (1), z(t)) almost everywhere in [0, T].

A first generalization to Banach spaces X with separable dual X* is given
in [53, Prop.X1.4.11]. We provide a slight generalization of the results in [37,
Sec.2.2] that work for arbitrary reflexive Banach spaces and include also certain
nonconvex functionals. The functional 7 is called locally semiconvex, if for all z
with J(z) < oo there exist A(z) =2 Oandaball B,(z) ={Z € X; |[z—zllx £r}
with r =7(z) such that the restriction J|p, (z) 1S A-semiconvex, Viz.

V20,21 €B,(2) Vs €0, 11: T ((1—s)z0+521)
2

s—s
2

By 8.7 we denote the Fréchet subdifferential which is defined by

3T @) ={EeX*; T@2T(@)+(E.7-2)—2A@)|Z—zl} forZe B (2) }.

The next results follows by a simple adaptation of the proof of [37, Prop.2.4].

= (1-9)J (z0) + 5T (z1) + A(2) lz1—zollk-

Proposition 3.6 (Chain rule for locally semiconvex functionals). Consider a sep-
arable reflexive Banach space, g € 11, oo[ with q¢' = q/(q—1), and T: X — Ry
a lower semicontinuous and locally semiconvex functional. If the functions 7 €
Wh4([0, T1; X) and & € L9 ([0, T1; X*) satisfy

sup{J(z(1); 1 €[0,T]1} < oo and
E (1) € 0T (z(1)) almost everywhere in [0, T,

then

d .
t— J@)) liesin WH1(0,T) and 57 @0) =(E 0, 20)
almost everywhere in [0, T].

Proof. The result follows by the fact that the image of z lies in domJ = {z €
X; J(z) < oo} and is compact in X. Hence there is one A, < oo and one
rs« > 0 that provides A, semiconvexity on B, (z(t)) for all t € [0, T']. Thus, the
results in the proof of [37, Prop.2.4] can be applied when choosing w®(Z, z) =
A4|lZ—z|lx there and using the fact that all needed arguments are local and rely
only on information of 7 in a neighborhood of the image of the curve ¢t +— z(¢). O
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4. Time Discretization of a Regularized Problem

Before we construct solutions by a suitable time-discretization, we introduce
regularizations in two points. Firstly, we add a linear viscous damping which allows
us to obtain simple a priori bounds for the strain rate Vy, because in the first steps
of the construction we are not yet in a position to exploit the generalized Korn
inequality of Theorem 3.3. Secondly, we modify the heat production induced by
the viscous damping, which in the physically correct form leads to an L'-source
term, that cannot be handled in the first steps of the construction below.

Hence, introducing the regularization parameter ¢ > 0 we consider the coupled
system

div (0vi(Vy, Vy,0) +&Vy + 0a(Vy, ) — div f)el(sz)) +¢=0, (4.1a)
w — div(K(Vy, 0)VO) = & (Vy, Vy,0) + 3p¢(Vy, 0):Vy, (4.1b)
w=1w(Vy,0), (4.1c)
. F,F,0
with &°8(F, F, 0) := M
1+c&(F, F,0)

where 10 is from (2.16) and X from (2.24). This system is defined on Q and is
complemented with regularized boundary and initial conditions

(0vi(Vy, V3, 0)+eVi+0a(Vy, 0))ii — divg(her(V2y)ii) = f on In, (4.2a)

y = identity on Xp, her(V2y): (i) = 0 onX, (4.2b)
- . 0
K(Vy,0)V0 -ii + k6 = kb, . With 6, = —>— onY, (4.2¢)
’ ' 146,
o

y(0,)=7yo and 6(0,) =6, := on 2. (4.2d)

14-¢6y

This system is solved by a time discretization. For this, we consider a constant
time step T > 0 such that T/t is an integer, leading to an equidistant partition
of the considered time interval [0, T']. (However, varying time-steps can be easily
implemented because we will always consider only first-order time differences and
one-step formulas.)

For the time discretization of the regularized system (4.1)-(4.2) we use the
difference notation

8‘[fk — %(fk _ fk—l)

and define a staggered scheme, where first y%~! is updated to y*_ while keeping %!
fixed, and then 6 is updated implicitly by updating w*-! to wX, = ro(Vyk_, 6%).

More precisely, in the domain £2 we ask for

— div <avi(vy§r‘ L8, Vyk eg;‘) + &8, Vyk
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B ) 1 kt
+ o (Vyk,, 6571 — div he1<v2y’;,>) =gk i=- / g(r) dr, (4.3a)
¢

T k—1)t
Srwk, — div(K(Vyk ' 05 Vel = &5 (Vyl ! Vet 057
+ 3pp(Vyk,, 08 )8, V5 (4.3b)
with wlgcr = m(v)’§p 95{)7 (43C)

together with the discrete variant of the boundary conditions (4.2) in the form

(o (Vo 8Vt 0T) + 68, Vv, + ou(Vak, 05 )i

) . 1 kt
— divg (her (V2y5i) = f5 = = f f(r) dr on I\,
T Jk—Dr
(4.42)
Y&, =identity on I'p,  ba(VZyE,) @ (i) = 0 on T,
(4.4b)
k—1 1 - K [k
K(Vy”_ ,9&_ )Vegr n +K9§r = Kebk,s,t = ;/ O, (1) dt on I
k—Dt
(4.4¢)

The main advantage is that the boundary-value problem (4.3a), (4.4a), and (4.4b)
for yé‘, is the Euler-Lagrange equation of a functional, so that solutions can be
obtained by solving the global minimization problem

(1 _ _ _ 3 _
Vi € Arg Mm{ —ROG =y 0D + VY=Y g e

+ V0L — () |y e Vi ) (4.5)

where R is from (2.18e) and where (€5, y) = [ g5y dx+ [ f¥-y dS.Clearly, the
Euler-Lagrange equation may have more solutions, however for deriving suitable
a priori bounds, we will exploit the minimizing properties.

Similarly, the boundary value problem (4.3b) and (4.4c) for 6%, where y*~!
and y¥, are given, has a variational structure. For this, we define the functions

¢c(F,60) = [3 ¢(F,0)dd and W(F, 0) = 2¢-(F,6) — 6¢(F,0) to obtain the
relation
W(F,0) =10(F,0) = ¢(F,0) — 03¢ (F,0) and
Opdc(F,0) = dpp(F, 0). (4.6)
With 92, W (F,0) = dV0(F,0) = —032,¢(F,0) = € we see that W(F, ) is

uniformly convex by assumption (2.30c). Thus, we obtain solutions Qé‘r of (4.3b)
and (4.4c) via the minimization problem

P VET

1 1
0% € Arg Min{/ (—(W(Vyj;,,e) — wi'6) + VoKV ek—l)ve) dx
\T

b [ (A Bk 000 = 00Tk, 0:8, 93k ) o
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+ frg(e—eb’ﬁ“)z ds ‘ 0eH (2),020 } @.7)
We emphasize that this staggered scheme is constructed in a very specific way
by taking 0 = Qé‘,— ! from the previous time step in the mechanics problem for
yé‘r, see (4.5). For the construction of § = Bft from the heat equation we have
to use sometimes the explicit (backward) approximations 9;‘; I'and sometimes the
implicit (forward) approximation 95,. Clearly, the former is simpler and it is used
in the heat conduction tensor K(Vy*~!, 65-1) and in the heat production & *. It
is tempting to use the explicit choice 95; I also in the thermo-mechanical coupling
term dpo (V yf,, 0):Vé; yf [=the last term in (4.3b)] as it would simplify the energy
balance, see Remark 6.1. However, as this term does not have a sign, we would not
be able to guarantee positivity of Gé‘r. Thus we are forced to use the more involved
implicit term 6 +— 8F¢C(Vy§, 0):Vé, yé‘ in (4.7) instead of the simpler, linear
choice 6 + 0drg(VyX , 05-1):V8, yk. This choice may introduce nonconvexity,
so that #¥, may not be unique.

The next result states that we can obtain solutions (yé‘f, 9;‘,) of (4.3)-(4.4) by
solving the minimization problems (4.5) and (4.7), alternatingly. For notational
simplicity we have written the minimization problem (4.7) for 6 with the constraint
0 = 0, however, for establishing the Euler-Lagrange (4.3b) and (4.4c) we need to
show that non-negativity of 6 comes even without imposing the constraint. This
will be achieved by minimization over 0 € H 1(£2) after extending all functionals
suitably for 6 < 0.

Proposition 4.1 (Time-discretized solutions via minimization). Let the assump-
tions in (2.30) be satisfied. For N € N set t = T/N and (ygr, 9‘?1) = (30, 60.¢)
as in (4.2d) and wgt =1 (Vyo, 00.¢). Then, fork =1, ..., N we can iteratively
find (yé‘,, 6’;‘,) € Vid X HJlr(.Q) by solving first the incremental global minimization

problem (4.5) and then (4.7). The global minimizers satisfy the time-discretized
problem (4.3)—(4.4) in the weak sense and 0k >0 almost everywhere on §2.

ET =

Proof. Mechanical step: We first show that the minimization problem in (4.5)
has a solution for any 9;‘; I'e H'(£2) with Bf; I'> 0. We cannot rely on that ¢ is
bounded from below, cf. Example 2.4, but we can formally add an x-dependent con-
stant —@(Fy—_1,6k—1) to the integrand in (4.5). By (2.30c), ¢(F, Gfr_l) —
d(FE1 051 > KKk F1S/2+1 where the constant KX~! depends on
||F(,f;1 | oo (2:Raxay and on K from (2.30c). Since s > 2 is assumed, this possi-
ble decay is however dominated by the s-growth of ¢, cf. (2.30a).

Thus, such formally modified functional in the minimization problem (4.5) is
coercive on Vg C WP (£2; RY). By lower semicontinuity in W27 (£2; RY) we
obtain the desired minimizer yff € Vg with ./\/l(yé‘r) < 00. Hence, Theorem 3.1
shows that the minimizer satisfies det Vy(x) = § > 0. As in Proposition 3.2 we
conclude that yé‘, satisfies the Euler—Lagrange equation

/Q(aﬁg(wﬁ;l, Vo yK, 05 1) Vz 4 eV yh Ve 4 apy (VyK, 057 Y): VZ) dx

+DHOHz] — (€5, z) forall z € Wy,
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but this gives exactly (4.3a), (4.4a), and (4.4b).

Energy step: 'We now assume that 05! € H'(£2) and y*~1, yk. € Yiq are
given with 9§;1 > 0 and M(y!f;l), M(yift) < 00. With this, we show that a
variant of the minimization problem (4.7) has a minimizer 6%_. For this, we extend
the function ¢, which satisfies ¢ (¥, 0) = 0 by assumption (2.15), continuously by
¢ (F,0) =0 whenever 6 < 0. As the functions 10, ¢, and W are defined through
¢, they all extend continuously differentiable for & < 0 to the constant value 0.
Thus, the integrands in (4.7) are defined for all & € R and we can minimize over
0 € H'(£2), that is without the constraint & > 0.

Clearly, the extended functional is weakly lower semicontinuous on H!(£2)
because of KL = 0. To show coercivity of the functional, we use that M (yff; <0
implies Vy =1 € L anddet Vy*~1(x) = § > 0.Hence, K givenin (2.24) satisfies
VO - K(Vykt 0521 Ve > a,|VO|? for some e, > 0. Together with the boundary
integral, where x > 0 due to (2.30g), we have two terms that generate a lower
bound c0||9||§{1(9) —C.

For the remaining term we observe that W(F, 6) = 0 by construction, while
%wlgr_ I'and &;°® are given functions in L2(£2). Finally, for the last bulk term involv-
ing dp ¢ we use (2.30b) giving [dp¢ (F, 0)] <K+ |F|s/2) and hence, because
of Vyé‘r € L™ (£2; RdXd), we have

0
oroc(Wte )| = | [ oro(vst B dd] < cuiel

Together with §; V yif € L*(82; R%*?) we can show that all remaining terms can be
estimated from below by —C|60]| ;2 ().

In summary, we conclude that the extended functional in (4.7) is weakly lower
semicontinuous and coercive. Hence, a global minimizer 6, exists and moreover
these minimizers solve the associated Euler—Lagrange equation as dp W(F, ) =
W (F, 0) and dgp(F, 0) = ¢ (F, 0) depend continuously on 6.

To show that all global minimizers are non-negative we test the Euler-Lagrange
equation by the negative part 6, := min{6, 0} of 6., which is still an H' function:

1 R R et
o:/ (;m(vyﬁr,e*)e* — —wi o] + VoKL 0 Ve, )dx
2
+ /9 (—séegmﬁ;l,&yé‘,ef;l)e;—e;apcp(Vyﬁt,e*):wyﬁt)dx
+ / (0.0, —0f, .0,)dS
r

g/ (O+p2+a*|V0*_|2+p4+0)dx+f (k(0)* + p7) dS
2 r

2 collf 131 )

In the first estimate we have used that w’gr_l = to(Vykl gkl > ’S\Gé‘;l >0,

ET O TET

£°% >0, and G;i . = 0 which gives the non-negativity of p», p4, and p7, while

the first and fifth term vanish identically since for 6, > 0 we have 6, = 0 while
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for 6, < 0 we have t0(F, 0,) = 0 and dp¢p(F, 6,) = 0 (here we crucially use the
implicit structure). Thus, we conclude that 6 = 0, which is equivalent to 6, = 0.
Thus, choosing Gfr = 6, for any global minimizer of the extended functional we

see that it is also a global minimizer of (4.7) and that the Euler—Lagrange equations
hold. O

Considering discrete approximations (yé‘f) k=0...1/0 W€ introduce a notation
for the piecewise-constant and the piecewise affine interpolants, defined respec-
tively by

_ k h—
Ver (1) = Yers Xu(t)zystlv and

t— k-t , kt—t ,_, for (k—1)t <t < kT,
Yer(t) = ——— Yer + — Ve
Y., k1) = Ve (kT) = yer (kT) = vk fork=0,1,...,T/t. (4.8)

The notations 0, 07, and 0, or wg; have analogous meanings. However, with
g, (1) we refer to the locally averaged loadings g, (¢) = g]T‘ fort € lkt—r, kt] (cf.
(4.3a)), and similarly for £, £; and 6, ¢ ;.

The next result provides the basic energy estimates where we will crucially use
the carefully chosen semi-implicit scheme defined through the staggered minimiza-
tion problems (4.5) and (4.7). Here also we will essentially rely on the regularizing
viscous term Ay, as the bounds provided by R cannot be used because of the
missing a priori bound for yé‘f in W27 (£2; R?). Moreover, we will exploit the fact
that we have global minimizers in (4.5) rather than arbitrary solutions of the Euler—
Lagrange equations (4.3a). This latter argument works because we have neglected
inertial terms in the momentum balance (2.27a) and hence in (4.3a). We refer to
[26] for cases where inertial effects are treated, but in the isothermal case.

Recalling the notation I = [0, T'], we formulate our first result.

Proposition 4.2 (First a-priori estimates). Let (2.30) be satisfied, then for all ¢ > 0
there exists K. > 0 such that the following holds. For Tt < 1/K, the interpolants
constructed from the discrete solutions (yé‘,, Gfr) e W2P(2:RY) x HY(2), k =

1,...,T/t, obtained in Proposition 4.1 satisfy the following estimates:
[ yee | Lo (1 W2 (2R A H (1 B (2R = Kes (4.92)
det (Vym (t, x)) > 1/K, almost everywhere on Q, (4.9b)

|6ex ”L2(1;H1(9))mLOO(l;LZ(Q)) s K, (4.9¢)

”wff ”LZ(I;HI(.Q))mLOO(I;LZ(.Q)) = Ko, (4.9d)
Hwé‘f ”0(1;L2(Q))mLZ([r,T],Hl(.Q))mHl(l;Hl(_Q)*) S Ke, (4.9¢)
||98T HC(I;LZ(.Q))ﬁLz([r,T],Hl(.Q) S Ke. (4.9f)

We emphasize that we did not make any smoothness assumptions for 6y, hence
the regularized initial values 9& := 6p,¢ and wgf :=10(Vyop, 6p.¢) are not smooth.
This explains, why we have to use the left-continuous interpolants in (4.9¢c) and
(4.9d) and why L%([z, T]; HY(£2)) used in (4.9¢,f) avoids the interval [0, ] on
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which the approximate solution may fall out of H'!(§2) due to the initial condition
0o, € L°(£2), cf. (2.30i) and (4.2d).

Proof. As yX_ is a global minimizer, we can insert y = yk=1 as testfunction in
(4.5) to obtain the estimate (recall §; y* = %(ygr —yk=1y)

L0 —w Ok ok o RGET, 6k, 057

P Vet

ET
+ S IVE I < Tl ) (4.10)

The proof will be divided into three steps.

Step 1: Uniform energy bound. Using the decomposition ¥ (y,0) = M(y) +
Depi(y, ), see (2.18b), we can write (4.10) equivalently as

ET
MOE) = MO D + TR0 8y, 05D + 5 IV8 72
§r<£§,ary,’;>+f(¢(Vy§,1,9§fl> (VYL O ) de. (@D
2

To estimate the last term use the assumption (2.30b) on |dr¢ (F, 0)| as follows

G (F1,0) — ¢(F2,0) < K(1+|Fi| + |F2)*/? | Fi—F|
K2 K 14 2
2, IFIAI+IRD + S IF=Fl, (4.12)

IA

where p > 0 is arbitrary. Choosing p = ¢/(47) and F; = Vyk+/ ~2 we can
insert this into the estimate (4.11). Moreover we can use R = 0 and (ET, &yé‘) <
XN -1 18 K1 1 < cpll€hll -111V 8 yX 11 12 as 8 y% € V. This leads to

M(ysr)_M(y )+ ||V8Tys ||L2

2
2TCP

2t K
I3+ ||vafy§||iz+ fg(lﬂwg,ww )* dx
+ gnvafyg I3

Using the coercivity assumption (2.30b) for ¢, the second-last term can be estimated
by M again and setting my := M(y£,) we obtain the recursive estimate

ET _ ~
mi = mit + V87 S el 1 + T8 (182 Hmitmi 1)
4.13)

with G, = 2-3°K? /e and ¢, = 20123 /€. In a first step we neglect the last term on the
left-hand side and obtain

(1—=7Ce)my < (147C )mp— +Egt||zf||i,_1 + 15 |82].
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We now restrict T > Oviat < 1/(2¢;) by choosing K, = 2¢;, so we can iterate the
above estimate. With (2.30h) we have mg := ¥ (yp, 6p) < oo and a simple induction
yields the discrete Gronwall-type estimate (with Q. = (1+1¢;)/(1—1¢C¢))

k
T i i ~
o > 0 (el 4 R21)
E .
j=1

mp < QFmo +

k
< 0" (mo + 22, Y613, ) + ke 22121

j=1
~ T ~
< 4% (W (30, 60) + 28 [ 1)I3 1 ds +272|21) =Ko, (414)
0
Using Theorem 3.1 we obtain the desired uniform upper bound in (4.9a) for the

interpolant y.; : I = [0, T] — Yig in L°°(I; WZ*P(.Q; Rd)), as well as the lower
bound (4.9b) for the determinant.

Step 2: Dissipation bound. We return to (4.13) and add all estimates from k = 1 to
N; := T/t € Nto obtain

Ne
& . ET
Z/Qmmzdx ar =T 3 1980412,
k=1

Nt
<mo—my, +7 3 (G2 +E 21 Hmei+mi))
k=1

< (30, 00) + Cellel oy vy + E T (2142Ke) =: K.

This provides the uniform bound for y,, in H'(I; H'(2; Rd)), and (4.9a) is es-
tablished.

Step 3: Temperature bounds. Testing the Euler—Lagrange equations (4.3b) and
(4.4c) by wk_ yields the identity

k k—1
/(M wh 4 Vuk vkl gkolyvek )dx—i—/ K6 wk_ds
o T ET ET ET Y 7ET ET r ET ET

:/ Rk wk. dx—l—/ K@ﬁg,rwﬁr ds
2 r

with hX = £°8(Vy =1 VEyE 657 1 0,0 (VK 65 ): Va k.

(4.15)
Recalling ¢y (F, ) = dpt0(F, 6) we obtain the chain rule

lee(r = Vm(vyz]?(f’ eécr) = 8Fm(vyz];r’ Gfr): vzygt + CV(Vy(];r’ th)vgé(r.
(4.16)
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Moreover, we have the elementary estimate %(w’gr—wﬁt_ Hwk < %((w’gt)2 —
(wlg;l)z), and Ow = O10(F,0) = 0 by the definition of tv. Using additionally
cy(F,0) = —Oageqb(F, 0) =%, see (2.30c), the above identity (4.15) leads to

I I i~
/ (E(wﬁf — 5wl + 2 Ve - Ik, vk, ) dx
2

< /Q Rk wk —veok Kk bk dx + fp K0F , cwk, ds.

where KX = K(VyEo! 0571 and b, = 8,100(VyE 08 ):v2yE . 4.17)

*TET

Using the uniform bounds for Vy,, and det Vy,, from Step 1, the assumptions on
K in (2.30f), as well as formula (2.24) we find a sz, such that

1
KK <5 and a-KF.a> —la* foralla € RY. (4.18)
,

€

Moreover, using 9,10 = 3¢ — 00 F0¢ the assumptions (2.30b) and (2.30c) to-
gether with the umform L bound for Vye;: we find |0 m(Vy”, 9 Il ¢

Realizing also that we have V2y¥  already estimated in L? (£2; R?*4*4) with p > 2
we obtain ||b‘sr 2 < C,. For the right-hand side h“ of (4.15) we have

IR 2 S 1EE N2 + 10 (Ve 05 110 1VE Y51 12 < T (1 + 18y 11 11),

where we again used the L°° bounds for Vyﬁ,. Finally, by definition we have
0,.¢ €10, 1 /€], and (2.31) allows us to estimate w by 6, which yields the boundary
estimate

| [ 0f wh, ds| < - / 6:1dS S 105 N = Ce(lwh N2 + 1905 N 2).-
Based on the above estimates and introducing the abbreviations
Vi = lwicllz, Ok = VOl 2, and v = (18 Yl 1,
we can estimate the right-hand side in (4.17) via
RHS < Co(14v0) vk + €Ok + Co (e +0x) < a;(é + v+ 2+ a@,%),

where o > 0 is arbitrary. Estimating the last term on the left-hand side in (4.17)
from below by € ©2/5¢, we may choose & = 8/(25¢,¢;). After multiplying (4.17)
by 2t we obtain

o~

i St (1+vi+2vd). (4.19)

g
2,
Arguingasin Steps 1 and 2 for (4.13) and using y§ = [, w2, dx < K2 [, Qg’sdx <

K 2|.Q| /82 < 00 [cf. (4.2d)] the left-continuous interpolants 0, and Wer satisfy
the a priori estimates (recallingz 6 < 1o (F, 0) from (2.31))

EllOerll oo 12(2)) = Werllpoor; 1202y
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Nt

= sup y S Keand |[VBecllfo ) =7 0f S Ke.
k=0,...,N
eV k=1

Thus, we find (4.9¢) for 6, and estimate (4.9d) follows by using (4.16) once again.

The uniform estimate for the piecewise affine interpolant w,, in the spaces
C(I; L32(£2)) N L%([t, T]; H'(£2)) follows from the previous estimates for wgy.
Finally, we note that the time derivative of the interpolant w.; is equal to walg on
the intervals J(k—1)t, kt[. We now use the Euler—Lagrange equations (4.3b) and
(4.4¢), which provides for §;w¥ = 1 (wX—wk~1) the estimate

18wkl gy1ye < CRUVOE N2 + €5+ CON8 yE N 1 + CE(I165 N g1 + 111 /e).

Squaring and summation over k = 1, ..., N; gives the remaining uniform bound
in (4.9¢) for W, in L?(1; H'(£2)*). O

Remark 4.3 (Full space-time discretization). To be useful for an implementable
algorithm, our time discretization should be combined with a spatial discretization.
A suitable space discretization itself (leading to the Faedo—Galerkin method) was
introduced in [26, Sect. 9.3] even without requiring the e-regularization (4.1). This
suggests that the space-time discretization might work with ¢ = 0 under a suitable
stability criterion that the time step is sufficiently small with respect to the mesh
size used for the space discretization. Or, vice versa, our analysis suggests that the
e-regularization makes the stability criterion obsolete, assuming that both time step
and mesh size are sufficiently small with respect to ¢. However, our focus does not
lie in such numerical aspects, and we leave these questions for further research.

5. The Limit t — 0 in the Regularized Problem

Using the above a priori estimates for the interpolants we will be able to extract
convergent subsequences. First we will observe that the three different types of
interpolants have to converge to the same limit. Next we want to pass to the limit
in the discretized weak forms of the momentum balance and the heat equation.
While most terms can be handled by compactness arguments or weak-convergence
methods, there is one term that needs special attention, namely the heat-source
term £ © that is quadratic in Vy,. Thus, it will be a crucial step to show strong
convergence of y.; in L>(I; H'(£2)), which can be done by passing to the limit
in a suitable discretized version of the mechanical energy balance (2.20). In this
argument we will use the A-convexity derived in Proposition 3.2 to relate the
mechanical energies ./\/l(yé‘,_ 1) and M(yé‘r).

With the definition (4.8) for the three types of interpolants, we see that the
following discretized version (5.1) of the momentum balance and heat equations
(4.1) and (4.2) holds for the discrete solutions constructed in Proposition 4.1:

— div(0vi(Vy, . Vier, Oep) + 8Ver +0a(Vier, 0ep) — divher(V23,)) = 2o,
(5.1a)
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U.)st_ diV(’C(VXH, Qﬂ)vger) = sgeg(vzm,v)‘}”’ Q51)+8F¢(Vygrv asr)zv).’er:
(5.1b)
Wer = m(Vygp gsr)» (510)

to hold on Q = [0, T] x £2, while the regularized boundary conditions (4.4) read

-

(0vi(Vy,, VYer, O0or) + VYot 0t (VIer, 0,0)) 0

— divg (het (V2¥,)it) = f on I\, (5.22)
V., = identity on Xp, bhe(V?y,,):(i®i)=0  onX, (5.2b)
K(Vy,  0.)V0cr -1+ KOpr = KOy ¢ ¢ on X. (5.2¢)

Here it is essential that we have to use all three types of interpolants, for ex-
ample y,., Voo and yg;. In particular, we emphasize that t +— wg(¢) is the

piecewise affine interpolant of {w’gr}kzo,__,, N,» which does not coincide with t —
0 (Vyer (1), 0.1 (1)) except at the nodal points r = kt.

Proposition 5.1 (Convergence for T — 0). Let (2.30) hold, and let ¢ > 0 be fixed.
Then, considering a sequence of time steps T — 0, there are limit functions y. and
0. and a subsequence (not relabeled) such that

Yer = ye  weakly*in L®(I; W>P(2; RY)) N H'(I; H'(2;R?Y)),  (5.3a)
Opr — 0, weaklyin L*(I; H'(2)). (5.3b)

Moreover, any couple (ye, 0:) obtained by this way is a weak solution to the reg-
ularized initial-boundary-value problem (4.1)—(4.2) in the sense of Definition 2.1
written for (ye, 0:) with eVO,: Vz added in the first integral in (2.27a). Moreover; it
satisfies the corresponding mechanical energy-dissipation balance, see (5.9) below.

Proof. The proof consists of five steps.

Step 1: Extraction of convergent subsequences. As ¢ > 0 is still fixed, we can
exploit the a priori estimates obtained in Proposition 4.2, namely (4.9a) and (6.2c).
By Banach’s selection principle, we choose a subsequence and some (y;, 6;) such
that (5.3) holds. By the Aubin—-Lions theorem combined with an interpolation, as
p > d, we also have

Vyer = Vy, uniformly in L®(Q; R?*?), (5.4a)
Wer —> Wg strongly in L°(Q) forall s € [1, min{4, 2+4/d}[. (5.4b)
Indeed, for the first result we use the continuous embedding W!7(£2) ¢ C*(£2)
witha = 1—d/p €10, 1[ and thus ||Vy.;||c« < Ko. Moreover, (4.9a) yields the

Holder estimate

[Vyer (1) = Vyee )| 2 gupay S Kiln = ]2 forall ey, e . (5.5)
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While the first part of (4.9a) yields just [|Vyer (t1) — Vyer (02) [l wi.p(o:rixa) = Ko.
By interpolation, we find # € 10, [ and & € 0, 1[ such that we have | - [|¢s =
C| - IIICZ'\II : ||22 and conclude

[ Vyec ) = Vyee ()| cpo.pa) S CKy KT lt — 222, (5.6)

Thus, the sequence {Vy,} is uniformly bounded in C¥ (Q) for y = min{g, 1/2},
and uniform convergence follows by the Arzela—Ascoli theorem.

The convergence (5.4b) follows from (5.3b) by the Aubin—Lions theorem when
interpolated with the estimate in L*°(/; L2(£2)) which is contained in the estimate
(4.9¢).

Moreover, both convergences in (5.4) hold also for the piecewise constant in-
terpolants because of the estimates [|Vyer —=Vy |10 12(2;Rdxd)) < Kt!'/? (and
the same also for Vy,,).

Moreover, from [|we ||l g1 (7. g1 2y < K, cf. (4.9¢), one can also read the

estimate [|Wer lgy (/. g1 (o)) = VTK, so that W, converges (as a selected subse-
quence) strongly in L*(Q) with s from (5.4b) by a generalization of the Aubin—
Lions theorem for time-derivatives as measures, cf. [44, Cor. 7.9]. The limit must co-
incide with w, because |wer —Wer [l 2¢7. g1 (@)+) = _1/21:||u')”||L2(1;H1(9)*) > 0.

By (2.31), to(F, -) has an inversion which is Lipschitz continuous. Thus, by
“4.30)0,, = [ (Vy,_, 217" (w,,), and we have, beside (5.3b), also

O =[0(Vy,_ )1 (w,) = [0(Vy,, )] (w,) =6, strongly in L°(Q)
5.7

for all s € [1, min{4, 2 + 4/d}[.
Step 2: Convergence in the mechanical equation. Now the convergence in the
discretized momentum balance (5.1a) can be done by the above weak convergences

(5.3) because oy; is linear in terms of F' and by Minty’s trick for the monotone
operator induced by by = ##’. For a reflexive Banach space X and a hemi-
continuous, monotone operator H : X — X* Minty’s trick means the implication

Hu.;)=b;, u; —~uinkX, — Hw =b (5.8)
be = bin X*, (be,uz) — (b, u) W= '

We apply this for H defined by (H(y), z) = [, het(V2y(t, X)) 1 V2z(t, x) dx dt,
where X = W2» (Q). Clearly, H is hemi-continuous and monotone. Choosing

ur =y,, the weak equations (5.1a) and (5.2) are interpreted as H(y,,) = b, with
b defined via

(br,z) = _/ (Uvi(vzmv V).’srs ng)+8v.§78r
9}

T

+0e1(Ver, 0,p)): Vzdx dr + / (€, z)dt.
0
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We obtain b; — b with b defined by

T
(b,z) = —/ (0vi(Vye, Ve, 0e)+eVyetoe(Vye, 6;)): Vzdx dr +/ (¢, z)dr,
Q 0
because we can pass to the limit 7 in all four terms separately. For the first term
we apply the lower semicontinuity result [21, Thm.7.5] twice, namely for the
integrands f1(x, (F,0), G) = *oi(F, G, 6):Vz(x) which both are convex in G.
The limit passage in the second term is simple weak convergence, and the fourth
term converges because of £ — £ in L? (I ; HI% (.Q)*). In the third term we exploit

Vy., € F(K) :={F e R |F| < K,, detF 2 1/K, |

(see (4.9a) and (4.9b) from Proposition 4.2), such that using (2.30a) and (2.30b) the
map (F,0) — oe(F,0) = dpe(F) + dp¢(F, 6) is continuous and bounded on
F(K.) x R*. Hence, with (5.4) and Lebesgue’s dominated convergence theorem
we obtain the desired convergence.

To use Minty’s trick (5.8) we still need to check (b;, y,.) — (b, y). However,
we have shown above that b, is bounded (and hence weakly converging to b) in
L2(I; H)(2)*) and ¥, — v, in L?(I; HJ(£2)) strongly by (5.4a), thus the result
follows immediately. Hence, we conclude H(y,) = b, which is nothing else but
the regularized momentum balance (4.1a), (4.2a), and (4.2b).

Step 3: Balance of mechanical energy. For the limit passage in the heat equation we
need strong L%-convergence of Vy,, due to the viscous dissipation &; ©(F, F, 0)

that is nonlinear in F. The strategy is to use the balance of mechanical energy by
rewriting the regularized momentum balance (4.1a), (4.2a), and (4.2b) in the form

D}‘,R(y& ).’cw 0e) + SV)./g + DM (ye) + Dy(pcpl(ys’ 0e) = £(1)

with M and @y defined in (2.18). We can now test with y. € L*(I; HJ(£2)) and
use (after decomposing M = H + @, see (2.18)) the chain rule in Proposition
3.6 to obtain the balance of mechanical energy in the form

T
M@e(T) + /0 (2QRGe. Je. B)+e IV 32, dr

T
=M(yo)+/ (ﬂ,y's)dl—/ IFP(Vye, 0):Vy, dx dr. (5.9)
0 0

Indeed, by Proposition 3.2 we know that M satisfies the assumptions of Proposition
3.6 with space X = HJ, ($2; RY). Clearly, y. € H'(I; X) and M(y.(1)) < K,
see (4.14). Moreover, for

e = U(t) = DyR(e. Ye. 0) — eVYe — Dyepi(ve., 0c)

we have Z,(t) = DM (y,(¢)) almosteverywhere in [0, 7] and our a priori estimates
provide ¢ € L*([0, T1; H}, (£2)*). Thus, (5.9) follows from Proposition 3.6.
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Step 4: Strong convergence of strain rates. The next step is now to derive a similar
mechanical energy balance for the time-discretized solutions, which is better than
the previously used estimate (4.11). Passing to the limit r — 0 from the latter
estimate we would arrive at an estimate like (5.9), but with 2R and ¢ replaced by
‘R and ¢/2, respectively.

To improve the discrete estimate (4.11) used in Proposition 4.2 we can ex-
ploit the a priori estimates M ( y’g,) < K, which allow us to use the geodesic
A-convexity result in Proposition 3.2. Instead of using the minimization property
of yé‘r in (4.5) we test the Euler—Lagrange equation (4.3a) with boundary conditions
(4.42) and (4.4b) by yk_ —y*=1 to obtain

2RO 803K, 0571 + el Ve yEIIT ) + Dy MOED v —yE ]
= (05, e —vir ) = Dy®epi ke 07 Dy =iz ',

where we have the correct factors 2R and ¢. To recover the energy values M (ysjr)
we now eliminate the term involving DM using the A-convexity estimate (3.3)
with y() = y* and y® = y =1 which yields

MOE) + 2RO &yg, 057 + (re — T2 A(KD) I Vi II7 2

S MOE ) + (65, 858 — Dy P (v 07 I8 V]

We now sum this inequality over k = 1,, ..., N; and using the interpolants we
obtain the integral estimate

T
M@, (T)) + fo 2R(y,qo Fors Bur) it + (=T AK) | |V5erl? dr

T
< MGo0) + / ((ZT,M— / apcp(vvﬂ,gu)dx) dr. (5.10)
0 2

Using the convergences in (5.3) and (5.4), it is immediate to see that all the terms
on the right-hand side converge to the corresponding terms on the right-hand side

in (5.9). Now denote the three terms on the left-hand side by I¢7 ) and set A ) —
liminf,_ o+ IH Using lower semicontinuity arguments (use [21, Thm. 7.5] once
again for ]g(f)) we find

Vee (T) = ye(T) in WXP(2; R = IV > M(y:(T)),
T
Vier = Vye in L2(Q;: R — 1@ > / 2R (Ye, Ve, 0) dt,

Vyer = Vye in L2(Q; R — [ > ¢ Vy, (5.11)

||L2(Q)

Thus, passing to the liminf on the left-hand side and to the limit on the right-hand
side in (5.10) and comparing with (5.9) we obtain

ID+IP 41 < RHS = M(y:(T))

T
+ / (2R (e Je. O )+e V3122 dr.
0
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Together with (5.11) we conclude that we must have equality in all three cases after
“—" However, Vyg; — Vy, in L>(Q; R¥*?) and

B) i . . 2
Ie7 = liminf(e—t ACK) IV Yer 129

= &l|V3:l17 o)

imply the desired strong convergence Vy., — Vy, in L?(Q; R*?),

Step 5: Limit in the heat equation. We first pass to the limit t — 0 in the constitutive
relation (5.1b), namely w,, = t0(Vy,,, 6..). The left-hand side converges to wg
by (5.7), while the right-hand side converges to 10 (V y,, 6;) by the continuity of 10,
the bound (2.31) and the convergences (5.4). Thus, w, = t0(Vy,, 6,) is established,
that is (4.1c¢) holds.

We write the heat equation (5.1b) with boundary conditions (5.2¢) in the weak
form

/ (ﬁ}erz + V0O, - IC(VXH,Q”)Vz) dxdr + / K 95,—@,,55)1 dS dr
0 x

= /Q (65 (Vy, Ve, 0.)4850 (Ver, 0e0): Vier)zdxdr  (5.12)

forall z € L(I; H'(£2)). While we only have the weak convergences w,; — s
in L>(I; H'(£2)*) [see (5.7)] and V., — V0, in L?(Q) (see (5.3b)), all other
functions in (5.12) converge strongly. In particular, using the strong convergences
Vyer = Vyg in L2(Q; R*4) and 0 < égreg(VyH,V)?”,Q”) < K, we obtain

& S(Vy, Vier, 0p0) = & (Y3, Ve, 0)
strongly in L?(Q) for all p € ]1, oo[. (5.13)

Thus, passing to the limit T — 0 in (5.12) leads exactly to the weak form to the
regularized heat equation (4.1b) with boundary condition (4.2c).
This concludes the proof of Proposition 5.1. O

6. Limit Passage ¢ — 0

In this final part of the proof of Theorem 2.2 we have to pass to the limit with
the regularization parameter ¢ — 0. As we are already in the time-continuous
setting we are now able to make the formally derived total energy balance (2.21)
for £ rigorous for all ¢ > 0. From this we will be able to derive a priori bounds for
(Ve, O¢) that are independent of €.

Remark 6.1 (Missing discrete estimate for the total energy). The derivation of the
total energy balance is achieved by testing the momentum balance by y and the heat
equation by the constant function 1. The corresponding step on the time-discrete
level would be the test (4.3a) by &, yk and (4.3b) by 1. We would be able to use
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the desirable cancellation of the dissipation, namely & ° — & < 0; however for the
coupling terms

drp(Vyk 0571y 8, VyE and  drg(VyE,, 6F) 1 8. VyE,

which arise from (4.3a) and (4.3b) respectively, we do not have any way to estimate
the first against the second. Recall that we were forced to use the explicit/forward
value Bfr to maintain positivity of the temperature.

To exploit the balance of the total energy we have to strengthen the assumption
on the loading £(7), that is the functions g, and f, in (2.30g), namely

g e W L@ RY). f e WM L2 RY). ©.1)

This implies that 7 +— £(¢) lies in whl (1; H}D (£2; Rd)*), which is what we will
only need.

The new e-independent estimates on Vy, in L>(Q) will be obtained by exploit-
ing Pompe’s generalization of Korn’s inequality (cf. [41]) as prepared in Theorem
3.3 above.

Lemma 6.2 (A-priori estimates for y.). Let the assumptions in (2.30) and (6.1)
hold. Then there exists a constant K such that for all ¢ € 10, 1] and all weak
solutions (ye, 0¢) of the regularized problem (4.1)—(4.2) obtained in Proposition 5.1
we have

det(Vy,) > 0 on Q and the following estimates hold with K independent of
e > 0:

|9l oot w2 2y S K (6.22)

det (Vye (1, x)) = 1/K forall (t,x) € Q, (6.2b)

||98 “LOO(I;L](Q)) é K, (62C)

||V5;8 “LZ(Q;]Rdxd) g K’ (62(1)

/ E(Vye, Ve, 6e) dxdr < K. (6.2¢)
0

Proof. We proceed in two steps that are close to estimates we have done in the
time-discrete setting.

Step 1: Estimate for E(ye, 0;) Using the derived regularity for the solution (y,, 6)
we see that a suitable variant of the total energy balance (2.21) holds. To be specific,
we start from (5.9), which is also valid for arbitrary ¢ € ]0, T] in place of T, and
add the time-integrated version of (4.1b) tested with the constant function z = 1.
Using & = M + W with W(ys, 6,) = [, we dx we find

1
000000+ [ [ (6530 V50,60 +4l 950 = 62930, Vi, 00)) dvds

t
0

t
:E(yE(O)aGS(O))+/ (K(S),&S(S)>dS+/ fK(é’f—@a)de&
0oJr
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The important point here is the cancellation of the term dp¢: Vy, and that the
difference of the dissipation integrals has a sign.

Defining the auxiliary variable E.(¢) := E(y:(t), 6:(t)) — (£(t), y(t)) and
using 0 < 67 < 6, and 0, = 0 gives

t

£ £ B+ [ ([ k0.5 o). e0n) as
0 r

where we have integrated by parts the power of the external loadings, which was
possible by the strengthened assumption (6.1).

With £ 2 M = 'H and the coercivity of H we have ||y|| g1 < ¢1 + 2E(y, 0)
and obtain

t
Ec(t) £ E:(0) +/ (a(s) + b(s)E(s)) ds witha, b =0
0

and a,b € L'(0,T), which follows from (6.1) for ¢ and (2.30i) for 6,. With

B(t) = [y b(s)ds and A(r) = [ a(s) ds the Gronwall estimate yields the a priori
estimate

E() £ PV (E0)+ AM) = PD(E” + A(T)) := My,

where we used & (0) = £(y,(0), 0:(0)) < E(vo, o) — (£(0), yo) =: E® < oo by
(2.30h), (2.30i), and (2.31). This immediately implies

Mye@®) +E0: (Dl 12y = Ee (e (D), O:(1)) = Mo

Hence, (6.2c) is established, whereas (6.2a) and (6.2b) follow by applying Theorem
3.1.

Step 2: Estimate for the strain rate Vy, We return to the mechanical energy balance
(5.9) on the interval I = [0, T']. We recall that the dissipation function &£(F, F, )
is assumed to control the symmetric part of F ' F only, namely

E(F,F.0)=20(F F,FTF+FTF,0) > a|FT F+FTF%.
Using our a priori bounds on M (y(¢)), we can apply the generalized Korn in-

equality prepared in Corollary 3.4 with y = y. (¢, ) and v = y.(¢t) € H II-D (82; RY)
to obtain

T
— . . . 2
otk / 1312, dr < f a|VyT V5V Ve [ drdr
0 0
é/ E(Vye, Vye, 0:) dx dt
0

T
§M(yo)—M(ys(T))+/0 (@l s

+18r¢ (Vye, Oe) o2 (0)) Ve (Dl 1 dr,

where we used [0p@(F,0)| < |C(1+|F|)* and |Vy.(t, x)| £ K, which follows
from (6.2a). Using this, (6.2d) and (6.2¢) follow immediately. O
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For the deformation y, we have all the estimates we need for passing to the limit,
but we still need good a priori estimates for the temperature. Here the problem arises
that the heating generated by through the viscous dissipation £(Vy,, Vy,, 6;) is
only bounded in L' (Q). Thus, for obtaining improved estimates, we have to invoke
special test functions developed by BoccarDO and GALLOUET [11] for parabolic
equations with measure-valued right-hand sides.

Proposition 6.3 (A priori estimates for 6, and w,). Under the conditions of
Lemma 6.2, also the following estimates hold:

Vpe[l,42[3C, >0Vec10,11: [6:llrrco) + llwellLrig) < Cp, (6.3a)

vrell, %[ 3K, >0Vee]0,11: [VOelrrg) + IVwelrro) = Ky,
(6.3b)

3K >0Vee]0,I[: ”&)5||L1(1;H(‘1+3)/2(S2)*) <K. (6.3¢)

Proof. We follow the recipe in [11] in the simplified variant of [22], see also [33].
For n € 10, 1[ we define the function y,: RT™ — R¥ via

x©) =0 and x,(w):=1- e [0, 1].

(I4w)n

n
—— >0
(w1~
Now testing (4.1b) with the test function z = X;; o we amounts to applying the

chain rule in Proposition 3.5 to the convex functional J(w) = f o Xn(w(x))dx
on the space X = H(£2)*. Indeed, from (5.3) and w, = 0 (Vye, ;) we have
we € L>(I; H'(£2)) N H'(I; H'(£2)*)), and the chain rule gives the first identity
in the following calculation:

d .
. /Q o) dx = /Q X (e dx

= —/ X,;/(wg)sz - IC(Vye, 0:) VO, dx +/ k(6 —0:)dS
2 r

Clearly, yx, satisfies min{0, 5 —Cy} < x,(w) = w and x,'(w)=

+ /Q 15 we) (855 (V ye, Ve, 00) + 0 (Ve 6):V e ) dx.

Integration over t € I = [0, T] and using X,;(w) € [0, 1] and [|Vye |l L>(0) < Ky
yield

f Xy (We) Ve - K(Vye, 0e) VO dx dr
Q

éf xn(wo)dx—}—/ KdeSdt—l—/(g(...)
2 b 0

+ C(1+KOO)X|V)?8|> dxdr < C, (6.4)

where we used (2.30h), (2.30i), (6.2d), and (6.2¢).
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From this, we derive an a priori bound on Vw, by setting ﬁg = K(Vye, 6;)
and estimate it as in (4.18) (see Step 3 of the proof of Proposition 4.2) by

~ ~ 1
IKe(t,x)| £ 5 and a-K(t,x)a = ;|a|2,

where s is now independent of ¢ because of the e-independent bound in (6.2a) and
(6.2b). Moreover, Vw, and V6, are related by

Vuw,e = dt0(Vye, 6:) Ve + 0pt0(Vye, 6): V2. (6.5)

With dpt0(F, 0) = —98§0¢(F, 0) € [¢, K] and w, = t0(Vy,, 6;) we obtain

1 ) 1 ~
— |V — VS ————Vuw, - K,V
K | w8| = agm(F 0 [Vwe|” = WI0(F. 0) We eV We
1 -
=Vw, KVl + ———— Vw, - Kedpt0(Vye, 0,) : VZye

910(Vye, 0)
< = - sIv2
S Ve - KV, + I|Vw6| C(1+Koo)" V7 yel

< Vwg - /C V9€+F|Vwe| +C*|V2)’s| .

Subtracting ﬁWu}slz, multiplying by x”(we) € [0, 1], and integrating over Q
we can employ (6.4) and arrive at

K fQ Xy (we) [V, |* dx dt

= / 1/ (we) (Ve - KeVO: + CoIV2yel?) drdr £ G,
0

where the last integrand is bounded by (6.2a) using p = 2.
Forr € [1,2[ we set p =2/(2—r), p' =2/r, and ¢ = (1+n)r/2 and employ
Holder’s estimate to obtain
We Ir

IVwelly () = / (o) e wg)q xd
Ir
8

H (1+we)?

A

I (1+we)? I Lr (o)

LP'(Q)

2 1/p
_ q [Vwe|
= ||1+ws|qup(Q)< 0 (1+—w8)1+77 dx dt)
] ’
< N+wel g gy (K C3/m) 7, (6.6)

where crucially relied on p’ = 2/r, x"(w) = n/(14+w)'*, and the previous
estimate. Using the a priori estimate || 14w |l foo(7.11(02)) S TR +K = Ky
from (6.2c) we can now use the anisotropic Gagliardo—Nirenberg interpolation
(see for example [33, Lem.4.2]) giving
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Iwell gy S ClAwel L 1y (MHwell Lo (g2))
A d
Vwel|rr with A = ——.
+ IVwellr (o) T

For inserting this into (6.6) we need gp < r/A which gives the restriction r <
2 —(1+mA.

Thus, for all r € [1, (d+2)/(d+1)[ we find an n = n, € ]0, 1[ such that the
above estimates give

IVwellf gy < Cr (14 IVwel$7 )
and ¢,A < gr = (14n,)r/2 < r provide |[Vwe|rr(g) £ K,. Using (6.5) and
dpto =& > 0 we easily find || V6|17 (0) < K, and (6.3b) is established.
Applying Gagliardo—Nirenberg interpolation once again gives assertion (6.3a).
Eventually, the a priori estimate (6.3c) is obtained estimating all other terms in
(4.1b), when realizing that always H“@+3/2(2) c wh>*(2). O

We are now in the position to pass to the limit ¢ — 0 in the regularized system
(4.1)-(4.2), and thus conclude the proof of our main existence result presented in
Theorem 2.2. The approach is close to the convergence result presented in Propo-
sition 5.1: first we extract converging subsequences and then pass to the limit in
the mechanical momentum balance. This also provides the necessary strong con-
vergence of the strain rates that is needed to eventually pass to the limit in the heat
equation.

Proposition 6.4 (Convergence for ¢ — 0). Let again (2.30) and (6.1) hold. Then,
considering the limit ¢ — 0, there are functions y and 6 and a subsequence (v, 0;)
(not relabeled) of weak solutions to the regularized system (4.1)—(4.2) obtained in
Proposition 5.1 such that it holds that

Ve =y weakly*in L®; W»P(Q2;R)Y N HY(I; L*($2: RY)) and
(6.7a)

0 — 6 weaklyin L"(I; W' (R2)) forall 1 <r < (d+2)/(d+1).
(6.7b)

Moreover, every couple (y, 0) obtained in such a way is a weak solution, according
Definition 2.1, of the boundary-value problem (2.13)—(2.14) satisfying the initial
conditions (2.26).

Proof. The proof follows the lines of the proof of Proposition 5.1, so we do not
repeat all details of the arguments.

Step 1: Extraction of converging subsequences. Using the a priori estimates (6.2)
and (6.3), Banach’s selection principle allows us to choose a subsequence and
some (y, 0) such that (6.7) holds. By the Aubin-Lions’ theorem interpolated with
the estimates in (4.9a) and (4.9¢), we also have
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Vye — Vy strongly in L°(Q; R?*?) and (6.8a)
W, = W strongly in L7(Q) withany 1 < p <1+2/d, (6.8b)
9, — 6 strongly in L?(Q) withany 1 < p <142/d. (6.8¢)

The proof of (6.8a) is similar to (5.4a). For (6.8b) we proceed as for (5.4b) by using
the estimates on w, given in (6.3). Using the relation w, = W (Vy,, 6;) we also
obtain the strong convergence (6.8c).

Step 2: Convergence in the mechanical equation. The limit passage in the momen-
tum balance (4.1a)—(4.2) works as before, again using the Minty trick (5.8). Of
course, the additional regularizing viscosity term £Vy, vanishes because of our a
priori bound (6.2d):

‘/ eVye:Vz dx dt
0

< €| Ve ||L2(Q;Rdxd)”VZ”LZ(Q;RM) =Ce—0.

Step 3: Balance of mechanical energy. As in the proof of Proposition 5.1 we derive
from the property that the limit couple (y, 6) solves the mechanical equation that
the following mechanical energy relation holds (again exploiting the chain rule in
Proposition 3.6):

T T
M(T)) + fo 2Ry, 3.0)di = M(y0) + /0 (€, 3)dr

—/ Ard(Vy,0):Vydx dr. (6.9)
0

Step 4: Strong convergence of the symmetric strain rates. We can pass to the limit
& — 0 in the mechanical energy relation (5.9). Comparing the result with (6.9) we
obtain

1imof E(Vye,V)'Ig,Qe)dxdtzf E(Vy, Vy,0)dx dr. (6.10)
E—> Q Q

To conclude strong convergence we use the special form (2.10), namely & (F, F ,0) =
20(FTF, FTF+FTF,6). From the pointwise convergence 6, — 6, the uniform

convergence F, := Vy, — F = Vy, and the weak convergence F e =Vy, — F
in L2(Q; R¥*?) we obtain

Vei=F Fe+F]F, —~ FTF+FTF =V in L*(Q; RY%).

sym

With the coercive and quadratic structure of E assumed in (2.30e) we proceed as
follows:
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20| Vo=V 12 gty S / 20(Ce. Vo=V, 6,) dx dr
' 0

=/Q(2?(08,Vg,eg)—zvgzﬂ))(cg,eg)v
+22(C, V, 95)) dx dr

= /Q (CFe, Fe.60) = 2Ve : D(Ce. 6V
VE(F, F, 9)) dx df + 8(e),

with 8(¢) =/ 2V:(D(Ce, 6:) — D(C, 0))V dx dr,
2

where C; = F,' F,. We see that the first term converges by (6.10), while the second
term converges by the weak convergence V. — V and the strong convergence
D(Cs, 6:)V — D(C, )V (as D is bounded and the arguments converge pointwise).
Similarly, §(¢) — 0 by Lebesgue’s dominated convergence theorem, and thus we
conclude the strong convergence || Vo=Vl ;2(g.gaxay = 0.

Step 5: Limit passage in the heat equation. Testing the regularized heat equation
(4.1b) with boundary conditions (4.2c) by a smooth function v with v(7,-) = 0
we find

fQ (V6e - K(Vye, 0 V0 — (5T ye, V3e, 60)
+Ord(Vye, 0): Ve )v — we{)) dx dr

+ / KBV det:/ KOy v det—i—/ 0 (Vyo, 60.¢)v(0) dx.  (6.11)
z z Q

Here the first term passes to the limit by V8, — V6 and K(Vyg, 6:)Vv —
K(Vy, 6). In the second term we use

E(VYe, V}.’e» 0¢)
1468 (Vye, V}.’e’ 0c)
20(Ce, Ve, 0;)

= s <2K|V.|? =: ge.
[+ 268(Co, Ve, 0y = Vel =g

€,

&

E(Vye, Ve, ) =

Because of Step 4, we know V, — V strongly in LZ(Q; Rfyxnfi). Hence, we have
g — g = K|V|*>in L'(Q) and may assume, after extracting another subse-

quence, Vg(t, x) — V(z,x) almost everywhere in Q. By the uniform/pointwise
convergence of C, and 6, for any v € C°(Q) we obtain

gellvllzoc) 2 & S(Vye, Vye, 0:)v — E(Vy, Vy, 0)v almost everywhere in Q.
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As the majorants gg||v| ~(g) converge to g|lv]lz (o) in L'(Q) the generalized
dominated convergence theorem implies convergence of the second term in (6.11).

In the third term we have weak convergence of Vy, and strong convergence
of vVOFP(Vyg, 8:). Similarly, the remaining four terms converge to the desired
limits. Thus, we have shown that (y, 6) satisfy (2.27b), which finishes the proof of
Proposition 6.4. O

Remark 6.5 (Strong convergence of y.r and y.). Strengthening the monotonicity
of hei(+), implied by the convexity assumed in (2.30d), to the strict monotonicity

VG1, Gy e R (hy(G1)—he(G2): (G1—G2) 2 ¢9|G1—Gal?,

we can use the argumentation after (5.11) to show y,,(f) — yc(¢) strongly in
WP ($2; Rd) forall¢ € [0, T']. Similarly, in Proposition 6.4 one can show y, () —
y(t) strongly in w2p (£2; ]Rd). Together with the L°°-estimate (4.9a), we can also
strengthen the weak* convergence (5.3a) in L*°(/; W2P(2;R%))toa strong con-
vergence in L(/; W2P(£2; R%)) for all ¢ € [1, oo[. The same applies to (6.7a).

Remark 6.6 (Dynamical problems). Introducing the kinetic energy %Q| y|* with a

mass density 0 = o(x) > 0 leads to an inertial force 0y in the momentum equa-
tion (2.13a), which would make the nonlinear problem hyperbolic. It is generally
recognized as analytically very troublesome. Here, it would work for isothermal
situations like in Corollary 2.3 if we were able to work with weak convergence,
that is .77 needs to be quadratic (p = 2). Staying with H depending on the second
gradient V2y we would be forced to give up the determinant constraint det Vy > 0,
which is indeed possible if heat conduction is not considered. Alternatively, one
may take H quadratic but coercive on the Hilbert space H®(£2) with s > 1 +d/2,
such that H*(£2) still embeds into Cl? for some @ > 0, cf. also [26, Sect.9.3].
In the non-isothermal situation, it seems difficult to ensure that the acceleration
y € L>(I; H'#*(£2; R4*?) stays in duality with the velocity y. Obtaining enough
regularity is difficult and the higher-order viscosity is inevitably very nonlinear to
comply with frame-indifference, while the corresponding generalization of Korn’s
inequality does not seem to be available.

Remark 6.7 (Other transport processes: flow in porous media). Beside heat trans-
port, one can also consider other transport processes in a similar way. The transport
coefficients can be pulled back as in (2.24). For example, considering mass trans-
port for a concentration ¢ one has to make the free energy v also c-dependent and to
augment it by a capillarity-like gradient term %%| Ve|?. The dissipation potential R
will then be augmented by the nonlocal term %HM(Vy, c)l/ZVA;Vl((vy’c)c'||iz(m
with A/_\/ll : f +— w denoting the linear operator HY(2)* - HY(£) defined
by the weak solution u to the equation div(MVu) = f. Considering the mo-
bility tensor Ml = M(x, ¢), we can define the pulled-back tensor M(x, F,¢) :=
(Cof FT)M(x, ¢)Cof F/ det F and augment the system with a diffusion equation
of Cahn-Hilliard type:
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div (0vi(Vy, Vy,0) + 3,9 (F, ¢, 0) — divhe (V2y)) + g = 0, (6.12a)
¢ —div(M(Vy,o)Vu) =0 with u=09.9(Vy,c,0) —xAc,  (6.12b)
ev(Vy, ¢,0)8 — div (K(Vy, 0)V0) = &(Vy, V3, 6)

+ 007, (Vy, ¢,0):Vy + V- M(x, Vy, c)Vu (6.12¢)

withoy; asin(2.13a), ¢y (F, ¢, 0) = —eagenp(F, ¢, 0),and & from (2.10).In (6.12b),
the variable p is called the chemical potential that is thermodynamically conjugate
to c¢. One can also augment the model by some inelastic (plastic or creep-type)
strain like in [45], where also the inertial forces are included, whereas viscosity is
ignored and the restriction to small elastic strains is imposed.
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