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Complexity theory is concerned with the study of the intrinsic di�culty of computational

tasks. It is a central �eld of theoretical computer science. The 14

th

Oberwolfach Conference on

Complexity Theory was organized by Joachim von zur Gathen (Paderborn), Oded Goldreich

(Rehovot), and Claus Peter Schnorr (Frankfurt).

The meeting consisted of �ve general sessions, and in addition special sessions on the

following topics:

� Algebraic Complexity

� Cryptography

� Lattices

� Pseudorandomness

Another event that took place in the meeting was the awarding of the Oberwolfach prize

to Luca Trevisan, who was one of the participants.
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Abstracts of General Session Talks

A Few Facts about Division

Eric Allender

Chiu, Davida, and Litow recently solved a decades-old problem, by showing that there

are logspace-uniform, constant-depth threshold circuits for division. It remains open if the

uniformity condition can be improved, to obtain Dlogtime-uniform circuits.

We precisely characterize the uniformity requirements, by showing that Division is com-

plete (under �rst-order reductions) for the class FOM+POW (where FOM is an equivalent

formalization of Dlogtime-uniform TC

0

, and POW is the predicate "a

i

= b mod p" for primes

p of O(log n) bits). We also show that FOM and FOM+POW coincide, if a well-known

conjecture about smooth primes holds.

In the talk, I also mention a recent lower bound (joint work with Koucky, Ronneburger,

Roy, and Vinay) showing that the lower bound techniques of Fortnow can be extended to the

probabilistic model, if division has uniform TC

0

circuits.

Other consequences of the new division algorithm include a new translational lemma for

very small space-bounded complexity classes.

Joint work with David Mix Barrington, and William Hesse.

Super-linear time-space tradeo� lower bounds for randomized computation

Paul Beame

We prove the �rst time-space lower bound tradeo�s for randomized computation of de-

cision problems. The bounds hold even in the case that the computation is allowed to have

arbitrary probability of error on a small fraction of inputs. Our techniques are an extension of

those used by Ajtai in his time-space tradeo�s for deterministic RAM algorithms computing

element distinctness and for deterministic Boolean branching programs computing an explicit

function based on quadratic forms over GF (2).

Our results also give a quantitative improvement over those given by Ajtai. Ajtai shows,

for certain speci�c functions, that any branching program using space S = o(n) requires time

T that is superlinear. The functional form of the superlinear bound is not given in his paper,

but optimizing the parameters in his arguments gives T = 
(n log log n= log log log n) for

S = O(n

1��

). For the same functions considered by Ajtai, we prove a time-space tradeo� of

the form T = 
(n

p

log(n=S)= log log(n=S)). In particular, for space O(n

1��

), this improves

the lower bound on time to 
(n

p

log n= log logn).

Joint work with Mike Saks, Xiadong Sun, and Erik Vee.
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Expansion in Propositional Proof Complexity

Eli Ben-Sasson

In this survey talk, we describe the main technique used in recent years to prove lower

bounds in proof complexity, for simple proof systems such as resolution and the polynomial

calculus.

We de�ne a certain form of expansion (Boundary Expansion) on bipartite graphs. We

de�ne a reduction of CNF formulas to bipartite graphs, and claim the following:

For F an unsatis�able CNF formula, and G(F ) its corresponding bipartite graph, if G(F )

is an expander, then:

1. The minimal width of refuting F in resolution is large (linear).

2. The minimal size of refuting F in resolution is large (exponential).

3. The minimal space needed to refute F in resolution is large (linear).

Similar lower bounds hold for degree of refutation in the Polynomial Calculus.

This basic idea allows us to show non-trivial (and often optimal) lower bounds for the

Pigeonhole Principles, Tseitin Graph formulas, random k-CNFs, Pseudorandom-Generator

based formulas, and many others.

Based on works by Alekhnovich, Beame, Ben-Sasson, Clegg, Edmonds, Grigoriev, Im-

pagliazzo, Pitassi, Pudlak, Razborov, Sgall, and Wigderson.

Lower bounds for the complexity of associative algebras

Markus Bl

�

aser

Let C(A) resp. R(A) denote the multiplicative resp. bilinear complexity of a �nite dimen-

sional associative algebra A.

We prove that R(A) �

5

2

dimA � 3(n

1

+ � � � + n

t

) if the decomposition of A=radA

�

=

A

1

�� � � �A

t

into simple algebras A

�

�

=

D

�

n

�

�n

�

contains only noncommutative factors, that

is, the division algebra D

�

is noncommutative or n

�

� 2. If A is in addition semisimple, then

the same bound holds for the multiplicative complexity, i.e., C(A) �

5

2

dimA�3(n

1

+� � �+n

t

).

In particular, n�n{matrix multiplication requires at least

5

2

n

2

�3n essential multiplications.
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Approximating the Minimum Bisection

Uriel Feige

A Bisection of a graph with n vertices is a partition of its vertices into two sets, each

of size n=2. The bisection cost is the number of edges connecting the two sets. Finding

the minimum bisection cost is NP-hard. We present several approximation algorithms for

bisection, the best of which �nds a bisection whose cost is within a ratio of O(log

2

n) from

optimal. The previously known approximation ratio for bisection was n=2.

Joint work with Robert Krauthgamer and in part with Kobbi Nissim.

In search of an easy witness: Applications to Exponential Time

Valentine Kabanets

Using the hardness-randomness tradeo�s as well as the idea of "easy witnesses", we show

several complexity-theoretic results involving exponential-time complexity classes. First, we

prove that NEXP� P/poly i� NEXP=MA. This can be interpreted as saying that one cannot

derandomize MA without proving superpolynomial circuit lower bounds for NEXP.

We also establish several downward closure results for the probabilistic complexity classes

ZPP, RP, BPP, and MA. In particular, we prove that EXP=BPP i� EE=BPE, where EE is

double exponential time and BPE is the 2

O(n)

-time analog of the class BPP.

Joint work with Russell Impagliazzo and Avi Wigderson.

On Rounds in Quantum Communication

Hartmut Klauck

We investigate the power of interaction in two player quantum communication protocols.

Our main result is a rounds-communication hierarchy for the pointer jumping function f

k

. We show that f

k

needs quantum communication 
(n) if Bob starts the communication

and the number of rounds is limited to k (for any constant k ). Trivially, if Alice starts,

O(k logn) communication in k rounds su�ces. The lower bound employs a result relating

the relative von Neumann entropy between density matrices to their trace distance and uses

a new measure of information.

We also describe a classical probabilistic k round protocol for f

k

with communication

O((n=k + k) log k), in which Bob starts the communication, for k at least 2 log

�

n.

Furthermore as a consequence of the lower bound for pointer jumping we show that any

k round quantum protocol for the disjointness problem needs communication 
(n

1=k

) for

k = O(1) .
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A linear space algorithm for computing the Hermite Normal Form of an integer

lattice

Daniele Micciancio

Computing the Hermite Normal Form of an n�nmatrix using the best current algorithms

typically requires O(n

3

logM) space, where M is a bound on the length of the columns of

the input matrix. Although polynomial in the input size (which is O(n

2

logM)), this space

blow-up can easily become a serious issue in practice when working on big integer matrices.

In this talk we present a new algorithm for computing the Hermite Normal Form which uses

only O(n

2

logM) space (i.e., essentially the same as the input size). When implemented using

standard integer arithmetic, our algorithm has the same time complexity of the asymptoti-

cally fastest (but space ine�cient) algorithms. We also suggest simple heuristics that when

incorporated in our algorithm result in essentially the same asymptotic running time of the

theoretically fastest solutions, still maintaining our algorithm extremely practical.

Joint work with Bogdan Warinschi.

The Zig-Zag Graph Product, and Elementary Construction of Expander Graphs

Omer Reingold

Expander graphs are combinatorial objects which are fascinating and useful, but seemed

hard to construct. The main result we present is an elementary way of constructing them.

The essential ingredient is a new type of graph product, which we call the

zig-zag product. Taking a product of a large graph with a small graph, the resulting

graph inherits (roughly) its size from the large one, its degree from the small one, and its

expansion properties from both! Iteration yields simple explicit constructions of constant-

degree expanders of arbitrary size, starting from one constant-size expander.

Crucial to our intuition (and simple analysis) of the properties of this graph product is the

view of expanders as functions which act as \entropy wave" propagators | they transform

probability distributions in which entropy is concentrated in one area to distributions where

that concentration is dissipated. In these terms, the graph product a�ords the constructive

interference of two such waves.

No special background is assumed. Joint work with Salil Vadhan and Avi Wigderson

Variation of the Baur-Strassen Theorem for Size and Depth

Arnold Sch

�

onhage

In this talk I present a simple proof for the following

Theorem Let a rational function f 2 K(x

1

; : : : ; x

n

) be computable by an arithmetical

circuit D of size s and depth d, with the indeterminates x

1

; : : : ; x

n

and any constants 2 K

as cost-free inputs of D, and operation nodes using f+;�; �; =g at unit cost. Then there
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exists also a circuit D

0

of size s

0

and depth d

0

, computing f plus its �rst partial derivatives

@

1

f; : : : ; @

n

f , such that

s

0

� 7s; d

0

� 7d; or s

0

� 15s; d

0

� 6d; or s

0

� 18s; d

0

� 5d:

The proof is by induction on d, �rst under the restriction that all nodes of D have fan-out

� 7 (or � 3, respectively). Then the general case is reduced to this by a Lemma on how to

transform any such D to an equivalent D

�

with bounded fan-out.

Extracting Randomness via Repeated Condensing

Ronen Shaltiel

On an input probability distribution with some (min-)entropy an extractor outputs a dis-

tribution with a (near) maximum entropy rate (namely the uniform distribution). A natural

weakening of this concept is a condenser, whose output distribution has a higher entropy rate

than the input distribution (without losing much of the initial entropy).

In this paper we construct e�cient explicit condensers. The condenser constructions com-

bine (variants or more e�cient versions of) ideas from several works, including the block

extraction scheme of Nisan and Zuckerman, the observation made in Srinivasan and Zuck-

erman, and Nisan and Ta-Shma that a failure of the block extraction scheme is also useful,

the recursive \win-win" case analysis of Impagliazzo Shaltiel and Wigderson, and the error

correction of random sources used by Trevisan.

As a natural byproduct, (via repeated iterating of condensers), we obtain new extractor

constructions. The new extractors give signi�cant qualitative improvements over previous

ones for sources of arbitrary min-entropy; they are nearly optimal simultaneously in the main

two parameters - seed length and output length. Speci�cally, our extractors can make any of

these two parameters optimal (up to a constant factor), only at a poly-logarithmic loss in the

other. Previous constructions require polynomial loss in both cases for general sources.

We also give a simple reduction converting \standard" extractors (which are good for an

average seed) to \strong" ones (which are good for most seeds), with essentially the same

parameters. With it, all the above improvements apply to strong extractors as well.

Packing Unitary Matrices

Amin Shokrollahi

The design of signal constellations for mobile multiple antenna transmission can in certain

cases be reduced to the following mathematical problem: given a number M of transmit

antennas and a positive real number �, construct a large set V of M �M -matrices such that

for any A,B in V, A not equal to B, the quantity d(A;B) := jdet(A � B)j

(1=M)

=2 is larger

than �. The minimum value of d(A;B) is called the diversity product of V. The problem is

thus to construct the largest possible subset of U(M), the group of unitaryM �M -matrices,
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with diversity product larger than �. In this talk, we review some of the known results about

this "packing problem". One of the results discussed in detail will be the classi�cation of all

�nite subgroups of U(M) with nonzero diversity product. Part of this talk is joint work with

Hassibi, Hochwald, and Sweldens.

Lower Bounds for Matrix Product,

in Bounded Depth Circuits with Arbitrary Gates

Amir Shpilka

We prove super-linear lower bounds for the number of edges in constant depth circuits

with n inputs and up to n outputs. Our lower bounds are proved for all types of constant

depth circuits, e.g., constant depth arithmetic circuits and constant depth Boolean circuits

with arbitrary gates. The bounds apply for several explicit functions, and, most importantly,

for matrix product. In particular, we obtain the following results:

1. We show that the number of edges in any constant depth arithmetic circuit for matrix

product (over any �eld) is super-linear in m

2

(where m�m is the size of each matrix).

That is, the lower bound is super-linear in the number of input variables. Moreover, if

the circuit is bilinear the result applies also for the case where the circuit gets for free

any product of two linear functions.

2. We show that the number of edges in any constant depth arithmetic circuit for the

trace of the product of 3 matrices (over �elds with characteristic 0) is super-linear in

m

2

. (Note that the trace is a single-output function).

3. We give explicit examples for n Boolean functions f

1

; :::; f

n

, such that any constant

depth Boolean circuit with arbitrary gates for f

1

; :::; f

n

has a super-linear number

of edges. The lower bound is proved also for circuits with arbitrary gates over

any �nite �eld. The bound applies for matrix product over �nite �elds as well as for

several other explicit functions.

Joint work with Ran Raz.

List decoding of error-correcting codes

Madhu Sudan

Error-correcting codes are combinatorial objects designed to deal with the problem of

noise in information transmission. A code describes how to judiciously add redundancy

information that recovers from a small amount of (even malicious) corruption. \Recovery"

here is interpreted as follows: If a small number, say d, of errors occur, then it is possible to

detect that errors have occurred. For an even smaller number, classically d=2, one can even

�nd which locations are in error and �x them.

Among the simplest and yet very e�cient error-correcting codes are codes based on prop-

erties of low-degree polynomials, called Reed Solomon codes. We give a simple algorithm for
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recovering from error in Reed Solomon codes. One of the novel features of this algorithm

is that it recovers from much more than the above-mentioned bound of d=2 that classical

algorithms could tolerate. We also describe extensions and generalizations to other codes.

Joint work with Venkatesan Guruswami (MIT).

Unbalanced Expanders and Improved Extractors

Chris Umans

We give explicit constructions of unbalanced bipartite expanders and extractors. Our

expanders have small (polylogarithmic) degree D and a near-optimal expansion factor of

(1 � �)D. We show that such expanders are equivalent to loss-less condensers, which use a

small number of truly random bits to transform a weak random source on n bits to a source on

fewer bits with the same min-entropy. Using these condensers, we can transform any extractor

for large min-entropy (k =

p

n) into an extractor for arbitrary min-entropy; this leads to

improved extractor constructions in a number of cases. For example, we obtain extractors

that extract any constant fraction of the min-entropy k using only O(logn+log k(log log k)

2

)

truly random bits. As applications, we improve known constructions of a{expanding graphs

and depth two super-concentrators, and a hardness of approximation result.

Extracting Randomness from Samplable Distributions

Salil Vadhan

The standard notion of a randomness extractor is a procedure which converts any weak

source of randomness into an almost uniform distribution. The conversion necessarily uses

a small amount of pure randomness, which can be eliminated by complete enumeration in

some, but not all, applications.

Here, we consider the problem of deterministically converting a weak source of randomness

into an almost uniform distribution. Previously, deterministic extraction procedures were

known only for sources satisfying strong independence requirements. In this paper, we look at

sources which are \samplable", i.e., can be generated by an e�cient sampling algorithm. We

seek an e�cient deterministic procedure that, given a sample from any samplable distribution

of su�ciently large min-entropy, gives an almost uniformly distributed output. We explore

the conditions under which such \deterministic extractors" exist.

We observe that no deterministic extractor exists if the sampler is allowed to use more

computational resources than the extractor. On the other hand, if the extractor is allowed

(polynomially) more resources than the sampler, we show that deterministic extraction be-

comes possible. This is true unconditionally in the nonuniform setting (i.e., when the extractor

can be computed by a small circuit), and (necessarily) relies on complexity assumptions in

the uniform setting.

One of our uniform constructions is as follows: assuming that there are problems in

E=DTIME(2

O(n)

) that are not solvable by subexponential-size circuits with �

6

gates, there

is an e�cient extractor that transforms any samplable distribution of length n and min-

entropy (1 � 
)n into an output distribution of length (1 � O(
))n, where gamma is any
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su�ciently small constant. The running time of the extractor is polynomial in n and the circuit

complexity of the sampler. These extractors are based on a connection between deterministic

extraction from samplable distributions and hardness against nondeterministic circuits, and

on the use of nondeterminism to substantially speed up \list decoding" algorithms for error-

correcting codes such as multivariate polynomial codes and Hadamard-like codes.

Joint work with Luca Trevisan (FOCS `00)

Extractor Codes

David Zuckerman

We de�ne new error correcting codes based on extractors. We show that for certain choices

of parameters these codes have better list decoding properties than are known for other codes,

and are provably better than Reed-Solomon codes. We further show that codes with strong

list decoding properties are equivalent to slice extractors, a variant of extractors. We give

an application of extractor codes to extracting many hardcore bits from a one-way function,

using few auxiliary random bits. Finally, we show that explicit slice extractors for certain

other parameters would yield optimal bipartite Ramsey graphs.

Joint work with Amnon Ta-Shma.
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Abstracts of Special Sessions Talks

On the (Im)possibility of Software Obfuscation

Boaz Barak

Informally, a software obfuscator is an algorithm O such that for any program P , O(P ) is

a program that has the same functionality as P , but yet is impossible to "reverse-engineer".

We consider several possible de�nitions for obfuscators, and show that even the weakest of

them is impossible to achieve.

We also investigate several "obfuscation-like" concepts, and show a connection with at-

tempts of obtaining a complexity theory analog of Rice's Theorem.

Joint work with Oded Goldreich, Russell Impagliazzo , Steven Rudich , Amit Sahai, Salil

Vadhan and Ke Yang.

Inverting bivariate power series

Markus Bl

�

aser

We consider the multiplicative complexity of inversion and division of bivariate power

series modulo the \triangular" ideal generated by all monomials of total degree n+1. For the

inversion, we obtain a lower bound of

7

8

n

2

�O(n) opposed to an upper bound of 2

1

3

n

2

+O(n).

The former bound holds for all �elds with characteristic distinct from two while the latter is

valid over �elds of characteristic zero that contain all roots of unity (like e.g. the complex

numbers). Regarding division, we prove a lower bound of

5

4

n

2

� O(n) and an upper bound

of 3

5

6

n

2

+O(n). Here, the former bound is obtained for all �elds while the latter again holds

for �elds of characteristic zero that contain all roots of unity.

The Complexity of Factors of Multivariate Polynomials

Peter Buergisser

The existence of string functions, which are not polynomial time computable, but whose

graph is checkable in polynomial time, is a basic assumption in cryptography, intimately

related to the existence of one-way functions.

We basically show that in the algebraic framework of computation of polynomials over

in�nite �elds, such functions do not exist, when assuming that the degrees of the polynomials

to be computed grow at most polynomially in the number of variables. Technically, we

prove that the approximative complexity of a polynomial ' is polynomially bounded by the

decision complexity of the graph of ' and the degree of '. We show this by extending a

result by Kaltofen (1986), which relates the complexity of a polynomial to those of its factors.

The concept of approximative complexity allows to cope with the case that a factor has an

exponential multiplicity, by using a perturbation argument.
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Quadratic Convergence for Scaling of Matrices

Martin F

�

urer

Matrix scaling is an operation on nonnegative matrices with nonzero permanent. It mul-

tiplies the rows and columns of a matrix with positive factors such that the resulting matrix

is (approximately) doubly stochastic. Scaling is useful at a preprocessing stage to make cer-

tain algorithms more stable. Linial, Samorodnitsky and Wigderson have recently developed

the �rst strongly polynomial time algorithm for scaling. They have proposed to use it to

approximate permanents in deterministic polynomial time. They have noticed an intriguing

possibility to attack the notorious parallel matching problem. If scaling could be done ef-

�ciently in parallel, then it would approximate the permanent su�ciently well to solve the

bipartite matching problem. As a �rst step towards this goal, we propose a scaling algorithm

that converges quadratically.

Polar varieties, e�cient real solving and discussion of its optimality : universal

elimination is exponential

Marc Giusti

Given a system of polynomials with rational coe�cients, a basic question consists of

�nding e�ciently one point per connected component of the real solutions. We generalize

previous work done for compact smooth hypersurfaces to compact smooth complete intersec-

tions. The algorithm we exhibit runs in time linear in the evaluation complexity of the input

equations, and polynomial in the degree of the successive generic polar varieties [Bank-G-

Heintz-Mbakop].

Then we investigate variants of polar varieties, in order to drop the compactness assump-

tion. This leads to algorithms of essentially the same complexity [previous authors + Pardo].

Finally, we discuss the optimality of these algorithms, all based on Kronecker's elimination

theory revisited algorithmically. Actually, we show that any elimination procedure satisfying

a natural universality property runs at least in exponential time. And this is the case for all

elimination procedure known up to now, including ours.

Complexity lower bounds for Positivstellensatz proofs

Dima Grigoriev

Recently an approach to NP-coNP problem based on proof systems using the Nullstel-

lensatz was developed and there were shown complexity lower bounds for the proofs in such

systems. In the talk a stronger proof system which relies on the Positivstellensatz is in-

troduced and complexity lower bounds for several problems like the knapsack or the parity

principle are established.
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The Hardness of the Closest Vector Problem with Preprocessing

Daniele Micciancio

In the closest vector problem (CVP) one is given a lattice L and a target vector y and

the goal is to �nd the lattice point closest to y. We consider a variant of CVP in which L

is known in advance and can be arbitrarily preprocessed before the target vector is revealed.

In this talk we show that there are lattices for which CVP remains hard, regardless of the

amount of preprocessing. In particular, we reduce an NP-hard problem (exact 3 cover, X3C)

to CVP instances (L; y) where L depends only on the size of the X3C instance being reduced.

Calculating quivers from algebras

Michael N

�

usken

Straightforward description of �nite dimensional algebras are usually by giving either the

multiplication tensor or by embedding it in a matrix algebra M

n

(k) and specifying either a

basis or a generating set. E.g. the upper triangular matrices would be de�ned by giving E

ii

and E

i;i+1

for all meaningful i as generators.

For representation theory usually a much more informative description is used: an algebra

is de�ned by a quiver Q, i.e. a �nite, directed graph possibly with multiple edges and loops,

and a set of relations R. The quiver de�nes a path algebra kQ with multiplication induced

by concatenation of paths in Q. Then kQ= < R > is the algebra.

We use algorithms by Eberly & Giessbrecht (1996) and Ivanyos (2000) to derive an algo-

rithm to calculate such a description for �nite algebras. In fact, the notion of quiver has to

be generalized to capture the existence of proper extensions of the ground �elds (though no

non-commutative division algebras occur). The �nal algorithm runs in polynomial time. It

is not clear whether a conversion in the other direction can be done in polynomial time.

Segment LLL-Reduction of Lattice bases

Claus Peter Schnorr

We improve practical algorithms for LLL-reduction of lattice bases in the sense of Lenstra,

Lenstra and Lov�asz. We organize the LLL-algorithm individual basis vectors by segments of

k consecutive vectors. Local LLL-reduction of segments is done using local coordinates of

dimension k.

Segment LLL-reduced bases, a variant of LLL-reduced bases, saves a factor n in the run-

ning time compared to standard LLL-reduction of lattices of dimension n. The concept of

iterated segments yields a novel reduction concept admitting a divide a conquer approach.

The resulting reduction algorithm runs in O(n

3

log

2

n) arithmetic steps for integer lattices of

dimenstion n with basis vectors of length 2

n

.

Joint work with Henrik Koy.
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Improved OBDD and FBDD lower bounds for integer multiplication via

universal hashing

Ingo Wegener

Integer multiplication (in particular, the middle bit of multiplication) is one of the fun-

damental boolean functions. It is the simplest hardware function such that circuits for them

are hard to verify (even for n = 32). OBDDs (oblivious read-once branching programs)

and FBDDs (read-once branching programs) are representations of boolean function used in

veri�cation. Hence, we are interested in improving the known lower bounds on the OBDD

and FBDD size for multiplication. We are looking for asymptotically larger bounds which

are large already for reasonable n. This aim has been reached by using results on universal

hashing and hash functions mainly based on integer multiplication. The new results are:

a

7

3

2

4n=3

upper bound,

a

1

96

2

bn=2c

lower bound for OBDDs, and

a 2

b(n�9)=4c

lower bounds for FBDDs.

Results of the research group members B. Bollig and P. Wlfel.

Edited by Boaz Barak
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