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Abstract

In this paper we prove existence of global in time weak solutions for a highly nonlinear PDE system arising in
the context of damage phenomena in thermoviscoelastic materials. The main novelty of the present contribution
with respect to the ones already present in the literature consists in the possibility of taking into account a
damage-dependent thermal expansion coefficient. This term implies the presence of nonlinear couplings in the
PDE system, which make the analysis more challenging.

1 Introduction

We consider the PDE system, in Ω × (0, T ), where Ω ⊆ Rd (with d ∈ {1, 2, 3}) is a bounded and sufficiently
regular domain and T denotes a final time,

c(θ)θt − div(K(θ)∇θ) + ρ(χ)θ div(ut) + θχt + ρ′(χ)θ div(u)χt = g, (1a)

utt − div(b(χ)Dε(u))− div(a(χ)Cε(ut)) + div(ρ(χ)θ1) = l, (1b)

χt + ξ + ϕ−∆pχ+ γ(χ) +
b′(χ)

2
ε(u) : Dε(u)− θ − ρ′(χ)θ div(u) = 0 (1c)

with subgradients ξ ∈ ∂I[0,∞)(χ) and ϕ ∈ ∂I(−∞,0](χt). The initial-boundary conditions are

θ(0) = θ0, u(0) = u0, ut(0) = v0, χ(0) = χ0 in Ω, (2a)

K(θ)∇θ · ν = 0, u = 0, ∇χ · ν = 0 on ∂Ω× (0, T ). (2b)

The state variables and unknowns of the problem are the absolute temperature θ, whose evolution is ruled by the
internal energy balance (1a), the vector of small displacements u, satisfying the momentum balance (1b), and the
damage parameter χ, representing the local proportion of damage: χ = 1 means that the material is completely
safe, while χ = 0 means it is completely damaged. Indeed, the two contraints χ ∈ [0,+∞), χt ≤ 0 together with
the assumption χ0 ∈ [0, 1] implies that χ ∈ [0, 1] during all the evolution, as it results from its physical meaning.

The main novelty of this contribution consists in the possibility of taking into account the dependence on the damage
of the thermal expansion coefficient ρ ∈ C1([0, 1]). This provokes the presence of two new nonlinear terms in (1a)
coupling it nonlinearly with both the momentum balance (1b) and the damage evolution (1c). Especially the coupling
term ρ′(χ)θ div(u)χt in (1a) complicates the analysis and requires elaborate estimation techniques to gain the
desired a priori estimates. Moreover, a dependence on χ in the u-equation (1b) appears explicitly as well as a
further dependence on u and θ in the χ-equation (1c). The other two coeffiecients c and K appearing in equation
(1a) represent respectively the heat capacity and the heat conductivity of the system and will have to satisfy proper
growth condition (cf. Remark 2.1), while the function g denotes a given heat source.

In the momentum balance (1b) ε(u) := (ui,j + uj,i)/2 denotes the linearized symmetric strain tensor, while the
functions b, a ∈ C1([0, 1]) demarcate the damage dependence of the elasticity and viscosity modula, respectively.
In the present contribution we will restrict the the case of incomplete damage, i.e. to the case where a(x), b(x) ≥
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η > 0 (cf. [15] for the complete damage model in case ρ = 0). The function l on the right hand side in (1b)
represents a given external force.

Finally, in the inclusion (1c), the selections ξ and ϕ of the two maximal monotone operators, acting on χ and χt

respectively, are introduced in order to give the constraints on the damage parameter (χ ∈ [0, 1] as soon as
χ0 ∈ [0, 1]) and on the irreversibility of the damage process (χt ≤ 0). The p-Laplacian operator ∆pχ accounts
for the nonlocal interactions between particles, but the restriction of the exponent p > d is mainly due to analytical
reasons. It is introduced, in particular, in order to obtain sufficient regularity on χ needed in (1b) to obtain an
enhanced estimate on ε(u), which appears at power 2 in (1c) and so it has to be estimated in a better space than
L2(Ω × (0, T )). In addition to that, the enhanced regularity of χ enables the usage of approximation techniques
in order to treat the doubly nonlinear inclusion (1c) in a weak formulation. Moreover, the function γ is assumed to
be smooth but possibly non monotone.

In the remaining part of the Introduction we will briefly explain the derivation of (1) referring to [15] for more details.

The system (1a)-(1c) can be derived from fundamental balance laws in continuum mechanics supplemented with
constitutive relations used to describe thermoviscoelastic solids. In this approach, we make use of the free energy
F given by [6, Sec. 4.5, pp. 42-43]

F(θ, ε(u), χ,∇χ) =
∫
Ω

(
1

p
|∇χ|p + γ̂(χ) +

b(χ)

2
ε(u) : Dε(u)

)
dx

+

∫
Ω

(
f(θ)− θχ− ρ(χ)θ div(u) + I[0,∞)(χ)

)
dx

and the dissipation potential defined by

Pθ,χ(∇θ, χt, ε(ut)) =

∫
Ω

(
K(θ)

2
|∇θ|2 + 1

2
|χt|2 +

a(χ)

2
ε(ut) : Cε(ut) + I(−∞,0](χt)

)
dx.

For notational convenience, we write P instead of Pθ,χ. Let us point out that the gradient of χ accounts for the
influence of damage at a material point, undamaged in its neighborhood. In this sense the term 1

p |∇χ|
p models

nonlocality of the damage process and effects like possible hardening or softening (cf. also [3] for further comments
on this topic). Gradient regularizations of p-Laplacian type are often adopted in the mathematical papers on damage
(see for example [1, 2, 9, 13]), and in the modeling literature as well (cf., e.g., [7, 5]).

Equation (1a) is obtained from the internal energy balance which reads as

et + divq = g + σ : ε(ut) +Bχt +H · ∇χt,

where e denotes the internal energy, q the heat flux, g the heat source, σ the stress tensor, ε(ut) the linearized
strain rate tensor, H and B the so-called microscopic forces (cf. . The quantities above are given by the following
constitutive relations

σ =
∂F
∂ε(u)

+
∂P

∂ε(ut)
, B ∈ ∂F

∂χ
+
∂P
∂χt

, H =
∂F
∂∇χ

+
∂P
∂∇χt

,

e = F − θ
∂F
∂θ

, q = − ∂P
∂∇θ

.

Note that, for analytical reasons, we have neglected the quadratic contributions a(χ)ε(ut) : Cε(ut) + |χt|2 on
the right hand side of (1a), using the so-called small perturbation assumption (cf. [8]). In fact, to our knowledge only
few results are available on diffuse interface models in thermoviscoelasticity (i.e. also accounting for the evolution
of the displacement variables, besides the temperature and the order parameter): among others, we quote [14, 15]
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where the small perturbation assumption is adopted in case of constant ρ and [17] where a PDE system coupling
the momentum balance equation, the temperature equation (with quadratic nonlinearities) and a rate-independent
flow rule for an internal dissipative variable χ (such as the damage parameter) has been analyzed. Finally, a
temperature-dependent, full model for (rate-dependent) damage has been addressed in [1] as well, but only with
local-in-time existence results.

Moreover, we make use of the assumption

c(θ) = −θf ′′(θ),

where f is a concave function. Eventually, the equation for the balance of forces (1b) can be written as

utt − divσ = l

with external volume forces l and the evolution of the damage processes as described in equation (1c) is derived
from a balance equation of the microscopic forces, i.e.

B − divH = 0.

To handle non-constant heat capacities c, we perform an enthalpy transformation of system (1a)-(1c). To this end,
we introduce the primitive ĉ of c as ĉ(r) :=

∫ r
0 c(θ) dθ. The enthalpy transformation of system (1) yields

wt − div(K(w)∇w) + Θ(w)χt + ρ(χ)Θ(w) div(ut) + ρ′(χ)Θ(w) div(u)χt = g, (3a)

utt − div(b(χ)Dε(u))− div(a(χ)Cε(ut)) + div(ρ(χ)Θ(w)1) = l, (3b)

χt + ξ + ϕ−∆pχ+ γ(χ) +
b′(χ)

2
ε(u) : Dε(u)−Θ(w)− ρ′(χ)Θ(w) div(u) = 0. (3c)

with ξ ∈ ∂I[0,∞)(χ) and ϕ ∈ ∂I(−∞,0](χt) and the transformed quantities

w := ĉ(θ), Θ(w) := ĉ−1(w), K(w) :=
K(Θ(w))

c(Θ(w))
.

As already mentioned in the Introduction, the main difficulty here, with respect to the previous works in the litera-
ture, consists in the presence of the nonlinearities due to the fact that the temperature expansion term depends
on χ. Indeed, following [17, 15], here we will combine the conditions on K with conditions on the heat capacity
coefficient c to handle the nonlinearities ρ(χ)θ div(ut), θχt, ρ′(χ)θ div(u)χt in (1a) by means of a so-called
Boccardo-Gallouët type estimate on θ.

As for the triply nonlinear inclusion (1c), we will use a notion of solution derived in [9] (dealing with Cahn-Hilliard
systems coupled with elasticity and damage processes; see also [10, 11, 12]). The authors have devised a weak
formulation consisting of a one-sided variational inequality (i.e. with test functions having a fixed sign), and of an
energy inequality, see Definition 3.1 later. Finally, let us notice that uniqueness of solutions remains and open
problem even in the isothermal case. The main problem is, in general, the doubly nonlinear character of (1c) (cf.
also [4] for examples of non-uniqueness in general doubly nonlinear equations).

The paper is organized as follows. In Section 2, we list all assumptions which are used throughout this paper and
introduce some notation. Subsequently, a suitable notion of weak solutions for system (1) as well as the main result,
existence of weak solutions (see Theorem 3.4), are stated in Section 3. In the main part, the proof of the existence
theorem is firstly performed for a truncated system in Section 4 and finally for the limit system in Section 5.
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2 Notation and assumptions

Let d ∈ {1, 2, 3} denote the space dimension. For the analysis of the transformed system (3a)-(3c), the central
hypotheses are stated below.

Assumptions

(A1) Ω ⊆ Rd is a bounded C2-domain.

(A2) The function Θ : R → R is assumed to be Lipschitz continuous with Θ(w) ≥ 0 and Θ′(w) ≥ 0 for a.e.
w ≥ 0 and should satisfy the growth condition

Θ(w) ≤ c0(w
1/σ + 1)

for all w ≥ 0 and for constants σ ≥ 3 and c0 > 0. Moreover, we assume Θ(w) = 0 for all w ≤ 0.

(A3) The heat conductivity function K : R → R is assumed to be continuous and should satisfy the estimate

c1(w
2q + 1) ≤ K(w) ≤ c2(w

2q0 + 1)

for all w ≥ 0 and for constants c1, c2, q, q0 > 0 satisfying

1/σ ≤ 2q − 1, q ≤ q0 < q +
1

2
.

(A4) The damage-dependent potential function γ̂ is assumed to satisfy γ̂ ∈ C1([0, 1]).

(A5) The coefficient functions a ∈ C1([0, 1]) and b ∈ C2([0, 1]) should satisfy the estimate a(x), b(x) ≥ η for
all x ∈ [0, 1] and a constant η > 0.

(A6) The 4th order stiffness tensors C,D ∈ L(Rd×d
sym ;Rd×d

sym) are assumed to be symmetric and positive definite,
i.e.

Cijlk = Cjilk = Clkij , e : Ce ≥ c3|e|2 for all e ∈ Rd×d
sym ,

Dijlk = Djilk = Dlkij , e : De ≥ c4|e|2 for all e ∈ Rd×d
sym

for constants c3, c4 > 0.

(A7) The thermal expansion coefficient ρ depending on χ is assumed to fulfill ρ ∈ C1([0, 1]).

(A8) The constant p (occurring in the p-Laplacian in (1c) and in (3c), respectively) should satisfy p > d.

Remark 2.1 The assumptions (A2) and (A3) can also be formulated in terms of the original heat conductivity
function K and the heat capacity function c as follows.

(A2’) The function c should be continuous and should satisfy the estimate

c̃0(θ
σ−1 + 1) ≤ c(θ)

for all θ ≥ 0 and for constants σ ≥ 3 and c5 > 0.
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(A3’) The function K is assumed to be continuous and should satisfy the estimate

c1(ĉ(θ)
2q + 1)c(θ) ≤ K(θ) ≤ c2(ĉ(θ)

2q0 + 1)c(θ)

for all θ ≥ 0 and for constants c1, c2, q, q0 > 0 satisfying 1/σ ≤ 2q − 1 and q ≤ q0 < q + 1
2 .

For later use, we define the following subspaces (with p, s ≥ 1):

W 2,s
ν (Ω) :=

{
ζ ∈W 2,s(Ω) |∇ζ · ν = 0 on ∂Ω

}
,

W 1,p
+ (Ω) :=

{
ζ ∈W 1,p(Ω) | ζ ≥ 0 a.e. in Ω

}
,

W 1,p
− (Ω) :=

{
ζ ∈W 1,p(Ω) | ζ ≤ 0 a.e. in Ω

}
.

The primitive of an integrable function f : R → R vanishing at 0 is denoted by f̂ .

3 Notion of weak solutions and main result

To keep the presentation short, we assume l = g = 0 in (3a)-(3b). We introduce the following notion of weak
solutions.

Definition 3.1 A weak solution corresponding to the initial data (u0, v0, w0, χ0) is a 4-tuple (u,w, χ, ξ) such that

u ∈ H1(0, T ;H2
0 (Ω;Rd)) ∩W 1,∞(0, T ;H1

0 (Ω;Rd)) ∩H2(0, T ;L2(Ω;Rd))

with u(0) = u0 a.e. in Ω, ∂tu(0) = v0 a.e. in Ω,

w ∈ L2(0, T ;H1(Ω)) ∩ L2(q+1)(0, T ;L6(q+1)(Ω)) ∩ L∞(0, T ;L2(Ω))

∩W 1,r(0, T ; (W 2,s
ν (Ω))∗), w(0) = w0

with w(0) = w0 a.e. in Ω, w ≥ 0 a.e. in ΩT ,

χ ∈ L∞(0, T ;W 1,p(Ω)) ∩H1(0, T ;L2(Ω))

with χ(0) = χ0 a.e. in Ω, χ ≥ 0 a.e. in ΩT , ∂tχ ≤ 0 a.e. in ΩT ,

ξ ∈ L1(0, T ;L1(Ω))

with r = (2q + 2)/(2q0 + 1) and s := (6q + 6)/(6q − 2q0 + 5), and for a.e. t ∈ (0, T ):

(i) heat equation: for all ζ ∈W 2,s
ν (Ω)

〈∂tw, ζ〉H1 +

∫
Ω

(
−K̂(w)∆ζ +Θ(w)∂tχζ

)
dx

+

∫
Ω

(
ρ(χ)Θ(w) div (∂tu) ζ + ρ′(χ)Θ(w) div(u)∂tχζ

)
dx = 0, (4)

(ii) balance of forces: for a.e. x ∈ Ω

∂ttu− div (b(χ)Dε(u))− div (a(χ)Cε(∂tu)) + div (ρ(χ)Θ(w)1) = 0, (5)
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(iii) one-sided variational inequality: for all ζ ∈W 1,p
− (Ω)

0 ≤
∫
Ω

(
∂tχζ + |∇χ|p−2∇χ · ∇ζ + γ(χ)ζ +

b′(χ)

2
ε(u) : Dε(u)ζ + ξζ

)
dx

+

∫
Ω

(
−Θ(w)ζ − ρ′(χ)Θ(w) div(u)ζ

)
dx, (6)

and ξ ∈ ∂I
W 1,p

+ (Ω)
(z), i.e. for all ζ ∈W 1,p

+ (Ω)∫
Ω
ξ(ζ − z) dx ≤ 0, (7)

(iv) partial energy inequality:∫
Ω
|∇χ(t)|p dx−

∫
Ω
|∇χ0|p dx+

∫ t

0

∫
Ω

(
γ(χ) +

b′(χ)

2
ε(u) : Dε(u)

)
∂tχdx ds

+

∫ t

0

∫
Ω

(
−Θ(w)− ρ′(χ)Θ(w) div(u) + ∂tχ

)
∂tχdx ds ≤ 0 (8)

are satisfied.

Remark 3.2 Due to the assumption q ≤ q0 < q + 1
2 (see (A3)), it holds 1 < r < 2.

By assuming better regularity for χ, it is seen from the one-sided variational inequality and the partial energy
inequality that the desired differential inclusion (3c) holds in W 1,p(Ω)∗.

Lemma 3.3 If a weak solution additionally fulfills χ ∈ H1(0, T ;W 1,p(Ω)) then

χt + ξ + ϕ−∆pχ+ γ(χ) +
b′(χ)

2
ε(u) : Dε(u)− θ − ρ′(χ)θ div(u) = 0 in W 1,p(Ω)∗

with subgradients ξ ∈ ∂I
W 1,p

+ (Ω)
(χ) and ϕ ∈ ∂I

W 1,p
− (Ω)

(∂tχ). On the left hand side the operator ∆p :

W 1,p(Ω) →W 1,p(Ω)∗ denotes the usual p-Laplacian with no-flux condition.

Proof. By setting

ϕ := −
(
χt + ξ −∆pχ+ γ(χ) +

b′(χ)

2
ε(u) : Dε(u)− θ − ρ′(χ)θ div(u)

)
∈W 1,p(Ω)∗,

and using (due to the enhanced regularity χ ∈ H1(0, T ;W 1,p(Ω)))∫
Ω
|∇χ(t)|p dx−

∫
Ω
|∇χ0|p dx =

∫ t

0

∫
Ω
|∇χ|p−2∇χ · ∇∂tχdx ds,

property (iii) and property (iv) from Definition 3.1 can be rewritten as〈
ϕ , ζ

〉
W 1,p ≤ 0 and −

〈
ϕ , ∂tχ

〉
W 1,p ≤ 0

for all ζ ∈ W 1,p
− (Ω) and a.e. t ∈ (0, T ). Here we have used the fact that 〈ξ, ∂tχ〉 = 0. Adding these inequalities

yields the inclusion ϕ ∈ ∂I
W 1,p

− (Ω)
(∂tχ). �
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Theorem 3.4 Let the Assumptions (A1)-(A8) be satisfied. Moreover, let the initial values u0 ∈ H2
0 (Ω;Rd), v0 ∈

H1
0 (Ω;Rd), w0 ∈ L2(Ω) and χ0 ∈ W 1,p(Ω) be given and assume that w0 ≥ 0 and 0 ≤ χ0 ≤ 1. Then, there

exists a weak solution (u,w, χ, ξ) in the sense of Definition 3.1.

The proof is carried out in the following two sections. It is based on a time-discretization scheme and on an approx-
imation argument involving a truncation of K and Θ (cf. also [15]).

4 Existence of weak solutions for the truncated system

As a first step in the proof of Theorem 3.4, we prove existence of weak solutions to the truncated system of (3a)-(3c)
where K and Θ are substituted by KM and ΘM for M ≥ 0 defined by

ΘM (x) :=


Θ(M) if x > M,

Θ(x) if −M ≤ x ≤M,

Θ(−M) if x < −M,

KM (x) :=


K(M) if x > M,

K(x) if −M ≤ x ≤M,

K(−M) if x < −M.

We remind that Θ(w) = 0 for all w ≤ 0 by Assumption (A3).

The truncation function TM : R → R at the height M is given via

TM (x) =


M if x > M,

x if −M ≤ x ≤M,

−M if x < −M.

Note that the crucial properties ΘM (w) = Θ(TM (w)) and KM (w) = K(TM (w)) are satisfied.

4.1 Time-discrete system

In this subsection, we will prove existence of weak solutions for a time-discrete and truncated version of system
(3a)-(3c) by using a semi-implicit Euler scheme. The scheme is carefully chosen such that we can derive an energy
estimate (see Lemma 4.4 (i)).

To this end, we consider an equidistant partition {0, τ, 2τ, . . . , τTτ} of [0, T ] where τ > 0 denotes the time-
discretization fineness and Tτ := T/τ specifies the number of discrete time points. We set (u0τ , w

0
τ , χ

0
τ ) :=

(u0, w0, χ0) and u−1
τ := u0 − τv0 and perform a recursive procedure.

In the following, we adopt the notation Dτ,k(w) = τ−1(wk
τ − wk−1

τ ) (as well as for Dτ,k(u) and Dτ,k(χ)). Let,
furthermore, vkτ be defined as

vkτ :=
ukτ − uk−1

τ

τ
. (9)

The existence of weak solutions for the time-discrete system is proven in the following.

Lemma 4.1 For every equidistant partition of [0, T ]with fineness τ > 0, there exists a sequence {(ukτ , wk
τ , χ

k
τ , ξ

k
τ )}

Tτ
k=1

in the space H2
0 (Ω;Rd)×H1(Ω)×W 1,p(Ω)× (W 1,p(Ω))∗ such that for all k ∈ {1, . . . , Tτ}:
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(i) for all ζ ∈ H1(Ω)∫
Ω

(
Dτ,k(w)ζ +K(wk−1

τ )∇wk
τ · ∇ζ +ΘM (wk−1

τ )Dτ,k(χ)ζ
)
dx

+

∫
Ω
ρ(χk−1

τ )ΘM (wk
τ ) div (Dτ,k(u)) ζ dx

+

∫
Ω
ρ′(χk−1

τ )ΘM (wk
τ ) div(u

k−1
τ )Dτ,k(χ)ζ dx = 0, (10)

(ii) for a.e. x ∈ Ω

D2
τ,k(u)− div

(
b(χk

τ )ε(u
k
τ )
)
− div

(
a(χk

τ )Dτ,k(ε(u
k
τ ))
)

+ div
(
ρ(χk−1

τ )ΘM (wk
τ )1
)
= 0, (11)

(iii) for all ζ ∈W 1,p(Ω)

0 =

∫
Ω

(
Dτ,k(χ)ζ + |∇χk

τ |p−2∇χk
τ · ∇ζ + γ(χk

τ )ζ −ΘM (wk−1
τ )ζ

)
dx

+

∫
Ω

(
b′1(χ

k
τ ) + b′2(χ

k−1
τ )

2
|ε(uk−1

τ )|2ζ − ρ′(χk−1
τ )ΘM (wk

τ ) div(u
k−1
τ )ζ

)
dx

+ 〈ξ, ζ〉W 1,p (12)

with ξ ∈ ∂IZk−1
τ

(χk
τ ), where Zk−1

τ is given by

Zk−1
τ :=

{
f ∈W 1,p(Ω) | 0 ≤ f ≤ χk−1

τ

}
and b = b1 + b2 denotes a convex-concave decomposition of b, e.g.

b1(r) := b(0) +

∫ r

0

(
b′(0) +

∫ s

0
max{b′′(µ), 0} dµ

)
ds,

b2(r) :=

∫ r

0

(∫ s

0
min{b′′(µ), 0} dµ

)
ds.

Proof. We will trace back this PDE problem to the abstract inclusion problem

∂Ψ(u) +A(u) 3 f, (13)

where Ψ : X → R ∪ {+∞} is a convex, proper and lower semicontinuous functional possessing a convex and
Gâteaux differentiable regularization Ψε : X → R such that Ψε is bounded and radially continuous and

lim sup
ε↓0

Ψε(g) ≤ Ψ(g) for all g ∈ X,

lim inf
ε↓0

Ψε(gε) ≥ Ψ(g) for all gε → g weakly in X.

and A : X → X∗ is pseudomonotone.

To this end, we define the spaces

X := H1
0 (Ω;Rd)×H1(Ω)×W 1,p(Ω),
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Y :=
{
(u,w, χ) ∈ H1

0 (Ω;Rd)×H1(Ω)×W 1,p(Ω) | 0 ≤ χ ≤ χk−1
τ

}
⊆ X

and the operators (we write A = (A1, A2, A3))

Ψ := IY where Ψε is chosen to be the Yosida approximation of Ψ,

A1(u,w, χ) = u− τ2 div (b(χ)ε(u))− τ div
(
a(χ)ε(u− uk−1

τ )
)
+ div

(
ρ(χk−1

τ )ΘM (w)1
)
,

A2(u,w, χ) = w − τ div
(
K(wk−1

τ )∇w
)
+ΘM (wk−1

τ )χ+ ρ(χk−1
τ )ΘM (w) div

(
u− uk−1

τ

)
+ ρ′(χk−1

τ )ΘM (w) div
(
uk−1
τ

)
(χ− χk−1

τ ),

A3(u,w, χ) = χ− τ∆pχ+
b′1(χ)

2
|ε(uk−1

τ )|2 + γ(χ)− ρ′(χk−1
τ )ΘM (w) div(uk−1

τ )

and the element f ∈ X∗ given by

f :=

 2uk−1
τ − uk−2

τ

wk−1
τ +ΘM (wk−1

τ )χk−1
τ

χk−1
τ − b′2(χ

k−1
τ )
2 |ε(uk−1

τ )|2 +ΘM (wk−1
τ )

 .

Note that Y is a convex, nonempty and closed subspace of X since χk−1
τ ∈ C(Ω).

Now, it can be checked that the operator A is pseudomonotone and coercive. A Leray-Lions type theorem for
non-potential inclusions (see [16, Theorem 5.15]) yields a solution to the problem (13) and, therefore, to (i)-(iii). By
standard elliptic regularity results, we obtain ukτ ∈ H2

0 (Ω;Rd). �

For later use, we define for a sequence of functions {hkτ}0≤k≤Tτ the piecewise constant and linear interpolation
on the time interval (0, T ) as

hτ (t) := hkτ , hτ (t) := hk−1
τ , hτ :=

t− (k − 1)τ

τ
hkτ +

kτ − t

τ
hk−1
τ

for t ∈ ((k−1)τ, kτ ]. Given a t ∈ [0, T ], we denote by tτ and tτ the left- and right-continuous piecewise constant
interpolation, i.e.

tτ := τk for τ(k − 1) < t ≤ τk,

tτ := τ(k − 1) for τ(k − 1) ≤ t < τk.

In what follows, we take for every τ > 0 a time-discrete weak solution in the sense of Lemma 4.1 and adopt the
convention above.

Remark 4.2 The differential inclusion (12) is equivalent to the following variational inequality:

0 ≥ −
∫
Ω

(
|∇χτ |p−2∇χτ · ∇(ζ − χτ ) +

(
∂tχτ + γ(χτ ) +

1

2
b′(χτ )|ε(uτ )|2

)
(ζ − χτ )

)
dx

−
∫
Ω

(
−ΘM (wτ )− ρ′(χ

τ
)ΘM (wτ ) div(uτ )

)
(ζ − χτ ) dx (14)

holding for all ζ ∈W 1,p(Ω) with 0 ≤ ζ ≤ χ
τ

.
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4.2 A priori estimates

We are going to prove a priori estimates for the discrete system in Lemma 4.1. We will make use of the following
implication.

Lemma 4.3 A time-discrete weak solution constructed in the previous subsection satisfieswM ≥ 0 andwM ≥ 0.

Proof. We show this lemma by induction over k ∈ {0, . . . , Tτ}. Assume that wk−1
τ fulfills wk−1

τ ≥ 0. Testing
equation (10) with ζ = −(wk

τ )
− := min{wk

τ , 0} yields

1

τ

∫
Ω
−wk

τ (w
k
τ )

−︸ ︷︷ ︸
=|(wk

τ )
−|2

dx+
1

τ

∫
Ω
wk−1
τ (wk

τ )
−︸ ︷︷ ︸

≥0

dx+

∫
Ω
KM (wk−1

τ )∇wk
τ · ∇(−(wk

τ )
−)︸ ︷︷ ︸

≥c1|∇(wk
τ )

−|2 by (A3)

dx

+

∫
Ω
ΘM (wk−1

τ )︸ ︷︷ ︸
≥0

Dτ,k(χ)︸ ︷︷ ︸
≤0

(−(wk
τ )

−)︸ ︷︷ ︸
≤0

dx+

∫
Ω
ρ(χk−1

τ ) div (Dτ,k(u))ΘM (wk
τ )(−(wk

τ )
−)︸ ︷︷ ︸

=0

dx

+

∫
Ω
ρ′(χk−1

τ ) div(uk−1
τ )Dτ,k(χ)ΘM (wk

τ )(−(wk
τ )

−)︸ ︷︷ ︸
=0

= 0.

�

Lemma 4.4 (A priori estimates independent of τ ) The following a priori estimates hold with respect to τ > 0:

(i) First a priori estimate:

{uτ} in H1(0, T ;H1(Ω;Rd)) ∩W 1,∞(0, T ;L2(Ω;Rd)),

{uτ}, {uτ} in L∞(0, T ;H1(Ω;Rd)),

{wτ}, {wτ} in L∞(0, T ;L1(Ω)),

{χτ} in L∞(0, T ;W 1,p(Ω)) ∩H1(0, T ;L2(Ω)),

{χτ}, {χτ
} in L∞(0, T ;W 1,p(Ω)),

(ii) Second a priori estimate:

{∇ΘM (wτ )} in L2(0, T ;L2(Ω)),

(iii) Third a priori estimate:

{uτ} in H1(0, T ;H2(Ω;Rd)) ∩W 1,∞(0, T ;H1(Ω;Rd)),

{uτ}, {uτ} in L∞(0, T ;H2(Ω;Rd)),

{vτ} in L2(0, T ;H2(Ω;Rd)) ∩ L∞(0, T ;H1(Ω;Rd))

∩H1(0, T ;L2(Ω;Rd)),

(iv) Forth a priori estimate:

{wτ}, {wτ} in L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)),

(v) Fifth a priori estimate:

{wτ} in H1(0, T ; (H1(Ω))∗).

10



Proof of the first a priori estimate. The first a priori estimate is based on adding equation (3a) tested by 1
with equation (3b) tested by ∂tu and with equation (3c) tested by ∂tχ. Here, we will develop this estimate on a
time-discrete level.

In the following, we make use of a convex-concave estimate for b1 and b2 given by

b(χk−1
τ )− b(χk

τ ) =
(
b1(χ

k−1
τ )− b1(χ

k
τ )
)
+
(
b2(χ

k−1
τ )− b2(χ

k
τ )
)

≥ b′1(χ
k
τ )(χ

k−1
τ − χk

τ ) + b′2(χ
k−1
τ )(χk−1

τ − χk
τ )

= (b′1(χ
k
τ ) + b′2(χ

k−1
τ ))(χk−1

τ − χk
τ ).

Testing (11) with ζ = ukτ − uk−1
τ and using the estimates

b(χk
τ )ε(u

k
τ ) : ε(u

k
τ − uk−1

τ )

≥ b(χk
τ )

2
|ε(ukτ )|2 −

b(χk−1
τ )

2
|ε(uk−1

τ )|2 + 1

2
(b(χk−1

τ )− b(χk
τ ))|ε(uk−1

τ )|2

≥ b(χk
τ )

2
|ε(ukτ )|2 −

b(χk−1
τ )

2
|ε(uk−1

τ )|2 + 1

2
(b′1(χ

k
τ ) + b′2(χ

k−1
τ ))(χk−1

τ − χk
τ )|ε(uk−1

τ )|2

and

D2
τ,k(u) · (ukτ − uk−1

τ ) ≥ 1

2
|Dτ,k(u)|2 −

1

2
|Dτ,k−1(u)|2,

yield

1

2
‖Dτ,k(u)‖2L2 −

1

2
‖Dτ,k−1(u)‖2L2 +

∫
Ω

b(χk
τ )

2
|ε(ukτ )|2 dx−

∫
Ω

b(χk−1
τ )

2
|ε(uk−1

τ )|2 dx

+ τ

∫
Ω
a(χk

τ )|Dτ,k(ε(u))|2 +R1 ≤ 0 (15)

with the remainder term

R1 :=

∫
Ω

b′1(χ
k
τ ) + b′2(χ

k−1
τ )

2
|ε(uk−1

τ )|2(χk−1
τ − χk

τ )−
∫
Ω
ρ(χk−1

τ )ΘM (wk
τ ) div

(
ukτ − uk−1

τ

)
.

Testing (12) with χk−1
τ − χk

τ and using the convexity estimate

|∇χk
τ |p−2∇χk

τ · ∇(χk
τ − χk−1

τ ) ≥
∫
Ω

1

p
|∇χk

τ |p dx−
∫
Ω

1

p
|∇χk−1

τ |p dx

yield

τ

∫
Ω
|Dτ,k(χ)|2 dx+

∫
Ω

1

p
|∇χk

τ |p dx−
∫
Ω

1

p
|∇χk−1

τ |p dx+R2 ≤ 0 (16)

with the remainder term

R2 :=

∫
Ω
γ(χk

τ )(χ
k
τ − χk−1

τ ) dx+

∫
Ω

b′!(χ
k
τ ) + b′2(χ

k−1
τ )

2
|ε(uk−1

τ )|2(χk
τ − χk−1

τ ) dx

−
∫
Ω
ΘM (wk−1

τ )(χk
τ − χk−1

τ ) dx−
∫
Ω
ρ′(χk−1

τ )ΘM (wk
τ ) div(u

k−1
τ )(χk

τ − χk−1
τ ) dx.

11



Testing (10) with τ shows ∫
Ω

(
wk
τ − wk−1

τ

)
dx+R3 ≤ 0 (17)

with the remainder term

R3 :=

∫
Ω
ΘM (wk−1

τ )(χk
τ − χk−1

τ ) dx+

∫
Ω
ρ(χk−1

τ )ΘM (wk
τ ) div

(
ukτ − uk−1

τ

)
dx

+

∫
Ω
ρ′(χk−1

τ )ΘM (wk
τ ) div

(
uk−1
τ

)
(χk

τ − χk−1
τ ) dx.

By adding (15)-(17), noticing the crucial property

R1 +R2 +R3 =

∫
Ω
γ(χk

τ )(χ
k
τ − χk−1

τ ) dx

and summing over k = 1, . . . , tτ , we obtain∫
Ω
wτ (t) dx+

1

2
‖∂tuτ (t)‖2L2(Ω) + c‖ε(uτ (t))‖2L2(Ω;Rd×d) +

1

p
‖∇χτ (t)‖

p
Lp(Ω)

+

∫ tτ

0

(
c‖ε(∂tuτ (s))‖2L2(Ω;Rd×d) + ‖∂tχτ (s)‖2L2(Ω)

)
ds

≤
∫
Ω
w0 dx+

1

2
‖v0‖2L2(Ω) +

∫
Ω

b(χ0)

2
|ε(u0)|2 dx+

1

p
‖∇χ0‖pLp(Ω)

+

∫ tτ

0

∫
Ω
−γ(χτ )∂tχτ dx ds (18)

The last term on the right hand side can be estimated from above as follows:∫ tτ

0

∫
Ω
−γ(χτ )∂tχτ dx ds ≤ C

∫ tτ

0
‖∂tχ(s)‖L2(Ω) ds.

and, therefore, absorbed by the left hand side. Hence the left hand side of (18) is bounded with respect to τ and t. �

Proof of the second a priori estimate. By testing (10) with τΘM (wk
τ ) and using the convexity estimate

ΘM (wk
τ )(w

k
τ − wk−1

τ ) ≥ Θ̂M (wk
τ )− Θ̂M (wk−1

τ ),

where Θ̂M denotes the antiderivative of ΘM with Θ̂M (0) = 0 (note that Θ̂M is convex due to Θ′
M ≥ 0), we

obtain∫
Ω
Θ̂M (wk

τ ) dx−
∫
Ω
Θ̂M (wk−1

τ ) dx+ τ

∫
Ω
KM (wk−1

τ )∇wk
τ · ∇

(
ΘM (wk

τ )
)
dx

≤ −τ
∫
Ω
ΘM (wk−1

τ )Dτ,k(χ)ΘM (wk
τ ) dx− τ

∫
Ω
ρ(χk−1

τ )ΘM (wk
τ ) div (Dτ,k(u))ΘM (wk

τ ) dx

− τ

∫
Ω
ρ′(χk−1

τ )ΘM (wk
τ ) div(u

k−1
τ )Dτ,k(χ)ΘM (wk

τ ) dx

≤ τ‖ΘM (wk−1
τ )‖L∞(Ω)‖Dτ,k(χ)‖L2(Ω)‖ΘM (wk

τ )‖L∞(Ω)

+ τ‖ρ(χk−1
τ )‖L∞(Ω)‖ΘM (wk

τ )‖L∞(Ω)‖ div (Dτ,k(u)) ‖L2(Ω)‖ΘM (wk
τ )‖L∞(Ω)
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+ τ‖ρ′(χk−1
τ )‖L∞(Ω)‖ΘM (wk

τ )‖L∞(Ω)‖ div(uk−1
τ )‖L2(Ω)‖Dτ,k(χ)‖L2(Ω)‖ΘM (wk

τ )‖L∞(Ω).

By summing over all discrete time points k = 1, . . . , Tτ , we end up with the estimate∫
Ω
Θ̂M (wτ (T )) dx+

∫
ΩT

KM (wτ )∇wτ · ∇ (ΘM (wτ )) dx dt

≤
∫
Ω
Θ̂M (w0) dx+ ‖ΘM (wτ )‖L∞(L∞)‖∂tχτ‖L2(L2)‖ΘM (wτ )‖L2(L∞)

+ ‖ρ(χ
τ
)‖L∞(L∞)‖ΘM (wτ )‖L∞(L∞)‖div (∂tuτ ) ‖L2(L2)‖ΘM (wτ )‖L2(L∞)

+ ‖ρ′(χ
τ
)‖L∞(L∞)‖ΘM (wτ )‖L∞(L∞)‖div(uτ )‖L2(L2)‖∂tχτ‖L2(L2)‖ΘM (wτ )‖L∞(L∞).

Together with the first a priori estimate and the Assumptions (A2) and (A3), we obtain boundedness of

c1

∫
ΩT

|∇wτ |2Θ′
M (wτ ) dx dt ≤

∫
ΩT

KM (wτ )|∇wτ |2Θ′
M (wτ ) dx dt

=

∫
ΩT

KM (wτ )∇wτ · ∇ (ΘM (wτ )) dx dt.

Since Θ′
M (wτ ) is also bounded in L∞(0, T ;L∞(Ω)) by the Lipschitz continuity of Θ (see Assumption (A2)), we

obtain the claim as follows:

‖∇ΘM (wτ )‖2L2(L2) =

∫
ΩT

|∇wτ |2(Θ′
M (wτ ))

2 dx dt

≤ ‖Θ′
M (wτ )‖L∞(L∞)

∫
ΩT

|∇wτ |2Θ′
M (wτ ) dx dt.

�

Proof of the third a priori estimate. We test equation (20) with −τ div((ε(Dτ,k(u))) and sum over k =

1, . . . , tτ for a chosen t ∈ [0, T ]. The corresponding calculations without the term
∫ tτ
0

∫
Ω div (ρ(χτ )ΘM (wτ )1)·

div(ε(∂tuτ )) dx ds are carried out in [15, Proposition 3.10].

Hence, we estimate the remaining term by∣∣∣∣∣
∫ tτ

0

∫
Ω
div
(
ρ(χτ )ΘM (wτ )1

)
· div(ε(∂tuτ )) dxds

∣∣∣∣∣
≤
∫ tτ

0

∫
Ω

∣∣ΘM (wτ )ρ
′(χτ )∇χτ · div (ε (∂tuτ ))

∣∣ dx ds
+

∫ tτ

0

∫
Ω

∣∣ρ(χτ )∇
(
ΘM (wτ )

)
· div (ε (∂tuτ ))

∣∣ dx ds
≤ C‖ΘM (wτ )‖L∞(L∞)‖ρ′(χτ )‖L∞(L∞)‖∇χτ‖L2(L2) ‖∂tuτ‖L2(H2)

+ C‖ρ(χτ )‖L∞(L∞)‖∇
(
ΘM (wτ )

)
‖L2(L2) ‖∂tuτ‖L2(H2) .

By using the first and the second a priori estimates and the calculations in [15, Proposition 3.10], we obtain eventu-
ally for small δ > 0:

1

2
‖ε(∂tuτ (t))‖2L2(Ω;Rd×d) + δ‖∂tuτ‖2L2(0,tτ ;H2(Ω;Rd))
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≤ 1

2
‖ε(v0)‖2L2(Ω;Rd×d) + C

∫ tτ

0
‖∂tuτ‖2L2(0,sτ ;H2(Ω;Rd)) ds+ C ‖∂tuτ‖L2(0,tτ ;H2(Ω;Rd)) .

Gronwall’s lemma leads to the claim. �

Proof of the fourth a priori estimate. Testing (10) with τwk
τ and using standard convexity estimates as well

as Assumption (A3) yield

1

2
‖wk

τ ‖2L2(Ω) −
1

2
‖wk−1

τ ‖2L2(Ω) + c1τ‖∇wk
τ ‖2L2(Ω;Rd)

≤ τ‖ΘM (wk−1
τ )wk

τDτ,k(χ)‖L1(Ω) + Cτ‖ρ(χk−1
τ )ΘM (wk

τ )‖L∞(Ω)‖div
(
Dτ,k(u)

)
wk
τ ‖L1(Ω)

+ Cτ‖ρ′(χk−1
τ )ΘM (wk

τ )‖L∞(Ω)‖Dτ,k(χ) div(u
k−1
τ )wk

τ ‖L1(Ω) ≤ 0.

Summing over the discrete time points k = 1, . . . , tτ , using the continuous embedding H1(Ω) ↪→ L6(Ω) and
standard estimates, we receive

1

2
‖wτ (t)‖2L2(Ω) + c1‖∇wτ‖2L2(0,tτ ,L2(Ω;Rd))

≤ 1

2
‖w0‖2L2(Ω) + C‖ΘM (wτ )‖L∞(L∞)

(∫ tτ

0
‖wτ (s)‖2L2(Ω) ds+ ‖∂tχτ‖2L2(L2)

)

+ C‖ρ(χ
τ
)‖L∞(L∞)‖ΘM (wτ )‖L∞(L∞)

(∫ tτ

0
‖wτ (s)‖2L2(Ω) ds+ ‖div

(
∂tuτ

)
‖2L2(L2)

)
+ ‖ρ′(χ

τ
)‖L∞(L∞)‖ΘM (wτ )‖L∞(L∞)×

×

(
δ

∫ tτ

0
‖wτ (s)‖2H1(Ω) ds+ Cδ‖∂tχτ‖2L2(L2)‖ div(uτ )‖

2
L∞(L3)

)
.

Chosing δ > 0 sufficiently small, applying the first and the third a priori estimates, we obtain by Gronwall’s inequal-
ity boundedness of the left hand side and, therefore, the claim. �

Proof of the fifth a priori estimate. A comparison argument in equation (10) shows the assertion. �

4.3 The passage τ ↓ 0

By utilizing Lemma 4.4 and by noticing ∂tuτ = vτ (see (9)), we obtain by standard compactness and Aubin-Lions
type theorems (see [18]) the following convergence properties.

Corollary 4.5 We obtain functions (u,w, χ) which are in the spaces

u ∈ H1(0, T ;H2
0 (Ω;Rd)) ∩W 1,∞(0, T ;H1

0 (Ω;Rd)) ∩H2(0, T ;L2(Ω;Rd))

with u(0) = u0 a.e. in Ω, ∂tu(0) = v0 a.e. in Ω,

w ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)) ∩H1(0, T ; (H1(Ω))∗)

with w(0) = w0 a.e. in Ω, w ≥ 0 a.e. in ΩT ,

χ ∈ L∞(0, T ;W 1,p(Ω)) ∩H1(0, T ;L2(Ω))
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with χ(0) = χ0 a.e. in Ω, χ ≥ 0 a.e. in ΩT , ∂tχ ≤ 0 a.e. in ΩT

such that (along a subsequence) for all ε ∈ (0, 1], µ ≥ 1:

(i) uτ → u weakly-star in H1(0, T ;H2(Ω;Rd)) ∩W 1,∞(0, T ;H1(Ω;Rd)),

uτ , uτ → u weakly-star in L∞(0, T ;H2(Ω;Rd)),

uτ → u strongly in H1(0, T ;H2−ε(Ω;Rd)),

uτ , uτ → u strongly in L∞(0, T ;H2−ε(Ω;Rd)),

uτ , uτ , uτ → u a.e. in ΩT ,

(ii) vτ → ∂tu weakly-star in H1(0, T ;L2(Ω;Rd)),

(iii) wτ → w weakly-star in L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω))

∩H1(0, T ; (H1(Ω))∗),

wτ , wτ → w weakly-star in L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)),

wτ , wτ → w strongly in L2(0, T ;H1−ε(Ω)) ∩ Lµ(0, T ;L2(Ω)),

wτ , wτ , wτ → w a.e. in ΩT ,

(iv) χτ → χ weakly-star in L∞(0, T ;W 1,p(Ω)) ∩H1(0, T ;L2(Ω)),

χτ , χτ
→ χ weakly-star in L∞(0, T ;W 1,p(Ω)),

χτ , χτ
→ χ strongly in Lµ(0, T ;W 1−ε,p(Ω)),

χτ , χτ
→ χ uniformly on ΩT .

Lemma 4.6 It even holds (along a subsequence as τ ↓ 0)

χτ → χ strongly in Lp(0, T ;W 1,p(Ω)).

Proof. Applying an approximations result from [9, Lemma 5.2], we obtain a sequence {ζτ} in the spaceLp(0, T ;W 1,p
+ (Ω))

such that ζτ → χ in Lp(0, T ;W 1,p(Ω)) as τ ↓ 0 and

0 ≤ ζτ (t) ≤ χ
τ
(t) a.e. in ΩT .

The claim can now be shown by using a uniform monotonicity estimate of the Lp-norm

‖χτ − χ‖pLp(ΩT ) ≤ C

∫
ΩT

(
|∇χτ |p−2∇χτ − |∇χ|p−2∇χ

)
· ∇(χτ − χ) dx dt

= C

∫
ΩT

(
|∇χτ |p−2∇χτ − |∇χ|p−2∇χ

)
· ∇(χτ − ζτ ) dx dt

+ C

∫
ΩT

(
|∇χτ |p−2∇χτ − |∇χ|p−2∇χ

)
· ∇(ζτ − χ) dx dt,

by applying Corollary 4.5 and by testing the variational inequality (14) with ζτ , it can be shown that lim sup of the
right hand side is ≤ 0. �

The passage to the limit τ ↓ 0 in the time-discrete system in Lemma 4.1 can now be performed as follows.
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� Heat equation. Integrating equation (10) over the time [0, T ], Corollary 4.5 allows to pass to the limit τ ↓ 0
by taking into account the uniform boundedness of KM (wτ ), ΘM (wτ ) and ΘM (wτ ) in L∞(Ω). Then, by
switching to an a.e. t formulation in the limit, we obtain for every ζ ∈ H1(Ω) and a.e. t ∈ (0, T ):

〈∂tw, ζ〉H1 +

∫
Ω
(KM (w)∇w · ∇ζ +ΘM (w)∂tχζ) dx

+

∫
Ω

(
ρ(χ)ΘM (w) div (∂tu) ζ + ρ′(χ)ΘM (w) div(u)∂tχζ

)
dx = 0. (19)

� Balance of forces. To obtain the equation for the balance of forces, we integrate equation (11) over ΩT and
use Corollary 4.5 to pass to the limit τ ↓ 0. In the limit we have the necessary regularity properties to switch
to an a.e. formulation in ΩT , i.e. it holds

∂ttu− div (b(χ)ε(u))− div (a(χ)ε(∂tu)) + div (ρ(χ)ΘM (w)1) = 0 (20)

a.e. in ΩT .

� One-sided variational inequality for the damage process. The limit passage for equation (14) can be
accomplished by an approximation argument developed in [9]. Note that this approach strongly relies on
p > d (see (A8)). We sketch the argument.

– Initially, the main idea has been to consider time-depending test-functions Ψ ∈ L∞(0, T ;W 1,p
− (Ω))

which satisfies for a.e. t ∈ (0, T ) the constraint

{x ∈ Ω |Ψ(x, t) = 0} ⊇ {x ∈ Ω |χ(x, t) = 0}.

Here, we make use of the embedding W 1,p(Ω) ↪→ C(Ω).

– As shown in [9, Lemma 5.2], we obtain an approximation sequence {Ψτ} ⊆ Lp(0, T ;W 1,p
− (Ω)) and

constants ν = ν(τ, t) > 0 (independent of x) such that Ψτ → Ψ in Lp(0, T ;W 1,p(Ω)) as τ ↓ 0
and 0 ≤ −νΨτ (t) ≤ χτ (t) in Ω for a.e. t ∈ (0, T ). Multiplying this inequality by -1, adding χτ (t)
and using the monotonicity condition χτ ≤ χ

τ
, we obtain

0 ≤ νΨτ (t) + χτ (t) ≤ χ
τ
(t) in Ω. (21)

– Because of (21), we are allowed to test (14) with ντ (t)Ψτ (t)+χτ (t). Dividing the resulting inequality
by ν (which is positive and independent of x), integrating in time over [0, T ], passing to the limit and
switching back to an a.e. t formulation, we obtain for a.e. t ∈ (0, T )

0 ≤
∫
Ω

(
∂tχζ + |∇χ|p−2∇χ · ∇ζ + γ(χ)ζ +

b′(χ)

2
|ε(u)|2ζ

)
dx

+

∫
Ω

(
−ΘM (w)ζ − ρ′(χ)ΘM (w) div(u)ζ

)
dx,

for all ζ ∈W 1,p
− (Ω) with {ζ = 0} ⊇ {χ(t) = 0}.

– It is shown in [9, Lemma 5.3] that, in this case, we obtain

0 ≤
∫
Ω

(
∂tχζ + |∇χ|p−2∇χ · ∇ζ + γ(χ)ζ +

b′(χ)

2
|ε(u)|2ζ

)
dx

+

∫
Ω

(
−ΘM (w)ζ − ρ′(χ)ΘM (w) div(u)ζ + ξζ

)
dx (22)
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for all ζ ∈W 1,p
− (Ω) and for a.e. t ∈ (0, T ), where ξ ∈ L2(0, T ;L2(Ω)) is given by

ξ := −1{χ=0}

(
γ(χ) +

b′(χ)

2
|ε(u)|2 −ΘM (w)− ρ′(χ)ΘM (w) div(u)

)+
, (23)

with (·)+ := max{·, 0}. Note that ∂tχ does not appear in the bracket. In particular, ξ fulfills∫
Ω
ξ(ζ − z) dx ≤ 0 (24)

for all ζ ∈W 1,p
+ (Ω) and a.e. t ∈ (0, T ).

� Partial energy inequality. Test the variational inequality (14) with χk
τ − χk−1

τ , applying the convexity argu-
ment ∫

Ω
|∇χk

τ |p−2∇χk
τ · ∇(χk

τ − χk−1
τ ) dx ≥

∫
Ω
|∇χk

τ |p dx−
∫
Ω
|∇χk−1

τ |p dx,

summing over the discrete time points k = 1, . . . , tτ , we end up with∫
Ω
|∇χτ (t)|p dx−

∫
Ω
|∇χ0|p dx+

∫ tτ

0

∫
Ω

(
γ(χτ ) +

b′(χτ )

2
|ε(uτ )|2

)
∂tχτ dx dt

+

∫ tτ

0

∫
Ω

(
−ΘM (wτ )− ρ′(χ

τ
)ΘM (wτ ) div(uτ ) + ∂tχτ

)
∂tχτ dx dt ≤ 0

for a.e. t ∈ (0, T ). Passing to the limit τ ↓ 0 by using Corollary 4.5, weakly lower-semicontinuity arguments
and the estimate t ≤ tτ for the quadratic term in ∂tχ, we get for a.e. t ∈ (0, T ) the desired partial energy
inequality ∫

Ω
|∇χ(t)|p dx−

∫
Ω
|∇χ0|p dx+

∫ t

0

∫
Ω

(
γ(χ) +

b′(χ)

2
|ε(u)|2

)
∂tχdx dt

+

∫ t

0

∫
Ω

(
−ΘM (w)− ρ′(χ)ΘM (w) div(u) + ∂tχ

)
∂tχdx dt ≤ 0. (25)

In conclusion, we have proven existence of weak solutions to the truncated system given by (19), (20), (22), (24)
and (25).

5 Existence of weak solutions for the limit system

In this section, we will perform the limit analysis for weak solutions of the truncated system asM ↑ ∞. We consider
for each M ∈ N a weak solution (uM , wM , χM , ξM ) as proven in the previous section.

5.1 A priori estimates

The boundedness properties for (uM , wM , χM , ξM ) with respect to M are based on six different types of a priori
estimates.
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Lemma 5.1 (A priori estimates independent of M ) The following boundedness properties with respect to M
are satisfied:

(i) First a priori estimate:

{uM} in H1(0, T ;H1(Ω;Rd)) ∩W 1,∞(0, T ;L2(Ω;Rd)),

{wM} in L∞(0, T ;L1(Ω)),

{χM} in L∞(0, T ;W 1,p(Ω)) ∩H1(0, T ;L2(Ω)),

(ii) Second a priori estimate:

{TM (wM )} in L2(0, T ;H1(Ω)),

(iii) Third a priori estimate:

{uM} in H1(0, T ;H2(Ω;Rd)) ∩W 1,∞(0, T ;H1(Ω;Rd))

∩H2(0, T ;L2(Ω;Rd)),

(iv) Forth a priori estimate:

{TM (wM )} in L∞(0, T ;L2(Ω)) ∩ L2(q+1)(0, T ;L6(q+1)(Ω)),

(v) Fifth a priori estimate:

{wM} in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)),

(vi) Sixth a priori estimate:

{wM} in W 1,r(0, T ; (W 2,s
ν (Ω))∗)

with the constants r := (2q + 2)/(2q0 + 1) and s := (6q + 6)/(6q − 2q0 + 5).

Proof of the first a priori estimate. The first a priori estimate in Lemma 4.4 which is based on the energy estimate
(18) is also independent of M . Lower semi-continuity arguments show the energy estimate also for weak solutions
(uM , wM , χM ) of the time-continuous, truncated system. �

Proof of the second a priori estimate. We deduce the desired estimate by testing (19) with

ζ = −(TM (wM ) + 1)−α ∈ H1(Ω), (26)

where α is a fixed real number satisfying 1/σ ≤ α ≤ 2q−1 (recap Assumption (A3)). We remind that TM (wM ) ≥
0 a.e. in ΩT . Integration in time reveals∫ T

0

〈
∂twM ,−(TM (wM ) + 1)−α

〉
H1 dt+

∫
ΩT

KM (wM )

(TM (wM ) + 1)α+1
∇wM · ∇TM (wM ) dx dt

+

∫
ΩT

(
∂tχM + ρ(χM ) div (∂tuM ) + ρ′(χM ) div(uM )∂tχM

) −ΘM (wM )

(TM (wM ) + 1)α
dx dt = 0. (27)

The integral terms on the left hand side are transformed/estimates in the following calculations.

� Let ψM denote the primitive of the function ζ given in (26) with ψM (0) = 0. The use of a generalized
chain-rule yields∫ T

0

〈
∂twM ,−(TM (wM ) + 1)−α

〉
dt =

∫
Ω
ψM (wM (T )) dx−

∫
Ω
ψM (w0) dx.
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� By utilizing the identities ∇wM · ∇TM (wM ) = |∇TM (wM )|2 and KM (wM ) = K(TM (wM )), the
growth assumption for K (see Assumption (A3)) and the estimate α ≤ 2q − 1, we obtain∫

ΩT

KM (wM )

(TM (wM ) + 1)α+1
∇wM · ∇TM (wM ) dx dt

=

∫
ΩT

K(TM (wM ))

(TM (wM ) + 1)α+1
|∇TM (wM )|2 dx dt

≥ c1

∫
ΩT

(TM (wM )2q + 1)

(TM (wM ) + 1)α+1
|∇TM (wM )|2 dx dt

≥ c̃1‖∇TM (wM )‖2L2(ΩT ;Rd).

� The identity ΘM (wM ) = Θ(TM (wM )), the growth assumption for Θ (see Assumption (A2)) and the
estimate 1/σ ≤ α imply boundedness of∣∣∣∣ ΘM (wM )

TM (wM ) + 1

∣∣∣∣ = Θ(TM (wM ))

TM (wM ) + 1
≤ c0

(TM (wM )1/σ + 1)

(TM (wM ) + 1)α
≤ C.

Putting the pieces together, (27) results in∫
Ω
ψM (wM (T )) dx−

∫
Ω
ψM (w0) dx+ c̃1‖∇TM (wM )‖2L2(ΩT ;Rd)

≤ C
∥∥∂tχM + ρ(χM ) div (∂tuM ) + ρ′(χM ) div(uM )∂tχM

∥∥
L1(ΩT )

.

The right hand side estimates as

r.h.s. ≤ C
(
‖∂tχM‖L1(ΩT ) + ‖ρ(χM )‖L∞(ΩT )‖div (∂tuM ) ‖L1(ΩT )

+ ‖ρ′(χM )‖L∞(ΩT )‖ div(uM )‖L2(ΩT )‖∂tχM‖L2(ΩT )

)
and is bounded by the first a priori estimate.

It remains to show boundedness of
∫
Ω ψM (wM (T )) dx. Since

|ψ′
M (x)| = |(TM (x) + 1)−α| ∈ [−1, 0],

we obtain the growth condition |ψM (x)| ≤ |x|. Hence∣∣∣∣∫
Ω
ψM (wM (T )) dx

∣∣∣∣ ≤ ∫
Ω
wM (T ) dx.

Eventually, we obtain boundedness of ‖∇TM (wM )‖L2(ΩT ;Rd). The claim follows together with the boundedness
of ‖TM (wM )‖L∞(0,T ;L1(Ω)) by the first a priori estimate. �

Proof of the third a priori estimate. We test (20) with ζ = −div(ε(ut)) and adapt a calculation performed
in [15, Sixth a priori estimate]. Additionally, we need to estimate the following integral term:∣∣∣∣∫

Ωt

div (ρ(χM )ΘM (wM )1) · div(ε(∂tuM )) dx ds

∣∣∣∣
≤
∫
Ωt

|(ρ′(χM )∇χMΘM (wM )) · div(ε(∂tuM ))| dx ds

+

∫
Ωt

|ρ(χM )Θ′(TM (wM ))∇
(
TM (wM )

)
· div(ε(∂tuM ))| dx ds

≤ C‖ρ′(χM )‖L∞(L∞)‖∇χM‖L∞(Lp)‖Θ(TM (wM ))‖L2(L2p/(p−2))‖∂tuM‖L2(H2)

+ C‖ρ(χM )‖L∞(L∞)‖Θ′
M (wM )‖L∞(L∞)‖∇

(
TM (wM )

)
‖L2(L2)‖∂tuM‖L2(H2).
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By using the Lipschitz continuity of Θ (see Assumption (A2)) and the first as well as the second a priori estimates,
it only remains to show boundedness of the term ‖Θ(TM (wM ))‖L2(L2p/(p−2)). Indeed, by using the growth as-
sumption in (A2),

‖Θ(TM (wM ))‖L2(L2p/(p−2)) ≤ c0

(
‖TM (wM )‖1/σ

L2/σ(L2p/(σ(p−2)))
+ 1
)
. (28)

In the case d = 3, we have p > 3 and, in particular, 2p/(σ(p − 2)) ≤ 6 since σ ≥ 3 by Assumption (A2).
Consequently, by using the second a priori estimate, the right hand side of (28) is bounded.

In the cases d ∈ {1, 2}, boundedness of the right hand side of (28) follows immediately from the second a priori
estimate and σ ≥ 3. �

Proof of the fourth a priori estimate. Testing (19) with TM (wM ), integration in time over [0, t] and using the
generalized chain-rule yield∫

Ω
T̂M (wM (t)) dx−

∫
Ω
T̂M (w0) dx+

∫
Ωt

K(TM (wM ))|∇TM (wM )|2 dx ds

+

∫
Ωt

(
∂tχM + ρ(χM ) div (∂tuM ) + ρ′(χM ) div(uM )∂tχM

)
ΘM (wM )TM (wM ) dx ds = 0,

where T̂M denotes the primitive of TM vanishing at 0. By using Assumption (A3), the estimates (cf. [15, Remark
2.10])

c

∫ t

0
‖TM (wM )‖2(q+1)

L6(q+1)(Ω)
ds ≤

∫
Ωt

(TM (wM )2q + 1)|∇TM (wM )|2 dxds,

and
1

2
|TM (wM )|2 ≤ T̂M (wM ),

we obtain by using Hölder’s inequality in space and time∫
Ω

1

2
|TM (wM )|2 dx−

∫
Ω
T̂M (w0) dx+ c̃‖TM (wM )‖2(q+1)

L2(q+1)(0,t;L6(q+1)(Ω))

≤ ‖∂tχM‖L2(L2)‖ΘM (wM )TM (wM )‖L2(0,t;L2(Ω))

+ ‖ρ(χM )‖L∞(L∞)‖div(∂tuM )‖L2(L2)‖ΘM (wM )TM (wM )‖L2(0,t;L2(Ω))

+ ‖ρ′(χM )‖L∞(L∞)‖∂tχM‖L2(L2)‖ div(uM )‖L∞(L6)‖ΘM (wM )TM (wM )‖L2(0,t;L3(Ω))

≤ C‖ΘM (wM )TM (wM )‖L2(0,t;L3(Ω)).

Notice the following implications:{
if 0 ≤ q ≤ 1 then 1/σ ≤ q (since 2q − 1 ≤ q and 1/σ ≤ 2q − 1 by (A3)),

if q > 1 then 1/σ ≤ q (since σ ≥ 3 by (A2)).

Therefore, in both cases 1/σ ≤ q and we can estimate the right hand side above as follows by using Assumption
(A2):

‖ΘM (wM )TM (wM )‖L2(0,t;L3(Ω)) ≤ C
(
‖|TM (wM )|1/σ+1‖L2(0,t;L3(Ω)) + 1

)
≤ C

(
‖TM (wM )‖q+1

L2(q+1)(0,t;L3(q+1)(Ω))
+ 1
)

≤ C
(
‖TM (wM )‖q+1

L2(q+1)(0,t;L6(q+1)(Ω))
+ 1
)
.
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Thus the r.h.s. can be absorbed by the l.h.s. and we obtain the assertion. �

Proof of the fifth a priori estimate. We test equation (19) with wM , integrate over the time interval [0, t] and
obtain

1

2

∫
Ω
|wM (t)|2 dx− 1

2

∫
Ω
|wM (0)|2 dx+

∫
Ωt

KM (wM )|∇wM |2 dx dt

+

∫
Ωt

(
∂tχM + ρ(χM ) div (∂tuM ) + ρ′(χM ) div(uM )∂tχM

)
ΘM (wM )wM dx dt = 0.

We introduce the sublevel and the strict superlevel set of wM (t) at height M as

l−M (t) := {x ∈ Ω |wM (x, t) ≤M}, (29a)

l+M (t) := {x ∈ Ω |wM (x, t) > M} (29b)

and receive by utilizing Hölder’s inequality as in the fourth a priori estimate

1

2

∫
Ω
|wM (t)|2 dx− 1

2

∫
Ω
|wM (0)|2 dx+ c

∫
Ωt

|∇wM |2 dx dt+ c

∫ t

0
‖wM‖2(q+1)

L6(q+1)(l−M (t))
ds

≤ C‖ΘM (wM )wM‖L2(0,t;L3(Ω))

≤ C

(∫ t

0
‖ΘM (wM )wM‖2

L3(l−M (t))
ds

)1/2

+ C

(∫ t

0
‖ΘM (wM )wM‖2

L3(l+M (t))
ds

)1/2

. (30)

We treat the last two terms on the right hand side as follows.

� By using the definition l−M (t), the growth assumption for Θ in (A2) and the estimate 1/σ ≤ q (see the proof
of the fourth a priori estimate), we obtain∫ t

0
‖ΘM (wM )wM‖2

L3(l−M (t))
ds =

∫ t

0
‖Θ(wM )wM‖2

L3(l−M (t))
ds

≤ C

(∫ t

0
‖wM‖2(q+1)

L6(q+1)(l−M (t))
ds+ 1

)
.

� Hölder’s inequality and the embedding H1(Ω) ↪→ L6(Ω) yield∫ t

0
‖ΘM (wM )wM‖2

L3(l−M (t))
ds ≤ ess sup

t∈(0,T )
‖ΘM (wM (t))‖2

L6(l+M (t))

∫ t

0
‖wM‖2

L6(l+M (t))
ds

≤ ess sup
t∈(0,T )

‖ΘM (wM (t))‖2
L6(l+M (t))

‖wM‖2L2(0,t;H1(Ω)).

By the fourth a priori estimate, we have the boundedness of

M2 ess sup
t∈(0,T )

|l+M (t)| = ess sup
t∈(0,T )

∫
l+M (t)

M2 dx = ‖TM (wM )‖2L∞(0,T ;L2(Ω)) dx ≤ C.

This implies by using the growth condition for Θ in (A2):

ess sup
t∈(0,T )

‖ΘM (wM (t))‖2
L6(l+M (t))

= Θ(M)2 ess sup
t∈(0,T )

|l+M (t)|1/3
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≤ c0(M
2/σ + 1) ess sup

t∈(0,T )
|l+M (t)|1/3

≤ c0(M
2/σ + 1)

C

M2/3
.

Since σ ≥ 3, we obtain boundedness of ess supt∈(0,T ) ‖ΘM (wM (t))‖2
L6(l+M (t))

and hence∫ t

0
‖Θ(wM )wM‖2

L3(l+M (t))
ds ≤ C‖wM‖2L2(0,t;H1(Ω)).

Eventually, estimate (30) yields to

1

2

∫
Ω
|wM (t)|2 dx− 1

2

∫
Ω
|wM (0)|2 dx+ c‖∇wM‖2L2(0,t;L2(Ω;Rd)) + c

∫ t

0
‖wM‖2(q+1)

L6(q+1)(l−M (t))
ds

≤ C

(∫ t

0
‖wM‖2(q+1)

L6(q+1)(l−M (t))
ds+ 1

)1/2

+ C‖wM‖L2(0,t;H1(Ω))

and thus the claim. �

To tackle the sixth a priori estimate, we will make use of the primitive K̂M of KM vanishing at 0 and use the
property

K̂M (x) =

{
K̂(x) if 0 ≤ x ≤M,

K̂(M) + x−M if x > M.
(31)

Note that the identity K̂M (x) = K̂(TM (x)) is not fulfilled while KM (x) = K(TM (x)) is true. By exploiting
growth assumption (A3), we obtain the crucial estimate∣∣K̂M (x)

∣∣ ≤ {
C(x2q0+1 + 1) if 0 ≤ x ≤M,

C(M2q0+1 + 1) + x−M if x > M

}
≤ C(TM (x)2q0+1 + 1) + x. (32)

Proof of the sixth a priori estimate. We will use a comparison argument in (19).

In what follows let r := 2q+2
2q0+1 and s := 6q+6

6q−2q0+5 as in Definition 3.1. Applying integration by parts in (19), we

receive for all ζ ∈W 2,s
ν (Ω):

〈∂twM , ζ〉 =
∫
Ω

(
K̂M (wM )∆ζ − (ΘM (wM )∂tχM + ρ(χM )ΘM (wM ) div (∂tuM )) ζ

)
dx

−
∫
Ω
ρ′(χM )ΘM (wM ) div(uM )∂tχMζ dx. (33)

Let s∗∗ := 6q+6
2q−2q0+1 > 0 denote the constant resulting from the continuous embedding W 2,s(Ω) ↪→ Ls∗∗(Ω).

Due to the crucial identities

1
6q+6
2q0+1

+
1

6q+6
6q−2q0+5

= 1,
1

6q+6
2q0+1

+
1

6
+

1

2
+

1
6q+6

2q−2q0+1

= 1 and
1

6q+6
q+2q0+2

+
1

2
+

1
6q+6

2q−2q0+1

= 1, (34)

Hölder’s inequality reveals

〈∂twM , ζ〉 ≤ ‖K̂M (wM )‖
L

6q+6
2q0+1

‖∆ζ‖Ls + ‖ΘM (wM )‖
L

6q+6
q+2q0+2

‖∂tχM‖L2‖ζ‖Ls∗∗

+ ‖ρ(χM )‖L∞‖ΘM (wM )‖
L

6q+6
q+2q0+2

‖ div (∂tuM ) ‖L2‖ζ‖Ls∗∗

+ ‖ρ′(χM )‖L∞‖ΘM (wM )‖
L

6q+6
2q0+1

‖ div(uM )‖L6‖∂tχM‖L2‖ζ‖Ls∗∗ .
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By using boundedness of χM in L∞(0, T ;L∞(Ω)) and 6q+6
q+2q0+2 ≤ 6q+6

2q0+1 , we obtain

‖∂twM‖
(W 2,s

ν )∗ ≤ C‖ΘM (wM )‖
L

6q+6
2q0+1

(
‖∂tχM‖L2 + ‖div (∂tuM ) ‖L2

+ ‖ div(uM )‖L6‖∂tχM‖L2

)
+ ‖K̂M (wM )‖

L
6q+6
2q0+1

.

Calculating Lr-norm in time and using Hölder’s inequality show

‖∂twM‖
Lr
(
(W 2,s

ν )∗
)

≤ C‖ΘM (wM )‖
L

2r
2−r
(
L

6q+6
2q0+1

)(‖∂tχM‖L2(L2) + ‖ div (∂tuM ) ‖L2(L2)

+ ‖ div(uM )‖L∞(L6)‖∂tχM‖L2(L2)

)
+ ‖K̂M (wM )‖

Lr
(
L

6q+6
2q0+1

).
Keeping the first and the third a priori estimates in mind, it still remains to show

{K̂M (wM )} bounded in Lr
(
0, T ;L

6q+6
2q0+1 (Ω)

)
, (35a)

{ΘM (wM )} bounded in L
2r
2−r
(
0, T ;L

6q+6
2q0+1 (Ω)

)
. (35b)

� Estimate (32) leads to

‖K̂M (wM )‖
Lr
(
L

6q+6
2q0+1

) ≤ C(‖TM (wM )‖2q0+1

Lr(2q0+1)(L6q+6)
+ 1) + ‖wM‖

Lr
(
L

6q+6
2q0+1

). (36)

Since, by definition, r(2q0 + 1) = 2(q + 1), we infer boundedness of

{TM (wM )} in Lr(2q0+1)(0, T ;L6q+6(Ω))

by the fourth a priori estimate and boundedness of

{wM} in Lr
(
0, T ;L

6q+6
2q0+1 (Ω)

)
by the fifth a priori estimate and by r ∈ (1, 2) and 6q+6

2q0+1 ≤ 6 using (A3). Finally, we obtain (35a).

� By Assumption (A2), we obtain

‖ΘM (wM )‖
L

2r
2−r
(
0,T ;L

6q+6
2q0+1 (Ω)

) ≤ C(‖wM‖1/σ
L

2r
(2−r)σ

(
0,T ;L

6q+6
(2q0+1)σ (Ω)

) + 1).

Because of 6q+6
(2q0+1)σ ≤ 2 (since σ ≥ 3 by (A2) and q ≤ q0 by (A3)), we obtain (35b) by the fifth a priori

estimate.

�

23



5.2 The passage M ↑ ∞

The a priori estimates from Lemma 5.1 give rise to the subsequent convergence properties for {uM}, {wM} and
{χM} along subsequences by Aubin-Lions type compactness results (cf. [18]) and by adapting Lemma 4.6 to this
case.

Corollary 5.2 There exists limit functions (u,w, χ) defined in spaces given in Definition 3.1 such that the following
convergence properties are satisfied for all µ ≥ 1, s > 3 and all ε ∈ (0, 1] (as M ↑ ∞ for a subsequence):

(i) uM → u weakly-star in H1(0, T ;H2(Ω;Rd)) ∩W 1,∞(0, T ;H1(Ω;Rd))

∩H2(0, T ;L2(Ω;Rd)),

uM → u strongly in H1(0, T ;H2−ε(Ω;Rd)),

uM → u a.e. in ΩT ,

(ii) wM → w weakly-star in L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω))

∩W 1,r(0, T ; (W 2,s
ν (Ω))∗),

wM → w strongly in L2(0, T ;H1−ε(Ω)) ∩ Lµ(0, T ;L2(Ω)),

wM → w a.e. in ΩT ,

(iii) χM → χ weakly-star in L∞(0, T ;W 1,p(Ω)) ∩H1(0, T ;L2(Ω)),

χM → χ strongly in Lµ(0, T ;W 1,p(Ω)),

χM → χ uniformly on ΩT .

Corollary 5.2 can be used to prove convergence of K̂M (wM ), ΘM (wM ) and ξM as M ↑ ∞ in suitable spaces.
More precisely, we obtain the following result.

Corollary 5.3 There exists an element ξ ∈ L2(0, T ;L2(Ω)) such that for all 1 ≤ µ < 6 (as M ↑ ∞ for a
subsequence):

(i) K̂M (wM ) → K̂(w) weakly in L
2q+2
2q0+1

(
0, T ;L

6q+6
2q0+1

(
Ω)),

(ii) ΘM (wM ) → Θ(w) strongly in L2σ(0, T ;Lµσ(Ω)),

(iii) ξM → ξ weakly in L2(0, T ;L2(Ω)).

Proof.

(i) We obtain the estimate

‖K̂M (wM )‖
L

2q+2
2q0+1

(
L

6q+6
2q0+1

)
≤ C(‖TM (wM )‖2q0+1

L2q+2(L6q+6)
+ 1) + ‖wM‖

L
2q+2
2q0+1

(
L

6q+6
2q0+1

).
due to (32). The first summand on the right hand side is bounded by the fourth a priori estimate while the
second is bounded by the fifth a priori estimate.

This enables us to choose a subsequence (we omit the subindex) such that

K̂M (wM ) → η weakly in L
2q+2
2q0+1

(
0, T ;L

6q+6
2q0+1

(
Ω)) (37)
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for an element η ∈ L
2q+2
2q0+1

(
0, T ;L

6q+6
2q0+1

(
Ω)).

Furthermore, noticing that wM → w a.e. in ΩT as M ↑ ∞, we conclude

K̂M (wM ) → K̂(w) a.e. in ΩT . (38)

From (37) and (38) we conclude (i).

(ii) This item follows from the fact that wM → w converge strongly in L2(0, T ;Lµ(Ω)) for all 1 ≤ µ < 6 and
from the growth condition for Θ in (A2).

(iii) By referring to the construction of ξM in (23), we choose a weakly-star cluster point for the sequence
{1{χM=0}}, i.e.

πM := 1{χM=0} → π weakly-star in L∞(0, T ;L∞(Ω))

asM ↑ ∞ for a subsequence. By the already known convergence properties, we deduce that the sequence
of functions

ηM :=
(
γ(χM ) +

b′(χM )

2
|ε(uM )|2 −ΘM (wM )− ρ′(χM )ΘM (wM ) div(uM )

)+
converges strongly to the corresponding limit function η in L2(0, T ;L2(Ω)). This proves

ξM = −πMηM → −πη =: ξ weakly in L2(0, T ;L2(Ω))

as desired.

�

Proof of Theorem 3.4. The limit passage of the truncated system given by (19), (20), (22), (24) and (25) as
M ↑ ∞ can now be perform with Corollary 5.2 and Corollary 5.3.

� Heat equation. Integrating (19) in time and applying integration by parts show∫ T

0
〈∂twM ,Ψ〉 dt

−
∫
ΩT

(
K̂M (wM )∆Ψ− (ΘM (wM )∂tχM + ρ(χM )ΘM (wM ) div (∂tuM ))Ψ

)
dx dt

+

∫
ΩT

ρ′(χM )ΘM (wM ) div(uM )∂tχMΨdx dt = 0,

for all test-functions Ψ ∈ C([0, T ];W 2,s
ν (Ω)). Taking (34) into account, passing M ↑ ∞ by employing the

convergence results in Corollary 5.2 and Corollary 5.3 and switching back to an a.e. in time formulation, we
end up with (4).

� Balance of momentum equation and one-sided variational inequality. Translating (20), (22) and (24) to
a weak formulation involving test-functions in time and space, we can pass M ↑ ∞. Translating the results
back to an a.e. in time formulation, we obtain (5), (6) and (7).

� Partial energy inequality. The inequality (8) is gained from (25) by using lower semi-continuity arguments
in the transition M ↑ ∞. �
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