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Abstract. Terrestrial water storage (TWS) exerts a key con-

trol in global water, energy, and biogeochemical cycles. Al-

though certain causal relationship exists between precipita-

tion and TWS, the latter quantity also reflects impacts of

anthropogenic activities. Thus, quantification of the spatial

patterns of TWS will not only help to understand feed-

backs between climate dynamics and the hydrologic cycle,

but also provide new insights and model calibration con-

straints for improving the current land surface models. This

work is the first attempt to quantify the spatial connectivity of

TWS using the complex network theory, which has received

broad attention in the climate modeling community in recent

years. Complex networks of TWS anomalies are built us-

ing two global TWS data sets, a remote sensing product that

is obtained from the Gravity Recovery and Climate Experi-

ment (GRACE) satellite mission, and a model-generated data

set from the global land data assimilation system’s NOAH

model (GLDAS-NOAH). Both data sets have 1◦× 1◦ grid

resolutions and cover most global land areas except for per-

mafrost regions. TWS networks are built by first quantifying

pairwise correlation among all valid TWS anomaly time se-

ries, and then applying a cutoff threshold derived from the

edge-density function to retain only the most important fea-

tures in the network. Basinwise network connectivity maps

are used to illuminate connectivity of individual river basins

with other regions. The constructed network degree central-

ity maps show the TWS anomaly hotspots around the globe

and the patterns are consistent with recent GRACE studies.

Parallel analyses of networks constructed using the two data

sets reveal that the GLDAS-NOAH model captures many of

the spatial patterns shown by GRACE, although significant

discrepancies exist in some regions. Thus, our results pro-

vide further measures for constraining the current land sur-

face models, especially in data sparse regions.

1 Introduction

Terrestrial water storage (TWS) is defined as vertically inte-

grated water of all forms above and below the Earth’s surface

(e.g., surface water, soil moisture, groundwater, and snow

and ice) (Famiglietti, 2004). It is not only a key control of

global water, energy, and biogeochemical cycles but also pro-

vides an integrated indicator of water availability and uses

(Houborg et al., 2012; Lettenmaier and Famiglietti, 2006;

Long et al., 2013; Voss et al., 2013; Guentner et al., 2007).

Global TWS has been the subject of modeling studies for

decades; however, validation of modeling results has been

challenging historically because of limited availability of in

situ data. Since its launch in 2002, the Gravity Recovery

and Climate Experiment (GRACE) satellite mission has pro-

vided an unprecedented opportunity to study TWS remotely.

GRACE detects temporal variations of the Earth’s gravity

field which, over land, are mainly caused by short-term vari-

ations or TWS anomalies (TWSA). Numerous studies con-

ducted in the past decade have confirmed the remarkable

capability of GRACE in tracking continental- and regional-

scale TWS changes (e.g., Famiglietti et al., 2011; Sun et al.,
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2010; Yeh et al., 2006; Long et al., 2013, 2014; Rodell et al.,

2009; Swenson and Wahr, 2003; Han et al., 2005). So far,

the monthly TWSA grids derived from GRACE have been

used as an independent source of information for hydrologic

model validation (Ramillien et al., 2008; Syed et al., 2008;

Chen et al., 2005), calibration (Sun et al., 2012; Werth et al.,

2009; Lo et al., 2010; Sun et al., 2010; Döll et al., 2014), and

data fusion (Zaitchik et al., 2010; Houborg et al., 2012; Sun,

2013; Forman et al., 2012; Li and Rodell, 2015).

The global GRACE data set accumulated over the last

decade is an important type of big data that can be mined for

discovering information of global water/energy dynamics,

and for helping to illuminate connections among major river

basins and within the river basins themselves. Such infor-

mation will be complementary to existing physically based

TWS modeling efforts and will potentially provide calibra-

tion constraints (e.g., Guentner et al., 2007; Rodell et al.,

2004). In this study, the complex network theory is adopted

to construct a global TWSA network using GRACE data.

The interannual spatial patterns of TWSA are then quanti-

fied through analyses of network topologies.

Complex network theory has long been used by scientists

in various disciplines to study intricate connections in natural

and social phenomena (Jackson, 2008; Newman and Girvan,

2004; Rubinov and Sporns, 2010). In recent years, the field

of complex climate networks (CCN), which involves appli-

cations of traditional complex network analyses to climate

systems (Tsonis and Roebber, 2004; Tsonis et al., 2006),

has attracted significant attention. In typical CCN applica-

tions, cells of a gridded data set are deemed as nodes of a

complex network, and links (or edges) between nodes are

established on the basis of statistical similarity of the time

series associated with the cells. After a climate network is

constructed, various descriptive measures derived from the

classical complex network theory are then applied to quan-

tify network topologies (Donges et al., 2009b; Tsonis et al.,

2006; Steinhaeuser et al., 2011). One of the main findings

from the previous CCN studies is that climate networks man-

ifest a “small-world” network property, akin to networks ap-

pear in many other fields (e.g., social networks). In CCN,

this can be contributed to the existence of long-range con-

nections that stabilize the climate system and enhance energy

transfers within it (Donges et al., 2009a, b, 2011). TWS is

closely intertwined with soil–vegetation–atmosphere interac-

tions and is thus expected to show similar spatiotemporal pat-

terns as observed from climate networks (e.g., precipitation

network); however, it is well known that climate only plays

a partial role in TWS changes. Land use changes and other

anthropogenic activities (e.g., deforestation, aquifer mining,

and water structures) increasingly stress water availability in

many parts of the world and have been shown to produce

global-scale impacts on the terrestrial water cycle (Vörös-

marty and Sahagian, 2000). Such aspects are usually difficult

to be fully captured and quantified without extensive mon-

itoring data. The global coverage of GRACE TWSA, thus,

becomes especially important.

Different from the global circulation model outputs ana-

lyzed by many previous CCN studies, GRACE TWSA is a

remote sensing product, subjected to errors and uncertainties

caused by instrumentation and data processing. As a result,

the actual spatial resolution of GRACE TWSA is not 1◦× 1◦,

but much coarser (Houborg et al., 2012). In other words,

the intrinsic degrees of freedom of the GRACE TWS are

less than its grid dimension. An important question is then

how well a complex network constructed using the GRACE

TWSA can represent the salient features of the global ter-

restrial water cycle. Importantly, how these patterns can be

corroborated, at least partially, using other existing informa-

tion. Toward this end, we use the TWS data set (1◦× 1◦)

simulated by global land data assimilation system (GLDAS)

for comparison. GLDAS is a global terrestrial modeling sys-

tem jointly developed by US National Aeronautics and Space

Administration’s (NASA) Goddard Space Flight Center and

US National Oceanic and Atmospheric Administration’s Na-

tional Centers for Environmental Prediction. GLDAS incor-

porates satellite and in situ observations to produce opti-

mal fields of land surface states and fluxes in near real time

(Rodell et al., 2004). Although GLDAS is only a surrogate

of in situ observations that are ultimately required to vali-

date the GRACE results, previous studies have shown that

GLDAS represents the magnitudes and variability of TWS

sufficiently well (Syed et al., 2008). Thus, GLDAS represents

a valuable independent source of information for validating

GRACE results and has been used by a number of global-

scale GRACE studies (e.g., Syed et al., 2008; Landerer and

Swenson, 2012; Chen et al., 2005). In this study, the net-

work measures inferred from GRACE data are compared to

those built from the GLDAS outputs to cross-examine the

two products. Note that GLDAS does not have an explicit

representation of groundwater storage, an aspect that needs

to be kept in mind when performing comparisons.

2 Methodology

2.1 Network construction

A network is commonly represented by a graph G(V , E),

which is specified by its node set V ={1, . . . , N} and edge

set E , with N the number of nodes. Thus, the number of

possible edges in an undirected graph (meaning the links are

non-directional) is N(N − 1)/2. In the current context, each

node corresponds to a grid cell at which a valid monthly time

series is available and N is the total number of such cells in

a gridded data set. Construction of a network generally pro-

ceeds in two steps, network growth and pruning. In the net-

work growth step, similarity between all potential node pairs

(i.e., edges) in graph G is quantified. Common measures of

similarity are statistical correlation (either Pearson or Spear-
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man), mutual information, and synchronization (Boers et al.,

2013; Donges et al., 2009a). In the pruning step, an appro-

priate similarity threshold (τ ) is imposed to the edge set to

retain only those connections that exceed the threshold. The

main purpose of network pruning is to improve network anal-

ysis efficiency. If the correlation between two time series is

used as a measure of statistical similarity, then τ represents

the minimum correlation coefficient (R) above which a pair

of nodes is considered connected. The absolute value of cor-

relation is used such that both strongly positive and negative

correlations are counted.

Several methods have been used in the CCN literature to

determine τ . In the significance testing method (Tsonis et al.,

2006), τ is based on the two-sided Student’s t test. The crit-

ical t value, tc, for a given sample size ns and user-defined

significance level α are determined using the Student’s t cu-

mulative distribution function (CDF), from which the value

of τ can be solved:

tc =
τ
√
ns − 2

√
1− τ 2

. (1)

A similar method uses the probability value (i.e., p value)

of test statistics directly: a pair of nodes is considered con-

nected if the p value is less than a critical value; for instance,

Steinhaeuser et al. (2011) set the critical value to 10−10. Yet

another method defines τ from an edge-density function ρ(τ)

defined as

ρ(τ)=
nc(τ )

N(N − 1)/2
, (2)

where nc is the number of active edges retained in a network

when the threshold is set to τ . Thus, edge density is closely

related to the CDF of R.

Obviously, all methods involve a certain degree of sub-

jectivity. The selection of τ thus incurs a tradeoff between

network maneuverability and preservation of network fea-

tures: if too many edges are included, the main network fea-

tures will be obscured, not to mention a significant increase

in computational effort required to characterize a large net-

work. In this work, the edge-density method is used because

it allows for a direct comparison of network properties com-

puted from different data sets (Donges et al., 2009a). Addi-

tional statistical analyses (see Sect. 4) are performed to en-

sure that all statistically significant features are retained in

the constructed networks.

2.2 Network measures

The outcome of the network construction process is a

Boolean-valued, symmetric N ×N matrix, referred to as the

adjacency matrix and denoted by A. Elements of A, aij , are

set according to the following rule:

aij =

{
1, if |Rij |> τ

0, otherwise

}
, (3)

in which |Rij | is the absolute value of correlation between

time series at nodes i and j . A number of network measures

can then be applied to A to quantify network topology. The

main metrics adopted in this work include the degree of cen-

trality and connection length.

The degree of centrality of a node, ki , is defined as the

number of first neighbors of node i and reflects the impor-

tance of node i in a network. Regions having high ki values

are referred to as “supernodes” in network theory because

these nodes tend to have not only local connections but also

long-range connections or teleconnections. However, ki it-

self does not reveal the actual type of connections. Because

of nonuniformity of cell areas at different latitudes, the de-

gree of centrality ki is usually weighted by cell areas, leading

to the area-weighted connectivity, ACi (Tsonis et al., 2006;

Heitzig et al., 2012):

ACi =
∑
j∈ni

cosλj

/
N∑
j=1

cosλj , i = 1, . . ., N, (4)

where ni is the set of all first neighbors of the node i, and

λj is the latitude of its j th first neighbor. Thus, ACi is a nor-

malized value representing the fraction of the Earth’s surface

area that a node is connected to.

A classic measure of network integration is the average

distance between node i and all other nodes, Di , and is de-

fined as (Rubinov and Sporns, 2010)

Di =
1

N − 1

∑
j∈V,j 6=i

dij , i = 1, . . ., N, (5)

where dij is the number of edges traversed along the shortest

path between the node pair (i, j ). If (i, j ) is not connected,

dij is defined as infinity. The characteristic path length of the

network is obtained by taking an average of allDi and it rep-

resents the average number of edges to be traversed along

the distance between two randomly selected nodes in a net-

work. Calculation of pairwise shortest path lengths becomes

computationally expensive when the number of node pairs is

large. In this work, the average distance between node i and

all other nodes, Li , is approximated according to

Li =
1

ki

∑
j∈ni

lij , (6)

where only the first neighbors of node i are included in the

calculation, and lij is the physical distance between node

pair (i, j ) measured by using the respective cell-center lat-

itudes and longitudes, (λi , φi) and (λj , φj ). The physical-

based characteristic path length of the network, L, is simply

the average of all Li (i= 1, . . . , N ). The probability distribu-

tion of Li provides a sense of the average edge lengths in a

network and L provides a measure of network integration.
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3 Data and data processing

The GRACE TWSA data set used in this study was down-

loaded from the Tellus site of the Jet Propulsion Labora-

tory (JPL; http://grace.jpl.nasa.gov/index.cfm). The data set

is based on RL05 GRACE solutions (in the form of spher-

ical harmonics) released by the Center for Space Studies at

the University of Texas Austin. It includes 121 epochs from

January 2003 to July 2013 at approximately monthly inter-

vals. The 6 missing months, which are not contiguous, were

reconstructed using linear interpolation (temporal only). The

grid dimensions are 360× 180 and ocean area is masked out,

resulting in ∼ 25 000 cells in each TWSA grid. In generat-

ing the gridded TWSA product, a number of postprocessing

algorithms have been applied, as documented in details in

Landerer and Swenson (2012). In particular, a destriping fil-

ter is applied to minimize the effect of north–south-oriented

stripes in GRACE monthly solutions, and a 300 km Gaussian

filter is then used to reduce random errors in high-degree

spherical harmonic coefficients not removed by destriping.

The GRACE gravity field solutions are typically truncated

at a spectral degree less than 60. To restore signal attenua-

tion caused by truncation and filtering, the JPL data set also

includes a spatially distributed and temporally invariant scal-

ing factor field. This scaling factor field is not used in this

study because it does not affect pairwise correlations.

Outputs from GLDAS’s NOAH model were obtained from

NASA (http://disc.sci.gsfc.nasa.gov/services/grads-gds/

gldas). GLDAS covers latitudes between −60 and 90◦,

and does not model permafrost regions such as Greenland

and Antarctica (Rodell et al., 2004). Its grid dimensions

are 360× 150 and the temporal span is from January 1979

to the present (GLDAS V1). The number of cells in each

GLDAS monthly grid is N = 14 540. The GLDAS TWS is

defined as the sum of water mass from all four soil layers

represented by NOAH (up to 2 m depth) and snow water

equivalent. Thus, GLDAS TWS mainly includes surface

and root zone storages, but not the deeper groundwater

storage. The GRACE grids are masked using the smaller

GLDAS coverage during network construction. To ensure a

consistent comparison, the GLDAS data set was processed

using the same truncation and filtering techniques applied to

the GRACE data, which has been a standard practice in the

literature (e.g., Chen et al., 2010; Rodell et al., 2009).

Monthly time series contain high-frequency noise. Be-

cause the main interest in this study is on interannual cor-

relations of TWSA, the high-frequency noise in each TWSA

time series is removed. Several methods have been used for

such a purpose; the z-score method has been employed in

the CCN literature to remove seasonal variability (Donges et

al., 2009b; Steinbach et al., 2003; Tsonis et al., 2006). It en-

tails normalizing each monthly data point using the mean and

standard deviation calculated for the corresponding month

and over the entire record length. The least squares method,

which is extensively used in the GRACE literature (e.g., Yeh

Figure 1. (a) Edge-density function ρ(τ) of GRACE and GLDAS

(the value of τ selected for network pruning is 0.57, corresponding

to an edge density 0.036); (b) maximum correlation as a function of

edge lengths.

et al., 2006; Crowley et al., 2006), models the intra-annual

variability using Fourier series (two annual sine/cosine terms

and two semi-annual sine/cosine terms) and then removes the

variability, together with a slowly moving trend. Our numeri-

cal tests show the two methods give very similar results. Lags

existing between time series may weaken linear correlation.

Thus, to examine the effect of temporal lags, the same inter-

annual correlation analysis is repeated using a temporal win-

dow of 36 months (i.e., the maximum correlation observed

within ±1.5 years of the zero lag).

4 Results and discussion

4.1 Edge density

The number of possible edges represented by the TWS data

sets is more than 100 million for N = 14 540. After remov-

ing seasonal trends from GRACE and GLDAS and calculat-

ing the correlation coefficient R for all node pairs, the edge-

density method is applied to determine a similarity thresh-

old τ . Note in the discussion below, R is calculated at zero

lag unless otherwise specified.

Figure 1a shows edge-density functions constructed using

GRACE and GLDAS TWS data, both are monotonically de-

creasing (i.e., fewer connected edges at higher τ values) and

are similar in shape. As mentioned in Sect. 2, edge density

provides an indicator of the fraction of connected edges at

different threshold values. Figure 1b plots the maximum cor-

relation coefficient as a function of edge length, which is

defined as the shortest physical distance between a pair of

nodes in this work. To arrive at Fig. 1b, all R values are first

sorted according to nodal separation distances, a bin width of

250 km is applied to the resulting distribution, and the maxi-

mum R value within each bin is recorded. Figure 1b suggests

that the maximum correlation stays relatively high (> 0.7)

for most distances. Recall that the main purpose of network

pruning is to improve the computational efficiency of net-

work characterization while preserving the most significant
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Figure 2. Patterns of connection inferred from GRACE TWSA for six river basins, in which connection pattern is based on correlation

between the basin centroid and all other cells in the grid.

network features. In this study, we set the threshold τ to 0.57

because (a) the corresponding fraction of connected edges

is relatively small (0.036); i.e., at this level more than 96 %

of edges is removed; (b) the edge densities of GRACE and

GLDAS happen to be the same at that level; and importantly

(c) the cutoff τ threshold is still below the maximum cor-

relation exhibited at all separation distances, as suggested by

Fig. 1b. Thus, the selected τ value ensures that all statistically

significant network features are retained in the constructed

networks.

4.2 Basin analyses

A basin analysis is useful for helping visualize the TWSA

connection patterns at the basin level. As some examples,

Figure 2 shows the results for six river basins around the

world. To generate a plot in Fig. 2, a cell is first fixed, and

all its edges are colored according to the actual R (not the

absolute values). For our purpose, the centroid of each basin

is used. While the basin centroid may not be representative

of the connection patterns of an entire basin (especially when

the basin spans several climatic regions), it serves as a basis

for comparing multiple basins at a qualitative level. Figure 3

applies the cutoff threshold τ defined in Fig. 1 to all plots in

Fig. 2. Results suggest that interannual TWSA connections

in the Amazon and Congo basins are dominated by local

connections. The mid-latitude basins (Ganges, Mississippi,

and Tigris) generally show more teleconnections, although

Yangtze is an exception. In the case of the Tigris Basin, a

large number of strongly positive and negative correlations

are observed and the local connections extend far beyond the

basin boundary. A detailed interpretation of this observation

will be given in the next section.

Extensive teleconnection is an advantage from a forecast-

ing perspective because climate indices, such as El Niño–

Southern Oscillation (ENSO) and North Atlantic Oscilla-

tion (NAO), can be used as possible indicators of future

changes. For those basins without strong teleconnection, wa-

ter resources planning must rely mainly on regional data.

Such distinction sheds light on the significance of GRACE

data to long-term basin planning and natural hazard mitiga-

tion strategies, as we will elaborate on in the following sec-

tions.

www.nonlin-processes-geophys.net/22/433/2015/ Nonlin. Processes Geophys., 22, 433–446, 2015
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Figure 3. GRACE connection patterns after cutoff threshold τ = 0.57 is applied (the green solid line delineates basin boundaries).

As a sensitivity study, Fig. 4 (left column panels) shows

the results of basin analysis for the Mississippi Basin, the

largest basin in North America, using different thresholds

corresponding to τ values of 0.41, 0.57 (the base case),

and 0.76. The corresponding edge density is labeled in the

figure. Because the cutoff threshold increases as ρ decreases,

a significant reduction in the number of edges can be ob-

served. For comparison, the modeled TWS connections ob-

tained from GLDAS are provided in the second column of

Fig. 4. In general, the connections modeled by GLDAS are

much weaker (i.e., smaller in spatial extent) than those ob-

tained from GRACE. In some cases, the locations of con-

nections are also different. For example, the negative corre-

lation obtained by GLDAS in northern Africa for ρ= 0.1 is

not seen by GRACE. The complex networks thus provide a

useful tool for examining the agreement, or the lack of it,

between GLDAS and GRACE.

4.3 Connectivity

Using the selected cutoff τ , a network adjacency matrix A

is formed and various network measures described under

Sect. 2 are applied to quantify network topology. Figure 5a

shows the area-weighted connectivity map constructed us-

ing GRACE data. On the map, red colors highlight regions

of high connectivity. Recall that a high degree of connectiv-

ity indicates that a node interacts strongly with the rest of

the nodes in a network (i.e., a supernode); however, the con-

nectivity map itself does not explain the type of connections

per se, and needs to be analyzed jointly with the connection

length map to be shown in the next section. The largest clus-

ter of supernodes appears in the Middle East region, where

the connected neighbors account for more than 0.16 of the

global area. To a lesser extent, the Pacific northwest and east

coast of the USA, southern Africa, southern South America,

and eastern Australia all show smaller supernode regions. In

contrast, most of Asia, central USA, and Europe exhibit lit-

tle or no connectivity (blue color). These observations are

consistent with patterns observed during basin analyses (see

Figs. 3 and 4).

The supernode regions shown in Fig. 5a reflect the super-

posed effects of climate variations and anthropogenic activi-

ties. These can be explained in terms of global precipitation

and atmospheric circulation patterns. In general, the poorly

connected regions have stronger precipitation variations over

shorter spatial scales, leading to the emergence of high-

precipitation gradients which, in turn, are responsible for re-

Nonlin. Processes Geophys., 22, 433–446, 2015 www.nonlin-processes-geophys.net/22/433/2015/
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Figure 4. Sensitivity of connection patterns to cutoff threshold, demonstrated using Mississippi River basin’s centroid. Left column panels:

GRACE results; right column panels: GLDAS results.

gional extreme events that are more localized in time and

space (Scarsoglio et al., 2013). Those with high connectivity

tend to be directly influenced by ocean and climatic oscilla-

tions (e.g., ENSO and NAO). Kahya and Dracup (1993) stud-

ied streamflow variations in the contiguous USA and identi-

fied northeast, northcentral, Pacific northwest, and Gulf of

Mexico states as regions with potentially significant stream-

flow responses to ENSO forcing. These four regions can be

easily identified on Fig. 5a, among which the Gulf of Mex-

ico region shows the weakest connection. Similarly, Chiew et

al. (1998) reported that the ENSO can be used to help fore-

cast spring runoff in southeast Australia and summer runoff

in the northeast and east coasts of Australia. This teleconnec-

tion pattern is also indicated clearly by Fig. 5a.

At the global scale, Dai et al. (2009) studied the monthly

streamflow records of the world’s 925 largest ocean-reaching

rivers from 1948 to 2004. They concluded that (a) the in-

terannual variations of streamflows are correlated with the

ENSO events for discharge into the Atlantic, Pacific, Indian,

and the global oceans as a whole and (b) the effects of an-

thropogenic activities on annual streamflow are likely to be

small compared to those of climate variations; however, an-

thropogenic activities can create more disturbances in arid

and semi-arid regions, where the discharge magnitudes are

low (e.g., Indus, Yellow, and Tigris–Euphrates river basins).

To elaborate the latter point further, Fig. A1 in Appendix A

plots the proportion of total renewable water resources with-

drawn by country for human uses in the agricultural, munici-

pal, and industrial sectors, using long-term data compiled by

the Food Agricultural Organization of United Nations. Fig-

ure A1 indicates that the Middle East and northern African

countries show the highest withdraw proportions. In a recent

GRACE study focusing on northcentral Middle East, Voss

et al. (2013) reported that GRACE data show an “alarming

rate” of decrease in TWS of approximately 143.6 km3 during

2003–2009. Thus, the resemblance between Figs. 5a and A1

www.nonlin-processes-geophys.net/22/433/2015/ Nonlin. Processes Geophys., 22, 433–446, 2015
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Figure 5. Area-weighted connectivity map obtained using

(a) GRACE and (b) GLDAS data (zero-lag correlation).

in those regions is not coincidental and can be corroborated

using multiple sources. Because interannual TWS anomalies

are well connected in clustered supernode regions, these re-

gions tend to exhibit more vulnerability to both climate and

human-induced disturbances.

Having elaborated the close relationship between GRACE

TWSA and climate patterns, it is important to point out that

the TWS also includes effects of soil moisture and ground-

water storage (mostly unconfined aquifers) changes that may

not synchronize with climate patterns.

Figure 5b shows the same area-weighted connectivity

map, but constructed using the GLDAS-NOAH outputs. Al-

though GLDAS-NOAH shows many of the similar patterns

detected by GRACE, it also indicates stronger connectiv-

ity in the Arabian Peninsula, northern Africa, and in mid-

dle South America, and much weaker connectivity in south-

ern Africa. These discrepancies may be caused by GLDAS-

NOAH’s parameterization and other errors. The other main

reason is the lack of representation of the deeper groundwater

storage in GLDAS. The discrepancies highlighted here pro-

vide additional spatial calibration constraints for land surface

models. In areas dominated by shallow TWS components,

GLDAS needs to show similar patterns as those derived from

GRACE, whereas discrepancies are only expected in areas

dominated by deep TWS components and/or impacted by

significant anthropogenic activities. We emphasize here the

connectivity maps shown in Fig. 5 are for TWSA. Thus, the

high-precipitation areas (e.g., Amazon Basin) do not neces-

sarily exhibit high anomaly connectivity after removing the

intra-annual variability.

Figure 6. Effect of lagged correlation on GRACE area-weighted

connectivity, where the window of lagged correlation is [−18, 18]

months.

So far, all results have been based on zero-lag correla-

tions. The effect of temporal lag on connectivity is exam-

ined in Fig. 6, in which the connectivity map is built us-

ing the maximum (absolute) correlation found between −18

and +18 monthly lags of each node pair. The figure suggests

that incorporation of lagged correlation further strengthens

connectivity. The supernode regions are more expanded in

space, notably in eastern Australia and in the Colorado River

basin and Gulf Coast states in the USA. Further, Appendix B

shows the maximum correlation and phase lags for the six

basins studied in Fig. 2, which suggest that each river basin

is in phase with most cells in itself and the immediate sur-

roundings. However, significant phase lags exist between

each river basin and other river basins.

4.4 Connection length

Figure 7a shows maps of the physical-based average nodal

connection length Li (i= 1, . . . , N ). Nodes that exhibit the

longest connection lengths are mostly located in the south-

ern part of South America (∼ 12 000 km). Other regions with

relatively long connections are found in Pacific northwest,

northcentral, Colorado River, and northeastern regions of the

USA, southern Africa, and eastern Australia. Interestingly,

the Middle East region is mostly characterized by connection

lengths less than 5000 km; thus, the supernodes in that region

are dominated by local connections. The connection length

patterns observed here support the previous discussions in

the context of teleconnection and forecasting potential. Im-

portantly, the connection length map can help evaluate the

influence of teleconnection on TWS for a particular region.

The average nodal connection length map constructed us-

ing GLDAS data suggests much wider connections, although

most are local. Again this can be attributed to model parame-

terization schemes, forcing resolution, and spatial correlation

constraints, as discussed before.

The probability distribution of the average connection

length, Li , is shown in Fig. 8. Most nodes in the GRACE net-

work are dominated by short-range edges with lengths less

than 2000 km, although several other smaller modes appear
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Figure 7. Map of average node connection lengths derived based

on (a) GRACE and (b) GLDAS.

in the 4000–6000, 6000–8000, and 8000–10 000 km ranges.

In contrast, the GLDAS network shows a weaker local con-

nection mode in < 2000 km range, but a wider and more

persistent second mode in 4000–6000 km. Interestingly, the

two modes of GLDAS coincide with those of GRACE. The

characteristic path length (L) is 2300 km for GRACE and

4000 km for GLDAS, respectively.

5 Summary and conclusions

In this work, the complex network theory is applied to an-

alyzing spatial connection patterns in TWS. A comparative

study is conducted using two global TWS data sets derived

from GRACE and GLDAS, respectively, with an empha-

sis on interannual variability. Both data sets are large and

have more than 100 million potential connections. An edge-

density method is adopted to define an appropriate network

pruning threshold. The constructed networks are further an-

alyzed using the degree of centrality and connection length

measures.

Our results show that complex networks and GRACE

TWSA can be used to identify global TWSA hotspots or su-

pernode regions. The area-weighted connectivity is a local

measure that reveals nodes with a large number of connec-

tions (edges), whereas the connection length helps identify

the dominating type of connections (i.e., local connections

vs. teleconnections). In terms of connectivity, the largest

cluster of supernodes appears in the Middle East region,

while other prominent ones are found in Pacific northwest

Figure 8. Distribution of average edge lengths in GRACE and

GLDAS networks, where Li denotes the average distance between

node i and its neighbors.

and eastern USA, southern Africa, southern South Amer-

ica, and eastern Australia. In terms of connection lengths,

the Middle East region is dominated by local connections,

whereas regions such as Pacific northwest, northcentral, Col-

orado River, and northeastern regions of the USA, southern

Africa, and eastern Australia all have strong bimodal connec-

tions.

While many of the TWSA network features found here can

be explained by established climate teleconnection theories,

the TWS, as an integrated indicator of global water storage,

is unique in its own way. It shows the impact of both climate

and anthropogenic activities. Knowledge of both the strength

and type of TWS connectivity can help identify useful TWS

predictors and provide insight to further improve current land

surface models.

GLDAS outputs have been used extensively in validating

GRACE results at various scales. Less focused is the con-

sistency of spatial correlation represented by GLDAS and

GRACE data. Results from this study statistically quantify

the similarity and discrepancies between the two data sets.

In this case, the observed discrepancies may be attributed to

missing surface and groundwater components in the GLDAS

model, or to GRACE uncertainties (Syed et al., 2008; Li and

Rodell, 2015). Although data assimilation has been used to

reduce discrepancies in land surface models, the geometri-

cal, spatial connection patterns have not been used before. A

main conclusion from this work is that network connectivity

measures should be incorporated as an additional model cal-

ibration and validation criterion when developing the future

generation of GLDAS models.
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Appendix A

Figure A1. Proportion of total renewable water resources used by country (data source: Food Agricultural Organization (FAO) of the United

Nations; http://www.fao.org/nr/aquastat).

According to FAO, the proportion of total renewable wa-

ter resources withdrawn is defined as the total volume of

fresh groundwater and surface water withdrawn from their

sources for human use (in the agricultural, municipal, and in-

dustrial sectors), expressed as a percentage of the total actual

renewable water resources. The data used in Fig. A1 are com-

piled from 2005 data published by FAO http://www.fao.org/

nr/aquastat. In several cases where 2005 data are not avail-

able, 2000 data are used as best estimates.

Nonlin. Processes Geophys., 22, 433–446, 2015 www.nonlin-processes-geophys.net/22/433/2015/

http://www.fao.org/nr/aquastat
http://www.fao.org/nr/aquastat
http://www.fao.org/nr/aquastat


A. Y. Sun et al.: Global terrestrial water storage connectivity 443

Appendix B

Figure B1. Degree centrality inferred from GRACE TWSA for six river basins, based on the maximum correlation between each basin

centroid and all other cells in the grid, and within a window of [−18, 18] months.

Figure B1 shows the maximum correlations for the six

basins chosen in Fig. 2, and Fig. B2 shows the corresponding

phase lags. Recall these plots show the correlation between

each basin centroid and all other cells in the TWSA data set.

The phase lag plot (normalized by 18 months) shows that

each river basin is in phase with most cells in itself and the

immediate surrounding regions, but there can be significant

phase shifts between each river basin and other river basins.

www.nonlin-processes-geophys.net/22/433/2015/ Nonlin. Processes Geophys., 22, 433–446, 2015



444 A. Y. Sun et al.: Global terrestrial water storage connectivity

Figure B2. Phase lag of maximum correlations obtained for the six river basins shown in Fig. B1 (normalized by 18).
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