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Abstract. Existing dynamic global vegetation models

(DGVMs) have a limited ability in reproducing phenol-

ogy and decadal dynamics of vegetation greenness as ob-

served by satellites. These limitations in reproducing obser-

vations reflect a poor understanding and description of the

environmental controls on phenology, which strongly influ-

ence the ability to simulate longer-term vegetation dynam-

ics, e.g. carbon allocation. Combining DGVMs with ob-

servational data sets can potentially help to revise current

modelling approaches and thus enhance the understanding

of processes that control seasonal to long-term vegetation

greenness dynamics. Here we implemented a new phenol-

ogy model within the LPJmL (Lund Potsdam Jena managed

lands) DGVM and integrated several observational data sets

to improve the ability of the model in reproducing satellite-

derived time series of vegetation greenness. Specifically, we

optimized LPJmL parameters against observational time se-

ries of the fraction of absorbed photosynthetic active radia-

tion (FAPAR), albedo and gross primary production to iden-

tify the main environmental controls for seasonal vegeta-

tion greenness dynamics. We demonstrated that LPJmL with

new phenology and optimized parameters better reproduces

seasonality, inter-annual variability and trends of vegetation

greenness. Our results indicate that soil water availability is

an important control on vegetation phenology not only in

water-limited biomes but also in boreal forests and the Arc-

tic tundra. Whereas water availability controls phenology in

water-limited ecosystems during the entire growing season,

water availability co-modulates jointly with temperature the

beginning of the growing season in boreal and Arctic regions.

Additionally, water availability contributes to better explain

decadal greening trends in the Sahel and browning trends

in boreal forests. These results emphasize the importance of

considering water availability in a new generation of phe-

nology modules in DGVMs in order to correctly reproduce

observed seasonal-to-decadal dynamics of vegetation green-

ness.

1 Introduction

The greenness of the terrestrial vegetation is directly linked

to plant productivity, surface roughness and albedo and thus

affects the climate system (Richardson et al., 2013). Veg-

etation greenness can be quantified from satellite observa-

tions for example as Normalized Difference Vegetation Index

(NDVI) (Tucker, 1979). NDVI is a remotely sensed proxy for

structural plant properties like leaf area index (LAI) (Turner

et al., 1999), green leaf biomass (Gamon et al., 1995) and

plant productivity. In particular, NDVI of green vegetation

has a linear relationship with the fraction of absorbed pho-

tosynthetic active radiation (FAPAR) (Fensholt et al., 2004;

Gamon et al., 1995; Myneni et al., 1995, 1997b; Myneni

and Williams, 1994). Satellite-derived FAPAR estimates are
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often used to estimate terrestrial photosynthesis (Beer et al.,

2010; Jung et al., 2008, 2011; Potter et al., 1999). Decadal

satellite observations of NDVI demonstrate widespread pos-

itive trends (“greening”) especially in the high-latitude re-

gions (Lucht et al., 2002; Myneni et al., 1997a; Xu et al.,

2013) but also in the Sahel, southern Africa and southern

Australia (Fensholt and Proud, 2012; de Jong et al., 2011,

2013b). Surprisingly, these trends are accompanied by nega-

tive trends (“browning”) which were observed regionally in

parts of the boreal forests of North America and Eurasia, and

in parts of eastern Africa and South America (Baird and Ver-

byla, 2012; Bi et al., 2013; de Jong et al., 2013b). Region-

ally different causes have been identified for the observed

greening and browning trends. The greening of the high lat-

itudes is supposed to be mainly induced by rising air tem-

peratures (Lucht et al., 2002; Myneni et al., 1997a; Xu et al.,

2013). Browning trends in subtropical regions were related

to changing drought conditions and land use change (Cook

and Pau, 2013; van Leeuwen et al., 2013). On the other hand,

the environmental controls on the browning of boreal forests

have been intensively investigated but no concluding or gen-

eral explanation has been found so far (Barichivich et al.,

2014; Beck et al., 2011; Beck and Goetz, 2011; Bunn et al.,

2007; Goetz et al., 2005; Piao et al., 2011; Wang et al., 2011).

Trends in vegetation greenness are often related to changes in

vegetation phenology like an earlier onset and an associated

lengthening of the growing season in mid- and high-latitude

regions (Atzberger et al., 2013; Høgda et al., 2001, 2013;

Tucker et al., 2001; Zeng et al., 2011). Changes in vegeta-

tion greenness are linked to changes in primary production

and thus affect atmospheric CO2 concentrations and the ter-

restrial carbon cycle (Barichivich et al., 2013; Keeling et al.,

1996; Myneni et al., 1997a). Additionally, vegetation green-

ness affects the climate system by influencing surface albedo.

For example, greening trends in high latitudes are associated

with decreasing surface albedo (Urban et al., 2013) which al-

ters the surface radiation budget (Loranty et al., 2011). This

can potentially further contribute to a warming of Arctic re-

gions (Chapin et al., 2005). Thus, satellite observations of

vegetation greenness demonstrate the recent interactions and

changes between terrestrial vegetation dynamics and the cli-

mate system.

Dynamic global vegetation models (DGVM) or generally

climate/carbon cycle models are used to analyse and project

the response of the terrestrial vegetation to the past, recent

and future climate variability (Prentice et al., 2007). DGVMs

can be used to explain observed trends in vegetation green-

ness (Lucht et al., 2002) or to quantify the related terrestrial

CO2 uptake. While most global models simulate an increas-

ing uptake of CO2 by the terrestrial vegetation under future

climate change scenarios, the magnitude of future changes in

land carbon uptake largely differs among models (Friedling-

stein et al., 2006; Sitch et al., 2008). The spread of land car-

bon uptake estimates among DGVMs might be partly related

to insufficient representations of vegetation phenology and

greenness (Richardson et al., 2012). Coupled climate–carbon

cycle models and uncoupled DGVMs have been compared

against 30-year satellite-derived time series of LAI (Anav et

al., 2013; Murray-Tortarolo et al., 2013; Zhu et al., 2013).

Models usually overestimate mean annual LAI in all biomes

and have a too long growing season because of a delayed

season end (Anav et al., 2013; Murray-Tortarolo et al., 2013;

Zhu et al., 2013). Additionally, most DGVMs have more pos-

itive LAI trends than the satellite-derived LAI product, i.e.

they underestimate browning trends in boreal forests while a

few DGVMs do not reproduce the general greening of the

high latitudes (Murray-Tortarolo et al., 2013). The limita-

tions of DGVMs in reproducing observed LAI or FAPAR

time series is mostly related to limited phenology routines

that often miss environmental controls on seasonal leaf de-

velopment (Kelley et al., 2013; Murray-Tortarolo et al., 2013;

Richardson et al., 2012). In conclusion, with improved mod-

elling approaches for vegetation phenology and greenness,

DGVMs can potentially more accurately reproduce the re-

cent, and project the future response of the terrestrial vegeta-

tion to climate variability.

Past studies successfully demonstrated the use of vege-

tation greenness observations to improve stand-alone phe-

nology models or to optimize phenology and productivity-

related parameters in DGVMs. The growing season index

(GSI) is an empirical phenology model that is used to es-

timate seasonal leaf developments (Jolly et al., 2005). Em-

pirical parameters of GSI have been optimized against glob-

ally distributed 10-year FAPAR and LAI time series from

MODIS to reanalyse climatic drivers for vegetation phenol-

ogy (Stöckli et al., 2008, 2011). This optimization resulted

in a good representation of temporal FAPAR and LAI dy-

namics in all major biomes except evergreen tropical forests

(Stöckli et al., 2011). Model parameters of the Biome-BGC

model were optimized against eddy covariance flux observa-

tions and NDVI time series from MODIS for poplar planta-

tions in northern Italy which resulted in a more accurate rep-

resentation of carbon fluxes and NDVI (Migliavacca et al.,

2009). The BETHY-CCDAS model was optimized against

FAPAR time series from MERIS for seven eddy covariance

sites (Knorr et al., 2010) and later for 170 land grid cells

using coarse 8 by 10◦ spatial resolution (Kaminski et al.,

2012). These studies demonstrated the improvements in sim-

ulated vegetation phenology by optimizing model parameters

against observations of vegetation greenness.

Nevertheless, spatial patterns and temporal dynamics of

vegetation greenness were not yet optimized in a DGVM

globally at a higher spatial resolution (0.5◦) and by using

long-term (30 year) satellite-derived time series of vegetation

greenness. Newly developed 30 year time series of LAI or

FAPAR from the GIMMS3g data set (Global Inventory Mod-

eling and Mapping Studies, third generation of data sets; Zhu

et al., 2013) make it possible to improve DGVMs not only

based on seasonal cycles of single years (i.e. phenology) but

additionally against decadal time series properties including
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Figure 1. Structure of the model–data integration approach for

LPJmL (LPJmL-MDI). The LPJmL model structure is highly sim-

plified.

inter-variability and trends. By integrating the GIMMS3g

FAPAR data set in a DGVM, we can potentially improve

spatial patterns and seasonal to long-term temporal dynamics

of vegetation greenness. We use the LPJmL DGVM (Lund–

Potsdam–Jena managed lands). Similar to other DGVMs,

LPJmL does not accurately reproduce the growing season

onset and seasonal amplitude of observed LAI and FA-

PAR time series, presumably because of a limited phenology

model (Kelley et al., 2013; Murray-Tortarolo et al., 2013).

Thus integrating long-term observations of FAPAR in the

LPJmL DGVM potentially requires the development of an

improved phenology scheme.

We aim to improve environmental controls on vegeta-

tion phenology and greenness in LPJmL by (1) develop-

ing a new phenology module for LPJmL, by (2) optimiz-

ing FAPAR, productivity and phenology-related parameters

of LPJmL against 30-year satellite-derived time series of FA-

PAR, against 10-year satellite-derived time series of vegeta-

tion albedo and against spatial patterns of mean annual gross

primary production (GPP) from a data-oriented estimate and

by (3) integrating further data streams into LPJmL to con-

strain land cover dynamics and disturbance effects on vegeta-

tion greenness in diagnostic model simulations. This model–

data integration approach for LPJmL (LPJmL-MDI) will be

applied to identify the environmental controls on vegetation

greenness phenology.

2 Model, data sets and model–data integration

2.1 Overview

LPJmL is a dynamic global vegetation model that simulates

ecosystem processes such as carbon and water fluxes, car-

bon allocation in plants and soils, permafrost dynamics, fire

spread and behaviour and vegetation establishment and mor-

tality. We used LPJmL version 3.5. This version is based on

the original LPJ model (Sitch et al., 2003). The model has

been extended for human land use (Bondeau et al., 2007),

and agricultural water use (Rost et al., 2008). It includes a

process-oriented fire model (Thonicke et al., 2010), an im-

proved representation of surface albedo and snow coverage

(Strengers et al., 2010) and a newly implemented soil hydrol-

ogy scheme and permafrost module (Schaphoff et al., 2013).

This study focuses on the natural vegetation plant functional

types (PFTs) (Sitch et al., 2003), i.e. our model developments

and optimizations were not applied for crop functional types

(CFTs) (Bondeau et al., 2007) because crop phenology is

highly driven by human practices.

We developed a model–data integration approach for the

LPJmL DGVM (LPJmL-MDI, Fig. 1). LPJmL-MDI allows

us (1) to directly insert land cover, tree cover and burnt

area data sets in LPJmL for diagnostic model applications

(Sect. 2.4.1); (2) to optimize LPJmL model parameters

against data sets (here FAPAR, GPP, albedo; Sect. 2.4.2); and

(3) to evaluate and benchmark LPJmL simulations against

observations or observation-based data sets (Sect. 2.4.3).

Like in a prognostic mode, LPJmL was driven by climate

forcing data. Additionally, observed burnt areas were di-

rectly inserted into LPJmL to consider observed fire dynam-

ics in diagnostic model applications. For this, we directly

replaced the simulated burnt area in the LPJmL-SPITFIRE

fire module (Thonicke et al., 2010) by observed burnt ar-

eas using the approach of Lehsten et al. (2008). Thus, the

timing and location of fire spread is constrained by obser-

vations whereas fire effects on vegetation are still simu-

lated by LPJmL-SPITFIRE. We further prescribed observed

land cover and tree cover fractions to control for vegetation

dynamics in parameter optimization experiments. Observed

FAPAR and albedo time series as well as observation-based

mean annual spatial patterns of GPP were used in a joint cost

function to optimize productivity, phenology, radiation, and

albedo-related model parameters using a genetic optimiza-

tion algorithm.

LPJmL was previously evaluated against site measure-

ments of net carbon ecosystem exchange (Schaphoff et al.,

2013; Sitch et al., 2003), atmospheric CO2 fractions (Sitch et

al., 2003), soil moisture (Wagner et al., 2003), evapotranspi-

ration and runoff (Gerten et al., 2004; Schaphoff et al., 2013),

fire regimes (Thonicke et al., 2010), and permafrost distri-

bution (Schaphoff et al., 2013). Here we evaluate LPJmL

against additional and partly new available global data sets of

FAPAR (Baret et al., 2013; Zhu et al., 2013), GPP and evapo-

transpiration (ET) (Jung et al., 2011), tree cover (Townshend

et al., 2011) and biomass (Carvalhais et al., 2014; Saatchi et

al., 2011; Thurner et al., 2014).
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2.2 FAPAR and phenology in the LPJmL DGVM

2.2.1 FAPAR

FAPAR is defined as the ratio between the photosynthetic ac-

tive radiation absorbed by the green canopy (APAR) and the

total incident photosynthetic active radiation (PAR). Thus,

the total FAPAR of a grid cell is the sum of FAPAR that is

distributed among the individual PFTs:

FAPARPFT =
APARPFT

PAR
(1)

FAPARgridcell =

PFT=n∑
PFT=1

FAPARPFT, (2)

where n is the number of established PFTs in a grid cell.

The FAPAR of a PFT depends on the annual maximum fo-

liar projective cover (FPC), on the daily snow coverage in

the green canopy (Fsnow, gv), green-leaf albedo (βleaf) and the

daily phenology status (Phen):

FAPARPFT = FPCPFT× (PhenPFT− (PhenPFT

×Fsnow, gv, PFT

))
×
(
1−βleaf, PFT

)
. (3)

Thus, the temporal dynamic of FAPAR in LPJmL is af-

fected on an annual time step by changes in foliar projective

cover (FPCPFT) and on daily time steps by changes in phe-

nology (PhenPFT) and snow coverage in the green canopy

(Fsnow, gv, PFT; Supplement Fig. S1). This approach extends

the previous implementation of Sitch et al. (2003) in which

FAPAR depends only on FPC and phenology but leaf albedo

and snow effects on FAPAR were missing.

FPCPFT expresses the land cover fraction of a PFT. It is the

annual maximum fractional green canopy coverage of a PFT

and is annually calculated from crown area (CA), population

density (P ) and LAI (Sitch et al., 2003):

FPCPFT = CAPFT×PPFT×

(
1− e−kPFT×LAIPFT

)
. (4)

The last term expresses the light extinction in the canopy

which depends exponentially on LAI and the light extinc-

tion coefficient k of the Lambert–Beer law (Monsi and Saeki,

1953). The parameter k had a constant value of 0.5 for

all PFTs in the original LPJmL formulation (Sitch et al.,

2003). We changed k to a PFT-dependent parameter because

it varies for different plant species as seen from field obser-

vations (Bolstad and Gower, 1990; Kira et al., 1969; Monsi

and Saeki, 1953). Crown area and LAI are calculated based

on allocation rules and are depending on the annual biomass

increment (Sitch et al., 2003). Population density depends on

establishment and mortality processes in LPJmL (Sitch et al.,

2003).

2.2.2 Phenology

The daily phenology and green leaf status of a PFT (PhenPFT)

in LPJmL expresses the fractional cover of green leafs (from

0= no leafs to 1= full leaf cover). Thus, it represents the

temporal dynamic of the canopy greenness. We explored two

phenology models in this study: First, we were trying to op-

timize model parameters of the original phenology module

in LPJmL (LPJmL-OP, Sitch et al., 2003). Secondly, we im-

plemented a new phenology module based on the growing

season index (GSI) concept (Jolly et al., 2005), hereinafter

called LPJmL-GSI.

LPJmL-OP has three different routines for summergreen

(i.e. temperature-driven deciduous), evergreen (no seasonal

variation) and raingreen (i.e. water-driven deciduous) PFTs

(details in Supplement 1.1). Obviously, LPJmL-OP misses

important controls on phenology, like effects of light in all

PFTs or effects of water in summergreen and herbaceous

PFTs. Additionally, in herbaceous PFTs the end of the grow-

ing season is not controlled by environmental conditions but

is defined based on fixed calendar dates.

Because of the obvious limitations of LPJmL-OP, we de-

veloped the alternative LPJmL-GSI phenology module. The

growing season index (GSI) is an empirical phenology model

that multiplies limiting effects of temperature, day length and

vapour pressure deficit (VPD) to a common phenology sta-

tus (Jolly et al., 2005). We modified the GSI concept for the

specific use in LPJmL (LPJmL-GSI). We defined the phe-

nology status as a function of cold temperature, short-wave

radiation and water availability. Additionally to the original

GSI model, we added a heat stress limiting function because

it has been suggested that vegetation greenness is limited by

temperature-induced heat stress in several ecosystems (Bunn

et al., 2007; Verstraeten et al., 2006) and has been demon-

strated that heat stress reduces plant productivity also with-

out additional water stress (Jiang and Huang, 2001; Van Peer

et al., 2004; Poirier et al., 2012). Thus, the daily phenology

status of a PFT is the product of the daily cold tempera-

ture (fcold, PFT), light (flight, PFT), water (fwater, PFT) and heat

stress (fheat, PFT) limiting functions:

PhenPFT = fcold, PFT× flight, PFT

× fwater, PFT× fheat, PFT. (5)

Examples for the four functions are shown in Fig. 2.

The cold temperature limiting function at a daily time

step t is defined as

f tcold, PFT = f
t−1
cold, PFT

+

(
1

1+ e−slcold,PFT×(T−basecold, PFT)
− f t−1

cold, PFT

)
× τcold, PFT, (6)

where slcold, PFT and basecold, PFT are PFT-dependent slope

and inflection point parameters of a logistic function based

on mean daily air temperature T (◦C). The parameter

τcold, PFT is the change rate parameter based on the differ-

ence between the actual predicted limiting function value and

the previous-day cold temperature limiting function value.
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Figure 2. Examples of the cold temperature, heat stress, light and

water limiting functions for phenology in LPJmL-GSI. Depending

on the chosen parameters the functions have different shapes for

each PFT.

This parameter introduces a temporal autocorrelation in the

phenology status and avoids abrupt phenological changes be-

cause of changing weather conditions.

The light-limiting function was implemented accordingly:

f tlight, PFT = f
t−1
light, PFT

+

(
1

1+ e−sllight, PFT×(SW−baselight, PFT)
− f t−1

light, PFT

)
× τlight, PFT, (7)

where sllight, PFT and baselight, PFT are the PFT-dependent

slope and inflection point parameters of a logistic function

based on daily shortwave downward radiation SW (W m−2).

The parameter τlight, PFT is the temporal change rate for the

light-limiting function.

The water-limiting function fwater, PFT depends on the

daily water availability W ( %) in LPJmL:

f twater, PFT = f
t−1
water, PFT

+

(
1

1+ e−slwater, PFT×(W−basewater, PFT)
− f t−1

water, PFT

)
× τwater, PFT, (8)

where slwater, PFT and basewater, PFT are the PFT-dependent

slope and inflection point parameters of a logistic function

based on daily water availability. W is a ratio between wa-

ter supply from soil moisture and atmospheric water de-

mand (Supplement 1.2) (Gerten et al., 2004). The parameter

τwater, PFT is the temporal change rate for the water-limiting

function.

The heat stress limiting function is defined as the cold-

temperature limiting function based on daily air temperature

but with a negative slope parameter:

f theat, PFT = f
t−1
heat, PFT

+

(
1

1+ eslheat, PFT×(T−baseheat, PFT)
− f t−1

heat, PFT

)
× τheat, PFT, (9)

where slheat, PFT and baseheat, PFT are the PFT-dependent

slope and inflection point parameters of a logistic function

based on T . The parameter τheat, PFT is the temporal change

rate for the heat limiting function.

Besides the additional use of the heat stress limiting func-

tion, LPJmL-GSI has important differences to the original

GSI phenology model (Jolly et al., 2005). We made the water

limiting function dependent on water availability. VPD has

been used instead in the original GSI phenology model. Nev-

ertheless, it has been shown that phenology is more driven

by soil moisture and plant available water than by atmo-

spheric water demand especially in Mediterranean and grass-

land ecosystems (Archibald and Scholes, 2007; Kramer et

al., 2000; Liu et al., 2013; Yuan et al., 2007) and that GSI

performed better when using a soil moisture limiting func-

tion instead of the VPD limiting function (Migliavacca et al.,

2011). With the implementation of the water limiting func-

tion in LPJmL-GSI, phenology depends not only on atmo-

spheric water demand as in the original GSI model but also

on water supply from soil moisture. Additionally, the soil

moisture can be modulated through seasonal freezing and

thawing in permafrost soils according to the permafrost rou-

tines in LPJmL (Schaphoff et al., 2013). Another important

difference to the original GSI phenology model is the use of

logistic functions instead of stepwise linear functions with

fixed thresholds because smooth functions are generally eas-

ier to optimize than functions with abrupt thresholds and po-

tentially better represent biological processes. A moving av-

erage of 21 days has been used in the original GSI model to

create smooth phenological cycles and to avoid abrupt phe-

nology changes because of daily weather variability (Jolly et

al., 2005). It has been shown that PFT- and limiting function-

dependent time-averaging parameters are needed instead of

one single time averaging parameter (Stöckli et al., 2011).

We implemented change rate parameters τcold, τlight, τwater

and τheat that are PFT- and limiting function-dependent in-

stead of moving average window lengths because LPJmL

cannot use the same running window time-averaging ap-

proach as a prognostic model.

www.biogeosciences.net/11/7025/2014/ Biogeosciences, 11, 7025–7050, 2014
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2.3 Data sets

2.3.1 Data sets for parameter optimization:

FAPAR, albedo and GPP

We used FAPAR, albedo and GPP data sets to optimize phe-

nology, FAPAR, productivity and vegetation albedo-related

parameters in LPJmL (Fig. 2). We require long-term FAPAR

data sets to improve vegetation greenness in LPJmL on sea-

sonal to decadal timescales. Two recently developed data sets

provide 30-year time series of FAPAR. The Geoland2 BioPar

(GEOV1) FAPAR data set (Baret et al., 2013) (hereinafter

called GL2 FAPAR) and the GIMMS3g FAPAR (Zhu et al.,

2013) data sets were used in this study.

GL2 FAPAR is defined as the black-sky green canopy FA-

PAR at 10:15 solar time and has been produced based on

SPOT VGT (1999–2012) and AVHRR (1981–2000) obser-

vations (Baret et al., 2013). The GL2 FAPAR data set has

a temporal resolution of 10 days and a spatial resolution of

0.05◦ for the AVHRR-period and of 1/112◦ for the SPOT

VGT period. GIMMS3g FAPAR corresponds to black-sky

FAPAR at 10:35 solar time and has been produced based on

the GIMMS3g NDVI data set (Pinzon and Tucker, 2014; Zhu

et al., 2013). GIMMS3g FAPAR has a 15-day temporal res-

olution and a 1/12◦ spatial resolution and covers July 1981

to December 2011. We excluded in both FAPAR data sets

observations that were flagged as contaminated by snow,

aerosols or clouds. Additionally, we excluded FAPAR ob-

servations for months with temperatures < 0 ◦C to exclude

potential remaining distortions of snow cover. Both data sets

were aggregated to a 0.5◦ spatial and monthly temporal reso-

lution to be comparable with LPJmL simulations. We found

that the GL2 AVHRR and GL2 VGT FAPAR data sets have

not been well harmonized (Supplement 2.1). Thus, we did

not use the combined GL2 VGT and AVHRR FAPAR data

set for parameter optimization and for analyses of inter-

annual variability and trends but only for analyses and eval-

uations of mean seasonal cycles and spatial patterns of FA-

PAR. The GIMMS3g FAPAR data set has no uncertainty es-

timates. Uncertainty estimates are necessary in multiple data

stream parameter optimization to weight single data streams

in the total cost function. As a workaround we estimated the

uncertainty based on monthly varying quantile regressions

to the 0.95 quantile between FAPAR and the FAPAR uncer-

tainty in the GL2 VGT data set. We applied the fitted regres-

sions to the GIMMS3g data set to estimate FAPAR uncer-

tainties (Supplement 2.2). The fit to the upper quantile pro-

vides conservative uncertainty estimates for the GIMMS3g

FAPAR data set.

We used monthly shortwave white-sky albedo time se-

ries ranging from 2000–2010 from the MODIS C5 data set

(Lucht et al., 2000; Schaaf et al., 2002) to constrain vegeta-

tion albedo parameters. Albedo observations in months with

< 5◦ C air temperature and above an albedo of 0.3 were ex-

cluded from optimization because we are optimizing only

vegetation-related albedo parameters. High albedo values at

low temperatures are probably affected by changing snow

regimes which is not within our focus of model development

and optimization. Thus we are only optimizing growing sea-

son albedo.

We used mean annual total GPP patterns from the data-

oriented MTE (model tree ensemble) GPP estimate (Jung et

al., 2011). This GPP estimate uses FLUXNET eddy covari-

ance observations together with satellite observations and cli-

mate data to upscale GPP using a machine learning approach

(Jung et al., 2011). This data set is not an observation but

a result of an empirical model. Nevertheless, evaluation and

cross-validation analyses have shown that this data set well

represents the mean annual spatial patterns and mean sea-

sonal cycles of GPP whereas it has a poor performance in

representing temporal GPP anomalies (trends and extremes)

(Jung et al., 2011). Thus, we are only using the mean an-

nual total GPP from this data set for parameter optimization

to constrain LPJmL within small biases of mean annual GPP.

We used the mean seasonal cycle from the MTE GPP product

as an independent benchmark for model evaluation.

2.3.2 Data sets for the prescription of land cover,

tree cover and burnt area

The FAPAR, albedo and GPP data sets do not presumably

contain enough information to constrain all processes that

control FAPAR dynamics – especially processes like estab-

lishment, mortality, competition between PFTs, allocation

and disturbances control FPC and thus FAPAR. The opti-

mization of parameters of these processes against appropri-

ate data streams is not feasible within this study. Thus, we

directly prescribed land and tree cover fractions as well as

burnt areas from observed data to control for some of these

processes.

To prescribe land and tree cover in LPJmL, we combined

several data sets to create observation-based maps of FPC

(Supplement 3.1). Land cover maps from remote sensing

products are not directly comparable with PFTs in global

vegetation models due to differences in classification systems

(Jung et al., 2006; Poulter et al., 2011a). PFTs in LPJmL

are defined according to biome (tropical, temperate or bo-

real), leaf type (needle-leaved, broadleaved) and phenology

type (summergreen, evergreen, rain green). We extracted the

biome information from the Köppen–Geiger climate classifi-

cation (Kottek et al., 2006) whereas leaf type and phenology

were extracted from the SYNMAP land cover map (Jung et

al., 2006). FPC was derived from MODIS tree cover (Town-

shend et al., 2011). Because LPJmL so far classified herba-

ceous vegetation according to their photosynthetic pathway

(i.e. C3, temperate herbaceous and C4, tropical herbaceous),

we further subdivided herbaceous PFTs according to biome

and introduced a polar herbaceous PFT (PoH) based on the

existing temperate herbaceous PFT (TeH) to differentiate

tundra from temperate grasslands.
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Burnt area data were prescribed directly in LPJmL

by combining three data sets, the Global Fire Emissions

Database (GFED) burnt area data set (Giglio et al., 2010), the

Alaska Large Fire Database (ALFDB) (Frames, 2012; Kasis-

chke et al., 2002) and the Canadian National Fire Database

(CNFDB) (CFS, 2010; Stocks et al., 2002). GFED provides

monthly burnt area estimates in 0.5◦ resolution from 1996–

2011. Burnt areas from the Alaska (ALFDB) and Canada

(CNFDB) fire databases were used to extend burnt area time

series before 1996 for boreal North America. Fire perime-

ter observations from 1979–1996 from ALFDB and CNFDB

were aggregated to 0.5◦× 0.5◦ gridded monthly burnt area

time series. Observations before 1979 were excluded because

fires were not reported for all provinces in Canada. Although

the CNFDB contains only fire perimeters > 200ha, in both

databases some fires are missing due to different mapping

techniques, and fire perimeters do not agree with burned area,

the integration of these data sets provides unique information

about spatial-temporal patterns of disturbances especially in

boreal ecosystems. It is necessary to simulate fire activity

also during the model spin-up as fire influences the equi-

librium between vegetation, soil and climate as well. Oth-

erwise biomass would be overestimated at the beginning of

the transient model run. For this purpose, we created artifi-

cial burnt area time series for the periods 1901–1978 (North

America) and 1901–1995 (rest of the world). For this, ob-

served annual total burnt areas from the periods 1979–2011

(North America) and 1996–2011 (rest of the world) were re-

sampled according to temperature and precipitation condi-

tions and assigned to the pre-data period in order to include

fire regimes that agree with observed fire regimes in the spin-

up of LPJmL. This approach assumes that fire regimes in the

pre-data period were not different than in the observation pe-

riod.

2.3.3 Data sets for model evaluation

LPJmL was evaluated against data sets that are independent

of the optimization and prescription data sets and against in-

dependent temporal or spatial scales of the optimization and

prescription data sets. We compared LPJmL against mean an-

nual patterns and mean seasonal cycles of ET from the MTE

estimate (Jung et al., 2011). Further, we evaluated model re-

sults against spatial patterns of biomass. Ecosystem biomass

estimates were taken from satellite-derived forest biomass

maps for the tropics (Saatchi et al., 2011) and for the tem-

perate and boreal forests (Thurner et al., 2014) including an

estimation of herbaceous biomass (Carvalhais et al., 2014).

Additionally, we evaluated LPJmL against independent tem-

poral and spatial scales of the integration data (mean seasonal

cycle of GPP, tree cover, inter-annual variability and trends of

FAPAR). We were using tree cover from MODIS to evaluate

LPJmL model runs with dynamic vegetation.

2.3.4 Climate forcing data and model spin-up

LPJmL was driven by observed monthly temperature and

precipitation data from the CRU TS3.1 data set ranging from

1901–2011 (Harris et al., 2013) as well as by monthly short-

wave downward radiation and long-wave net radiation re-

analysis data from ERA-Interim (Dee et al., 2011).

LPJmL needs a model spin-up to establish PFTs and to

bring vegetation and soil carbon pools into equilibrium. The

spin-up was performed according to the standard LPJmL

modelling protocol (Schaphoff et al., 2013; Thonicke et al.,

2010): LPJmL was run for 5000 years by repeating the cli-

mate data from 1900–1930. After the spin-up model run,

the transient model run was restarted from the spin-up con-

ditions in 1901 and LPJmL was run for the period 1901–

2011. Model results were analysed for the observation period

(1982–2011).

For model optimization experiments we used a different

spin-up scheme because the spin-up is computation time de-

manding and many model runs are needed during optimiza-

tion experiments. As in the standard modelling protocol, we

firstly spin-up the model for 5000 years by repeating the cli-

mate from 1901–1930. Secondly, a transient model run was

restarted from the spin-up conditions in 1901 and was per-

formed for the period 1901–1979. Thirdly, each optimiza-

tion experiment was restarted from the conditions in 1979

and a second spin-up for 100 years by recycling the climate

from 1979–1988 was performed. The transient model run

was restarted from the conditions of the second spin-up and

simulated for the period 1979–2011. This second spin-up is

needed to bring the vegetation into a new equilibrium which

can be caused by a new parameter combination during op-

timization. From visual analyses of model results, we found

that a spin-up time of 100 years for the second spin-up was

enough to eliminate trends in FAPAR and GPP that resulted

from other equilibrium conditions.

2.4 Model–data integration

2.4.1 Prescription of land and tree cover

Land cover is expressed as FPC in LPJmL. We used the

observation-based FPC data set to prescribe land and tree

cover in LPJmL (Sect. 2.3.2, Supplement 3.1). The presence

of a PFT in a grid cell depends on establishment and mor-

tality in LPJmL (Sitch et al., 2003). A PFT establishes in a

grid cell if the climate is within the bioclimatic limits of the

PFT for establishment and survival. On the other hand, a PFT

dies in a grid cell if the climate is no longer suitable for the

PFT. Additionally, mortality occurs because of heat stress,

low productivity, competition among PFTs for light, and be-

cause of fire disturbance (Sitch et al., 2003; Thonicke et al.,

2010).

FPC is the major variable that contributes to inter-

annual variability of FAPAR in LPJmL despite the daily
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phenological status. Thus fixing FPC to the observed value

is not a desired solution to prescribe land cover in LPJmL.

Fixing FPC would neglect mortality effects on land cover

but would also permit the simulation of post-fire succes-

sion trajectories. Consequently, we prescribed land cover in

LPJmL using a hybrid diagnostic-dynamic approach. In this

approach we prescribed the annual maximum FPC in LPJmL

similar to previous approaches (Poulter et al., 2011b). Firstly,

we switched off the effects of bioclimatic limits on establish-

ment and mortality. Only these PFTs were allowed to estab-

lish in a grid cell that occurred in the observed land cover

data set. Vegetation growth depends on the annual biomass

increment and allocation rules in LPJmL. This leads to an

extension of FPC of each PFT. We limited a further expan-

sion of FPC if the simulated FPC exceeded the observed FPC

by replacing the simulated FPC with the observed FPC (pre-

scribed maximum FPC). Consequently, the simulated FPC

can be lower than the observed FPC because the PFT is

still growing or because the FPC was reduced due to fire,

heat stress or low productivity. For herbaceous PFTs we only

reduced the FPC if the observed total fractional vegetation

cover in a grid cell was exceeded. This allowed herbaceous

PFTs to replace tree PFTs if the FPC of trees was reduced due

to fire or other mortality effects in the model. With this ap-

proach a prescription of land cover can be achieved in LPJmL

which well represents observed PFT distributions (Supple-

ment 3.2) but still allows for main processes of dynamic veg-

etation.

2.4.2 Parameter optimization

Photosynthesis, albedo, FAPAR and phenology-related

model parameters of LPJmL were optimized against ob-

served FAPAR and albedo satellite observations and data-

oriented estimates of GPP. A description of all parameters

including parameter values is given in Supplement 4.1. The

parameter αa is the most important parameter in LPJmL for

photosynthesis (Zaehle et al., 2005). This parameter accounts

for the amount of radiation that is absorbed at leaf level

in comparison to the total canopy. Thus, this parameter is

a replacement for a more enhanced model formulation for

canopy structure and leaf clumping. We used this parameter

to adjust biases in GPP. The PFT-dependent leaf, stem and lit-

ter albedo parameters (βleaf, βstem and βlitter) are mostly sen-

sitive for model simulations of albedo. The parameter βleaf

affects additionally the maximum FAPAR of a PFT. The light

extinction coefficient k controls the FPC of a PFT and thus

affects mainly land cover, maximum FAPAR and the avail-

able radiation for photosynthesis. All other parameters that

were considered in optimization experiments are the param-

eters of the LPJmL-OP and LPJmL-GSI phenology modules.

These parameters contribute mainly to seasonal variations in

FAPAR. Some parameters were excluded from optimization

experiments that were identified as insensitive to GPP and

FAPAR simulations in PFTs. The temporal change rate pa-

rameters τcold, τlight, τheat and τwater are insensitive in most

PFTs because of the monthly temporal resolution of the cli-

mate forcing data used.

The optimization of model parameters was performed

by minimizing a cost function between model simulations

and observations using a combined genetic and gradient-

based optimization algorithm (GENOUD, genetic optimiza-

tion using derivatives, Mebane and Sekhon, 2011, see Sup-

plement 4.2 for details). The cost function J of LPJmL for

a single model grid cell (gc) depends on the scaled model

parameter vector d (d = proposed parameter value/prior pa-

rameter value) and is the sum of square error (SSE) between

model simulation and observation weighted by the number

of observations (nobs) for each data stream (DS):

J (d)gc =

DS=n∑
DS=1

=
SSEDS(d)

nobsDS

. (10)

The SSE for a single data stream is calculated from the

LPJmL simulation of this data stream (xLPJmL) and the corre-

sponding observed values (xobs) weighted by the uncertainty

of the observations (xobsunc) for each time step t :

SSE(d)=

t=n∑
t=1

(
xLPJmL, t (d ×p0)− xobs, t

)2
x2

obsunc, t

, (11)

where p0 are LPJmL prior parameters. That means that the

minimization of the cost function J is based on scalars of

LPJmL parameters relative to the prior parameter values.

Different model optimization experiments were performed

for individual grid cell and for multiple grid cells of the same

PFT for LPJmL-OP as well as for LPJmL-GSI (Table 1). In

the grid-cell-based optimization experiments model param-

eters of the established target tree PFT and the established

herbaceous PFT were optimized at the same time. The pur-

pose of grid cell level optimization experiments was to ex-

plore the variability of parameters within different regions

and PFTs. In the PFT level optimization experiments the cost

of LPJmL was calculated as the sum of the cost for each grid

cell weighted by the grid cell area A:

J (d)PFT =

gc=n∑
gc=1

J (d)gc×Agc

n∑
gc=1

Agc

. (12)

For PFT level optimizations parameters of herbaceous PFTs

were first optimized for grid cells where only the herbaceous

PFT was dominant. In a second step, the optimized parame-

ters of the herbaceous PFTs were used in the optimization of

the target tree PFT (Fig. S9). The purpose of PFT level op-

timization experiments is to derive optimized parameter sets

that can be used for one PFT in global model runs.

For grid cell as well as PFT level optimization experi-

ments, we only used grid cells that are vegetated, dominated
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Total number of grid cells used in all optimization experiments

TrBE = 237
TrBR = 88
TeNE = 107

TeBE = 63
TeBS = 60
BoNE = 241

BoBS = 101
BoNS = 111
TrH = 344

TeH = 105
PoH = 167
TrML = 0

TeML = 0

Figure 3. Map of the dominant PFT in each grid cell as derived from SYNMAP, Köppen–Geiger climate zones and MODIS VCF. Grid

cells that were used in any of the optimization experiments are shown as black crosses. Some grid cells were used in multiple optimization

experiments. Grid cells that are dominated by agriculture were not used for optimization (TrML, tropical managed lands and TeML, temperate

managed lands).

by one PFT and that are only marginally affected by agri-

cultural use or fire disturbances. These grid cells are called

candidate grid cells in the following. We randomly selected

grid cells from the set of candidate grid cells to perform grid

cell- or PFT level optimization experiments. Table 1 gives

an overview of all optimization experiments for LPJmL-OP

and LPJmL-GSI with the number of used grid cells. Grid

cells that were selected for optimization experiments are also

shown in Fig. 3. The PFT level optimization of LPJmL-OP

(OP.pft) did not result in plausible posterior parameter sets

because of structural limitations of the LPJmL-OP phenol-

ogy model for herbaceous PFTs (i.e. no water effects, cal-

endar day as end of growing season), raingreen PFT (i.e. bi-

nary phenology) and evergreen PFTs (i.e. constant phenol-

ogy) and was therefore excluded from further analysis.

Posterior parameter sensitivities, uncertainties and corre-

lations were explored by analysing the maximum likelihood

and the posterior range of each parameter as derived from all

parameter sets from the genetic optimization algorithm (Sup-

plement 4.3).

2.4.3 Model evaluation and time series analysis

Global model runs of LPJmL were performed in order to

evaluate model results against the integration data, against

independent metrics of the integration data and against inde-

pendent data streams. We evaluated results from LPJmL-OP

with standard parameters (LPJmL-OP-prior), from LPJmL-

OP with optimized productivity, albedo and FAPAR parame-

ters from grid cell level optimization experiments (LPJmL-

OP-gc) and from LPJmL-GSI with optimized parameters

from PFT level optimization experiments (Table 2). We did

not use optimized phenology parameters in the LPJmL-OP-

gc model run because we were not able to derive plausi-

ble phenology parameters in optimization experiments of

LPJmL-OP. All model runs were performed with dynamic

vegetation and prescribed burnt areas.

We aggregated monthly FAPAR time series to mean an-

nual FAPAR to evaluate inter-annual variability and trends.

Mean annual FAPAR time series were averaged from all

monthly values with mean monthly air temperatures > 0 ◦C

to exclude potential remaining effects of snow in the ob-

served FAPAR time series. Trends in mean annual FAPAR

time series and trend breakpoints were computed using the

“greenbrown” package for the R software (Forkel et al.,

2013). In this implementation, trends are computed by fit-

ting piece-wise linear trends to the annual FAPAR time se-

ries using ordinary least squares regression. The significance

of trends was computed using the Mann–Kendall trend test

(Kendall, 1975; Mann, 1945).
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Table 1. Overview of optimization experiments with information sources for prior and posterior parameter sets. Parameter values and prior

parameter ranges for each parameter set are listed in the Supplement 4.1.

Experiment Description Number of randomly

selected grid cells

Prior parameter set and sources Posterior parameter set

OP.prior Parameters or model results of

LPJmL-OP with standard param-

eters

– Table S2

Sitch et al. (2003): αa, k, ramp, aphenmin,

aphenmax, Wscalmin

Strengers et al. (2010): sfc and albedo pa-

rameters (partly estimated from MODIS

albedo)

–

OP.gc Optimization of single grid cells

of LPJmL-OP.

530 in total

TrBE 66, TrBR 51, TeNE 46,

TeBE 32, TeBS 32, BoNE 68,

BoBS 40, BoNS 49, TeH 66, TrH

80

Table S2

Parameters as in OP.prior

One optimized parameter set per

grid cell. Median-averaged values

for PFTs (Table S3)

OP.pft (results not shown) Optimization of multiple grid of

LPJmL-OP. Multiple grid cells of

the same dominant PFT were op-

timized at the same time.

673 in total

TrBE 50, TrBR 80, TeNE 50,

TeBE 50, TeBS 80, BoNE 50,

BoBS 80, BoNS 158, TeH 50,

TrH 25

Median-averaged values for PFTs from

posterior values of OP.gc (Table S3)

– (No useful posterior parameter

sets were found)

GSI.prior Parameters or model results of

LPJmL-GSI with standard pa-

rameters.

– Table S4

OP.gc: αa, k, sfc, βleaf, βlitter, and βstem

Stöckli et al. (2011): parameters for cold

and light limiting functions derived from

fitting logistic functions to stepwise func-

tions as reported in Stöckli et al. (2011)

–

GSI.gc Optimization of single grid cells

of LPJmL-GSI.

348 in total

TrBE 33, TrBR 33, TeNE 32,

TeBE 22, TeBS 43, BoNE 30,

BoBS 41, BoNS 30, TeH 46, TrH

38

Parameters as in GSI.prior (Table S4) One optimized parameter set per

grid cell.

GSI.pft Optimization of multiple grid of

LPJmL-GSI. Multiple grid cells

of the same dominant PFT were

optimized at the same time.

500 in total

TrBE 30, TrBR 30, TeNE 30,

TeBE 30, TeBS 30, BoNE 50,

BoBS 30, BoNS 60, TeH 70, TrH

70, PoH 70

Parameters as in GSI.prior (Table S4) Table S5 (one optimized parameter

set per PFT)

3 Results and discussion

3.1 Parameter optimization

3.1.1 Performance of phenology models

The newly developed LPJmL-GSI phenology model resulted

in significantly higher correlations with monthly GIMMS3g

FAPAR than LPJmL-OP in all PFTs except in the tropi-

cal broadleaved evergreen (TrBE) and boreal broadleaved

summergreen (BoBS) PFTs (Fig. 4). LPJmL-OP with prior

parameters had high correlations with monthly GIMMS3g

FAPAR in broadleaved summergreen PFTs (TeBS median

r = 0.87, BoBS median r = 0.92) and medium correlations

in boreal needle-leaved PFTs (BoNE median r = 0.53, BoNS

median r = 0.6). In all other PFTs, LPJmL-OP had low cor-

relations with monthly GIMMS3g FAPAR. The correlation

against monthly GIMMS3g FAPAR did not significantly im-

prove in all PFTs after grid cell level optimization exper-

iments of LPJmL-OP (Fig. 4). The use of the newly de-

veloped LPJmL-GSI phenology model already significantly

improved the correlation with monthly GIMMS3g FAPAR

in all PFTs except in the temperate herbaceous (TeH) and

BoBS PFTs. LPJmL-GSI had significantly higher correla-

tions with monthly GIMMS3g FAPAR after grid cell level

optimization experiments in the TrBR, TeNE, TeBS, TeH,

BoBS and BoNS PFTs. After PFT level optimization experi-

ments, LPJmL-GSI had median correlation coefficients> 0.5

in all PFTs except in broadleaved evergreen PFTs (TrBE,

TeBE). These results prove that the raingreen, evergreen and

herbaceous phenology schemes of LPJmL-OP were not able

to reproduce temporal FAPAR dynamics despite the attempt

of parameter optimization and that LPJmL-GSI can repro-

duce seasonal FAPAR dynamics in most PFTs.

The low correlation coefficients between LPJmL-GSI

and GIMMS3g FAPAR after optimization experiments in

broadleaved evergreen PFTs (TrBE, TeBE) might be caused

by the specific properties of the FAPAR data set in these

PFTs. GIMMS3g FAPAR does not have a clear seasonal cy-

cle but a high short-term variability in broadleaved evergreen

forests. These regions are often covered by clouds that inhibit

continuous optical satellite observations. The high short-term

variability results ultimately in low correlation coefficients

between both LPJmL versions (LPJmL-OP and LPJmL-GSI)

and GIMMS3g FAPAR time series. In temperate broadleaved

evergreen forests, the GIMMS3g FAPAR data set might have

a wrong seasonality. In these regions, the mean seasonal FA-

PAR cycles from the GIMMS3g and GL2 VGT FAPAR data

sets are anti-correlated and FAPAR from LPJmL-GSI agrees
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Figure 4. Distribution of the correlation coefficient between monthly LPJmL and GIMMS3g FAPAR (1982–2011) for several grid cells in

prior model runs and optimization experiments grouped by plant functional types and biomes. Correlation coefficient for LPJmL-OP with

default parameters (a, OP.prior), after grid cell level optimizations (b, OP.gc); cost for LPJmL-GSI with prior parameters (c, GSI.prior),

after grid cell level optimizations (d, GSI.gc) and after PFT level optimizations (e, GSI.pft). Biomes are Tr (tropical), Te (temperate) and Bo

(boreal/polar). Each distribution is plotted according to usual boxplot statistics. The point symbols indicate the plant functional type. The

significance flag on top of each distribution shows if a distribution is significant different (p ≤ 0.01) to the corresponding distribution of

the same PFT in another optimization experiment. The significance is based on the Wilcoxon rank-sum test. For example “acd” indicates a

significant difference to the main categories (a) (OP.prior), (c) (GSI.prior) and (d) (GSI.gc) but no significant difference to (b) (OP.gc) and

(e) (GSI.pft).

Table 2. Overview of global model runs that were used in this study for model evaluation.

Model run Phenology model Parameter set Further settings

LPJmL-OP-prior original phenology LPJmL standard parameters as in

the OP.prior experiment (Table

S2)

dynamic vegetation/no pre-

scribed land cover, prescribed

agricultural land use, prescribed

observed burnt area

LPJmL-OP-gc original phenology Optimized productivity, FAPAR

and albedo parameters from the

OP.gc optimization experiment,

but original phenology parame-

ters as in the OP.prior experiment

(Table S3)

LPJmL-GSI GSI-based phenology Parameters from the GSI.pft opti-

mization experiment (Table S5)

better with the GL2 VGT data set. Because of these reasons,

we did not expect to improve seasonal FAPAR dynamics in

broadleaved evergreen forests with the current model–data

integration setup.

All optimization experiments of LPJmL-OP and LPJmL-

GSI resulted in a significant reduction of the cost in com-

parison to the respective prior models (Supplement 4.4,

Fig. S10). Nevertheless, the prior parameter set of LPJmL-

GSI resulted already in a significant lower cost than the grid

cell level optimized parameter sets of LPJmL-OP in tropi-

cal and polar herbaceous PFTs, and in temperate broadleaved

summergreen and boreal needle-leaved summergreen PFTs.

The reduction of the overall cost was in all model opti-

mization experiments usually associated with a significant

reduction of the annual GPP bias (Fig. S11). LPJmL-OP

with prior parameters underestimated mean annual GPP

in the tropical broadleaved evergreen PFT and overesti-

mated mean annual GPP in all other PFTs. Grid cell level
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optimization experiments of LPJmL-OP resulted in a signif-

icant reduction of the GPP bias in all PFTs except in the

polar herbaceous PFT (PoH). We were not able to remove

the GPP bias and to reduce the cost of LPJmL-OP and of

LPJmL-GSI in the PoH PFT in optimization experiments be-

cause of inconsistencies between the FAPAR and GPP data

sets or in the LPJmL formulation. LPJmL was not able to

sustain the relatively high peak FAPAR in tundra regions as

seen in the GIMMS3g data set given the low mean annual

GPP of the MTE data set (Supplement 4.4). These inconsis-

tencies might be related to higher uncertainties of the GPP

and FAPAR data sets in tundra regions where the MTE GPP

data set is not covered by many eddy covariance measure-

ment sites, and where satellite-based FAPAR observations

are affected from high sun zenith angles (Tao et al., 2009;

Walter-Shea et al., 1998). On the other hand, dominant tun-

dra plant communities like mosses and lichen are not repre-

sented in LPJmL (Supplement 4.4). All model optimizations

experiments kept growing season albedo within reasonable

ranges in comparison to MODIS albedo (Fig. S12). These

results demonstrate an improved performance of optimized

model parameter sets over prior model parameter sets and of

LPJmL-GSI over LPJmL-OP regarding a cost that is defined

based on 30 years of monthly FAPAR, mean annual GPP and

10 years of monthly vegetation albedo.

3.1.2 Parameter sensitivities and uncertainties

The uncertainty of productivity and albedo-related parame-

ters was reduced after optimization of LPJmL-GSI in most

PFTs while the reduction of the uncertainty of phenology-

related parameters depended often on plant functional type

(Fig. 5). Prior and posterior parameter values from each opti-

mization experiment are listed in the Supplement (Tables S2

to S5).

The parameter αa (absorption of light at leaf level in rela-

tion to canopy level) was sensitive within a narrow param-

eter range for all PFTs. The posterior αa parameter range

was smaller than the uniform prior range in all PFTs. In all

optimization experiments we found for the parameter αa a

gradient from high values in tropical to low values in boreal

PFTs (Fig. S13). This pattern reflects the initial overestima-

tion of mean annual GPP in temperate and boreal PFTs and

underestimation of GPP in tropical regions with the prior pa-

rameter set of LPJmL-OP. Thus, the low αa parameter val-

ues probably account for nitrogen limitation effects on pro-

ductivity in boreal forests (Vitousek and Howarth, 1991) that

are currently not considered in LPJmL. A future implemen-

tation of nitrogen limitation processes in LPJmL requires a

re-optimization of the αa parameter.

The leaf albedo parameter βleaf was sensitive in all PFTs

and the posterior βleaf parameter range was smaller than

the prior parameter range in evergreen PFTs. In these ever-

green PFTs the βleaf parameter was well constrained because

albedo satellite observations are less affected by variations in

background albedo (soil, snow) than in deciduous PFTs. In

all other PFTs the βleaf posterior parameter range was equal

the prior parameter range or the optimized parameter value

was close to a boundary of the prior parameter range. This

result indicates that the albedo routines in LPJmL should

consider variations in background albedo caused by changes

in soil properties, soil moisture, or snow conditions in order

to accurately reproduce satellite-observed albedo time series

(see discussion in Supplement 4.5). Nevertheless, the opti-

mization of the leaf albedo parameter βleaf resulted in val-

ues that differed especially between broadleaved and needle-

leaved evergreen PFTs as well as herbaceous PFTs (Fig. 5,

Fig. S14). Low leaf albedo parameters in needle-leaved ever-

green PFTs (TeNE and BoNE) and high leaf albedo parame-

ters in broadleaved summergreen and herbaceous PFTs agree

well with the patterns reported by Cescatti et al. (2012).

The light extinction coefficient k was sensitive for all PFTs

but the posterior parameter range was only in herbaceous

PFTs and in the BoBS PFT smaller than the prior param-

eter range (Fig. 5). In all PFTs this parameter had a large

spatial variability (Fig. S15). The parameter k affects mostly

the FPC and thus the maximum FAPAR. Thus, this param-

eter cannot be well constrained for tree PFTs in the current

optimization setup because the maximum FPC of trees was

prescribed from the land and tree cover data set. On the other

hand, the maximum FPC of herbaceous PFTs was not pre-

scribed from observations which resulted in narrow k pos-

terior parameter ranges for herbaceous PFTs. The parame-

ter k was optimized towards a very high value in the BoNS

PFT (k = 0.7) due to high tree mortality rates after low-

productivity years (Supplement 4.5). This parameter would

result in an overestimated PFT coverage in model runs with

dynamic vegetation. Thus, we performed a second optimiza-

tion experiment for this PFT (blue in Fig. 5) where kBoNS was

limited to 0.65. This optimization experiment resulted in sim-

ilar posterior values for the other parameters. Although the k

parameter was well constrained for the TrH, TeH and PoH

PFTs, these parameters cannot be used in the final parame-

ter set of LPJmL-GSI. In dynamic vegetation model runs, the

relatively low k parameter values for the TrH and TeH PFTs

and relatively high values for the PoH PFT would result in

an underestimation of herbaceous coverage in temperate and

tropical climates and an overestimation of herbaceous cover-

age in boreal and polar climates, respectively. Therefore, we

performed three more optimization experiments for herba-

ceous PFTs where we fixed k at 0.5 (blue in Fig. 5). These

optimization experiments resulted in similar αa parameters

but different albedo parameters and phenology parameters in

order to compensate for biases in FAPAR and albedo that

were introduced by the fixed k parameter. Thus, the high spa-

tial variability and the large uncertainty of the light extinction

coefficient k require re-addressing this parameter in a model

optimization setup with dynamic vegetation using tree and

vegetation cover data or perhaps a replacement by a better

representation of canopy architecture and radiative transfer.
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Figure 5. Uncertainty and sensitivity of LPJmL-GSI parameters derived from all individuals of genetic optimizations at PFT level. Shown

is the relationship between parameter values and the likelihood of the corresponding parameter vector. The likelihood is normalized with the

likelihood of the optimum parameter set. Only individuals with dAIC < 2 are shown. Grey areas indicate the uniform prior parameter range.

Red crosses indicate the optimum parameter value. The optimum parameter value is indicated as text in a plot if it is outside of the plotting

range. Results from two independent optimization experiments are shown for the BoNS, TrH, TeH and PoH PFTs (black and blue colours,

respectively) but not all parameters were included in both experiments. The parameter ALBEDO_LITTER in the TrBE and TeBE PFTs was

not considered in optimization experiments.

The sensitivity and posterior uncertainty of phenology-

related model parameters depended often on plant functional

type. The parameter basecold which controls the effect of cold

temperature on phenology was sensitive in all PFTs except

the TrBE and TrH PFTs. The posterior parameter range was

smaller than the prior parameter range in temperate PFTs

(TeNE, TeBS and TeH). The parameter baseheat which con-

trols the effect of heat stress on phenology was sensitive in

TrBR, TrH, TeH, BoNE and BoNS PFTs while in other PFTs

this parameter was only sensitive towards the boundaries of

the prior parameter range. Nevertheless, the posterior param-

eter range was only smaller than the prior parameter range

in TrBR and TrH PFTs. The parameter baselight was sensi-

tive in temperate and boreal PFTs. In tropical PFTs this pa-

rameter is only sensitive above a certain threshold (i.e. 60

W m−2 for TrBE and 100 W m−2 for TrBR). The parameter

basewater was sensitive in all PFTs. The posterior parameter

range of this parameter was smaller in all PFTs except in

TeBS, BoNE, BoBS and BoNS PFTs. Although the parame-

ter basewater had a large variability among PFTs, it was gen-

erally optimized towards higher values in PFTs that are pre-

sumably water controlled (TrBR, TeBS, TrH, TeH) and opti-

mized towards lower values in PFTs that are presumably less

water controlled (TrBE, TeNE, BoNE, BoNS, PoH). This re-

sult indicates that FAPAR of water-controlled PFTs reacts al-

ready to small decreases in water availability whereas other

PFTs react only to strong decreases in water availability. We

found no strong correlations between posterior values of the

www.biogeosciences.net/11/7025/2014/ Biogeosciences, 11, 7025–7050, 2014
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a) Monthly FAPAR b) Mean annual FAPAR 

Figure 6. Best LPJmL model runs for (a) monthly FAPAR dynamics (1982–2011, n= 360 months) and (b) time series of mean annual

FAPAR (1982–2011, n= 30 years). The best LPJmL model run has the highest correlation coefficient between simulated LPJmL FAPAR

and GIMMS3g FAPAR. If one model run is shown the correlation coefficient of this best model is significantly higher than that of the second

best model run (p ≤ 0.05, Fisher z transformation on difference in correlation). If two model runs are shown the correlation coefficients of

the first and second best model runs are not significantly different from each other (p > 0.05).

phenology-related model parameters (Fig. S16) which indi-

cates the ability to disentangle the relative effects of temper-

ature, light and water on phenology. As the basewater param-

eter was the only phenology parameter which was sensitive

in all PFTs, this indicates that water availability is the only

phenological control that acts in all PFTs.

3.2 Effects of an improved phenology module in LPJmL

3.2.1 Effects on seasonal and inter-annual

greenness dynamics

LPJmL-GSI represents better the observed spatial pat-

terns and seasonal-to-decadal temporal dynamics of vege-

tation greenness (FAPAR) than LPJmL-OP (Fig. 6, Supple-

ment 5.3). Whereas LPJmL-OP overestimated mean annual

FAPAR in many high-latitude and semi-arid regions, LPJmL-

GSI was closer to both data sets and within the uncertainty

of the GL2 VGT FAPAR data set in most regions and under

most climate conditions (Fig. S22). LPJmL-GSI still overes-

timated mean annual FAPAR in temperate dry regions, but

this overestimation was reduced in comparison to LPJmL-

OP.

We further observe a substantial improvement in LPJmL-

GSI regarding the seasonal cycles, monthly and annual dy-

namics of FAPAR as retrieved from the GIMMS3g and GL2

VGT FAPAR data sets (Fig. 6, Figs. S23–S25). Monthly FA-

PAR time series from LPJmL-GSI were significantly (p ≤

0.05) higher correlated with GIMMS3g than from LPJmL-

OP in boreal forests of eastern Siberia, in the North Amer-

ican tundra, in temperate and tropical grasslands of central

Asia, North America, Australia and especially, in the Sahel

(Fig. 6a). This is because of an improved representation of

spring onset and the end of the growing season in temper-

ate and boreal forests and in herbaceous PFTs (Fig. S24).

The highest differences between simulated and observed

mean seasonal FAPAR cycles were observed in the tem-

perate broadleaved evergreen PFT, where both model ver-

sions had opposite, although insignificant, relationships to

the GIMMS3g data sets. For this PFT, the observational con-

straints are particularly problematic, where a weak agree-

ment and opposite relationship is observed between the two

data sets (r =−0.48).

Globally, LPJmL-GSI describes better the inter-annual dy-

namics of GIMMS3g FAPAR when compared to the previ-

ous model versions (Fig. 6b). In 20 % of the land the dif-

ference to other model versions is statistically significant,

and in 40 % does not detract from the previous model ver-

sions. This improvement in inter-annual variability is es-

pecially seen in temperate and tropical dry regions, with

sparse tree cover and grassland dominated ecosystems (west-

ern United States, central Asia, the Sahel, southern Africa,

and Australia) (Fig. S25). In the Arctic, boreal and tem-

perate climates LPJmL usually shows a higher correlation

with the GIMMS3g data set than the correlation observed

between both data sets (GIMMS3g and GL2 VGT). These

results demonstrate that LPJmL-GSI can explain the inter-

annual variability of the GIMMS3g FAPAR data set espe-

cially in temperate and boreal forests and temperate and trop-

ical grasslands.

Overall, the global spatial representation of phenolog-

ical dynamics in LPJmL-GSI improves significantly over

the previous model versions from seasonal to inter-annual

timescales. Given the inclusion of water controls on pheno-

logical development, these results emphasize the importance

of water availability in explaining the mean spatial patterns

of vegetation greenness, but also the seasonal phenology as

well as inter-annual dynamics in vegetation development.
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Figure 7. Comparison of trends in mean annual FAPAR from LPJmL and from satellite data sets. Trends were computed between 1982

and 2011 as linear trends. The significance of a trend was determined using the Mann–Kendall trend test. Only significant trends slopes

(p ≤ 0.05) are displayed in each map. Spatial correlations of trend slopes (Spearman coefficient) between LPJmL and the GIMMS3g data set

are given in the map titles. Time series are showing mean annual FAPAR time series and trends spatially averaged for the regions as indicated

in the first map. The blue area in time series represents the uncertainty of the GL2 VGT FAPAR data set. Numbers in the time series plot are

correlation coefficients between mean annual FAPAR time series from GIMMS3g and from GL2 or LPJmL model runs, respectively. The

significance of a trend and of the correlation is indicated as point symbol: ∗∗∗ p ≤ 0.001, ∗∗ p ≤ 0.01, ∗ p ≤ 0.05. p ≤ 0.1.

3.2.2 Effects on trends in vegetation greenness

The role of different climate drivers underlying the green-

ing and browning trends in vegetation activity is still highly

debated and the dominant factors show a strong spatial vari-

ability (de Jong et al., 2013a). The consideration of differ-

ent environmental controls on the phenological development

in LPJmL shows a significant improvement in representing

such dynamics when compared to the previous model for-

mulations (Fig. 7).

Both LPJmL-OP and LPJmL-GSI reproduced the ob-

served greening trends in tundra regions and in boreal forests

of Siberia. In both model versions this greening is mostly

driven by annual changes in foliar projective cover and ef-

fects of temperature on spring phenology. This agrees with

observational studies that identified temperature increases as

drivers for an increasing shrub cover in tundra ecosystems

(Blok et al., 2011; Forbes et al., 2010; Myers-Smith et al.,

2011; Raynolds et al., 2013; Sturm et al., 2001) and that

found a positive association between warming, increasing

tree ring widths and NDVI greening in boreal forests of east-

ern Siberia (Berner et al., 2011, 2013).

Parts of the boreal forests in North America showed sig-

nificant browning trends in the GIMMS3g data set but a

tendency to positive trends in the GL2 data set. The sim-

ulation results from LPJmL-GSI are in agreement with

the GIMMS3g-based browning trends, rather than greening

trends. However, these model-based browning trends were

not as strong as in the GIMMS3g data set. In LPJmL-GSI

these browning trends are caused by the effects of seasonal

light and water effects on phenology, and by fire activity. In

the GIMMS3g data set these browning trends were related to

several environmental factors like fire activity (Goetz et al.,

2005), temperature-induced drought stress (Beck et al., 2011;

www.biogeosciences.net/11/7025/2014/ Biogeosciences, 11, 7025–7050, 2014
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Figure 8. Latitudinal gradients of (a) gross primary production

(GPP), (b) evapotranspiration, (c) biomass and (d) tree cover from

data-oriented estimates and from LPJmL model simulations. Gra-

dients were spatially averaged (median) from all 0.5◦ grid cells for

latitudinal bands of 1◦ width. Grey areas represent uncertainty esti-

mates for the data-oriented estimates.

Bunn and Goetz, 2006) and to snow-regulated changes in soil

water availability (Barichivich et al., 2014).

The Sahel had widespread greening trends in the

GIMMS3g FAPAR data set. Whereas LPJmL-OP simulated

browning trends, the implementation of water availability ef-

fects on phenology enabled LPJmL-GSI to reproduce the ob-

served greening trends. Increases in precipitation and rain-

use efficiency were also identified in observational studies as

the main drivers of positive trends in vegetation greenness in

the Sahel (Fensholt et al., 2013).

Overall, we observed that both LPJmL-OP and LPJmL-

GSI reproduced the greening trends in tundra, boreal and

temperate forests, although LPJmL-GSI showed a wider

agreement in the extent of browning trends in the boreal

forests of North America. Further, in the Sahel region, the

greening trends can only be reproduced through the inclusion

of water availability controls on the phenology development.

These results demonstrate that environmental controls like

light, heat stress and water availability contribute to a better

description of regional greening and browning trends in very

different bioclimatic regions of the globe. Hence, a compre-

hensive characterization of the different environmental con-

trols on phenological development is essential in performing

model-based analysis of long-term trends in vegetation activ-

ity.

3.2.3 Effects on carbon fluxes and stocks

LPJmL-GSI and LPJmL-OP-gc with optimized parameters

represented better the global patterns and mean seasonal cy-

cles of gross primary production and biomass than LPJmL

with original phenology and prior parameters (LPJmL-OP-

prior) (Fig. 8). LPJmL-OP-prior overestimated mean an-

nual GPP and biomass in most polar, boreal and temper-

ate regions. LPJmL-OP-prior underestimated mean annual

GPP but overestimated mean annual biomass in tropical

regions around the equator. These biases were reduced in

LPJmL-OP-gc and LPJmL-GSI. LPJmL generally overesti-

mated GPP also in arid regions but these biases were re-

duced after optimization in LPJmL-OP-gc and LPJmL-GSI

(Fig. S18). We also found that the mean seasonal cycle of

GPP from LPJmL-GSI agreed better with the mean seasonal

GPP cycle from the MTE estimate especially in temperate

forests and in tropical, temperate and polar grasslands (Sup-

plement 5.1, Fig. S17) although no information about the sea-

sonality of GPP was included in optimization experiments.

LPJmL-GSI still overestimated biomass in some tropical re-

gions (African Savannas, southeast Brazil, south and south-

east Asia) (Fig. S19). These regions were mainly simulated

as agricultural lands in LPJmL, i.e. as different crop func-

tional types (CFTs). The LPJmL-GSI phenology module was

not applied or optimized for agricultural regions, where the

seasonal phenological development is prescribed according

to the CFTs parameterizations from Bondeau et al. (2007).

Generally, LPJmL-GSI performed substantially better than

LPJmL-OP-prior and LPJmL-OP-gc when comparing the

global total carbon fluxes and stocks to the data-oriented esti-

mates (Supplement 5.1, Table S6). These results demonstrate

that in addition to the optimization of productivity param-

eters in LPJmL, the implementation of the new GSI-based

phenology improved estimates of spatial patterns, seasonal

dynamics, and global totals of gross primary production and

biomass.

3.2.4 Effects on forest distribution

LPJmL-GSI with dynamic vegetation better represented the

observed tree cover in high-latitude regions than LPJmL-OP-

prior and LPJmL-OP-gc (Fig. 8d). LPJmL-OP-prior highly

overestimated tree cover in boreal and Arctic regions and

simulated a too northern Arctic tree line in comparison with

tree cover from MODIS observations. Although this overes-

timation was reduced after optimization, LPJmL-OP-gc still

highly overestimated tree cover in boreal and temperate re-

gions. The occurrence of trees was shifted southwards in

LPJmL-GSI. Although LPJmL-GSI still overestimated tree

cover in boreal regions, this overestimation was much lower

than in LPJmL-OP-gc. LPJmL-OP-prior and LPJmL-OP-

gc slightly underestimated tree cover in temperate regions

around 45◦ N but this was well reproduced by LPJmL-GSI.

We found no differences in tree cover between LPJmL-OP
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and LPJmL-GSI in other parts of the world where tree cover

is highly affected from agricultural land use and thus im-

plicitly prescribed to LPJmL. These results demonstrate that

additional to the optimization of productivity parameters in

LPJmL-OP-gc, the newly developed GSI-based phenology

model and the optimized model parameters contribute to a

better representation of tree cover in high-latitude regions.

3.2.5 Effects on evapotranspiration processes

Evapotranspiration from LPJmL agreed well with the data-

oriented MTE estimates (Fig. 8b). The implementation and

optimization of the new GSI-based phenology did not affect

ET much. ET increased only in tropical rainforests around

the equator in LPJmL-GSI and LPJmL-OP-gc in comparison

to LPJmL-OP-prior because of the increased GPP in these

regions. In other regions ET remained almost unchanged.

But this does not imply that the structural improvements

in LPJmL-GSI did not affect the transpiration processes

(Figs. S20, S21). Indeed, LPJmL-GSI had lower interception

losses than LPJmL-OP in boreal forests because of the re-

duced tree cover. On the other hand this implies that simu-

lated soil evaporation was increased. Furthermore, intercep-

tion and soil evaporation had slightly shifted seasonal cy-

cles in LPJmL-GSI compared to LPJmL-OP due to the sea-

sonal differences in timing of leaf development and senes-

cence stages (Fig. S21). Consequently, small differences in

total evapotranspiration result from opposite and compen-

satory changes in interception and soil evaporation and slight

changes in transpiration fluxes in LPJmL-GSI.

3.3 Applicability and challenges of the

LPJmL-GSI phenology module

The LPJmL-GSI phenology module is part of a DGVM

that is applied for climate impact studies. In order to as-

sess how well the model performs under different climate

conditions, we additionally tested how the model perfor-

mance changes in grid cells that were not used during op-

timization (Fig. S26). We found no general decrease in

model performance with distance to the nearest grid cell

used for optimization, or under different temperature con-

ditions. Especially, no significantly lower correlations (p ≤

0.05, Wilcoxon rank-sum test, Fig. S26) were found between

simulated and observed FAPAR time series in grid cells that

were 3 to 5 ◦C warmer than the closest optimization grid cell.

From a typical perspective of space for time substitution,

this could indicate that the confidence in the simulation of

FAPAR dynamics should not detract under climate warming

scenarios of 0.3 to 4.8 ◦C (IPCC, 2014).

Nevertheless, model optimization experiments and model

evaluation indicated further needs for improvement in future

studies – for example, simulations of surface albedo could

improve through the implementation of time-varying effects

of snow conditions and surface moisture on albedo. Also, an

enhanced representation of canopy architecture and canopy

radiative transfer could reduce the large spatial variability

and parameter uncertainty found for the light extinction co-

efficient and hence improve the simulation of tree coverage

and peak FAPAR. In addition to temperature, light and water

availability, phenology also depends on other factors that are

not considered in LPJmL-GSI. Phenology is also driven by

leaf age (Caldararu et al., 2012, 2014) and nutrient availabil-

ity (Wright, 1996). These effects are neither considered in

the original GSI phenology model (Jolly et al., 2005; Stöckli

et al., 2011) nor in the LPJmL-GSI or other traditional for-

mulations. Here, the lower posterior values found for the pa-

rameter αa may be compensating for missing nitrogen limi-

tation effects on productivity in boreal forests (Vitousek and

Howarth, 1991). Thus a future implementation of nitrogen

limitation processes in LPJmL requires a re-optimization of

the αa parameter. Additionally, the current implementation

of phenology in LPJmL affects photosynthesis only through

changes in APAR. In future model developments a stronger

coupling between phenology and ecosystem carbon cycle

dynamics could be explored. For example, the LPJmL-GSI

phenology module could demand carbon for leaf develop-

ment from photosynthesis or additional storage pools on the

one hand and could trigger carbon turnover through litter-

fall on the other hand. In this case a phenology module could

partly regulate an optimal carbon gain for a canopy similar to

the approach of Caldararu et al. (2014). Nevertheless, such

an analysis needs to go beyond the approach of Caldararu

et al. (2014) and demands for additional observational con-

straints on ecosystem carbon fluxes, leaf area, biomass and

litterfall. In order to better understand couplings between leaf

phenology, changes in carbon allocation and photosynthesis

it will be of benefit to use site level eddy covariance measure-

ments from the FLUXNET network (Baldocchi et al., 2001)

together with ancillary data in ecosystem-scale model opti-

mization experiments (Carvalhais et al., 2010; Kuppel et al.,

2012; Williams et al., 2009). Thus the LPJmL-GSI phenol-

ogy module and the LPJmL model–data integration approach

can serve as a framework to further explore hypotheses of

ecosystem processes and vegetation dynamics.

We demonstrated the improved performance of LPJmL-

GSI over LPJmL-OP in representing observed carbon fluxes

and stocks, forest cover and seasonal to decadal dynam-

ics of vegetation greenness. Thus, similar approaches to

the LPJmL-GSI phenology module can be applied in other

DGVMs to improve model simulations in comparison with

observations. However, the adaptation of current results to

other models should be cautionary because the phenology

scheme of LPJmL-GSI is an empirical approach with PFT-

dependent parameters that need to be estimated. This esti-

mation is model-specific because (1) different models do not

necessarily use the same definition and set of PFTs; (2) our

parameterizations depend on model structure, e.g. different

models often use different hydrology routines; and (3) our

posterior parameters for phenology were also constrained by

www.biogeosciences.net/11/7025/2014/ Biogeosciences, 11, 7025–7050, 2014



7042 M. Forkel et al.: Identifying environmental controls on vegetation greenness phenology

using albedo and GPP data. Thus LPJmL-GSI model param-

eters cannot be easily transferred to other models. It might be

possible to use the parameters of the temperature and light

limiting functions in other models because these functions

depend uniquely on the forcing data. On the other hand, the

parameters for the water availability limiting function might

need to be re-optimized because of differences in soil mois-

ture computations. However, depending on the co-variability

between forcing variables and simulated water availability by

other models, the best parameterizations may differ from the

ones presented here. Consequently, we acknowledge the po-

tential need to optimize parameters of the LPJmL-GSI phe-

nology model in order to obtain plausible results in other

modelling structures. However, it is likely that the LPJmL-

GSI phenology model can be easily applied to other models

of the LPJ group of models (Prentice et al., 2011; Smith et

al., 2001) that are using the hydrology routines of Gerten et

al. (2004) while probably additional parameter optimization

exercise are required to adapt the model to other types of

DGVMs or ecosystem models.

3.4 Environmental controls on vegetation

greenness phenology

As the newly developed GSI-based phenology model of

LPJmL can reproduce the seasonality and monthly dynam-

ics of observed FAPAR in most biomes, it can be used to

identify environmental controls on vegetation greenness phe-

nology. The importance of phenological controls differed by

climate regions, ecosystems and season (Fig. 9). We identi-

fied environmental controls on seasonal FAPAR dynamics by

analysing the mean seasonal cycles of FAPAR, of the cold

temperature, light, water availability and heat stress limit-

ing functions for phenology from the LPJmL-GSI model run.

This analysis is comparable to previous investigations of lim-

iting factors for vegetation phenology (e.g. Jolly et al., 2005;

Caldararu et al., 2014). FAPAR seasonality in high-latitude

regions (tundra, boreal forests) was mainly controlled by

cold temperature (entire year) and light (October to Febru-

ary). We also found an important control by water availabil-

ity in February to April in the tundra and in boreal forests

of North America and eastern Siberia. This water limitation

in early spring was due to the seasonal freezing of the upper

permafrost layer in LPJmL. FAPAR seasonality in temper-

ate grasslands in western North America and central Asia

was controlled from a mixture of cold temperature (Jan-

uary to April), of water availability (May to November) and

light (November to January). FAPAR seasonality in temper-

ate forests in Europe was mainly limited by cold tempera-

ture in spring and by a combination of cold temperature and

light in autumn. Additionally, heat stress and water availabil-

ity contributed to a small reduction in summer FAPAR in

temperate and boreal forests. The FAPAR seasonality in sa-

vannas (Sahel) was limited by water availability in the en-

tire year and additionally by heat stress before the beginning

of the rain season. The FAPAR seasonality of temperate re-

gions in South America was limited by water availability in

the entire year. Cold temperature was additionally limiting

between May and September. Thus, water availability was

the only environmental factor in LPJmL-GSI that controlled

phenology globally from tropical to Arctic biomes.

The implementation of the water limiting function on phe-

nology in LPJmL-GSI resulted in unique patterns of pheno-

logical controls that were different from results reported in

similar analyses (Caldararu et al., 2014; Jolly et al., 2005).

LPJmL-GSI showed water limitation on phenology in many

subtropical and dry temperate regions (especially Mediter-

ranean, Pampas and Patagonia in South America, Mongolia,

and northern Great Plains). The original GSI model showed

mainly temperature and light limitation in these regions. In

contrast to the original GSI, our implementation considers

water limitations on phenology based on plant available wa-

ter and not on VPD (Jolly et al., 2005). As considered by

Caldararu et al. (2014), soil water availability exerts a more

direct control on phenology development, which has been

demonstrated for Mediterranean ecosystems (Kramer et al.,

2000; Richardson et al., 2013) and in dry temperate grass-

lands (Liu et al., 2013; Yuan et al., 2007).

Additionally, we identify water availability as an impor-

tant limiting function for spring phenology in boreal and

Arctic regions in LPJmL-GSI because of the seasonal freez-

ing of the upper active layer in permafrost soils. Although

no relationships between active layer depth and vegetation

greenness were found so far (Mcmichael et al., 1997), frozen

grounds limit the seasonal tree growth in boreal forests be-

cause of limited water supply and nutrient uptake (Ben-

ninghoff, 1952; Jarvis and Linder, 2000). As the seasonal

freezing and thawing of permafrost soils is to a large extent

driven by changes in air temperature, one might argue that air

temperature is enough to explain phenology dynamics in bo-

real and Arctic regions. Nevertheless, we found weak corre-

lations between posterior model parameters for the cold tem-

perature and water limiting function for phenology in PFTs

that experience strong permafrost dynamics (BoNS r = 0.2,

PoH r =−0.28) (Fig. S16). This indicates that the water and

cold temperature limiting functions in boreal and Arctic re-

gions are only weakly correlated. Indeed, we did not find a

completely synchronized temporal dynamic of the cold tem-

perature and water limiting functions for phenology (Fig. 9).

These results emphasize the ability to disentangle effects of

seasonal air temperature and soil moisture on phenology in

boreal and Arctic regions. Air temperature and soil thaw-

ing are not completely synchronized because soil tempera-

ture depends also on topography, substrate and the insulat-

ing effects of the snow, litter and vegetation cover (Jorgen-

son et al., 2010; Shur and Jorgenson, 2007; Zhang, 2005).

Soils might be still frozen if air temperature is already posi-

tive or vice versa. Also experimental studies highlighted the

role of permafrost-regulated soil moisture on phenology and

productivity in boreal and Arctic ecosystems (Natali et al.,

Biogeosciences, 11, 7025–7050, 2014 www.biogeosciences.net/11/7025/2014/
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Figure 9. Phenological controls on seasonal FAPAR dynamics. The maps are red–green–blue composites of the mean monthly values for

the water (red), light (green) and cold temperature (blue) phenology limiting function values from the LPJmL-GSI model run. White regions

in the maps are without vegetation or dominated by croplands for which the LPJmL-GSI phenology model was not applied. Time series

represent the mean seasonal cycles (January to December) (averaged over 1982–2011) of simulated and observed FAPAR and phenology

limiting function values averaged for different regions as indicated in the first map. Phenology limiting function values close to 0 indicate

a strong control by phenology limiting functions whereas values close to 1 indicate no phenological control. The correlation coefficients of

each time series with the simulated FAPAR time series are shown in each time series plot. The significance of the correlation is indicated as

point symbol (see Fig. 7 for an explanation of significance symbols).

2012; Schuur et al., 2007). It also has been observed that the

seasonal freezing and thawing in permafrost regions regu-

lates ecosystem evapotranspiration (Ohta et al., 2008) and

fire activity (Forkel et al., 2012) especially during extreme

dry years. Thus, although temperature might be enough to

explain average spatial patterns of phenology in boreal and

Arctic regions we acknowledge that variations in snow or

vegetation cover that affects soil temperature and thus mois-

ture might be important factors in explaining inter-annual

variations of land surface phenology.

The heat stress limiting function was additionally intro-

duced in LPJmL-GSI. Heat stress had no importance for sea-

sonal FAPAR dynamics in most regions except in temperate

and tropical grasslands. The heat stress function was highly

correlated with the water availability function in temperate

grasslands. This suggests that summer FAPAR is both reg-

ulated by water-induced and temperature-induced drought

conditions in temperate grasslands. In tropical grasslands,

heat stress and water availability were driving the tempo-

ral dynamics of seasonal FAPAR but asynchronously (in

www.biogeosciences.net/11/7025/2014/ Biogeosciences, 11, 7025–7050, 2014
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the Sahel). These results suggest that soil moisture needs

to be considered in observational data analyses and in other

ecosystem models as a controlling factor for vegetation phe-

nology in all biomes.

Interestingly, Caldararu et al. (2014) identify leaf age as

the dominant factor for phenology development in many per-

manent moist subtropical and tropical forests, but also in sev-

eral water-limited regions which were here identified as sea-

sonally controlled by water availability. We cannot identify a

dominant control on seasonal FAPAR dynamics in evergreen

forests, as leaf age is not explicitly simulated in LPJmL-

GSI. We acknowledge that the consideration of leaf age ef-

fects on phenology could further enhance the representation

of ecosystem processes. However, the seasonal co-variation

between LAI or FAPAR and environmental controls on phe-

nology complicates the ability to disentangle the leaf aging

signal from a temperature, light or water availability-driven

signal, especially in seasonally deciduous vegetation types,

where climate-driven models explain a significant fraction of

seasonal variability and the realized age of leafs is shorter

than a year. In addition, cloud cover contamination over

moist tropical or subtropical forests pertain usually a weak

seasonal signal and a high short-term variability, hinging on

the reliability of the seasonal signal. In particular, Morton

et al. (2014) show that seasonal changes in MODIS LAI in

the Amazon forests are linked to insufficient corrections of

the sun–sensor geometry, which challenge the representation

of vegetation phenology. However, in these tropical moist re-

gions, where we find no environmental seasonal controls, and

the realized age of oldest leafs are higher than a year, leaf age

may be an important contributor for further consideration re-

garding the above-seasonal frequency of phenology. Hence,

grasping the relevance of leaf longevity, especially in tropi-

cal perennial systems, would necessarily require ground ob-

servations of leaf development and litter fall to constrain leaf

age parameters, as well as measurements of soil water con-

tent to address the appropriateness of soil moisture effects.

4 Conclusions

We have demonstrated a major improvement of the LPJmL

dynamic global vegetation model by implementing a new

set of phenological controls on vegetation greenness and by

integrating multiple decadal satellite observations. We have

proven that the original phenology model in LPJmL is un-

able to explain temporal dynamics of FAPAR. As an alterna-

tive we implemented a new phenology model (LPJmL-GSI)

which considers effects of cold temperature, heat stress, light,

and water availability on vegetation phenology. We devel-

oped a model–data integration approach for LPJmL (LPJmL-

MDI) to (1) constrain model parameters against observa-

tions, (2) to directly integrate observed land cover fractions

and burnt area time series and (3) to evaluate LPJmL against

independent data streams. Specifically, phenology, produc-

tivity, and albedo-related model parameters of LPJmL-GSI

were optimized jointly against 30-year time series of satel-

lite observations of FAPAR, against 10-year time series of

vegetation albedo and against mean annual patterns of gross

primary production using a genetic optimization algorithm.

The new phenology model and the parameter optimization

clearly improved LPJmL model simulations. LPJmL-GSI

better reproduces observed spatial patterns of gross primary

production, tree cover, biomass and FAPAR than the original

model. LPJmL-GSI simulates global total carbon stocks and

fluxes that are closer to independent estimates than from the

original model. LPJmL-GSI better represents observed sea-

sonal, monthly, inter-annual and decadal FAPAR dynamics

than the original model. The improvements of LPJmL in rep-

resenting observed patterns and temporal dynamics of vege-

tation greenness allows assessing environmental controls on

vegetation phenology and greenness. Contrasting to previous

studies (Jolly et al., 2005; Stöckli et al., 2011), our results

indicate that soil water availability is a major control of sea-

sonal FAPAR dynamics not only in water-limited biomes but

also in boreal forests and the Arctic tundra where water avail-

ability is regulated through seasonal thawing and freezing of

the active permafrost layer. Until now the phenology of these

ecosystems was mostly considered as temperature-limited.

The consideration of the effect of soil water availability on

phenology in LPJmL improved model simulations of green-

ing trends in the Sahel and of browning trends in parts of the

boreal forests of North America. Our results demonstrate that

improved phenology models that consider seasonal effects of

water availability on a continuous canopy development are

needed in order to correctly explain seasonal to long-term

dynamics in vegetation greenness.

The Supplement related to this article is available online

at doi:10.5194/bg-11-7025-2014-supplement.
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