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Abstract

We formulate quasistatic nonlinear finite-strain viscoelasticity of rate-type as a gradient
system. Our focus is on nonlinear dissipation functionals and distances that are related
to metrics on weak diffeomorphisms and that ensure time-dependent frame-indifference
of the viscoelastic stress. In the multidimensional case we discuss which dissipation dis-
tances allow for the solution of the time-incremental problem. Because of the missing com-
pactness the limit of vanishing timesteps can only be obtained by proving some kind of
strong convergence. We show that this is possible in the one-dimensional case by using a
suitably generalized convexity in the sense of geodesic convexity of gradient flows. For a
general class of distances we derive discrete evolutionary variational inequalities and are
able to pass to the time-continuous in some case in a specific case.

1 Introduction

The equation of quasistatic nonlinear viscoelasticity of strain-rate type can be written as

div
(
DFW (x,∇u) + S(x,∇u,∇u̇)

)
= f(x), (1.1)

where u(t, x) is the deformation of the body, F = ∇u(t, x) is the deformation gradient, W is
the stored-energy density and f is a given external force (see Section 2.1 for a more detailed
discussion). In (1.1), DFW (x, F ) is the elastic part of the Piola-Kirchhoff stress tensor whereas
S(x, F, Ḟ ), depending linearly on the strain-rate∇u̇(t, x), is its viscoelastic part. In addition to
classical frame-indifference of the stored energy density, the main modeling postulates are that
the viscous stress is derived from a dissipation potential and that the stress is time-dependently
frame-indifferent.

The latter conditions means that S takes the form

S(x, F, Ḟ ) = FG(x,C, Ċ), (1.2)

whereC = F TF is the right Cauchy stress tensor andG is a symmetric matrix-valued function
(cf. [Ant04] for a more general statement about the history of motion). Condition (1.2) is quite
difficult to handle analytically due to the fact that it is not compatible with some common hypothe-
ses (e.g. monotonicity with respect to the strain-rate) on the stress (see [Dem00] and [Şen10,
Sec. 2.3]). The existence of a dissipation potentialR means that there exists a real-valued func-
tion R(F, Ḟ ) with R(x, F, Ḟ ) ≥ R(x, F, 0) = 0 such that ∂ḞR(x, F, Ḟ ) = S(x, F, Ḟ ). On
the level of R the condition of time-dependent frame indifference means that R can be written
as R = R̃(x,C, Ċ), see Section 2.1.
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The fully dynamical equation of nonlinear viscoelasticity of strain-rate type (which corresponds
to (1.1) together with the inertia term) has been well-studied by various authors such as [Dem00,
FrD97, Tve08, Ryb92, Ryb94, Pot81, Pot82] for existence and long-time behavior of solutions.
The only theory for the existence of solutions for this problem with frame-indifferent S(Dy,Dyt)
is that of Potier-Ferry [Pot81, Pot82], who established global existence and uniqueness of so-
lutions for initial data close to a smooth equilibrium for pure displacement boundary condi-
tions. Demoulini [Dem00], on the other hand, obtained a weaker notion of solutions, namely
measure-valued solutions, under assumptions on the potential for the viscoelastic part of the
stress that are not compatible with frame-indifference. Similarly, Tvedt [Tve08] proved existence
and uniqueness of weak solutions with mixed boundary conditions, but his hypothesis on uni-
form strict monotonicity of the dependence of the stress function on the strain-rate was not
compatible with frame-indifference as was shown in [Şen10]. In the one-dimensional case, one
should also mention [Daf69, Peg87, NoP91, KuH88, GMM68] for the treatment of different types
of stresses and [Wat00] where the dependence on temperature is also taken into account. A dif-
ferent approach is adopted in [BaŞ] where (1.1) is analyzed in a one-dimensional setting with a
specific viscoelastic stress and the existence of solutions are obtained as well as the asymptotic
behavior of solutions to an equilibrium state is investigated.

In this work we start from the fact that, on the formal level, equation (1.1) can be understood as
a gradient system, 0 = Du̇R(u, u̇) + Dφ(u), with respect to the energy functional

φ(u) :=

∫
Ω

W (x,∇u(x))− f(x) · u(x)dx

and the dissipation functional

R(u, u̇) =

∫
Ω

R(x,∇u(x),∇u̇(x))dx.

Guided by the modern theory of gradient flows in metric spaces (cf. [AGS05]) we propose to
consider dissipation metrics d of the form

d(u1, u2) =
(∫

Ω

D(x,∇u1(x),∇u2(x))2 dx
)1/2

where the dissipation densityD2 has to be connected toR via 1
ε2
D(x, F, F+εḞ )2 → R(x, F, Ḟ )

for ε↘ 0.

Thus, it is natural to consider the incremental minimization problems

uk minimizes u 7→ 1

2τ
d(u, uk−1)2 + φ(u), (1.3)

where τ > 0 is a small timestep. In Sections 2.3 and 2.4 we discuss natural conditions on W
and D that are physically admissible and allow for an existence theory for (1.3) and provide
some examples. However, the main difficulty lies in the limit passage for τ ↘ 0, since d and
W are of the same order (namely one space derivative), so there is no direct compactness
argument for passing to the limit. Thus, a natural approach is to look for strong convergence
results that allow us to pass to the limit in the nonlinear terms directly. For this it will be essential
that the two constitutive functions W and D work together nicely.
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Presently, the multidimensional case seems out of reach. However, even in the one-dimensional
case, to which we restrict ourselves starting from Section 3 (i.e. Ω = (0, 1)), it is productive
to follow the approach paved by the theory of metric gradient flows. We consider dissipation
distances of the form

dξ(u, v) =
(∫ 1

0

(
ξ(u′(x))−ξ(v′(x))

)2
dx
)1/2

where ξ is a differentiable and strictly increasing function. The main idea of the paper is that
the combined function Wξ(x) := W (ξ−1(y)) must have good properties, e.g. it hast to be
λ-convex.

In the 1D case, there are two different cases, namely the case of Dirichlet boundary conditions
of Neumann boundary condition:

(Dir) u(0) = 0 and u(1) = 1 (Neu) u(0) = 0 and DW (u′(1)) + S(u′(1), u̇′(1)) = 0.

The Neumann case (Neu) is much simpler than the Dirichlet case (Dir), hence we postpone it
to Section 6. There we will see that the metric admits geodesic curves while this is no longer
the case for (Dir). Thus, we have to work with generalized geodesics that do not enjoy all the
necessary properties that are needed to apply the abstract theory of metric gradient flows.
Nevertheless, in Section 4 we obtain existence results for the time-incremental minimization
problem (1.3) if ξ is given in the form ξ(z) = zα and derive a suitably generalized discrete
variational inequality (cf. Theorem 4.4).

In Section 5 we perform the limit τ → 0 by establishing strong convergence of the discrete
solutions to a solution of the metric evolutionary variational inequality, where we closely follow
the ideas in [AGS05, Sect. 4]. Unfortunately, this step only works for the square-root distance
dsq(u, v)2 =

∫ 1

0

(√
u′−
√
v′
)2

dx, which is also called the Hellinger distance in probability
theory. Finally we show that φ has a strong upper gradient |∂φ| and that all solutions of the
evolutionary variational inequality are curves of maximal slope and finally weak solutions of the
one-dimensional version of the viscoelastic problem (1.1), namely(

W ′(u′(t, x)) +
(
ξ′(u′(t, x))

)2
∂tu
′(t, x)

)′
= 0.

In the case (Dir) most steps work for general distances dξ, except for the strong convergence
where d = dsq of d(u, v) = ‖u−v‖L2 is needed, i.e. ξ(z) = zα with α = 1/2 or α = 1. In
the case (Neu)the abstract theory of metric gradient systems work directly for a large class of ξ,
see Section 6.

Finally we emphasize that our gradient-flow approach does not use any higher regularity of the
solutions than the one induced by the functional φ and the metric dξ. In particular, we can allow
for arbitrary measurable dependence of W and ξ in the material point x ∈ (0, 1). It is just for
notational convenience that we do not write this possible dependence explicitly.

2 Modeling of viscoelasticity as formal gradient system

In this section we we take a formal approach to modeling frame indifferent viscoelastic stress
in general space dimension d by assuming that all vector fields and solutions are smooth. A
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rigorous analysis will be preformed in later sections and will be restricted to the one-dimensional
case.

2.1 Energy functional and dissipation potential

We consider a bounded domain Ω ⊂ Rd for d ∈ N with Lipschitz boundary. The deformation of
the body is denoted by u : Ω→ Rd and the deformation gradient by F (x) = ∇u(x) ∈ Rd×d.
The elastic energy in the body is given via a stored-energy density (cf. [Bal77a]) W (x, F (x))
such that

φ(u) =

∫
Ω

W (x,∇u(x))dx− 〈`, u〉 with 〈`, u〉 :=

∫
Ω

f(x) · u(x)dx,

where the volume force f satisfies f ∈ L∞(Ω; Rd). With

GL+(d) = {F ∈ Rd×d | detF > 0 } and

SO(d) = {Q ∈ Rd×d |QTQ = I, detQ = 1 },

our constitutive assumptions on W : Ω× Rd×d → [0,∞] are

W ∈ C0(GL+(d)), (2.1a)

W (F ) =∞ for F ∈ Rd×d \GL+(d), (2.1b)

W (F )→∞ for |F |+ 1/| detF | → ∞, (2.1c)

W (QF ) = W (F ) for all F ∈ GL+(d) and Q ∈ SO(d), (2.1d)

W (I) = 0 and W (F ) > 0 for F 6∈ SO(d) (2.1e)

|DW (F )F T | ≤ CW (F )+C. (2.1f)

Hence, the elastic part of the stress is given in terms of the first Piola-Kirchhoff tensor T (x) =
DFW (x,∇u(x)). Viscosity is related to strain rates ∇u̇(t, x) = ∇ ∂

∂t
u(t, x), such that we

now consider time dependent deformations u : [0, T ]×Ω→ Rd. The viscous stress S ∈ Rd×d

also depends on the strain rate∇u̇(t, x) in the form S(t, x) = Ŝ(x,∇u(t, x),∇u̇(t, x)). The
equations of viscoelasticity then read

div
(

DFW (x,∇u(t, x)) + Ŝ(x,∇u(t, x),∇u̇(t, x))
)

= f(x) in [0, T ]× Ω, (2.2)

where we have to add boundary conditions, which we will mostly impose as u(t, x) = x for all
(t, x) ∈ [0, T ]× ∂Ω.

Frame indifference for the viscous stress tensor S can be formulated via Ŝ and leads to a time-
dependent version of frame indifference (cf. [Ant95] and the illuminating discussion in [Ant98]):

Ŝ(x, F, Ḟ ) = FS̃(FTF, FTḞ+ḞTF ) and S̃(C, Ċ) = S̃(C, Ċ)T, (2.3)

where C = FTF is the Cauchy stress tensor.
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A potential R = R(x, F, Ḟ ) ∈ R is called a dissipation potential for the viscous stress tensor
S if S(x, F, Ḟ ) = DḞR(x, F, Ḟ ). If S depends linearly on Ḟ , what we always assume in this
work, then the existence of R follows from classical arguments in linear irreversible thermody-
namics, see e.g. [Ant95, Ött05, Mie11]. The invariance properties (2.3) can be obtained from
general dissipation potentials R(x, F, Ḟ ) if R satisfies the invariance

∀x ∈ Ω, F ∈ GL+(d), Ḟ ∈ Rd×d, Q ∈ SO(d), A ∈ so(d) :

R(x,QF,Q(Ḟ+AF )) = R(x, F, Ḟ ),
(2.4)

where so(d) := {A ∈ Rd×d | A = −AT }.

The invariance of R can also be written as R(F, Ḟ ) = R̃(C, Ċ), which gives S̃(C, Ċ) =

2∂ĊR̃(C, Ċ) in (2.3). Typically R is given in the form R̃(x,C, Ċ) = 1
2
Ċ : V(C) : Ċ , and the

choice V(C) = ν1I + ν2C
−1 leads to

S(F, Ḟ ) = 2ν1F (FTḞ+ḞTF ) + 2ν2(Ḟ+F−TḞTF ).

Defining the global dissipation potential

R(u, u̇) =

∫
Ω

R(x,∇u(x),∇u̇(x))dx,

we can rewrite (2.2) as an abstract gradient flow in the form

0 = Du̇R(u(t), u̇(t)) + Dφ(u). (2.5)

Indeed, if we use the variational derivatives we have

Du̇R(u, ũ) = −div
(

DḞR(x,∇u(x),∇ũ(x))
)

and

Dφ(u) = −div
(

DFW (x,∇u(x))
)
− f(x).

2.2 Dissipation distances and incremental minimization problems

To construct solutions to (2.5) defined in terms of the gradient systems (φ,R) it is most ef-
ficient to use a time discretization and define suitable incremental minimization. For this pur-
pose it is useful to replace the dissipation potential R, which has the mathematical struc-
ture of a Riemannian metric R(x, F, Ḟ ) = 1

2
Ḟ : V(x, F ) : Ḟ where the fourth-order

viscosity tensor V plays the role of a Riemannian tensor on GL+(d), by a global distance
D(x, ·, ·) : GL(d)×GL+(d)→ [0,∞] which is usually defined by

D(x, F0, F1)2 = inf

{∫ 1

0

R(x, F (s), Ḟ (s))ds

∣∣∣∣F ∈ C(F0, F1)

}
,

where C(F0, F1) = {F ∈ C1([0, 1]; GL+(d) | F (0) = F0, F (1) = F1 }. For quadratic
R defined in terms of V as above, the standard theory of Riemannian manifolds shows that
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D(x, ·, ·) defines a Riemannian pseudo-distance, i.e. we have non-negativity, symmetry, and
the triangle inequality. We do not have positivity because of the invariance (2.4).

However, from the point of modeling it is much easier to postulate a metric D and calculate the
associated R, namely

RD(x, F, Ḟ ) := lim
ε→0

1

2ε2
D(x, F+εḞ , F )2. (2.6)

Recalling that D(x, F, F ) = 0 and D(x, F, F+εḞ ) = O(ε|Ḟ |) we see that 1/ε2 is the
proper scaling. The following result shows that separate frame indifference of D implies the
time-dependent frame indifference of R.

Lemma 2.1. If D satisfies the separate frame indifference

∀Q1, Q2 ∈ SO(d) ∀F1, F2 ∈ GL+(d) : D(Q1F1, Q2F2) = D(F1, F2), (2.7)

then RD satisfies the time-dependent frame indifference (2.4).

Proof. For Q1 ∈ SO(d) and A ∈ so(d) we define Q2 = Q1 exp(εA) ∈ SO(d) and consider

D(F, F+εḞ )2 = D
(
Q1F,Q1 exp(εA)(F+εḞ )

)2
. Dividing by 2ε2 and taking the limit ε →

0 (using exp(εA) = I + εA+O(ε2)) we obtain the desired result for RD.

The global dissipation distance D between two deformations u0 and u1 is defined via

D(u0, u1) =
(∫

Ω

D(x,∇u0(x),∇u1(x))2 dx
)1/2

.

The abstract incremental problem for time step τ > 0 is then given in the form

Un
τ = argmin

u

1

2τ
D(Un−1

τ , u)2 + φ(u) for n ∈ N, U0
τ = u0, (2.8)

whereUn
τ is hopefully approximating u(nτ, ·) with u being a solution of the viscoelastic problem

(2.2) with u(0) = u0.

2.3 Examples of dissipation distances

We discuss possible choices of distances D on GL+(d) which satisfy as many of the relevant
assumptions as possible. We first collect mathematically and physically desirable assumptions:

D(F,G) > 0 if FTF 6= GTG, (2.9a)

D(F,G) = D(G,F ) (2.9b)

D(F,H) ≤ D(F,G) +D(G,H), (2.9c)

D satisfies the separate frame indifference (2.7), (2.9d)

∀F : G 7→ D(F,G)2 is polyconvex (2.9e)

D(F,G)2 = Ψ(GF−1) detF with Ψ(G) ≥ 0. (2.9f)

6



Here we dropped the dependence on x ∈ Ω for notational simplicity. Conditions (2.9a) to (2.9c)
clearly state that D is a true distance, when restricted to symmetric matrices in GL+(d). This
is the best we can hope for, given the frame indifference (2.9d).

The polyconvexity condition (2.9e) is very useful to obtain the existence of solutions for the in-
cremental minimization problem (2.8), where we may even allow for non-quasi-convex behavior
in W if this is compensated by 1

2τ
D(F, ·)2, where 0 < τ � 1 is helpful, see [Ryb92, Ryb94,

FrD97] for a similar overcoming of nonconvexity in (non-frame indifferent) viscoelasticity.

Finally, condition (2.9f) is a special condition that relates to the multiplicative character of diffeo-
morphisms. For D being independent of the material point x ∈ Ω satisfying this condition we
obtain a global dissipation distance that is invariant under diffeomorphisms, namely

D(u0 ◦ v, u1 ◦ v) = D(u0, u1) (2.10)

for all diffeomorphisms v : Ω→ Ω. Indeed using the chain rule∇(uj◦v) = ∇uj(v(x))∇v(x)
the integral transformation rule with y = v(x) gives

D(u0 ◦ v, u1 ◦ v) =

∫
Ω

Ψ
(
∇u1(v(x))∇v(x)

(
∇u0(v(x))∇v(x)

)−1
)

det
(
∇u0(v(x))∇v(x)

)
dx

=

∫
Ω

Ψ
(
∇u1(y)∇u0(y)−1

)
det∇u0(y)dy = D(u0, u1).

In particular, we conclude that for diffeomorphisms u0 and u1 from Ω into itself, such D satisfy
D(u0, u1) = D(id, u1 ◦ u−1

0 ).

We remark that, if D satisfies (2.9f), then the symmetry (2.9b) is equivalent to the fact that Ψ
satisfies the inversion relation

Ψ(F ) = detF Ψ(F−1). (2.11)

Moreover, the separate frame indifference (2.9d) is now equivalent to frame indifference and
isotropy of Ψ, i.e. Ψ(Q1FQ2) = Ψ(F ) for all Q1, Q2 ∈ SO(d). We refer to [Šil03, Mie05] and
the references therein for characterizations of polyconvexity of isotropic functions.

Example 2.2. Additive distances in the 1D case. In one space dimension the frame indifference
condition (2.9d) is trivial. We obtain a distance by taking any strictly monotone function ξ :
(0,∞)→ R and let D(F,G) = |ξ(F )−ξ(G)|.
The polyconvexity condition (2.9e) reduces to convexity of G 7→ |ξ(G)− η|2 for all η ∈ im(ξ).
Considering the family ξ(G) = Gα this holds for α ∈ [1/2, 1].

Example 2.3. Multiplicative distances in the 1D case. We start from the multiplicative ansatz
(2.9f). For α + β = 1/2 the function Ψ(z) = zβ(zα−1)2 satisfies the inversion symmetry
(2.11) and hence D with

D(F,G) = (FG)β/2|Fα−Gα|
satisfies all conditions in (2.9) except possibly the triangle inequality (2.9c). The latter holds for
the case β = 0 and hence α = 1/2, which is a special case of Example 2.2.

In Corollary 3.4 we will show that the validity of the triangle inequality implies that Ψ(z) has
upper and lower linear bounds for z →∞. Hence, the case

D(F,G) = |
√
F −
√
G|
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is distinguished and, in fact, will play the central role in this work.

Example 2.4. Additive distances in higher dimensions. The simplest dissipation distance, lead-
ing to the easiest mathematical structures is D(F,G) = |F − G| and is used in [Ryb92,
Ryb94, FrD97], which obviously satisfies the distance properties (2.9a)–(2.9c) and the polycon-
vexity (2.9e), but not frame indifference (2.9d). To fulfill the latter, a natural choice is

D(F,G) = |Ξ(FTF )− Ξ(GTG)|,

where Ξ : Rd×d
>0 → Rd×d

>0 should be injective, e.g. Ξ(C) = C . However, it seems difficult to
satisfy polyconvexity for such Ξ.

Example 2.5. Multiplicative distances in higher dimensions. In higher space dimensions poly-
convexity can be satisfied most easily for dissipation distances D satisfying the ansatz (2.9f) by
choosing a polyconvex function Ψ. In analogy to Example 2.3 we let

Ψ(F ) = (detF )−β
∣∣F − (detF )α(F−1)T

∣∣2
We always have the double frame indifference because of |Q1AQ2|2 = |A|2 = trace(ATA).
Moreover, for α− β = 1/2 we also have the symmetry (2.9b) via the inversion relation (2.11).
For α = 1 and β ∈ [0, 1] we use detF (F−1)T = cof F and observe that

Ψ̃(F ) = (detF )−β
∣∣F − cof F

∣∣2
is polyconvex in any space dimension d ∈ N. Indeed, using convexity of (x, y) 7→ x2/yβ the
potential Ψ̃ is convex in (F, cof F, detF ). Thus, D defined via D(F,G)2 = Ψ̃(GF−1) detF
satisfies the polyconvexity (2.9e), but it does not satisfy the triangle inequality (2.9c).

For d = 2 we note that Ψ̃(F ) = 0 holds for all conformal F , i.e. F = λQ for λ > 0 and
Q ∈ SO(2). Restricting to incompressible elasticity, i.e. detF = detG = 1, we obtain

Dinc
d=2(F,G) = |G(cof F )T−(cof G)FT|2 and Ψ(F ) ≥ dist(F, SO(2))2.

For d ≥ 3 we have that Ψ̃(F ) = 0 implies F ∈ SO(d), i.e. the positivity (2.9a) is satisfied on
GL+(d). Moreover, we have the dissipation coercivity

Ψ̃(F ) ≥ c dist(F, SO(d))γ with γ = 2− β for F ∈ GL+(d). (2.12)

2.4 Towards a multi-dimensional existence theory

Since in the multi-dimensional case already the existence of minimizers of the incremental prob-
lem

Un
τ = argmin

u

∫
Ω

1

2τ
D(∇Un−1

τ (x),∇u(x))2 +W (x,∇u(x))− u(x) · f(x)dx, (2.13)

is a major difficulty, the polyconvexity (2.9e) of G 7→ D(F,G)2 appears unavoidable. One
may therefore need to proceed without the use of the triangle inequality, which represents an
interesting challenge.

8



Assuming also polyconvexity of W (x, ·) and additional coercivity

∃ c, C > 0 ∃p > d ∀F ∈ GL+(d) : W (x, F ) ≥ c(|F |p+|F−1|p)− C,

it is standard to obtain existence of minimizers Un
τ , cf. [Bal77b, Bal77a]. Moreover, using the

Dirichlet boundary conditions u(t, x) = x on ∂Ω, the theory of weak diffeomorphisms (cf.
[GMS98]) can be applied to conclude that the inverse mapping (Un

τ )−1 exists, and we have the
a priori estimates

‖Un
τ ‖W1,p(Ω) + ‖(Un

τ )−1‖W1,p(Ω) ≤ C∗,

where C∗ depends only on the initial condition u0. Additionally the time increments satisfy

N∑
n=1

1

τ
D(Un−1

τ , Un
τ )2 ≤ φ(u0)− φ(UN

τ ) ≤ φ(u0)− Cφ.

For the incremental mappings V n
τ = Un

τ ◦ Un−1
τ , one expects that the Vn

τ = 1
τ
(V n

τ −id) con-
verges to an Eulerian velocity field V such that the limit deformation u(t, x) satisfies ∂tu(t, x) =
V(t, u(t, x)). However, the composition invariance (2.10) ofD, the coercivity (2.12), the Dirich-
let boundary conditions together with the rigidity estimate in [FJM02] we only obtain

N∑
n=1

1

τ
‖V n

τ −id‖γW1,γ(Ω) ≤ C1

N∑
n=1

1

τ

∫
Ω

dist(∇V n
τ , SO(d))γ dx ≤ C2

N∑
n=1

1

τ
D(V n

τ , id)2 ≤ C3,

which is not enough to pass to the limit.

Here the main difficulty is thatD does not satisfy a triangle inequality, otherwise the sublevels of
φ in the set of weak diffeomorphisms could be considered as a complete metric space equipped
with the distance D. Indeed, this will be the approach in the forthcoming sections for the one-
dimensional case.

3 The setup for the one-dimensional Dirichlet case

Here we restrict to the one-dimensional case and set, without loss of generality Ω = (0, 1) ⊂
R. For the most part of our analysis we consider general true dissipation distances as described
in Example 2.2, namely

dξ(u, v) =
(∫ 1

0

(
ξ(v′(x))−ξ(u′(x))

)2
dx
)1/2

, (3.1)

where ξ will be a smooth and strictly increasing function. As special family we will consider

ξα(z) = zα with α ∈ [1/2, 1].

The case α = 1/2 plays an exceptional role, since our theory becomes most complete. We
write

dsq(u, v) =
(∫ 1

0

(√
v′(x)−

√
u′(x)

)2
dx
)1/2

.
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This distance is called the Hellinger or Hellinger-Kakutani distance in stochastics. Note that it
can be extended to all probability measures as (a, b) 7→ (

√
a−
√
b)2 is convex and asymptoti-

cally linear.

The aim of the remainder of the paper is to show that solutions obtained from the incremental
minimization problem

Un
τ ∈ argmin

u∈S

1

2τ
dξ(U

n−1
τ , u)2 + φ(u),

converge to a solution u of the one-dimensional viscoelastic problem(
DzW (x, u′(t, x)) + ξ′(u′(t, x))2∂tu

′(t, x)
)′

= 0. (3.2)

We will perform most steps of the proof for general ξ, however, at one crucial passage we need
to restrict to the case ξ = ξ1/2, i.e. dξ = dsq.

3.1 State space and energy

Throughout we use the general state space S and define additionally the subset Sp via

S := {u ∈W1,1(0, 1) | u(0) = 0, u(1) = 1, u′(x) ≥ 0 a.e. },
Sp := {u ∈ S | u ∈W1,p(0, 1) }.

The energy takes the form

φ(u) =

∫ 1

0

W (x, u′(x))− f(x)u(x)dx,

however, for notational convenience we set f ≡ 0 in the sequel and omit the dependence on
the material point x. The treatment of the general case requires only minor modifications, which
are standard.

We will always assume that W satisfies coercivity and lower semi-continuity:

W (z) ≥ c(zm1 + z−m2)− C for and z > 0 and W (z) =∞ for z ≤ 0, (3.3)

W : R→ [0,∞] is lower semicontinuous. (3.4)

Thus, the sublevels {φ ≤ M} := {u ∈ S | φ(u) ≤ M } satisfy that for each M > 0 there
exists CM such that u ∈ S satisfies

‖u‖W1,m1 (0,1) + ‖u−1‖W1,m2 (0,1) ≤ CM .

Thus, for all M ∈ R we have {φ ≤M} ⊂ Sm1 .

The following condition, which was introduced by Ball in [Bal84], is central to exploit the multi-
plicative structure via composition of the weak diffeomorphisms:

|W ′(z)z| ≤ K(W (z)+1) ∀z > 0. (3.5)

We refer to [Bal02, FrM06, MaM09] for applications of the multi-dimensional version of this
estimate in finite-strain elasticity and plasticity. The following elementary result will be needed in
Lemma 4.2.
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Lemma 3.1. If W satisfies (3.5), then we have

∀ z, w > 0 : W (wz) ≤ max{wK , w−K}
(
W (z)+1

)
− 1. (3.6)

Proof. Fixing z > 0 we set g(a) = W (eaz)+1. Then, g′(a) = eazW ′(eaz) and (3.5) implies
|g′(a)| ≤ Kg(a). Now, Grönwall’s estimate gives g(a) ≤ eK|a|g(0) which is (3.6).

3.2 Generalized geodesics for the distance dξ

Here we consider the distances

dξ with ξ(z) = zα, where α ∈ [1/2, 1].

A key point is that ξ is concave whereas z 7→ ξ(z)2 is convex. We will use this without further
notice. We choose a p ≥ 2α ≥ 1, then for u, v ∈ Sp the distance dξ(u, v) is well defined.

Given u0, u1 ∈ Sp, we define generalized geodesics s 7→ us = Uξ(s;u0, u1) via

us(x) =
ws(x)

ws(1)
with ws(x) =

∫ x

0

ξ−1
(

(1−s)ξ
(
u′0(y)

)
+ sξ

(
u′1(y)

))
dy. (3.7)

For u0, u1 ∈ Sp we see that s 7→ us is a continuous curve in (Sp, dξ) connecting u0 and
u1. The main difficulty is that the prefactor 1/ws(1), which is needed in the definition of us to
achieve us(1) = 1, depends on u0 and u1 in a nontrivial way, such that dξ(ur, us) cannot be
calculated in a simple manner. Below we will give more specific results for ξ(z) =

√
z.

To derive the variational inequality for the incremental minimizers we use that s 7→ Uξ(s;u0, u1) ∈
S is differentiable. The following result for the distance dξ strongly depends on the fact that dξ
is defined as an L2-norm, namely dξ(u, v) = ‖ξ(u′)−ξ(v′)‖L2 .

Proposition 3.2. For ξ(z) = zα with α ∈ [1/2, 1] and u, v ∈ S2α we set

Aξ(u, v) :=

∫ 1

0

(
ξ(u′)−ξ(v′)

)
u′ξ′(u′)dy and Bξ(u, v) :=

∫ 1

0

ξ(u′)−ξ(v′)
ξ′(u′)

dy. (3.8)

Then, for u0, u1, w ∈ Sp with p ≥ 2α, we have the relations

∂sU
′
ξ(s;u0, u1)(x)

∣∣
s=0

=
ξ(u′1(x))−ξ(u′0(x))

ξ′(u′0(x))
+Bξ(u0, u1)u′0(x) and (3.9)

d

ds
dξ(Uξ(s;u0, u1), w)2

∣∣
s=0

= dξ(u1, w)2 − dξ(u0, w)2 (3.10)

− dξ(u0, u1)2 + 2Aξ(u0, w)Bξ(u0, u1).

Proof. For the first relation we simply differentiate using the fact that ũs := (1−s)u′0 + su′1 ∈
L2α(0, 1), and hence 1/ξ′(ũs) ∈ L2(0, 1).
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The second relation follows by the chain rule and and the quadratic nature of the distance dξ.
Indeed, letting aj = ξ(u′j) and b = ξ(w′) we have

d
ds
dξ(us, w)2

∣∣
s=0

=

∫ 1

0

2(a0−b)ξ′(u′0)∂su
′
s

∣∣
s=0

dx

=

∫ 1

0

2(a0−b)(a1−a0)dx+ 2A(u0, w)Bξ(u0, u1)

=

∫ 1

0

(a1−w)2 − (a0−w)2 − (a1−a0)2 dx+ 2Aξ(u0, w)Bξ(u0, u1),

which gives the desired result.

3.3 1D distances derived via composition

As an alternative to distance functions of the form (3.1), we now consider distance functions d
of the form

d(u, v)2 =
∥∥ψ((v ◦ u−1)′(·))

∥∥2

2
=

∫ 1

0

ψ
(
(v ◦ u−1)′(z)

)2
dz, (3.11)

where ψ ∈ C1(0,+∞) is to be chosen. This form is motivated in particular by (2.9f).

It is quite straightforward to see that d : S ×S → [0,+∞], and we now investigate under
which conditions it is symmetric and satisfies the triangle inequality.

Lemma 3.3. Let d be defined by (3.11). Then the following statements are true:

(i) d is invariant under composition, that is,

d(u, v) = d(id, v ◦ u−1) = d(u ◦ v−1, id) ∀u, v ∈ S .

(ii) d is symmetric on W 1,1(0, 1) if and only if∣∣ψ(z)
∣∣ =
√
z
∣∣ψ(1/z)

∣∣ ∀z > 0. (3.12)

(iii) d satisfies the triangle inequality on W 1,1(0, 1) if and only if∣∣ψ(z w)
∣∣ ≤ ∣∣ψ(z)

∣∣ +
√
z
∣∣ψ(w)

∣∣ ∀ z, w > 0. (3.13)

Proof. (i): This immediately follows from the property of composition of maps that (v◦u−1)−1 =
u ◦ v−1.

(ii): Consider two homogeneous deformations u(x) = x and v(x) = z x, then (v◦u−1)′(u) =
z and (u ◦ v−1)′(v) = 1/z. The statement d(u, v) = d(v, u), written in terms of ψ, reads

d2(u, v) = ψ(z)2 = zψ(1/z)2 = d2(v, u),
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which shows that (3.12) is necessary.

Conversely, (3.12) implies that d is symmetric. Let u, v ∈ S such that ψ((v ◦ u−1)′(u)) is
integrable, then by (3.12) and the change of variables formula,

d(u, v)2 =

∫ 1

0

ψ
(
dv
du
◦ u−1

)2
du =

∫ 1

0

ψ
(
du
dv
◦ u−1

)2( dv
du
◦ u−1

)
du =

∫ 1

0

ψ
(
du
dv
◦ v−1

)2
dv.

This shows that (3.12) implies symmetry of d.

(iii): Let u(x) = x, v(x) = z x and w(x) = rzx, for any z, r > 0, then

d(u,w) =
∣∣ψ(zr)

∣∣ and d(u, v) + d(v, w) =
∣∣ψ(z)

∣∣+
√
z
∣∣ψ(r)

∣∣.
This shows that (3.13) is necessary.

To prove the converse, we can assume without loss of generality that u = x; then by (3.13), for
any v, w ∈ S we have

d(u,w) =
∥∥ψ(dw

du
◦ u−1

)∥∥
2

=
∥∥ψ([dw

dv
◦ u−1

] [
dv
du
◦ u−1

])∥∥
2

≤
∥∥ψ( dv

du
◦ u−1

)∥∥
2

+
∥∥( dv

du
◦ u−1

)1/2
ψ
(
dw
dv
◦ u−1

)∥∥
2
,

and a coordinate transformation in the second integral on the right-hand side (similar as in the
proof of (ii)) yields the triangle inequality.

As a simple consequence of the foregoing lemma we obtain upper and lower bounds on ψ. We
only give bounds for z ≥ 1; the corresponding bounds for z < 1 are obtained from (3.12). We
note in particular that the (maximal) choice ψ(z) ∝ (

√
z − 1), which corresponds to d = dsq,

again appears naturally.

Corollary 3.4. Suppose that d is a metric, ψ ∈ C1((0,+∞)), and ψ(z) = 0 if and only if
z = 1. Then, assuming without loss of generality that ψ(z) > 0 for all z > 1, there exists a
constant c > 0 such that

c(
√
z − 1) ≤ ψ(z) ≤ 2ψ′(1)(

√
z − 1) ∀z ≥ 1. (3.14)

Proof. Since ψ(z) > 0 for z > 1, (3.13) becomes

ψ(zw) ≤ ψ(z) +
√
zψ(w) ∀z, w ≥ 1.

Let w = 1 + ε for ε > 0. This implies

ψ(z(1 + ε))− ψ(z)

zε
≤ 1√

z

ψ(1 + ε)− ψ(1)

ε
, ∀ε > 0.

Taking the limit as ε→ 0 gives

ψ′(z) ≤ ψ′(1)√
z
.

Integrating this inequality yields the upper bound in (3.14).
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Now suppose, for contradiction, that the lower bound is false. Then there exist zj → ∞ such
that ψ(zj)�

√
zj , and consequently,

|ψ(1/zj)| =
ψ(zj)√
zj
→ 0 as j →∞.

This clearly contradicts the assumption that ψ(0) 6= 0.

3.4 The square-root distance

We continue to call the Hellinger distance the square-root distance

dsq(u, v) =
(∫ 1

0

(√
u′(x)−

√
v′(x)

)2
dx
)1/2

to emphasize its role in the family dξ studied in Section 3.2 as well as the composition distance
studied in Section 3.3 with ψ(z) =

√
z−1 or in Examples 2.2 and 2.3 with Ψ(z) = (

√
z−1)2.

Lemma 3.5. We have the elementary estimates

∀u, v ∈ S :
1

2
dsq(u, v)2 ≤ 1

2
‖u′−v′‖L1 ≤ dsq(u, v) ≤

√
2. (3.15)

Moreover, (S , dsq) is a complete metric space.

Proof. The first estimate follows from the simple estimate (
√
a−
√
b)2 ≤ |a−b|. For the second

estimate use
∫ 1

0
u′dx = 1 =

∫ 1

0
v′dx to obtain∫ 1

0

|u′−v′|dx =

∫ 1

0

|
√
u′−
√
v′||
√
u′+
√
v′|dx

≤ dsq(u, v)
(∫ 1

0

(
u′+2

√
u′v′+v′

)
dx
)1/2

≤ 2dsq(u, v)

and dsq(u, v)2 =
∫ 1

0
(u′−2

√
u′v′+v′)dx ≤ 2.

Since S is a closed subspace of W1,1(0, 1) and dsq dominates the norm in W1,1(0, 1), the
completeness of (S , dsq) follows.

The main advantage of the square-root distance is that the generalized geodesic curves us =
Usq(s;u0, u1) can be studied more precisely:

Usq(s;u0, u1) =
1

ws(1)

∫ x

0

(
(1−s)

√
u′0(y) + s

√
u′1(y)

)2

dy, (3.16)

where ws(1) = 1− s(1−s)dsq(u0, u1)2.

To see the form of ws(1) given above, we use u0, u1 ∈ S and find

ws(1) =
∫ 1

0

(
(1−s)

√
u′0(y) + s

√
u′1(y)

)2
dy = (1− s)2 + s2 − 2s(1−s)

∫ 1

0

√
u′0u

′
1 dy
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and use the identity

dsq(u, v)2 =
∫ 1

0

(√
u′−
√
v′
)2

dx =
∫ 1

0

(
u′−2

√
u′v′+v′

)
dx = 2− 2

∫ 1

0

√
u′v′dx. (3.17)

The next result specializes Proposition 3.2 for the case ξ =
√

, i.e. α = 1/2, and provides the
derivative of dsq along s 7→ Usq(s;u0, u1).

Proposition 3.6. For u, v, w ∈ S = S1 and A and B defined in (3.8) we have

Asq(u, v) =
1

4
dsq(u, v)2 and Bsq(u, v) = dsq(u, v)2. (3.18)

Hence, we find the relations

d

ds
dsq(Usq(s;u0, u1), w)2

∣∣
s=0

= dsq(u1, w)2 − dsq(u0, w)2

− dsq(u0, u1)2 +
1

2
dsq(u0, w)2dsq(u0, u1)2,

(3.19a)

d

ds
dsq(Usq(s;u0, u1), u0)2

∣∣
s=0

= 0, and (3.19b)

d2

ds2
dsq(Usq(s;u0, u1), u0)2

∣∣
s=0

= 2dsq(u0, u1)2 + 1
2
dsq(u0, u1)4. (3.19c)

Proof. The identities (3.18) and (3.19a) are special cases of Proposition 3.2. The identity (3.19b)
is a special case of (3.19a).

To prove (3.19c), we first note that a straightforward calculation using (3.17) shows

dsq(Usq(s;u0, u1), u0)2 = 2− 2− sdsq(u0, u1)2√
ws(1)

,

where ws(1) is given in (3.16). This expression can be explicitly differentiated and evaluated at
s = 0 to obtain (3.19c).

The next result shows that d2
sq is locally approximately 2-convex (as already suggested by

(3.19c)) along the generalized geodesics. This result relies on the L2-structure of the norm
and will be used to show strong convergence of minimizing sequences for the incremental min-
imization problems, see Proposition 4.3.

Lemma 3.7. Given u0, u1, w ∈ S the midpoint u1/2 = Usq(1/2;u0, u1) satisfies

dsq(u1/2, w)2 =
ρ

2

(
dsq(u0, w)2+dsq(u1, w)2

)
+ 2− 2ρ

where ρ =
(
1− 1

4
dsq(u0, u1)2

)−1/2 ∈ [1,
√

2).

Moreover, for all ε > 0 there exists δ > 0 such that dsq(u0, u1), dsq(u0, w), dsq(u1, v) ≤ δ
implies

dsq(u1/2, w)2 ≤ 1
2
dsq(u0, w)2 + 1

2
dsq(u1, w)2 − 2−ε

2
1
2
(1−1

2
)dsq(u0, u1)2. (3.20)

In particular, for ε = 1/2 it suffices to choose δ = 1/2.
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Proof. The general identity dsq(u1/2, w)2 follows from the definition of Usq and (3.17).

To obtain the estimate let σ = dsq(u0, u1)2 and αj = dsq(uj, w)2. Then, for σ ≤ δ ≤ 1/4 we
have ρ = (1−σ/4)−1/2 ∈ [1+σ/8, 1+σ/4]. Hence,

dsq(u1/2, w)2 ≤
(
1+σ

4

)(
α0

2
+α1

2

)
+ 2− 2

(
1+σ

8

)
= 1

2
(α0+α1)−

(
1
4
− α0

8
− α1

8

)
σ ≤ 1

2
(α0+α1)−

(
1
4
− δ2

4

)
σ,

which is the desired result for δ =
√
ε/2.

4 Time-incremental minimization problem

In this section we keep the time step τ > 0 fixed and study the existence of minimizers for the
time-incremental minimization problem

uτ = argmin
v∈Sp

1

2τ
dξ(u, v)2 + φ(v). (4.1)

By inserting the definition of dξ we have to minimize the functional

v 7→
∫ 1

0

1

2τ

(
ξ(v′(x))− ξ(u′(x))

)2
+W (x, v′(x))− f(x)v(x)dx

under the constraint v(0) = 0, v(1) = 1, and v′(x) ≥ 0 a.e. in (0, 1).

To make the calculations easier, we simplify the energy function in this and the following section
by assuming

φ(u) =
∫ 1

0
W (u′(x))dx and infz>0W (z) ≥ 0, (4.2)

i.e. we omit the x-dependence of W , and the loading 〈`, u〉 =
∫ 1

0
f(x)u(x) dx is set to

` = 0. It can be easily checked that the whole theory works in the general case as well. The
normalization W (z) ≥ 0 implies φ(u) ≥ 0 and hence the solutions uτ of (4.1) satisfy

1
2τ
dξ(u, uτ )

2 ≤ φ(u)− φ(uτ ) ≤ φ(u).

Moreover, we will derive a discrete variational inequality (DVI)λ that will allow us to pass to the
limit τ → 0+ in the next section. We recall that we do not assume convexity of the energy
density F 7→ W (F ) to allow for the modeling of phase transformations. Nevertheless we will
use suitable generalized convexity conditions. They will be especially important when studying
the slope of φ with respect to the metric dξ.

4.1 Convexity of the energy φ

There are two possible approaches to obtain existence. The first result uses the classical con-
vexity of z 7→ W (z). The given assumption (4.3) will only be used for this result and are not
needed in the remainder of this work.
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Proposition 4.1. Assume that ξ(z) = zα for α ∈ [1/2, 1] and that the stored-energy density
W satisfies (3.3) with m1 ≥ 2α and the following conditions

∃λW ∈ R ∀ z0, z1 ≥ 0, s ∈ (0, 1) :

W ((1−s)z0+sz1) ≤ (1−s)W (z0) + sW (z1)− λW

2
s(1−s)|z1−z0|2,

(4.3a)

∃R > 1 : W
∣∣
[0,1/R]

and W
∣∣
[R,∞)

are convex. (4.3b)

Then, there exists τ∗ > 0 such that for all τ ∈ (0, τ∗) and all u ∈ S2α there exists a unique
minimizer uτ for (4.1).

Proof. For z0 ≥ 0 let gz0(z) = (zα− zα0 )2. Using α ∈ [1/2, 1] one sees that the mapping gz0
is strictly convex on [0,∞). Hence the mapping z 7→ 1

2τ
(zα − (u′(x))α)2 + W (z) is strictly

convex on [0, 1/R] and on [R,∞).

For z, z0 ∈ [1/(2R), 2R] we have g′′z0(z) ≥ 2α/(2R)2−2α > 0. Choosing τ∗ > 0 such that
1

2τ∗
2α/(2R)2−2α + λW > 0, for all τ ∈ (0, τ∗] the sum 1

2τ
gz0(z) + W (z) is strictly convex

on [1/(2R), 2R]. Together with the above convexity on [0, 1/R] and on [R,∞), we have strict
convexity on [0,∞) and conclude the existence of a unique minimizer.

We now establish existence and uniqueness of minimizers by employing a notion of convexity of
φ with respect to the metric dξ. This notion of convexity is more readily combined with convexity
of dξ along generalized geodesics and can serve as a basis for studying the time-continuous
limit τ → 0. For general strictly increasing ξ we define

Wξ(y) = W (ξ−1(y)) for y ∈ im(ξ)

and impose a λ-convexity condition for Wξ:

∃λWξ ∀ y0, y1 > 0 ∀ s ∈ [0, 1] :

Wξ((1−s)y0+sy1) ≤ (1−s)Wξ(y0) + sWξ(y1)− λWξ

2
s(1−s)|y0−y1|2.

(4.4)

The following lemma shows that this condition implies a kind of λ-convexity of φ along the
generalized geodesics us = Uξ(s;u0, u1).

Lemma 4.2. Let ξ(z) = zα with α ∈ [1/2, 1] and let W satisfy (3.5) and (4.4). Consider
u0, u1 ∈ S with φ(uj) < ∞ and define us = Uξ(s;u0, u1) via (3.7). Then, for all s ∈ [0, 1]
we have

φ(us) ≤ w−Ks

(
(1−s)φ(u0) + sφ(u1)− λWξ

2
s(1−s)dξ(u0, u1)2

)
+ w−Ks − 1, (4.5)

where ws = ws(1) is defined in (3.7) and K in (3.5). If α = 1/2, i.e. d = dsq, then

φ(us) ≤ (1−s)φ(u0) + sφ(u1)− λφ

2
s(1−s)dsq(u0, u1)2 (4.6)

with λφ = (1 +CK/2)λWξ −CK(M+1), M = max{φ(u0), φ(u1)}, and CK = 2(2K−1).
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Proof. We first show ws(1) ∈ [1/2, 1]. The upper bound follows from convexity of ξ−1 via

ws(1) =

∫ 1

0

ξ−1
(
(1− s)ξ(u′0) + sξ(u′1)

)
dx ≤

∫ 1

0

(
(1− s)u′0 + su′1

)
dx = 1.

For the lower bound we use d
dα

((1− s)zα0 + szα1 )1/α ≥ 0 for α ∈ [1/2, 1], so that we get

ws(1) ≥
∫ 1

0

(
(1− s)

√
u′0 + s

√
u′1

)2

dx ≥ 1− 2s(1− s) ≥ 1

2
, (4.7)

where the last inequality follows from an explicit computation as in Section 3.4.

The estimate of φ(us) relies on the multiplicative estimate (3.6), which follows from (3.5) (cf.
Lemma 3.1), and the λ-convexity of Wξ by applying (4.4) with yj = ξ(u′j(x)):

φ(us) =
∫ 1

0
W
(

1
ws
ξ−1((1−s)ξ(u′0)+sξ(u′1))

)
dx

≤(3.6) w
−K
s

∫ 1

0
W
(
ξ−1((1−s)ξ(u′0)+sξ(u′1))

)
dx+ w−Ks − 1

= w−Ks
∫ 1

0
Wξ((1−s)ξ(u′0)+sξ(u′1))dx+ w−Ks − 1

≤(4.4) w
−K
s

∫ 1

0
(1−s)Wξ(ξ(u

′
0))+sWξ(ξ(u

′
1))−λ

Wξ

2
s(1−s)|ξ(u′0)−ξ(u′1)|2 dx+ w−Ks −1

= w−Kx

(
(1−s)φ(u0) + sφ(u1)− λ

Wξ

2
s(1−s)dξ(u0, u1)2

)
+ w−Ks − 1,

which is (4.5). For α = 1/2 we have ws(1) = 1 − s(1 − s)dsq(u0, u1)2 from (3.16); hence,
w−Ks ≤ 1+CKs(1−s)d2

sq(u0, u1) ≤ 1+ 1
2
CKd

2
sq(u0, u1) with CK = 2(2K−1). Inserting

this into (4.5), and employing the bound φ(ui) ≤M , we obtain (4.6).

Using the approximate 2-convexity of dsq established in Lemma 3.7, and the λφ-convexity of φ
from (4.6), we can now obtain uniqueness of minimizers for the time-incremental problem.

Proposition 4.3. Assume ξ(z) =
√
z and that W satisfies (3.4), (3.5), and (4.4). Then, for

all M > 0 there exists τ∗ = τ∗(M) > 0 such that for all τ ∈ (0, τ∗) and all u ∈ S with
φ(u) ≤ M there exists a unique minimizer uτ ∈ S for the time-incremental minimization
problem (4.1).

Proof. Let λφ be defined by (4.6) but with M as prescribed in the hypothesis. Let Φ(v) :=
1
2τ
d2

sq(u, v) + φ(u). If Φ(v) ≤ Φ(u), then, since φ ≥ 0, dsq(u, v)2 ≤ 2τM and hence we

only need to consider v ∈ S ′ := {v ∈ S | dsq(u, v) ≤
√

2τM}.
Suppose that τ is sufficiently small so that

√
2τM ≤ 1/2, then, for v0, v1 ∈ S ′ and v1/2 =

Usq(1/2; v0, v1), (4.6) and (3.20) imply that

Φ
(

1
2
v0 + 1

2
v1

)
≤ 1

2
φ(v0) + 1

2
φ(v1)−

(
λφ + 1

τ

)
1
8
d2

sq(v0, v1).

If τ is so small that λφ + 1
τ
> 0, then one can readily prove the stated result, following for

example the proof of Lemma 4.1.1 in [AGS05].

18



4.2 The discrete variational inequality

By the above subsection we can assume that the time-incremental minimization problem has
(unique) solutions. We will now show that solutions satisfy a variational inequality that can be
used to derive strong convergence (at least in the case of dsq) and to pass to the limit τ → 0+.
The idea is to compare the incremental energy at the minimizer uτ and at Uξ(s;uτ , v) for s
small. For this argument, we do not need geodesic convexity properties along the whole curve
[0, 1] 3 s 7→ U(s;uτ , v), but rather the derivative d

ds

∣∣
s=0+

.

Theorem 4.4. Assume ξ(z) = zα for α ∈ [1/2, 1] and that W satisfies (3.3) with m1 > 2α,
(3.4), (3.5), and (4.4). For τ > 0 take u ∈ S2α with φ(u) < ∞ and assume that uτ ∈ S
satisfies the time-incremental minimization problem (4.1). Then, for all v ∈ S2α we have the
generalized discrete variational inequality

∀ v ∈ S :
1

2τ

(
dξ(uτ , v)2 − dξ(u, v)2

)
+
λWξ

2
dξ(uτ , v)2

≤ φ(v)− φ(uτ )−
1

2τ
dξ(u, uτ )

2 + Cξ(τ, u, uτ )Bξ(uτ , v),

(gDVIλ)

where Cξ(τ, u, w) :=
∫ 1

0

(
1
τ
(ξ(w′)−ξ(u′))ξ′(w′) +W ′(w′)

)
w′dx.

Proof. We consider the functional w 7→ Φ(τ, u;w) = 1
2τ
dξ(u,w)2 + φ(w), which satisfies

0 ≤ 1

s

(
Φ(τ, u;Uξ(s;uτ , v))− Φ(τ, u;uτ )

)
=

1

2τ
T1(s) + T2(s) with

T1(s) =
1

s

(
dξ(Uξ(s;uτ , v), u)2−dξ(uτ , u)2

)
and T2(s) =

1

s

(
φ(Uξ(s;uτ , v))− φ(uτ )

)
for s ∈ (0, 1]. Using Proposition 3.2 with u0=uτ , u1=v, and w=u the limit s→ 0+ gives

T1(s)→ T1(0) := dξ(v, u)2 − dξ(u, uτ )2 − dξ(uτ , v)2 + 2Aξ(uτ , u)Bξ(uτ , v).

We decompose T2 according to the definition of Uξ(s;u0, u1) = 1
ws(1)

ws(x):

T2(s) =

∫ 1

0

1

s

(
W (u′s(x))−W (u′0(x))

)
dx = T3(s) + T4(s) with

T3(s) :=

∫ 1

0

1

s

(
W ( 1

ws(1)
w′s(x))−W (w′s(x))

)
dx and

T4(s) :=

∫ 1

0

1

s

(
W (w′s(x))−W (u′0(x))

)
dx.

For T4(s) we use w′s = ξ−1((1−s)ξ(u′0)+sξ(u′1)) and the λ-convexity of Wξ, namely

W (w′s) = Wξ((1−s)ξ(u′0)+sξ(u′1)) ≤ (1−s)W (u′0)+sW (u′1)−λ
Wξ

2
s(1−s)(ξ(u′0)−ξ(u′1))2.

Hence, we conclude lim infs→0+ T4(s) ≤ T̃4 = φ(u1)− φ(u0)− λ
Wξ

2
dξ(u0, u1)2.
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For T3(s) we use d
ds

∣∣
s=0+

ws(1) = −Bξ(u0, u1) so that by (3.5) we obtain

T3(s)→ T3(0) := Bξ(u0, u1)

∫ 1

0

W ′(u′0(x))u′0(x)dx.

From T (s) ≥ 0 we have T1(0) + T3(0) + T̃4(0) ≥ 0. Inserting u0 = uτ and u1 = v into
T3(0) and T̃4(0), we obtain the generalized discrete evolutionary inequality (gDVIλ).

To turn (gDVIλ) into the more useful discrete evolutionary inequality, we need to control the new
term Cξ(τ, u, uτ )Bξ(uτ , v). For the first factor we note that the quantity Cξ is closely related to
the Euler–Lagrange equation for the minimizers. If w minimizes v 7→ 1

2τ
dξ(u, v)2 + φ(v), then

the weak form of the Euler–Lagrange equation for w reads∫ 1

0

(
1
τ
(ξ(w′)−ξ(u′))ξ′(w′) +W ′(w′)

)
η′dx = 0,

where η ∈ C∞c ((0, 1)). Thus, Cξ is obtained by choosing η = w (which, strictly speaking,
is not an admissible test function, because w(1) = 0). However, by the lemma of Du Bois–
Reymond 1

τ
(ξ(w′)−ξ(u′))ξ′(w′) +W ′(w′) is constant. Using

∫ 1

0
w′dx = 1 we conclude that

Cξ must equal this constant. We also see that the term Cξ will be in general not small even if τ
is small. In fact, in the formal limit τ → 0 the time-dependent constant Cξ convergences to the
constant stress Σ(t) = ξ′(u′(t, x))2u̇′(t, x) +W ′(u′(t, x)).

Thus, to control the additional term CξBξ it is crucial to control Bξ, which can be done in two
cases. First consider ξ(z) = z (i.e. α = 1), thenBξ ≡ 0 and we are in the situation of classical
convexity. Second, the square-root distance dsq (i.e. α = 1/2) can be treated because of the
identities (3.18) for Aξ = Asq and Bξ = Bsq.

Corollary 4.5. Under the same assumptions as in Theorem 4.4 assume now α = 1/2, i.e.
dξ = dsq. Then, for each M > 0 there exists λM > 0 such that for any u ∈ S with
φ(u) ≤M , any minimizer uτ of (4.1) satisfies the discrete variational inequality

∀ v ∈ S :
1

2τ

(
dsq(uτ , v)2 − dsq(u, v)2

)
+
λWξ − λM

2
dsq(uτ , v)2

≤ φ(v)− φ(uτ )−
1

2τ
dsq(u, uτ )

2.

(DVIλ)

Proof. We estimate the termCsq by exploiting its specific form, namelyCsq(τ, u, w) = 1
τ
Asq(u,w)+∫ 1

0
W ′(w′)w′dx. Using (3.18), (3.5), and (4.1) we obtain the estimate

|Csq(τ, u, uτ )Bsq(uτ , v)| ≤
( 1

4τ
dsq(u, uτ )

2 +Kφ(uτ ) +K
)
dsq(uτ , v)2

≤
(

max{1
2
, K}φ(u) +K

)
dsq(uτ , v)2 ≤ λMdsq(uτ , v)2

with λM = max{1
2
, K}M + K . Hence the term CsqBsq can be moved to the left-hand side

and the result is established.
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Remark 4.6. For general ξ a good estimate Bξ is still missing. For ξ(z) = zα we find

Bξ(u, v) =
1

α

∫ 1

0

u′ − (v′)α(u′)1−αdx =

∫ 1

0

1−
(

dv
du

)α
du ≥ 0.

For a > 1, x∗ ∈ (0, 1), and 0 < δ � 1 define piecewise affine functions uδ, vδ ∈ S with

u′δ(x) = δ, v′δ(x) = aδ, u′δ(y) = 1−δx∗
1−x∗ , v

′
δ(y) = 1−aδx∗

1−x∗ for 0 < x < x∗ < y < 1.

This gives the expansions dξ(uδ, vδ)2 = x∗(1−aα)2δ2α+O(δ2) andBξ(uδ, vδ) = (1−α+
αa− aα)δ + O(δ2). Hence, for α ∈ (1

2
, 1) we cannot estimate Bξ in terms of d2

ξ , for general
choices of a, x∗, even when restricting to sublevels of φ.

5 The time-continuous case

In this section we first give the limit passage τ → 0+ from the (DVI)λ to the evolutionary
variational inequality, namely

1

2

d+

dt
dξ(u(t), v)2 +

λ

2
dξ(u(t), v)2 ≤ φ(v)− φ(u(t)) + CMBξ(u(t), v), (EVIλ)

where u : [0,∞) → S is absolutely continuous in (S , dξ), u(0) = u0, and satisfies
sup{φ(u(t)) | t ≥ 0 } ≤ φ(u0) ≤ M . Afterwards we show that solutions for the (EVI)λ
are in fact curves of maximal slope, and finally that they satisfy the PDE (3.2).

5.1 Strong convergence in the case dsq

In the case of the square-root distance dsq the discrete variational inequality is exactly of the
type studied in [AGS05, Ch. 4]. Thus, we can employ the same arguments and obtain strong
convergence. Let tn := nτ and U τ , U τ denote, respectively, the backward and forward piece-
wise constant interpolants of uτ . Then, we have the following result:

Proposition 5.1. Let τ ∈ (0, τ∗) and uτ be the solution of (4.1) with dξ = dsq. Then the family
U τ of discrete solutions is convergent to a function u(t) ∈ C([0,∞); S ) as τ → 0, uniformly
in each bounded interval [0, T ]. In fact,

∀T > 0 ∃CT : sup
t∈[0,T ]

dsq(u(t), U τ (t)) ≤ CT
√
τ . (5.1)

Proof. One can essentially follow the proof in [AGS05], so we only give a sketch. To begin, we
recall some notation. For τ, η ∈ (0, τ∗), let

`τ (t) := t−tn−1

τ
for t ∈ (tn−1, tn] and `τ (0) = 0,
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which we use to define the following piecewise affine interpolants:

ϕτ (t) := (1− `τ (t))φ(U τ (t)) + `τ (t)φ(U τ (t)),

dτ (t;V )2 := (1− `τ (t))dsq(U τ (t), V )2 + `τ (t)dsq(U τ (t), V )2,

dτη(t, s)
2 := (1− `η(s))dτ (t;Uη(s))

2 + `τ (s)dτ (t;Uη(s))
2, t, s ≥ 0.

All of these interpolants are defined for all t, s ≥ 0 and are differentiable everywhere except on
a discrete set.

With γ := λWsq − λM in (DVI)λ, we apply [AGS05, Theorem 4.1.4] directly in each interval
(tn−1, tn) and obtain

d
dt
dτ (t;V )2 + 2 γ dsq(U τ , V )2 + 2(ϕτ (t)− φ(V )) ≤ Rτ (t),

where Rτ (t) := 2τ(1− `τ )(φ(U τ )− φ(U τ )) + (1− 2`τ (t))
1
τ
dsq(U τ , U τ )

2.

To simplify the subsequent notation, we estimate

Rτ (t) ≤ R ′τ (t) := 2(φ(U τ )− φ(U τ )) + 1
τ
dsq(U τ , U τ )

2.

Next, following the proof of [AGS05, Corollary 4.1.5 and 4.1.7] (since the argument applies the
inequalities for Uτ and Uη separately, it can again be repeated verbatim) we obtain

∂tdτη(t, s)
2 + 2γdτη(t, s)

2 + 2ϕτ (t)− 2ϕη(s) ≤R ′τ (t) + |γ|D2
τ (t), and (5.2)

∂sdτη(t, s)
2 + 2γdτη(t, s)

2 + 2ϕη(s)− 2ϕτ (t) ≤R ′η(s) + |γ|D2
η (s), (5.3)

where D2
τ (t) := (1 − `τ (t))

2dsq(U τ , U τ )
2 ≤ dsq(U τ , U τ )

2. Adding (5.2) and (5.3), and
setting s = t, we obtain

d
dt
d2
τη(t, t) + 2 γ d2

τη(t, t) ≤ Eτ (t) + Eη(t), (5.4)

where the residual Eτ reads Eτ (t) := 2
[
φ(U τ ) − φ(U τ )

]
+ (|γ| + τ−1)dsq(U τ , U τ )

2. In
particular, applying Grönwall’s inequality we obtain

d2
τη(T, T ) ≤ e4Λ(T+τ)

∫ T

0

[
Eτ (t) + Eη(t)

]
dt ∀T > 0, (5.5)

where Λ ≥ 0 is a constant.

The first group in the expression for Eτ is a telescope sum, and hence we get∫ τN

0

2[φ(U τ )− φ(U τ )]dt = 2τ
N∑
n=1

[φ(Un−1
τ )− φ(Un

τ )] ≤ 2τφ(u0).

To estimate the second group we note that 1
2τ
dsq(U τ , U τ )

2 + φ(U τ ) ≤ φ(U τ ), so that

(|γ|+ τ−1)dsq(U τ , U τ )
2 ≤ 2(τ |γ|+ 1)

(
φ(U τ )− φ(U τ )

)
.
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From the first estimate, we deduce that∫ Nτ

0

(|γ|+ τ−1)dsq(U τ , U τ )
2 dt ≤ 2

(
τ |γ|+ 1

)
τφ(u0).

Therefore, there exists a constant CE , depending only on γ and φ(u0) such that∫ Nτ

0

Eτ (t) dt ≤ CE τ ∀N ∈ N, ∀τ ∈ (0, τ∗). (5.6)

We wish to prove that (U τ (t))τ∈(0,τ∗) is a Cauchy sequence in S for every t ∈ [0, T ]. Com-
bining (5.5) and (5.6) we obtain

dτη(t, t)
2 ≤ e4Λ(t+τ)CT (τ + η) ∀t ∈ [0, T ],

hence we only need to bound dsq(U τ , Uη)
2 in terms of d2

τη. To that end we can again use a
result of [AGS05] where it is shown, in the proof of Theorem 4.2.2, that

dsq(U τ , Uη)
2 ≤ 3dτη(t, t)

2 + C(τ + η).

By completeness of (S , dsq) (see Lemma 3.5) this shows that there exists a limit curve u :
[0, T ]→ S such that U τ (t)→ u(t) in S for all t > 0. Since the constants C and CT do not
depend on t ∈ [0, T ] the convergence is in fact uniform:

max
t∈[0,T ]

dsq(U τ (t), u(t)) ≤ ĈT τ.

In particular, it follows that the piecewise affine interpolant converges, uniformly in [0, T ], to the
same limit, and hence u ∈ C([0, T ]; S ).

Having the strong convergence of U τ to an absolutely continuous u, we can now pass to the
limit in an integrated version of (DVI)λ to an integrated version of (EVI)λ, which is then equivalent
to the above differential form of the (EVI)λ ([DaS08, DaS10]).

Theorem 5.2. Assume that dξ = dsq and that W satisfies (3.3) with m1 > 1, (3.4), (3.5), and
(4.4). Then, for each initial condition u0 ∈ S with φ(u0) ≤ M < ∞ there exists a unique
solution of (EVI)λ, where λ ≤ λWsq − λM .

Proof. Integrating (DVIλ) from 0 to T, for any v ∈ S we obtain∫ T

0

1

2τ

(
dsq(U τ , v)2 − dsq(u, v)2

)
dt+

∫ T

0

(
φ(U τ ) +

λ

2
dsq(U τ , v)2

)
dt

≤
∫ T

0

φ(v)dt−
∫ T

0

1

2τ
dsq(u, U τ )

2 dt

where λ ≤ λWsq − λM . Since

1

2τ
dsq(u, uτ )

2 + φ(uτ ) ≤ φ(u),
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by Proposition 5.1, passing to the limit as τ → 0+ gives

1

2

(
dsq(u(T ), v)2 − dsq(u(0), v)2

)
+

∫ T

0

(
φ(u(t)) +

λ

2
dsq(u(t), v)2

)
dt ≤ T φ(v).

By [AGS05, Remark 4.0.5] there exists at most one integral solution to this formulation with
prescribed initial datum and it corresponds to

1

2

d+

dt
dsq(u(t), v)2 +

λ

2
dsq(u(t), v)2 ≤ φ(v)− φ(u(t)),

which is equivalent to (EVI)λ.

5.2 The slope

To connect the evolutionary inequality formulation (EVIλ) with curves of maximal slope, we first
study properties of the slope. Under some of our previous assumptions for general ξ(z) = zα

with α ∈ [1/2, 1] we show that the slope can be characterized and has useful properties,
such as lower semi-continuity on (S2α, dξ). For the sake of simplicity, we restrict our result to
ξ(z) = zα, but the proof reveals that it is in fact valid under more general conditions involving
the regularity and the growth of ξ and ξ−1.

Following [AGS05] the local slope |∂φ| of φ at u ∈ D(φ) is defined by

|∂φ|(u) := lim sup
v→u

(φ(u)− φ(v))+

d(u, v)
. (5.7)

Theorem 5.3 (Slope). Let ξ(z) = zα, α ∈ [1/2, 1] and assume that (3.4), (3.5), (4.2), and
(4.4) hold. Then for u ∈ D(φ) ∩S2α the slope |∂φ|(u) is given by

|∂φ|(u) =

{
‖(W ′(u′)−Cu)/ξ′(u′)‖2 for W ′(u′)/ξ′(u′) ∈ L2(0, 1),

∞ otherwise,

where Cu ∈ R is such that
∫ 1

0
(W ′(u′)−Cu)/ξ′(u′)2 dx = 0.

Proof. We first consider the case W ′(u′)/ξ′(u′) ∈ L2(0, 1). Since (4.4) is equivalent to say

that z 7→ Wξ(z)− λ
Wξ

2
|z|2 is convex, we have

Wξ(ξ(v
′))− λWξ

2
|ξ(v′)|2 ≥ Wξ(ξ(u

′))− λWξ

2
|ξ(u′)|2 +

+∂ξ(u′)

[
Wξ(ξ(u

′))− λWξ

2
|ξ(u′)|2

]
(ξ(v′)− ξ(u′)).

Using Wξ(z) = W (ξ−1(z)) and hence W ′
ξ(ξ(z)) = W ′(z)/ξ′(z), one obtains

W (v′) ≥ W (u′) +W ′(u′)(ξ(v′)−ξ(u′))/ξ′(u′) +
λWξ

2
|ξ(v′)− ξ(u′)|2.
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Using that W ′(u′)/ξ′(u′), ξ(u′), and ξ(v′) lie in L2(0, 1), we can integrate and using the
Dirichlet boundary conditions we obtain, for all C ∈ R,∫ 1

0

(W (u′)−W (v′)− C(u′ − v′))dx ≤

≤
∫ 1

0

(
W ′(u′)

ξ′(u′)
− C

(
u′ − v′

ξ(u′)− ξ(v′)

))
(ξ(u′)− ξ(v′))dx+

|λWξ |
2

dξ(u, v)2

≤
∥∥∥∥W ′(u′)

ξ′(u′)
− C

(
u′ − v′

ξ(u′)− ξ(v′)

)∥∥∥∥
2

dξ(u, v) +
|λWξ |

2
dξ(u, v)2..

Definition (5.7) implies that

|∂φ|(u) ≤ lim sup
v→u

∥∥∥∥W ′(u′)

ξ′(u′)
− C

(
u′ − v′

ξ(u′)− ξ(v′)

)∥∥∥∥
2

≤ ‖(W ′(u′)− C)/ξ′(u′)‖2 + |C| lim sup
v→u

∥∥∥ 1
ξ′(u′)

− u′−v′
ξ(u′)−ξ(v′)

∥∥∥
2
.

For ξ(z) = zα with α ∈ [1/2, 1] the second term on the right-hand side vanishes. Indeed,
setting a = (u′)α and b = (v′)α we have v → u in (S , dξ) if and only if b → a in L2(0, 1).

The case α = 1 is trivial. With β = 1/α ∈ (1, 2] we have to show aβ−bβ
a−b → βaβ−1 in

L1(0, 1). From |yβ−1 − ξβ−1| ≤ |y − ξ|β−1 and yβ−zβ
y−z = βξβ−1 with ξ between y and z we

obtain the elementary estimate |yβ−zβ
y−z − βy

β−1| ≤ β|y−z|β−1. Now we have∥∥∥ 1
ξ′(u′)

− u′−v′
ξ(u′)−ξ(v′)

∥∥∥
2

=
∥∥βaβ−1−aβ−bβ

a−b

∥∥
2
≤ β‖ |a−b|β−1‖2 ≤ β‖a−b‖β−1

2 = βdξ(u, v)β−1.

We therefore obtain that

|∂φ|(u) ≤ ‖(W ′(u′)− C)/ξ′(u′)‖2 for all C ∈ R.

Minimizing with respect to C we obtain the minimizer Cu as stated above.

To prove the lower bound, consider vs ∈ S where

vs(x) = (id + sϕ)(u(x)), ϕ ∈ C1([0, 1]), ϕ(0) = ϕ(1) = 0,

such that |ϕ′| ≤ K . We assume throughout that s < 1/K . Since |ξ(v′s)| ≤ (1+Ks)α|ξ(u′)|,
once again Lebesgue’s dominated convergence theorem yields dξ(u, vs)→ 0 as s→ 0, which
implies

|∂φ|(u) ≥ lim sup
s→0

φ(u)− φ(vs)

dξ(u, vs)
.

For the denominator we use ξ(z) = zα and v′s = u′(1 + sϕ′) and obtain

dξ(u, vs)
2 =

∫ 1

0

(
(u′)α(1 + sϕ′)α − (u′)α

)2

dx =

∫ 1

0

(u′)2α
(
(1 + sϕ′)α − 1

)2
dx

= s2

∫ 1

0

α2(u′)2α(ϕ′)2 dx+O(s3) = s2
∥∥ξ′(u′)u′(ϕ′ ◦ u)

∥∥2

2
+O(s3).
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For the numerator we use
∫ 1

0
(u′ − v′s)dx = 0 and the special form of vs and find

lim sup
s→0

1

s

∫ 1

0

(
W (u′)−W (v′s)

)
dx

= lim sup
s→0

1

s

∫ 1

0

(
W (u′)−W (u′(1+sϕ′(u)))

)
dx

≥
∫ 1

0

lim inf
s→0

(
W (u′)−W (u′(1+sϕ′(u)))

s

)
dx

=

∫ 1

0

(
−W ′(u′(x))

)
u′(x)ϕ′(u(x))dx.

Changing variables, we obtain that the slope admits the lower bound

|∂φ|(u) ≥
∫ 1

0
a(r)ϕ′(r)dr∥∥ϕ′/b∥∥

2

for all ϕ ∈ C1
0([0, 1]) with

a(r) := −W ′(u′(u−1(r))) and b(r) :=
1

(
√
u′ · ξ′(u′)) ◦ u−1(r)

.

We emphasize that, due to (3.5) and u ∈ D(φ), a ∈ L1 and hence the nominator is well-
defined. Moreover, using the fact that u′ ∈ L2α it is easy to see that 0 < b, 1/b ∈ L2 and
hence the denominator is also well-defined.

Thus, we can apply the following lemma, and the desired result follows.

Lemma 5.4. Consider a, b : (0, 1) → R with a ∈ L1(0, 1) and 0 < b, 1/b ∈ L2(0, 1). Let
H(a, b, ϕ) =

∫ 1

0
aϕ′dr/‖ϕ′/b‖2 and ca,b =

∫ 1

0
ab2 dr/

∫ 1

0
b2 dr, then

sup
{
H(a, b, ϕ)

∣∣∣ϕ ∈ C∞c (0, 1)
}

= M(a, b) :=

{
‖b(a−ca,b)‖2 if ab ∈ L2(0, 1),

∞ else.

Proof. Step 1: We first note that the supremum can also be taken over ϕ ∈ W 1,∞
0 (0, 1) =

CLip
0 ([0, 1]), because C∞c (0, 1) is weakly∗ dense and H(a, b, ·) is weakly∗ continuous.

Step 2: For ab ∈ L2(0, 1) the Cauchy-Schwarz inequality gives

H(a, b, ϕ) =

∫ 1

0
b(a−c) · (ϕ′/b)dr

‖ϕ′/b‖2

≤ ‖b(a−c)‖2 for all c ∈ R.

Minimizing with respect to c yields the upper bound supϕH(a, b, ϕ) ≤M(a, b).

Step 3: For k ∈ N we define χk(x) = 1 if |a(x)| < k and b(x) < k and χk(x) = 0 else.
Then, χka, χkb ∈ L∞(0, 1). We define ϕk ∈ W 1,∞

0 (0, 1) via

ϕ′k = χkb
2(a−ck) with ck =

∫ 1

0
χkab

2 dx/
∫ 1

0
χkb

2 dx.

Using χ2
k = χk we easily find H(a, b, ϕk) =

∫ 1

0
(a−ck)ϕ′k dx/‖ϕ′k/b‖2 = ‖χkb(a−ck)‖2. If

ab ∈ L2(0, 1), then ck → ca,b and χkab → ab and χkb → b in L2(0, 1) strongly. Hence we
find the lower bound

sup
ϕ
H(a, b, ϕ) ≥ lim

k→∞
H(a, b, ϕk) = lim

k→∞
‖χkb(a−ck)‖2 = ‖b(a−ca,b)‖2 = M(a, b).
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Step 4: Assume now ab 6∈ L2(0, 1), which means ‖χkab‖2 →∞. We define

uk =
1

‖χkb‖2

χkb and wk =
1

‖χkab‖2

χkab giving ‖uk‖2 = ‖wk‖2 = 1.

First we have uk → 1
‖b‖2 b in L2(0, 1), and second wk ⇀ 0 in L2(0, 1). Indeed,∫ 1

0

wk(χmv)dx =
1

‖χkab‖2

∫ 1

0

χmab vdx
k→∞−→ 0 for all m ∈ N and v ∈ L2(0, 1),

since χkχm = χm for k ≥ m and ‖χkab‖2 → ∞. Because the function χmv are dense in
L2(0, 1), the proof of wk ⇀ 0 is complete.

Rearranging the terms in H(a, b, ϕk) gives

H(a, b, ϕk)
2 =

∫ 1

0

χka
2b2 dx−

( ∫ 1

0
χkab

2 dx
)2

∫ 1

0
χkb2 dx

= ‖χkab‖2
2

(
1−

(∫ 1

0
ukwk dx

)2
)
.

Using ‖χkab‖2
2 →∞ and

∫ 1

0
ukwk dx→ 0 we conclude that H(a, b, ϕk)→∞, which is the

desired lower estimate supϕH(a, b, ϕ) =∞ = M(a, b).

In the case d = dsq the situation is again better, as we have λφ-convexity along our generalized
geodesic curves.

Proposition 5.5. Let ξ(z) =
√
z and let φ andW satisfy (4.2), (3.4), and (4.4). Then, the slope

|∂φ|(u) as given in Theorem 5.3 is a strong upper gradient and is dsq-lower semicontinuous.

Proof. We slightly modify the proof of [AGS05, Thm. 2.4.9] to prove that

|∂φ|(v) = sup
w 6=v

φ(w)≤φ(v)+1

(
φ(v)− φ(w)

dsq(v, w)
+
λφ

2
dsq(v, w)

)+

, (5.8)

where λφ is given by (4.6) with M = φ(v) + 1. Once this is established the dsq-lower semicon-
tinuity and strong upper gradient properties can be easily established by following the proof of
[AGS05, Cor. 2.4.10].

Let φ(w) ≤ φ(v) + 1 and vs := Usq(s; v, w), then (4.6) and a straightforward computation
imply (

φ(v)− φ(vs)

dsq(v, vs)

)+

≥
(
φ(v)− φ(w)

dsq(v, w)
+ 1

2
λφ(1− s)dsq(v, w)

)+
sdsq(v, w)

dsq(v, vs)
.

Letting g(s) = d2
sq(vs, v0), by (3.19b) and (3.19c) we have

g(s) = g(0) + g′(0)s+ 1
2
g′′(0)s2 + o(s2) = 1

2
g′′(0)s2 + o(s2)

≤ 1
2

2 dsq(v0, v1)2s2 + o(s2)

= (dsq(v0, v1)2 + o(1))s2.
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Hence,

dsq(vs, v0) =
(√

dsq(v0, v1)2 + o(1)
)
s = dsq(v0, v1)s+ o(s).

This implies

|∂φ|(v) ≥ lim sup
s→0

(
φ(v)− φ(vs)

d(v, vs)

)+

≥
(
φ(v)− φ(w)

d(v, w)
+ 1

2
λφd(v, w)

)+

.

Taking the supremum over w we obtain a lower bound in (5.8).

Conversely, the upper bound is an immediate consequence of the definition of the slope.

5.3 Curves of maximal slope

Following [AGS05], let S be a metric space with distance d and let φ : S → R ∪ {+∞}. An
absolutely continuous curve u : (0, T ) → S is a curve of maximal slope for the functional φ
with respect to an upper gradient g : S → R ∪ {+∞} if

d

dt
φ(u(t)) ≤ −1

2
|u′(t)|2 − 1

2
g2(u(t)), (5.9)

for a.e. t ∈ (0, T ), where |u′| denotes the metric derivative,

|u′|(t) := lim
s→t

d(u(s), u(t))

|s− t|
(5.10)

which exists for a.e. t ∈ (0, T ).

Next we show that all solutions of the (EVI)λ are in fact curves of maximal slope. This can again
be done for general ξ. Note that also for dξ different from dsq we may have solutions of (EVI)λ,
e.g. by assuming that u′(t, x) only takes finitely many values, cf. [Şen10].

Theorem 5.6. Assume that d = dsq and W satisfies (3.4), (3.5), and (4.4). Then the solution
u to (EVI)λ is a curve of maximal slope, that is, φ ◦ u ∈ ACloc, and

d
dt
φ(u(t)) ≤ −1

2
|u′|2(t)− 1

2
|∂φ|2(u(t)) for a.e. t > 0. (5.11)

Proof. From Proposition 5.5 we know that |φ| is a strong upper gradient and dsq-lower semicon-
tinuous. Since we know from Theorem 5.2 that the unique solution u to (EVI)λ is a minimizing
movement, we can apply Theorem 2.3.3 in [AGS05] to obtain that u ∈ AC2

loc, φ◦u ∈ AC and
u is a curve of maximal slope.

5.4 Weak solutions of one-dimensional viscoelasticity

Finally in this subsection we show that curves of maximal slope give rise to weak solutions of
the partial differential equation of one-dimensional viscoelasticity.
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Theorem 5.7. Let ξ(z) = zα with α ∈ [1/2, 1] and assume that W satisfies (3.4), (3.5), and
(4.4). Also assume that u(t) ∈ C1([0, T ];C1[0, 1])∩AC2([0, T ]; S ), that u′(t, x) ≥ δ > 0
for all (x, t) ∈ [0, 1] × [0, T ], and that u is a curve of maximal slope for the functional φ with
respect to its upper gradient |∂φ|. Then, u solves the partial differential equation

Div
(
DzW (u′(t, x)) + ξ′(u′(t, x))2∂tu

′(t, x)
)

= 0. (5.12)

Proof. We apply the usual “trick” to show the equivalence of curves of maximal slopes and
gradient flows on Hilbert spaces. We begin by computing a bound on the metric derivative
defined by (5.10):

|u′|(t) = lim inf
s→t

(∫ 1

0

(
ξ(u′(s))− ξ(u′(t))

)2

|s− t|2
dx

)1/2

≥

(∫ 1

0

lim inf
s→t

(
ξ(u′(s))− ξ(u′(t))

|s− t|

)2

dx

)1/2

=

(∫ 1

0

(∂tξ(u
′(t)))

2
dx

)1/2

=
∥∥[ξ′(u′(t))]−1 ∂tu(t)

∥∥
2
. (5.13)

Provided that DW (u′(t))∂tu
′(t) ∈ L1(0, 1) we have

d

dt
φ(u(t)) =

∫ 1

0

d

dt
W (u′) dx =

∫ 1

0

W ′(u′) ∂tu
′(t) dx.

However we know that∫ 1

0

W ′(u′)∂tu
′ dx =

∫ 1

0

(
W ′(u′)− C

)
[ξ′(u′(t))]−1 ξ′(u′(t)) ∂tu

′(t) dx

≤ 1
2
‖
(
W ′(u′)− C

)
[ξ′(u′(t))]−1‖2

2 + 1
2
‖ξ′(u′(t)) ∂tu′(t)‖2

2

≤ 1

2
|∂φ|2(u(t)) +

1

2
|u′|2(t).

Since u′ > 0 for a.e. x ∈ (0, 1), using Cauchy-Schwarz’ and Young’s inequalities we can
continue by estimating

d

dt
φ(u(t)) =

∫ 1

0

(
W ′(u′)− C

)
[ξ′(u′(t))]−1 ξ′(u′(t)) ∂tu

′(t) dx

≥ −
∥∥(W ′(u′)− C

)
[ξ′(u′(t))]−1

∥∥
2

∥∥ξ′(u′(t)) ∂tu′(t)∥∥2

≥ −1
2

∥∥(W ′(u′)− C
)

[ξ′(u′(t))]−1
∥∥2

2
− 1

2

∥∥ξ′(u′(t)) ∂tu′(t)∥∥2

2
.

Applying Theorem 5.3 and (5.13) we obtain

d
dt
φ(u(t)) ≥ −1

2

∥∥(W ′(u′)− C
)

[ξ′(u′(t))]−1
∥∥2

2
− 1

2

∥∥ξ′(u′(t)) ∂tu′(t)∥∥2

2

≥ −1
2
|∂φ|2(u(t))− 1

2
|u′|2(t) ≥ d

dt
φ(u(t)),
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where in the last inequality we used (5.11). Hence, all inequalities that we employed in this proof
are in fact equalities yielding(

W ′(u′)− C
)

[ξ′(u′(t))]−1 = ±(ξ′(u′(t)) ∂tu
′(t).

Since the energy is decreasing along the trajectory it follows that, in fact,

W ′(u′)− C + ξ′(u′(t))2 ∂tu
′(t) = 0,

as required.

6 The 1D case with a Neumann boundary condition

Throughout this paper, we considered gradient flows for deformations with prescribed Dirichlet
boundary conditions u(0) = 0 and u(t, 1) = 1. In this appendix, we briefly summarize the
much simpler case of a free boundary, i.e. we keep the boundary condition u(t, 0) = 0 and
leave u(t, 1) free, giving rise to the natural Neumann boundary condition.

We work with the same setup as in Section 3. For a strictly increasing, continuous function
ξ : [0,∞) → [0,∞) with ξ(0) = 0 we consider the metric dξ introduced in (3.1) and choose
the state space

S free
ξ :=

{
u ∈ W 1,1([0, 1))

∣∣u(0) = 0, ξ(u′) ∈ L2(0, 1)
}
.

As in the Dirichlet case, the metric space (S free
ξ , dξ) will be complete, but now it is even a

geodesic space, i.e. between each two points there exists a geodesic curve. In fact, given
u0, u1 ∈ S free

ξ , we define the connecting curve us = UN
ξ (s;u0, u1) via

us(x) =

∫ x

0

ξ−1
(

(1−s)ξ(u′0(r)) + sξ(u′1(r))
)

dr, (6.1)

and a straightforward calculation yields dξ(us, ut) = |t−s|dξ(u0, u1), i.e. s 7→ us is a constant-
speed geodesic, see [AGS05]. The completeness of (S free

ξ , dξ) as well as geodesic 1-convexity
of d2

ξ are obtained in the following result.

Proposition 6.1. If ξ : [0,∞)→ R is continuous, strictly increasing and satisfies

ξ(0) = 0 and ∃C > 0 ∀ z ≥ 0 : ξ(z) ≥ 1
C

√
z − C, (6.2)

then the following statements are true:

(i) (S free
ξ , dξ) is a complete metric space.

(ii) The mapping ϕ : S free
ξ → L2

≥0(0, 1) := {u ∈ L2(0, 1) | u(x) ≥ 0 a.e. }, ϕ(u) = ξ ◦ u′
is bijective and metric preserving, if L2

≥0(0, 1) is equipped with the standard L2 norm.

(iii) Let {us}0≤s≤1 be the geodesic defined in (6.1) and v ∈ S free
ξ , then

dξ(us, v)2 = (1− s)dξ(u0, v)2 + sdξ(u1, v)2 − 1
2
s(1− s)d(u0, u1)2.
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Proof. (ii) This statement follows directly from the properties of ξ and the definition of S free
ξ .

Note that (6.2) implies ξ−1(y) ≤ C(1+y2), hence y ∈ L2(0, 1) implies ξ−1 ◦ y ∈ L1(0, 1)
and the inverse mapping ϕ−1 is well-defined via u = ϕ−1(y) : x 7→

∫ x
0
ξ−1(y(r))dr.

(i) The completeness follows from (ii) and the completeness of (L2
≥0(0, 1), ‖ · ‖L2).

(iii) This identity is an immediate consequence of the definition of dξ and us. Of course, the
relation also follows from the Hilbert space structure of (L2

≥0(0, 1), ‖ · ‖L2) and the metric-
preserving mapping ϕ.

Remark 6.2. The conditions (6.2) can be generalized considerably by assuming that ξ is a
continuous, strictly increasing bijection between two closed intervals I and J in R, like the
function ξ(z) = log z with I = (0,∞) and J = R considered in [Şen10]. Then, the metric
space (S free

ξ , dξ) will no longer be complete. Under suitable coercivity conditions on the energy
density W for the energy functional φ, it is easy to show that all sublevels {u | φ(u) ≤ C }
are contained in a closed subsetAC . Because of the energy decay of the time-discrete and the
time-continuous gradient flows the whole analysis can be done in the complete metric space
(AC , dξ).

Let φ : S free
ξ → [0,+∞] be of the form (4.2) with W satisfying the coercivity condition

(3.3), the lower-semicontinuity condition (3.4), and the λWξ -convexity condition (4.4). Then, we
immediately see that Φ is geodesically λWξ convex, i.e. s 7→ φ(UN

ξ (s;u0, u1)) is λWξ convex
as mapping from [0, 1] to R. Moreover, let

Φ(τ, v;u) := 1
2τ
d2
ξ(u, v) + φ(u) for u, v ∈ S free

ξ and τ > 0,

then Proposition 6.1 (iii) and (iv) immediately imply that

Φ(τ, v;us) ≤ (1− s)Φ(τ, v;u0) + sΦ(τ, v;u1)−
(
λWξ + 1

2τ

)
s(1− s)d2

ξ(u0, u1).

Thus, we can now directly apply the results of [AGS05, Ch. 4] to obtain existence and unique-
ness of solutions of the evolutionary variational inequality (compare with the beginning of Sec-
tion 5)

1

2

d+

dt
d2
ξ(u(t), v) +

λWξ

2
d2
ξ(u(t), v) ≤ φ(v)− φ(u(t)), (6.3)

with u : [0,∞) → S free
ξ absolutely continuous and u(0) = u0 ∈ S free

ξ . In particular, we
obtain Lipschitz continuity of the semiflow, i.e. for any two solutions u1 and u2 and 0 ≤ s < t
we have

dξ(u1(t), u2(t)) ≤ eλ
Wξ (t−s)dξ(u1(s), u2(s)).

We emphasize that for these results it is sufficient to assume that the constitutive functions W
and ξ are merely continuous.

If W and ξ are both differentiable, all results of Sections 5.2, 5.3 and 5.4 are readily extended
to the present setting (indeed some arguments can be considerably simplified): The slope of φ
is again a strong upper gradient and is now given by

|∂φ|(u) =

{
‖W ′(u′)/ξ′(u′)‖2 for W ′(u′)/ξ′(u′) ∈ L2(0, 1),

∞ otherwise.
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(The constant Cu in Theorem 5.3 is removed due to the absence of the mean-zero condition∫ 1

0
u′−v′dx = 0 for all u, v ∈ S free

ξ .) The solution to the variational inequality (6.3) is again a
curve of maximal slope (cf. Theorem 5.6), and under suitable regularity assumptions solves the
boundary value problem (5.12).

In particular, the solutions u : [0,∞) → S free
ξ can be understood as weak solutions of the

partial differential equation

0 =
(
W ′(u′(t, x)) +

(
ξ′(u′(t, x))

)2
∂tu
′(t, x)

)′
,

u(t, 0) = 0,
(
W ′(u′(t, x)) +

(
ξ′(u′(t, x))

)2
∂tu
′(t, x)

)∣∣∣
x=1

= 0.
(6.4)

In fact, the transformation y = ϕ(u) : x 7→ ξ(u′(x)) maps the metric gradient system
(S free

ξ , φ, dξ) bijectively into the gradient system (L2
≥0(0, 1), ψ, ‖·‖L2), where the transformed

energy ψ is given by ψ(y) =
∫ 1

0
Wξ(y(x))dx. Hence, the classical L2 gradient flow gives the

partial differential equation
∂ty(t, x) = W ′

ξ(y(t, x)),

which is in fact an ordinary differential equation for each x. Clearly the latter equation transforms
into (6.4) using the transformation ϕ−1.
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