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Optimal control of a phase field system
modelling tumor growth with chemotaxis

and singular potentials
Pierluigi Colli, Andrea Signori, Jürgen Sprekels

Abstract

A distributed optimal control problem for an extended model of phase field type for tumor
growth is addressed. In this model, the chemotaxis effects are also taken into account. The con-
trol is realized by two control variables that design the dispensation of some drugs to the patient.
The cost functional is of tracking type, whereas the potential setting has been kept quite general in
order to allow regular and singular potentials to be considered. In this direction, some relaxation
terms have been introduced in the system. We show the well-posedness of the state system,
the Fréchet differentiability of the control-to-state operator in a suitable functional analytic frame-
work, and, lastly, we characterize the first-order necessary conditions of optimality in terms of a
variational inequality involving the adjoint variables.

1 Introduction

After realizing that tumor cells, like any other material, have to obey physical laws, a significant number
of models have been introduced, since from a modelling viewpoint a tumor mass does not behave that
different from other special materials investigated by scientists (see [8] and also [7,23,25,29,37,38]).
As far as diffuse interface models are concerned, we can identify two main classes. The first one
considers the tumor and healthy cells as inertialess fluids and includes effects generated by the fluid
flow development by postulating a Darcy law or a Stokes–Brinkman law. In this connection, we refer
to [9, 12, 14, 16–20, 22, 37], where also further mechanisms such as chemotaxis and active transport
are also taken into account. The other class, to which our model belongs, neglects the velocity.

In this framework, let us take Ω ⊂ R3 as an open, bounded, and connected set with smooth boundary
Γ; moreover, we set, for 0 < t < T ,

Q := Ω× (0, T ), Σ := Γ× (0, T ), Qt := Ω× (0, t), QT
t := Ω× (t, T ).

The initial-boundary problem under investigation then reads as follows.

α∂tµ+ ∂tϕ−∆µ = (Pσ − A− u)h(ϕ) in Q, (1.1)

µ = β∂tϕ−∆ϕ+ F ′(ϕ)− χσ in Q, (1.2)

∂tσ −∆σ = −χ∆ϕ+B(σs − σ)−Dσh(ϕ) + w in Q, (1.3)

∂nµ = ∂nϕ = ∂nσ = 0 on Σ, (1.4)

µ(0) = µ0, ϕ(0) = ϕ0, σ(0) = σ0 in Ω, (1.5)

where the symbol ∂n indicates the outward normal derivative to Γ. The above state system consists of
an extended Cahn–Hilliard type system for the tumor phase coupled with a reaction-diffusion equation
for an unknown species acting as a nutrient. The system (1.1)–(1.5) is a simplification and relaxed ver-
sion of the model originally proposed in [22]. Indeed, the velocity contributions and the active transport
effects are neglected, and two relaxation terms are added. This choice will allow us to consider more
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general potentials that may exhibit a singular behavior. By assuming different linear phenomenological
laws for chemical reactions, a different thermodynamically consistent model was introduced in [24]
(see also [7, 23, 25, 29]), and the corresponding mathematical investigations have been addressed
in [2, 4, 6, 13]. In [2, 4, 6] the same two relaxation terms α∂tµ and β∂tϕ have been introduced. As in
the current case, their presence allowed the authors to take into account more general potentials that
may be singular and also nonregular. Moreover, in [4,6], the authors pointed out how α and β can be
set to zero, by providing the proper framework in which a limit system can be identified and uniquely
solved. Next, we mention [15], where a similar nonlocal version was studied for the case of singular
potentials and degenerate mobilities. Let us also point out [1, 28], where the long-time behavior of
these models was analyzed in terms of the convergence to equilibrium and of the existence of a global
attractor, respectively. For further models, discussing the case of multispecies, we address the reader
to [9,14].

Now, let us briefly describe the role of the occurring symbols from a modeling viewpoint. The variable
ϕ stands for an order parameter and is usually taken between−1 and 1; it represents the healthy cell
case and the tumor phase, respectively. Moreover, µ indicates the chemical potential for ϕ, whereas
σ denotes the nutrient extra-cellular water concentration. This latter quantity is usually normalized
between 0 and 1, conveying that these values model the nutrient-poor and the nutrient-rich cases.
The symbols α and β represent positive constants; let us just note that term β∂tϕ in the second
equation corresponds to the classical term of the viscous Cahn–Hilliard equation, while the term α∂tµ
gives to equation (1.1) a parabolic structure with respect to µ. For more details on these relaxation
terms, let us refer to [2,4,6]. The capital lettersA,B,D, P, χ denote positive coefficients that stand for
the apoptosis rate, nutrient supply rate, nutrient consumption rate, proliferation rate, and chemotaxis
coefficient, in this order. In addition, let us point out that the contributions χσ and χ∆ϕ model pure
chemotaxis, namely, the movement of tumor cells towards regions of high nutrients, and the active
transport that describes the movement of the nutrient towards the tumor cells (see [17, 18, 20] for
more details). Furthermore, the function h has originally been introduced as an interpolation function
between −1 and 1 in order to have h(−1) = 0 and h(1) = 1, so that the mechanisms modelled by
the terms (Pσ − A− u)h(ϕ) and Dσh(ϕ) are switched off in the healthy case, which corresponds
to ϕ = −1, and are fully active in the tumorous case ϕ = 1. Besides, the term σs stands for a
nonnegative constant modelling the nutrient concentration in a pre-existing vasculature. For further
details on the model, we refer the reader to [22] (see also [3,21]). Lastly, the term F ′ is the derivative
of a double-well nonlinearity. Typical examples for this nonlinearity are the regular potential

Freg(r) =
1

4
(r2 − 1)2 for r ∈ R, (1.6)

and, more relevant for applications, the logarithmic potential

Flog(r) = (1 + r) ln(1 + r) + (1− r) ln(1− r)− kr2 for r ∈ (−1, 1), (1.7)

where k > 1 so that Flog is nonconvex. Eventually, the terms u and w are source terms acting
as control variables. It is worth noting that we are considering two control variables: u in the phase
equation and w in the nutrient equation. In the previous contributions [1,5,30,31,33], the control vari-
able was placed in the nutrient equation, so that it designs an external medication or some nutrient
supply. On the other hand, different authors consider the control variable in the phase equation (see,
e.g., [10,11,21]), multiplied by h(ϕ) in order to have the action of the control only in the meaningful re-
gion. In that case, it models the introduction of cytotoxic drugs into the system, which has the purpose
of eliminating the tumor cells. Thus, with our choice we include both these cases in this paper.

We are now in a position to introduce the distributed optimal control problem we are going to deal with.
It consists of finding a solution to the following minimization problem:
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Optimal control for a tumor growth model 3

(CP ) Minimize the tracking-type cost functional

J(ϕ, σ, u, w) :=
γ1

2

∫
Ω

|ϕ(T )− ϕΩ|2 +
γ2

2

∫
Q

|ϕ− ϕQ|2 +
γ3

2

∫
Ω

|σ(T )− σΩ|2

+
γ4

2

∫
Q

|σ − σQ|2 +
γ5

2

∫
Q

|u|2 +
γ6

2

∫
Q

|w|2 (1.8)

subject to the condition that (µ, ϕ, σ) solves the state system (1.1)–(1.5) for a control pair (u,w)
belonging to the control-box

Uad := {(u,w) ∈ (L∞(Q))2 : u∗ ≤ u ≤ u∗ a.e. in Q, w∗ ≤ w ≤ w∗ a.e. in Q}, (1.9)

where u∗, u∗, w∗ and w∗ denote some prescribed functions in L∞(Q). Moreover, let us point out
that the physical meaning of the term uh(ϕ) in the state system requires the control u to be nonneg-
ative. Hence, in the following we will always assume that the lower bound satisfies u∗ ≥ 0 almost
everywhere in Q.

As far as control problems for tumor growth models are concerned, the contributions are still scarce.
To our knowledge, the first optimal control problem governed by a tumor growth model similar to the
one given above is [5]. There, the control problem was investigated for the case of regular potentials
enjoying polynomial growth. Then, by adding two relaxation terms, a similar optimal control problem
was tackled in [33] by extending the generality of the potentials by allowing singular, but still smooth,
potentials like the logarithmic potential to be considered. Next, the same author, using the so-called
deep quench asymptotic technique, proved in [32] how nonsmooth potentials like the double obstacle
potential can also be admitted. Then, exploiting the results known for the case α, β > 0, in the
following works [30, 31] the author showed that it is possible to let α and β approach zero separately
in order to recover the existence of optimal controls and to characterize the corresponding first-order
necessary conditions for optimality. We also refer to [21], where an optimal treatment time has been
performed for a similar system, namely for system (1.1)–(1.5) with the choices χ = α = β = w = 0;
see also [1], where a similar control problem was investigated for a different model. Moreover, let us
mention [35], where an optimal control problem for the two-dimensional Cahn–Hilliard–Darcy system
with mass sources is addressed. We also point out [10, 11], where the optimal control for a Cahn–
Hilliard–Brinkman type system has been tackled. Lastly, we refer to [3], where a different kind of control
problem, known as sliding mode control, was performed for a system that is very close to (1.1)–(1.5).

We now comment on (1.1)–(1.5). Let us emphasize that, once the well-posedness of the state system
is established, we can properly define the control-to-state operator that assigns to a given control
(u,w) the unique corresponding solution to (1.1)–(1.5),

S : (u,w) 7→ S(u,w) :=
(
µ, ϕ, σ), (1.10)

and attains values in a proper Banach space. Then, we are in a position to eliminate the state variable
appearing in the cost functional (1.8) by expressing them as functions of the control. This leads to the
reduced cost functional

Jred(u,w) := J(S2(u,w), S3(u,w), u, w), (1.11)

where S2(u,w) and S3(u,w) denote the second and third component of S, respectively. At this formal
stage, let us point out that from standard results of convex analysis (see, e.g., [27, 36]) it follows the
formal first-order necessary condition for optimality characterized by the variational inequality

DJred(u,w)(u− u,w − w) ≥ 0 for every (u,w) ∈ Uad, (1.12)

where DJred stands for the derivative of the reduced cost functional in a proper functional analytic
sense.
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P. Colli, A. Signori, J. Sprekels 4

Therefore, summing up, in this contribution we aim at solving the constrained minimization problem

(CP ) Minimize J(ϕ, σ, u, w) subject to the control contraints (1.9) and under the

requirement that the variables (ϕ, σ) yield a solution to (1.1)–(1.5),

and pointing out the corresponding first-order necessary continuations for optimality.

The paper is organized as follows. The next section brings the mathematical framework and gathers
the obtained results. From Section 3 onward, we proceed with the proof of the statements. The well-
posedness and the continuous dependence results for the state system (1.1)–(1.5) are addressed in
Section 3, while Section 4 is completely devoted to the corresponding control problem. Namely, we
prove in this last the existence of optimal controls and derive the corresponding first-order necessary
conditions for optimality.

2 Mathematical setting and main results

To begin with, let us point out some notation. As far as the functional spaces are concerned, it is
convenient to set

H := L2(Ω), V := H1(Ω), W := {v ∈ H2(Ω) : ∂nv = 0 on Γ},

and to endow H,V,W with their standard norms. Furthermore, for an arbitrary Banach space X , we
denote by ‖ · ‖X its norm, X∗ its topological dual, and by 〈 · , ·〉X the duality product between X∗

and X . Likewise, for every 1 ≤ p ≤ ∞, we use the symbol ‖ · ‖p to indicate the usual norm in
Lp(Ω). Notice that (V,H, V ∗) forms a Hilbert triple, that is, the injections V ⊂ H ≡ H∗ ⊂ V ∗ are
both continuous and dense, where we have the identification

〈u, v〉V =

∫
Ω

uv for every u ∈ H and v ∈ V .

Furthermore, it is convenient to denote the parabolic cylinder and its boundary by

Qt := Ω× (0, t) and Σt := Γ× (0, t) for every t ∈ (0, T ],

Q := QT , and Σ := ΣT .

For the potential F , we generally assume:

(F1) F = F1 + F2, where F1 : R → [0,+∞] is convex and lower semicontinuous
with F1(0) = 0, and F1 is differentiable in the interior of its domain with derivative
F ′1.

(F2) D(F ′1) = (r−, r+), with −∞ ≤ r− < 0 < r+ ≤ +∞.

(F3) F2 ∈ C3(r−, r+), and F ′2 is Lipschitz continuous with Lipschitz constant L > 0.

(F4) F|D(F ′1)
∈ C3(r−, r+), and lim

r→r±
F ′(r) = ±∞.

It is worth noting that both (1.6) and (1.7) do fit the above framework with the choices (r−, r+) =
(−∞,+∞) and (r−, r+) = (−1, 1), respectively, so that they are allowed to be considered.

For the initial data introduced above, we make the following assumptions:

(A1) ϕ0 ∈ W, µ0 ∈ H1(Ω) ∩ L∞(Ω), σ0 ∈ H1(Ω) ∩ L∞(Ω).

(A2) r− < inf ϕ0 ≤ supϕ0 < r+, whence F (ϕ0), F ′(ϕ0) ∈ L∞(Ω).
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For the other appearing constants and target functions, we postulate:

(A3) h ∈ C2(R) ∩ L∞(R), h and h′ are Lipschitz continuous, and h : D(F1)→ (0,∞).

We denote by h∞, h′∞ the upper bounds for the C0(R) norms of h and h′, and by Lh the Lipschitz
constant of h, respectively. Moreover, as a Lipschitz constant for h′, we can simply take h′∞.

(A4) α, β, χ are positive constants, while P,A,B,D, σs are nonnegative constants.

(A5) γ1, γ2, γ3, γ4, γ5, γ6 are nonnegative constants, but not all zero.

(A6) ϕQ, σQ ∈ L2(Q), ϕΩ, σΩ ∈ L2(Ω).

Moreover, we assume that the control box Uad is defined by (1.9), and that

(A7) u∗, u
∗ ∈ L∞(Q) with 0 ≤ u∗ ≤ u∗ a.e. in Q, w∗, w∗ ∈ L∞(Q) with w∗ ≤ w∗ a.e.

in Q.

The latter condition implies that Uad is a closed and convex subset of L2(Q). On the other hand, it
will be sometimes convenient to work with an open superset of Uad. We therefore fix some constant
R > 0 such that:

The open ball UR := {(u,w) ∈ L2(Q)× L2(Q) : ‖(u,w)‖L2(Q)×L2(Q) < R} contains Uad.
(2.1)

Remark 2.1. Before diving into the well-posedness result, let us point out a classical issue of control
theory. The well-posedness result to be presented below is given in a rather strong setting; this is
motivated by the control problem under investigation. However, system (1.1)–(1.5) can be provided
with a notion of weak solutions in a rather mild setting. Moreover, it is also possible to extend the
analysis for the potentials and to take into account singular and nonregular potentials like the well-
known double obstacle potential. For this, a Yosida regularization of the maximal monotone operator
F ′1 has to be introduced. Clearly, the pointwise formulation (1.1)–(1.5) has then to be replaced by
a suitable variational formulation. Let us just sketch the expected result here: provided we assume
µ0, ϕ0, σ0 ∈ L2(Ω) for the initial data and a potential that fulfills (F1)–(F3), we can prove existence
and uniqueness of a weak solution such that µ, ϕ, σ ∈ H1(0, T ;V ∗)∩L∞(0, T ;H)∩L2(0, T ;V ).
Note that uniqueness will follow from the first continuous dependence estimate that we perform below
(cf. (3.16)), which perfectly complies with the above notion of weak solutions.

First, let us present the result regarding the existence and uniqueness of a strong solution to the
system (1.1)–(1.5).

Theorem 2.2. Assume that (F1)–(F4), (A1)–(A4), and (A7), are fulfilled and that (u,w) ∈ UR. Then
the state system (1.1)–(1.5) admits a unique solution (µ, ϕ, σ) with the regularity

ϕ ∈ W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ) , (2.2)

µ, σ ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ) ∩ L∞(Q) . (2.3)

Moreover, there exists a positive constant K1, which depends only on Ω, T , R, α, β, and the data of
the system, such that

‖ϕ‖W 1,∞(0,T ;H)∩H1(0,T ;V )∩L∞(0,T ;W ) + ‖µ‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W )∩L∞(Q)

+ ‖σ‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W )∩L∞(Q) ≤ K1 . (2.4)

In addition, there exist some constants r∗ and r∗, which satisfy r− < r∗ ≤ r∗ < r+ and depend only
on the data of the system, such that

r∗ ≤ ϕ ≤ r∗ a.e. in Q . (2.5)
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Finally, there exists a positive constant K2, which depends only on Ω, T , R, α, β, and the data of the
system, such that

‖ϕ‖L∞(Q) + max
i=1,2,3

‖F (i)(ϕ)‖L∞(Q) ≤ K2 . (2.6)

Theorem 2.3. Suppose that (F1)–(F4) and (A1)–(A7) are fulfilled. Then there exists a positive constant
K3, which depends only on Ω, T , R, α, β, and the data of the system, such that the following holds
true: whenever two control pairs (ui, wi) ∈ UR, i = 1, 2, are given and (µi, ϕi, σi), i = 1, 2, are the
corresponding states, then

‖µ1 − µ2‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W ) + ‖ϕ1 − ϕ2‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W )

+ ‖σ1 − σ2‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W )

≤ K3

(
‖u1 − u2‖L2(0,T ;H) + ‖w1 − w2‖L2(0,T ;H)

)
. (2.7)

For the optimal control problem (CP ), we will show the following existence result:

Theorem 2.4. Assume that (F1)–(F4) and (A1)–(A7) are satisfied. Then the control problem (CP )
admits at least one solution.

Finally, we formulate the first-order necessary optimality conditions for (CP ) that will be shown be-
low. To this end, we assume that (u,w) and (µ, ϕ, σ) stand for some fixed control and its associated
state, respectively. Sometimes, the same notation is employed to refer to an optimal control with the
corresponding optimal state; anyhow, we will specify this whenever it is the case. In the course of our
analysis, it will be necessary to establish the Fréchet differentiability of the control-to-state operator
S : (u,w) 7→ (µ, ϕ, σ) in suitable Banach spaces. To this end, the unique solvability of the corre-
sponding linearized system will have to be shown. This system has for every pair (k, l) ∈ (L2(Q))2

the following form:

α∂tη + ∂tξ −∆η = (Pζ − k)h(ϕ) + (Pσ − A− u)h′(ϕ)ξ in Q, (2.8)

η = β∂tξ −∆ξ + F ′′(ϕ)ξ − χζ in Q, (2.9)

∂tζ −∆ζ +Bζ = −χ∆ξ −Dζh(ϕ)−Dσh′(ϕ)ξ + l in Q, (2.10)

∂nη = ∂nξ = ∂nζ = 0 on Σ, (2.11)

η(0) = ξ(0) = ζ(0) = 0 in Ω. (2.12)

Here, the well-posedness result follows.

Theorem 2.5. Assume that (F1)–(F4), (A1)–(A4), and (A7), are satisfied. Then the linearized system
(2.8)–(2.12) admits for every (k, l) ∈ (L2(Q))2 a unique solution (η, ξ, ζ) with the regularity

η, ξ, ζ ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ). (2.13)

Notice that Theorem 2.3 also entails the Lipschitz continuity of the control-to-state operator S between
suitable Banach spaces. We even have Fréchet differentiability, as the following result states.

Theorem 2.6. Assume that (F1)–(F4), (A1)–(A4), and (A7), are satisfied, and let (u,w) ∈ UR be
a fixed control with the corresponding state (µ, ϕ, σ). Then the control-to-state operator S is Fréchet
differentiable at (u,w) as a mapping from (L2(Q))2 into the Banach space Y, where

Y :=
(
C0([0, T ];H) ∩ L2(0, T ;V )

)
×
(
H1(0, T ;H) ∩ L∞(0, T ;V )

)
×
(
C0([0, T ];H) ∩ L2(0, T ;V )

)
. (2.14)

Moreover, for every (k, l) ∈ (L2(Q))2 the derivative of S at (u,w) is given by the identity
[DS(u,w)](k, l) = (η, ξ, ζ), where (η, ξ, ζ) is the unique solution to the linearized system (2.8)–
(2.12) corresponding to (k, l).
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Theorem 2.7. Assume that (F1)–(F4) and (A1)–(A7) are fulfilled, and let (u,w) be an optimal control
with associated state (µ, ϕ, σ). Then it holds that

γ1

∫
Ω

(ϕ(T )− ϕΩ)ξ(T ) + γ2

∫
Q

(ϕ− ϕQ)ξ + γ3

∫
Ω

(σ(T )− σΩ)ζ(T ) + γ4

∫
Q

(σ − σQ)ζ

+ γ5

∫
Q

u(u− u) + γ6

∫
Q

w(w − w) ≥ 0 for every (u,w) ∈ Uad, (2.15)

where the triple (η, ξ, ζ) is the unique solution to the linearized system (2.8)–(2.12) corresponding to
k = u− u and l = w − w, respectively.

Analyzing the above variational inequality, one realizes that it is not very useful in numerical applica-
tions, since for every possible step of the approximation one has to solve the state system and also the
linearized system in order to have ξ and ζ at disposal. For this reason, a classical tool is to introduce
the so-called adjoint system in order to eliminate these variables. In fact, provided that we choose this
auxiliary system properly, the linearized variables can be eliminated from (2.15). The adjoint system to
(1.1)–(1.5) can be obtained by the formal Lagrangian method described, e.g., in [36], using integration
by parts. Following this route, we arrive at the following (formal) version of the adjoint system:

− α∂tq −∆q − p = 0 in Q, (2.16)

− ∂tq − β∂tp−∆p+ χ∆r + F ′′(ϕ)p− (Pσ − A− u)h′(ϕ)q +Dσh′(ϕ)r

= γ2(ϕ− ϕQ) in Q, (2.17)

− ∂tr −∆r +Br +Dh(ϕ)r − χp− Ph(ϕ)q = γ4(σ − σQ) in Q, (2.18)

∂nq = ∂np = ∂nr = 0, on Σ, (2.19)

q(T ) = 0, βp(T ) = γ1(ϕ(T )− ϕΩ), r(T ) = γ3(σ(T )− σΩ), in Ω. (2.20)

Observe that this is a backward-in-time system with final conditions belonging to L2(Ω) (see assump-
tion (A6)), so that we cannot expect to recover a strong solution. Therefore, instead of considering the
pointwise equations (2.17)–(2.18), we note that the variables p and r should be understood as weak
solutions in the following sense:

−
∫

Ω

∂tq v − 〈β∂tp, v〉V +

∫
Ω

∇p · ∇v − χ
∫

Ω

∇r · ∇v +

∫
Ω

F ′′(ϕ) p v +

∫
Ω

Dσ h′(ϕ) r v

−
∫

Ω

(Pσ − A− u)h′(ϕ)q v =

∫
Ω

γ2(ϕ− ϕQ) v for all v ∈ V and a.e. in (0, T ), (2.21)

− 〈∂tr, v〉V +

∫
Ω

∇r · ∇v +

∫
Ω

Brv +

∫
Ω

Dh(ϕ)r v −
∫

Ω

χp v −
∫

Ω

Ph(ϕ)q v

=

∫
Ω

γ4(σ − σQ)v for all v ∈ V and a.e. in (0, T ), (2.22)

where, for simplicity, we avoided writing the time variable explicitly. We have the following well-posedness
result.

Theorem 2.8. Assume that (F1)–(F4) and (A1)–(A7) are fulfilled, and let (u,w) be an optimal control
with associated state (µ, ϕ, σ). Then the adjoint system (2.16)–(2.20) has a unique solution such that

p, r ∈ H1(0, T ;V ∗) ∩ C0([0, T ];H) ∩ L2(0, T ;V ), (2.23)

q ∈ H1(0, T ;H) ∩ C0([0, T ];V ) ∩ L2(0, T ;W ). (2.24)

Theorem 2.9. Assume that (F1)–(F4) and (A1)–(A7) are fulfilled, and let (u,w) be an optimal control
with associated state (µ, ϕ, σ) and adjoint state (p, q, r). Then it holds the variational inequality∫

Q

(−h(ϕ)q + γ5u)(u− u) +

∫
Q

(r + γ6w)(w − w) ≥ 0 for every (u,w) ∈ Uad. (2.25)
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Moreover, whenever γ5 6= 0, then u is nothing but theL2(0, T ;H)-orthogonal projection of γ−1
5 h(ϕ)q

onto the closed and convex set {u ∈ L2(Q) : u∗ ≤ u ≤ u∗ a.e. in Q}. Likewise, if γ6 6= 0, then
w reduces to the L2(0, T ;H)-orthogonal projection of −γ−1

6 r onto {w ∈ L2(Q) : w∗ ≤ w ≤
w∗ a.e. in Q}.

Furthermore, since Uad is actually a control box, it is possible to explicitly characterize the projection
and obtain a pointwise condition.

Corollary 2.10. Let (F1)–(F4) and (A1)–(A7) be fulfilled, and let γ5 > 0. Then, the optimal control
component u is implicitly characterized by

u(x, t) = max
{
u∗(x, t),min{u∗(x, t), γ−1

5 h(ϕ(x, t))q(x, t)}
}

for a.a. (x, t) ∈ Q.

Likewise, if γ6 > 0, then

w(x, t) = max
{
w∗(x, t),min{w∗(x, t),−γ−1

6 r(x, t)}
}

for a.a. (x, t) ∈ Q.

Let us emphasize a consequence which is of straightforward importance for the numerical approach.
Comparing the expected theoretical condition (1.12) with the explicit condition (2.25), via Riesz’s rep-
resentation theorem, the gradient of the reduced cost functional can be recovered as∇Jred(u,w) =
(h(ϕ)q + γ5u , r + γ6w). Hence, for the numerical approach, the optimal control problem can be
viewed as a constrained minimization of a function, Jred, whose gradient is known (think of the well-
known projected conjugate gradient method).

In the remainder of this section, we recollect some well-known resultsthat will prove useful later on. To
begin with, we recall the standard Sobolev continuous embedding

H1(Ω) ↪→ Lq(Ω) for every q ∈ [1, 6]. (2.26)

Furthermore, we often make use of Young’s inequality

ab ≤ δa2 +
1

4δ
b2 for every a, b ≥ 0 and δ > 0. (2.27)

Moreover, for a given function v ∈ L1(0, T ), we convey to set

(1 ∗ v)(t) :=

∫ t

0

v(s)ds for a.a. t ∈ (0, T ),

noting that symbol ∗ is usually employed to denote convolution.

As far as the constants are concerned, let us set our convention once and for all: the symbol small-
case c is used to indicate every constant that depends only on the structural data of the problem,
such as T , Ω, R, α or β, the shape of the nonlinearities, and the norms of the involved functions.
On the other hand, with capital letters we specify particular constants that will be referred to later on.
Therefore, the meaning of the constant c may change from line to line.

3 The state system

3.1 Well-posedness of the state system

Proof of Theorem 2.2. Here, we proceed formally, since the approach is quite standard. Anyhow, let
us point out that the argument can be made rigorous by making use of an approximation technique,
e.g., within a Faedo–Galerkin scheme along with the introduction of the Yosida approximation for F ′1.
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In fact, since the framework for the potential settings is rather general, we cannot assume F ′1 to be
Lipschitz continuous, in general. Then, after proving some estimates for the approximated version,
one passes to zero in the parameter to recover existence. Moreover, in what follows, we are just going
to prove the existence of a solution fulfilling the postulated regularity. The proof of the uniqueness will
follow as a direct consequence of Theorem 2.3.

First estimate: To begin with, we add to both sides of (1.2) the term ϕ. Then, we multiply (1.1) by
µ, the new (1.2) by ∂tϕ, (1.3) by σ, and add the resulting identities. Next, we integrate over Qt, for
an arbitrary t ∈ (0, T ], and by parts. After a cancellation of terms and some rearrangements, we infer
that

α

2
‖µ(t)‖2

H +

∫
Qt

|∇µ|2 + β

∫
Qt

|∂tϕ|2 +
1

2
‖ϕ(t)‖2

H +
1

2
‖∇ϕ(t)‖2

H

+

∫
Ω

F1(ϕ(t)) +
1

2
‖σ(t)‖2

H +B

∫
Qt

|σ|2 +

∫
Qt

|∇σ|2

=
α

2
‖µ0‖2

H +
1

2
‖ϕ0‖2

H +
1

2
‖∇ϕ0‖2

H +
1

2
‖σ0‖2

H +

∫
Ω

F1(ϕ0)

+

∫
Qt

(Pσ − A− u)h(ϕ)µ+ χ
∫
Qt

σ∂tϕ+

∫
Qt

(ϕ− F ′2(ϕ))∂tϕ

+ χ
∫
Qt

∇ϕ · ∇σ +

∫
Qt

Bσsσ −
∫
Qt

Dh(ϕ)|σ|2 +

∫
Qt

wσ.

Obviously, all of the summands on the left-hand side are nonnegative, and the first five summands on
the right-hand side are bounded, by virtue of (A1), (A2), and the general assumptions on F1 and F2.
It remains to estimate the remaining terms on the right-hand side, which we denote by I1, ..., I7, in
this order. This can easily be done by means of Young’s inequality. In fact, we have that

|I1| ≤
∫
Qt

|σ|2 + T |Ω|+
∫
Qt

|u|2 +
h2
∞
(
P 2 + A2 + 1

)
4

∫
Qt

|µ|2.

Furthermore, we also infer that

7∑
i=2

|Ii| ≤
β

2

∫
Qt

|∂tϕ|2 +
χ2

β

∫
Qt

|σ|2 +
2(1 + L2)

β

∫
Qt

|ϕ|2 +
χ2

2

∫
Qt

|∇ϕ|2

+
1

2

∫
Qt

|∇σ|2 +
1

2

∫
Qt

|σ|2 +
B2σ2

s

2
T |Ω|+Dh∞

∫
Qt

|σ|2 +
1

2

∫
Qt

(|σ|2 + |w|2)

≤ β

2

∫
Qt

|∂tϕ|2 +
1

2

∫
Qt

|∇σ|2 +
(χ2

β
+Dh∞ + 1

) ∫
Qt

|σ|2 +
2(1 + L2)

β

∫
Qt

|ϕ|2

+
χ2

2

∫
Qt

|∇ϕ|2 +
1

2

∫
Qt

|w|2 +
B2σ2

s

2
T |Ω|.

Therefore, a Gronwall argument yields that

‖µ‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖ϕ‖H1(0,T ;H)∩L∞(0,T ;V ) + ‖σ‖L∞(0,T ;H)∩L2(0,T ;V )

+ ‖F1(ϕ)‖L∞(0,T ;L1(Ω)) ≤ c (1 + ‖u‖L2(0,T ;H) + ‖w‖L2(0,T ;H)). (3.1)

Second estimate: We multiply (1.2) by −∆ϕ, write F ′ = F ′1 + F ′2, integrate over Qt, where
t ∈ (0, T ], and by parts, to obtain that

β

2
‖∇ϕ(t)‖2

H +

∫
Qt

|∆ϕ|2 +

∫
Qt

F ′′1 (ϕ)|∇ϕ|2

=
β

2
‖∇ϕ0‖2

H −
∫
Qt

F ′′2 (ϕ)|∇ϕ|2 −
∫
Qt

χσ∆ϕ−
∫
Qt

µ∆ϕ,
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where the terms on the right-hand side are denoted by I1, ..., I4, in this order. At first, the convexity
(recall assumption (F1)) of F1 entails that F ′′1 (ϕ) ≥ 0, so that the third term on the left-hand side is
nonnegative. Furthermore, the first term I1 on the right-hand side is bounded due to (A1), whereas
the other terms can be dealt with by accounting for Young’s inequality and the above estimate. In fact,
we have that

4∑
i=2

|Ii| ≤ L

∫
Qt

|∇ϕ|2 + χ2

∫
Qt

|σ|2 +

∫
Qt

|µ|2 +
1

2

∫
Qt

|∆ϕ|2.

Therefore, we realize that ‖∆ϕ‖2
L2(0,T ;H) ≤ c. The elliptic regularity theory, along with the smooth

boundary condition in (1.4), and then a comparison in (1.2), give us that

‖ϕ‖L2(0,T ;W ) + ‖F ′1(ϕ)‖L2(0,T ;H) ≤ c (1 + ‖u‖L2(0,T ;H) + ‖w‖L2(0,T ;H)). (3.2)

Third estimate: We now multiply (1.3) by ∂tσ, and integrate over Qt and by parts, to infer that∫
Qt

|∂tσ|2 +
B

2
‖σ(t)‖2

H +
1

2
‖∇σ(t)‖2

H

=
B

2
‖σ0‖2

H +
1

2
‖∇σ0‖2

H − χ
∫
Qt

∆ϕ∂tσ +

∫
Qt

Bσs ∂tσ −
∫
Qt

Dσh(ϕ)∂tσ +

∫
Qt

w ∂tσ.

Here, it suffices to recall (A1), (3.1), (3.2), and to employ Young’s inequality several times, to deduce
that

‖σ‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ c (1 + ‖u‖L2(0,T ;H) + ‖w‖L2(0,T ;H)). (3.3)

Fourth estimate: Next, we differentiate (1.2) with respect to time and multiply the resulting equality
by ∂tϕ to infer that

β

2
‖∂tϕ(t)‖2

H +

∫
Qt

|∇∂tϕ|2 +

∫
Qt

F ′′1 (ϕ)|∂tϕ|2

=
β

2
‖∂tϕ(0)‖2

H −
∫
Qt

F ′′2 (ϕ)|∂tϕ|2 +

∫
Qt

∂tµ ∂tϕ+

∫
Qt

χ∂tσ ∂tϕ.

Again, the third term on the left-hand side is nonnegative. On the other hand, the first term on the
right-hand side is under control by virtue of assumptions (A1), (A2), and (F2), which implies that F ′

is Lipschitz continuous, so that F ′(ϕ0) ∈ L2(Ω) whenever ϕ0 ∈ L2(Ω). In fact, evaluating (1.2) at
t = 0, we see that

∂tϕ(0) =
1

β
[µ0 + ∆ϕ0 − F ′(ϕ0) + χσ0],

and all of the terms on the right-hand side are bounded inL2(Ω). Lastly, thanks to the Young inequality,
we have that

4∑
i=2

|Ii| ≤
1

2

∫
Qt

|∂tµ|2 +

(
1 + χ2

2
+ L

)∫
Qt

|∂tϕ|2 +
1

2

∫
Qt

|∂tσ|2.

Thus, owing to the previous estimates, we infer that

‖ϕ‖W 1,∞(0,T ;H)∩H1(0,T ;V ) ≤ c (1 + ‖u‖L2(0,T ;H) + ‖w‖L2(0,T ;H)). (3.4)

Moreover, a comparison argument in Eq. (1.2), and the elliptic regularity theory, lead to

‖ϕ‖L∞(0,T ;W ) ≤ c (1 + ‖u‖L2(0,T ;H) + ‖w‖L2(0,T ;H)), (3.5)
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which, accounting for the Sobolev embedding H2(Ω) ⊂ L∞(Ω), also yields that

‖ϕ‖L∞(Q) ≤ c (1 + ‖u‖L2(0,T ;H) + ‖w‖L2(0,T ;H)). (3.6)

Fifth estimate: Next, we observe that the equation (1.3) has parabolic structure with respect to the
variable σ, since we can rewrite it as{

∂tσ −∆σ +Bσ = f in Q, with f := −χ∆ϕ+Bσs −Dσh(ϕ) + w,

σ(0) = σ0 in Ω.

By virtue of the above estimates and (A7), it easily follows that f ∈ L∞(0, T ;H), which allows us to
recover the full parabolic regularity

‖σ‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W ) ≤ c (1 + ‖u‖L2(0,T ;H) + ‖w‖L2(0,T ;H)). (3.7)

Moreover, provided we assume σ0 ∈ L∞(Ω), as in (A1), we can invoke [26, Thm. 7.1, p. 181] to
conclude that

‖σ‖L∞(Q) ≤ c (1 + ‖u‖L2(0,T ;H) + ‖w‖L∞(0,T ;H)). (3.8)

Sixth estimate: Now, we note that the equation (1.1) shows a parabolic structure with respect to µ;
indeed, it can be rewritten as{

α∂tµ−∆µ = f in Q, with f := (Pσ − A− u)h(ϕ)− ∂tϕ,
µ(0) = µ0 in Ω.

On the other hand, owing to the above estimates, the source term satisfies f ∈ L2(0, T ;H), and the
initial data is regular, so that the parabolic regularity theory yields that

‖µ‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W ) ≤ c (1 + ‖u‖L2(0,T ;H) + ‖w‖L2(0,T ;H)). (3.9)

Seventh estimate: Moreover, the above estimates also entail that f ∈ L∞(0, T ;H). By virtue of
the assumption µ0 ∈ L∞(Ω), we can again invoke [26, Thm. 7.1, p. 181] in order to realize that

‖µ‖L∞(Q) ≤ c (1 + ‖u‖L∞(0,T ;H) + ‖w‖L∞(0,T ;H)). (3.10)

Eighth estimate: At this point, we can rewrite the second equation (1.2) in the form

β∂tϕ−∆ϕ+ F ′(ϕ) = g with g := µ+ χσ, (3.11)

and, on account of the previous estimates, we deduce that g ∈ L∞(Q), so that there exists a positive
constant g∗ for which ‖g‖L∞(Q) ≤ g∗. Besides, the growth assumption (F4) implies the existence of
some constants r∗ and r∗ such that r− < r∗ ≤ r∗ < r+ and

r∗ < inf ess
x∈Ω

ϕ0(x), r∗ > sup ess
x∈Ω

ϕ0(x), (3.12)

F ′(r) + g∗ ≤ 0 ∀r ∈ (r−, r∗), F ′(r)− g∗ ≥ 0 ∀r ∈ (r∗, r+). (3.13)

Then, let us set, for convenience, ϑ := (ϕ − r∗)+, multiply equation (3.11) by ϑ, and integrate over
Qt, where t ∈ (0, T ], and by parts, to obtain that

β

2
‖ϑ(t)‖2

H +

∫
Qt

|∇ϑ|2 +

∫
Qt

(F ′(ϕ)− g)ϑ = 0,
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where we also apply (3.12) to conclude that ϑ(0) = 0. Moreover, the last term is nonnegative due
to (3.13), so that ϑ = (ϕ − r∗)+ = 0, which in turn implies that ϕ ≤ r∗ almost everywhere on Q.
In a similar manner, we easily conclude that ϕ ≥ r∗ almost everywhere on Q by testing (3.11) by
−(ϕ− r∗)−. Thus, we have just shown that

r∗ ≤ ϕ ≤ r∗ a.e. in Q. (3.14)

Upon collecting all of the above estimates, we conclude that (2.4) and (2.6) have been verified. More-
over, note that (2.5) and (F1)–(F4) directly imply (2.6). In fact, (3.14) ensures that the phase variable
ϕ stays away from the boundary of the domain of F1, so that F and its derivatives turn out to be
uniformly bounded.

3.2 Continuous dependence results

The continuous dependence result to be shown below will in turn prove the uniqueness of the solution
to the state system (1.1)–(1.5).

Proof of Theorem 2.3. First of all, let us set

u := u1 − u2, w := w1 − w2, µ := µ1 − µ2, ϕ := ϕ1 − ϕ2, σ := σ1 − σ2. (3.15)

In view of (A7), the controls (ui, wi), i = 1, 2, belong to the admissible set Uad in (1.9), and the
respective states (µi, ϕi, σi), i = 1, 2, satisfy (2.4)–(2.6), as solutions to the state system (1.1)–(1.5).

First estimate: We multiply the difference of (1.1), integrated with respect to time, by χ2µ, the
difference of (1.2) by χ2ϕ, and the difference of (1.3) by σ. Integration over Qt, where t ∈ (0, T ], and
addition, yield a cancellation of terms, and rearranging the terms, we obtain that

αχ2

∫
Qt

|µ|2 +
χ2

2

∫
Ω

|∇(1 ∗ µ)(t)|2 +
βχ2

2
‖ϕ(t)‖2

H + χ2

∫
Qt

|∇ϕ|2

+ χ2

∫
Qt

(F ′1(ϕ1)− F ′1(ϕ2))ϕ+
1

2
‖σ(t)‖2

H +

∫
Qt

B|σ|2 +

∫
Qt

|∇σ|2

= χ2

∫
Qt

(
1 ∗
(
(Pσ − u)h(ϕ1) + (Pσ2 − A− u2)(h(ϕ1)− h(ϕ2))

))
µ

− χ2

∫
Qt

(F ′2(ϕ1)− F ′2(ϕ2))ϕ+ χ3

∫
Qt

σϕ+ χ
∫
Qt

∇ϕ · ∇σ −
∫
Qt

Dh(ϕ1)|σ|2

−
∫
Qt

Dσ2(h(ϕ1)− h(ϕ2))σ +

∫
Qt

wσ .

Owing to the monotonicity of F ′1, the fifth summand on the left-hand side is is nonnegative. We now
estimate the terms on the right-hand side, which we denote by I1, ..., I7, in this order. We first infer
from the Lipschitz continuity of F ′2 that

|I2| ≤ χ2L

∫
Qt

|ϕ|2.

Moreover, accounting for the Young inequality, it is easy to see that

|I3|+ |I4|+ |I5|+ |I7| ≤
1

2

∫
Qt

|∇σ|2 +
χ2

2

∫
Qt

|∇ϕ|2 +
χ3

2

∫
Qt

|ϕ|2

+

(
Dh∞ +

χ3 + 1

2

)∫
Qt

|σ|2 +
1

2

∫
Qt

|w|2.
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As I1 is concerned, thanks to the Young inequality we have that

|I1| ≤
αχ2

4

∫
Qt

|µ|2 +
χ2h∞

2

α

∫
Qt

(∫ s

0

P |σ|+ |u|
)2

+
αχ2

4

∫
Qt

|µ|2 +
χ2Lh

2

α

(
P‖σ2‖L∞(Q) + A+ ‖u2‖L∞(Q)

)2
∫
Qt

(∫ s

0

|ϕ|
)2

≤ αχ2

2

∫
Qt

|µ|2 +
χ2h∞

2

α
T 2

∫
Qt

(P |σ|+ |u|)2

+
χ2Lh

2

α

(
PK1 + A+ ‖u∗‖L∞(Q)

)2
T 2

∫
Qt

|ϕ|2

≤ αχ2

2

∫
Qt

|µ|2 + c

∫
Qt

(|ϕ|2 + |σ|2 + |u|2).

Here, we have have used the fact that σ2 is a solution to (1.1)–(1.5) and thus has to satisfy (2.4).
Finally, using Young’s inequality once more, along with the Lipschitz continuity of h, we obtain that

|I6| ≤ DLh‖σ2‖L∞(Q)

∫
Qt

|ϕ||σ| ≤ DLhK1

2

∫
Qt

(|ϕ|2 + |σ|2).

At this point, we collect the above estimates, and apply Gronwall’s lemma, to conclude that

‖µ1 − µ2‖L2(0,T ;H) + ‖1 ∗ (µ1 − µ2)‖L∞(0,T ;V ) + ‖ϕ1 − ϕ2‖L∞(0,T ;H)∩L2(0,T ;V )

+ ‖σ1 − σ2‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ c
(
‖u1 − u2‖L2(0,T ;H) + ‖w1 − w2‖L2(0,T ;H)

)
. (3.16)

Second estimate: Next, we take the difference of (1.2) for the two solutions and test by ∂tϕ. Inte-
grating over Qt for an arbitrary t ∈ (0, T ] and by parts, we find that

β

∫
Qt

|∂tϕ|2 +
1

2
‖∇ϕ(t)‖2

H = −
∫
Qt

(F ′(ϕ1)− F ′(ϕ2)) ∂tϕ+

∫
Qt

µ ∂tϕ+

∫
Qt

χσ ∂tϕ.

Besides, owing to (2.5), the nonlinear term F ′ turns out to be Lipschitz continuous in the range of
interesting arguments, so that we obtain from Young’s inequality that

−
∫
Qt

(F ′(ϕ1)− F ′(ϕ2))∂tϕ ≤ L

∫
Qt

|ϕ||∂tϕ| ≤
β

4

∫
Qt

|∂tϕ|2 +
L2

β

∫
Qt

|ϕ|2,

where L here stands for a Lipschitz constant of F ′. The last two terms can be easily managed as
follows: ∫

Qt

µ ∂tϕ+

∫
Qt

χσ ∂tϕ ≤
β

4

∫
Qt

|∂tϕ|2 +
2

β

∫
Qt

|µ|2 +
2χ2

β

∫
Qt

|σ|2.

Hence, rearranging the terms, and recalling (3.16), we infer that

‖ϕ1 − ϕ2‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ c
(
‖u1 − u2‖L2(0,T ;H) + ‖w1 − w2‖L2(0,T ;H)

)
. (3.17)

Third estimate: We multiply the difference of (1.2) by −∆ϕ, and use the Young inequality several
times, the previous estimates, and the elliptic regularity theory, to obtain that

‖ϕ1 − ϕ2‖L2(0,T ;W ) ≤ c
(
‖u1 − u2‖L2(0,T ;H) + ‖w1 − w2‖L2(0,T ;H)

)
. (3.18)
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Fourth estimate: Next, we test the difference of (1.1) by ∂tµ and integrate over time and by parts
to realize that

α

∫
Qt

|∂tµ|2 +
1

2
‖∇µ(t)‖2

H = −
∫
Qt

∂tϕ∂tµ+

∫
Qt

(Pσ − u)h(ϕ1)∂tµ

+

∫
Qt

(Pσ2 − A− u2)(h(ϕ1)− h(ϕ2))∂tµ.

Let us indicate by I1, I2, and I3 the integrals on the right-hand side. They can be handled, with the
help of the Young inequality and the previous estimates, as follows:

3∑
i=1

|Ii| ≤
α

2

∫
Qt

|∂tµ|2 +
1

α

∫
Qt

|∂tϕ|2 +
2h2
∞
α

∫
Qt

(P 2|σ|2 + |u|2)

+ Lh

(
P‖σ2‖L∞(Q)

∫
Qt

|ϕ| |∂tµ|+ A

∫
Qt

|ϕ||∂tµ|+ ‖u2‖L∞(Q)

∫
Qt

|ϕ| |∂tµ|
)

≤ 3α

4

∫
Qt

|∂tµ|2 +
1

α

∫
Qt

|∂tϕ|2 +
2h2
∞
α

∫
Qt

(P 2|σ|2 + |u|2)

+
3Lh

2

α

(
P 2K2

1 + A2 + ‖u∗‖2
L∞(Q)

)∫
Qt

|ϕ|2,

where we use the boundedness of σ2 once more, whereas u2 belongs to the class Uad of admissible
controls (cf., (1.9) and (A7)). Thus, the above estimates yield that

‖µ1 − µ2‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ c
(
‖u1 − u2‖L2(0,T ;H) + ‖w1 − w2‖L2(0,T ;H)

)
. (3.19)

Fifth estimate: Arguing as in the third estimate, that is, using comparison in the difference of (1.1)
and elliptic regularity theory, we find that

‖µ1 − µ2‖L2(0,T ;W ) ≤ c
(
‖u1 − u2‖L2(0,T ;H) + ‖w1 − w2‖L2(0,T ;H)

)
. (3.20)

Sixth estimate: We multiply the difference of (1.3) by ∂tσ, and integrate over Qt and by parts, to
obtain that∫

Qt

|∂tσ|2 +
1

2
‖∇σ(t)‖2

H +
B

2
‖σ(t)‖2

H

= −χ
∫
Qt

∆ϕ∂tσ −
∫
Qt

Dσh(ϕ1) ∂tσ −
∫
Qt

Dσ2(h(ϕ1)− h(ϕ2)) ∂tσ +

∫
Qt

w ∂tσ.

Here, we denote by I1, ..., I4 the terms on the right-hand side. Using Young’s inequality four times,
along with the Lipschitz continuity of h, we realize that the integrals on the right-hand side can be
estimated as follows:

4∑
i=1

|Ii| ≤ χ
∫
Qt

|∆ϕ| |∂tσ|+Dh∞

∫
Qt

|σ| |∂tσ|

+DLh‖σ2‖L∞(Q)

∫
Qt

|ϕ| |∂tσ|+
∫
Qt

|w| |∂tσ|

≤ 1

2

∫
Qt

|∂tσ|2 + 2χ2

∫
Qt

|∆ϕ|2 + 2D2h2
∞

∫
Qt

|σ|2

+ 2D2Lh
2K2

1

∫
Qt

|ϕ|2 + 2

∫
Qt

|w|2,

DOI 10.20347/WIAS.PREPRINT.2614 Berlin 2019



Optimal control for a tumor growth model 15

where we again exploit the uniform bound for ‖σ2‖L∞(Q). Therefore, we deduce that

‖σ1 − σ2‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ c
(
‖u1 − u2‖L2(0,T ;H) + ‖w1 − w2‖L2(0,T ;H)

)
. (3.21)

Seventh estimate: Finally, by comparison in the difference of (1.2), and applying elliptic regularity
theory, we have that

‖σ1 − σ2‖L2(0,T ;W ) ≤ c
(
‖u1 − u2‖L2(0,T ;H) + ‖w1 − w2‖L2(0,T ;H)

)
. (3.22)

Upon collecting all of the estimates (3.16)–(3.22), we find that (2.7) is shown, so that Theorem 2.3 is
completely proved.

4 The control problem

From now on, we are going to focus our attention on the control problem. The main results are the
existence of optimal controls and the first-order necessary conditions for optimality.

4.1 Existence of optimal controls

Proof of Theorem 2.4. The proof makes use of the direct method from the calculus of variations. In
fact, the cost functional is nonnegative, convex, and weakly lower semicontinuous. To this end, let us
pick a minimizing sequence {(un, wn)}n∈N ⊂ Uad such that, setting (µn, ϕn, σn) = S(un, wn), and
recalling the notations (1.8)–(1.11), there holds

lim
n→∞

J(ϕn, σn, un, wn) = lim
n→∞

Jred(un, wn) = inf
(u,w)∈Uad

Jred(u,w).

On the other hand, {(un, wn)}n∈N is bounded in L∞(Q) × L∞(Q), and also the bounds (2.4)
and (2.6) are at our disposal for every n ∈ N. Hence, accounting for standard weak compactness
arguments (see, e.g., [34, Sec. 8, Cor. 4]), it is a standard matter to infer the existence of a pair
(u,w) and a triplet (µ, ϕ, σ) such that the following convergence properties are (possibly only on a
subsequence) fulfilled as n→∞:

(un, wn)→ (u,w) weakly star in (L∞(Q))2, (4.1)

µn → µ weakly star in H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ) ∩ L∞(Q)

and strongly in C0([0, T ];H) ∩ L2(0, T ;V ), (4.2)

ϕn → ϕ weakly star in W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W )

and strongly in C0(Q), (4.3)

σn → σ weakly star in H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ) ∩ L∞(Q)

and strongly in C0([0, T ];H) ∩ L2(0, T ;V ). (4.4)

Clearly, as the convex set Uad is weakly sequentially closed, we have that (u,w) ∈ Uad; besides,
the strong convergence properties show that the Cauchy conditions (1.5) are fulfilled by (µ, ϕ, σ).
Moreover, the strong convergence in (4.3) and the assumptions (F1)–(F4) and (A3) imply that

h(ϕn)→ h(ϕ) and F ′(ϕn)→ F ′(ϕ) strongly in C0(Q), as n→∞.

Therefore, passing to the limit as n → ∞ in the corresponding time-integrated version of (1.1)–
(1.5), written for (un, wn) and (µn, ϕn, σn), we easily see that (µ, ϕ, σ) solves (1.1)–(1.5) with
(u,w) = (u,w), which yields that (µ, ϕ, σ) = S(u,w). Finally, we combine the weak sequential
lower semicontinuity of the cost functional with the assumption that (un, wn) is a minimizing sequence
to deduce that (u,w) is indeed an optimal control.

DOI 10.20347/WIAS.PREPRINT.2614 Berlin 2019



P. Colli, A. Signori, J. Sprekels 16

4.2 The linearized system

At this point, our aim is to find the necessary conditions for optimality. Actually, we would like to express
the formal variational inequality (1.12) in an explicit form. For this purpose, we have to prove the
Fréchet differentiability of the reduced cost functional Jred, which is the composition of J with the
control-to-state operator S. However, J is straightforwardly Fréchet differentiable. Therefore, it suffices
to prove that S is Fréchet differentiable as well, and then invoke the chain rule to write (1.12) in an
explicit way.

The expectation is that, provided we find the proper Banach spaces, the Fréchet derivative of S applied
to the pair (k, l) is given by the unique solution to the linearized system (2.8)–(2.12). With this in mind,
we begin by establishing the well-posedness of the linearized system (2.8)–(2.12).

Proof of Theorem 2.5. For the sake of simplicity, we proceed formally, just pointing out some estimates
which are the key points in order to rigorously justify the proof. Moreover, the system (2.8)–(2.12) is
linear, so that the uniqueness directly follows from the uniform estimates. In addition, some of the
forthcoming estimates follow the same lines as the ones of the state system, which allows us to be
less detailed below.

First estimate: First of all, we add to both sides of (2.9) the term ξ. Then, we multiply (2.8) by η, the
new (2.9) by ∂tξ, (2.10) by ζ , add the resulting equations, and integrate over Qt and by parts for an
arbitrary t ∈ (0, T ]. After a cancellation of terms and some rearrangements, and making use of the
initial conditions (2.12), we obtain that

α

2
‖η(t)‖2

H +

∫
Qt

|∇η|2 + β

∫
Qt

|∂tξ|2 +
1

2
‖ξ(t)‖2

V +
1

2
‖ζ(t)‖2

H

+B

∫
Qt

|ζ|2 +

∫
Qt

|∇ζ|2 =

∫
Qt

(Pζ − k)h(ϕ)η +

∫
Qt

(Pσ − A− u)h′(ϕ)ξη

+

∫
Qt

ξ ∂tξ −
∫
Qt

F ′′(ϕ)ξ∂tξ + χ
∫
Qt

ζ∂tξ + χ
∫
Qt

∇ξ · ∇ζ −
∫
Qt

Dh(ϕ)|ζ|2

−
∫
Qt

Dσh′(ϕ)ξζ +

∫
Qt

lζ .

We denote by I1, ..., I9 the integrals on the right-hand side. Using the Young inequality, we infer that

|I1|+ |I2| ≤ Ph∞

∫
Qt

|ζ||η|+ h∞

∫
Qt

|k||η|+ h′∞
(
P‖σ‖L∞(Q) + A+ ‖u‖L∞(Q)

) ∫
Qt

|ξ||η|

≤ Ph∞
2

∫
Qt

(|ζ|2 + |η|2) +
h∞
2

∫
Qt

(|k|2 + |η|2)

+
h′∞
(
PK1 + A+ ‖u∗‖L∞(Q)

)
2

∫
Qt

(|ξ|2 + |η|2),

where we use the fact that σ satisfies (2.4) and u belongs to the class of admissible controls. Moreover,
from Young’s inequality, combined with (2.6), it follows that

5∑
i=3

|Ii| ≤
∫
Qt

|ξ||∂tξ|+ ‖F ′′(ϕ)‖L∞(Q)

∫
Qt

|ξ||∂tξ|+ χ
∫
Qt

|ζ||∂tξ|

≤ β

2

∫
Qt

|∂tξ|2 +
3

2β

(
K2

2 + 1
) ∫

Qt

|ξ|2 +
3χ2

2β

∫
Qt

|ζ|2
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and also that

9∑
i=7

|Ii| ≤ Dh∞

∫
Qt

|ζ|2 +Dh′∞‖σ‖L∞(Q)

∫
Qt

|ξ||ζ|+
∫
Qt

|l||ζ|

≤
(
Dh∞ +

(Dh′∞K1)2 + 1

4

)∫
Qt

|ζ|2 +

∫
Qt

(|ξ|2 + |l|2).

Furthermore, using Young’s inequality once more, we infer that

|I6| ≤
1

2

∫
Qt

|∇ζ|2 +
χ2

2

∫
Qt

|∇ξ|2.

At this point, we collect all of the above estimates and apply Gronwall’s lemma to deduce that

‖η‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖ξ‖H1(0,T ;H)∩L∞(0,T ;V ) + ‖ζ‖L∞(0,T ;H)∩L2(0,T ;V )

≤ c (‖k‖L2(Q) + ‖l‖L2(Q)). (4.5)

Second estimate: We now observe that the equation (2.8) shows a parabolic structure with respect
to the variable η. In fact, we can write (2.8) in the form

α∂tη −∆η = f1 with f1 := (Pζ − k)h(ϕ) + (Pσ − A− u)h′(ϕ)ξ − ∂tξ,

where, owing to the above estimate, we easily verify that f1 ∈ L2(0, T ;H) and

‖f1‖L2(0,T ;H) ≤ c (‖k‖L2(Q) + ‖l‖L2(Q)). (4.6)

So, recalling the boundary and initial conditions (2.11)–(2.12), it is a standard matter to recover the full
parabolic regularity and infer that

‖η‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W ) ≤ c (‖k‖L2(Q) + ‖l‖L2(Q)). (4.7)

Third estimate: In the same way, we also have

β∂tξ −∆ξ = f2 with f2 := −F ′′(ϕ)ξ + χζ + η,

∂tζ −∆ζ = f3 with f3 := −χ∆ξ −Bζ −Dζh(ϕ)−Dσh′(ϕ)ξ + l.

Then, we first note that f2 belongs to L2(0, T ;H) and satisfies the same estimate as in (4.6), so
that the regularity theory for parabolic equation with regular initial datum and homogeneous Neumann
boundary conditions allows us to to infer that

‖ξ‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W ) ≤ c (‖k‖L2(Q) + ‖l‖L2(Q)). (4.8)

Besides, also f3 belongs to L2(0, T ;H), and similar reasoning leads to the conclusion that

‖ζ‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W ) ≤ c (‖k‖L2(Q) + ‖l‖L2(Q)), (4.9)

which concludes the proof of Theorem 2.5.

4.3 Differentiability of the control-to-state operator

Now we are going to show the Fréchet differentiability of the operator S and to characterize its Fréchet
derivative.
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Proof of Theorem 2.6. At first, let us fix a control pair (u,w) ∈ Uad ⊂ UR with the corresponding
state (µ, ϕ, σ). Then, whenever (k, l) belongs to (L2(Q))2, we denote with (η, ξ, ζ) the correspond-
ing solution to system (2.8)–(2.12). Moreover, let us recall that UR is an open set, so that, provided that
we consider small perturbations, we also have (u+k, w+l) ∈ UR. Namely, there exist some positive
constant δ∗ such that (u + k, w + l) ∈ UR for every (k, l) such that ‖k‖L2(Q) + ‖l‖L2(Q) ≤ δ∗.
In the following, we always assume that this is the case. Lastly, we denote with (µ̂, ϕ̂, σ̂) the unique
solution to (1.1)–(1.5) corresponding to the incremented control (u + k, w + l). Let us point out that
Theorem 2.5 entails that the map (k, l) 7→ (η, ξ, ζ) is linear and continuous between (L2(Q))2 and
(H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ))3.

Here, we aim at directly checking the definition of Fréchet differentiability for S. Namely, we are going
to show that

S(u+ k, w + l) = S(u,w) + [DS(u,w)](k, l) + o(‖(k, l)‖L2(Q)×L2(Q)) in Y

as ‖(k, l)‖L2(Q)×L2(Q) → 0, (4.10)

for the Banach space Y introduced in (2.14). To this end, it is convenient to set

ψ := µ̂− µ− η, y := ϕ̂− ϕ− ξ, z := σ̂ − σ − ζ.

With this notation, (4.10) takes the form

‖(ψ, y, z)‖Y = o(‖(k, l)‖L2(Q)×L2(Q)) as ‖(k, l)‖L2(Q)×L2(Q) → 0.

Obviously, the validity of this condition implies that S is Fréchet differentiable at (u,w) and that
[DS(u,w)](k, l) = (η, ξ, ζ) for every (k, l) ∈ (L2(Q))2. To verify this condition, it suffices to con-
struct an increasing function G : (0, δ∗)→ (0,+∞) such that ‖(ψ, y, z)‖2

Y ≤ G
(
‖(k, l)‖L2(Q)×L2(Q)

)
and

lim
λ→0

G(λ)

λ2
= 0. (4.11)

This is actually the estimate we are going to check with the choice G(λ) = cλ4 for some positive
constant c.

At this stage, let us recall that since (µ̂, ϕ̂, σ̂) and (µ, ϕ, σ) are fixed, they both verify (2.4) and (2.6),
as well as the following continuous dependence estimate

‖µ̂− µ‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W ) + ‖ϕ̂− ϕ‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W )

+ ‖σ̂ − σ‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W )

≤ K3

(
‖k‖L2(0,T ;H) + ‖l‖L2(0,T ;H)

)
, (4.12)

which directly follows from (2.7).

Besides, a system for (ψ, y, z) can be constructed in light of the systems (1.1)–(1.5) corresponding
to (u,w) = (u + k, w + l), (1.1)–(1.5) for (u,w) = (u,w), and (2.8)–(2.12). By combining them,
we obtain the following system:

α∂tψ + ∂ty −∆ψ = Pzh(ϕ) + (Pσ − A− u)(h(ϕ̂)− h(ϕ)− h′(ϕ)ξ)

− k(h(ϕ̂)− h(ϕ)) + P (σ̂ − σ)(h(ϕ̂)− h(ϕ)) in Q, (4.13)

ψ = β∂ty −∆y + (F ′(ϕ̂)− F ′(ϕ)− F ′′(ϕ)ξ)− χz in Q, (4.14)

∂tz −∆z +Bz = −χ∆y −D[σ(h(ϕ̂)− h(ϕ)− h′(ϕ)ξ)

+ (σ̂ − σ)(h(ϕ̂)− h(ϕ)) + h(ϕ)z] in Q, (4.15)

∂nψ = ∂ny = ∂nz = 0 on Σ, (4.16)

ψ(0) = y(0) = z(0) = 0 in Ω. (4.17)
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Note that (2.2)–(2.3) and (2.13) entail that

ψ, y, z ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ).

First estimate: First of all, we add to both sides of (4.14) the term y. Next, we multiply (4.13) by ψ,
the new (4.14) by ∂ty, and (4.15) by z. Then, we add the resulting identities, integrate over Qt, where
t ∈ (0, T ], and by parts, to find that

α

2
‖ψ(t)‖2

H +

∫
Qt

|∇ψ|2 + β

∫
Qt

|∂ty|2 +
1

2
‖y(t)‖2

V +
1

2
‖z(t)‖2

H

+B

∫
Qt

|z|2 +

∫
Qt

|∇z|2

=

∫
Qt

Pzh(ϕ)ψ +

∫
Qt

(Pσ − A− u)(h(ϕ̂)− h(ϕ)− h′(ϕ)ξ)ψ

−
∫
Qt

k(h(ϕ̂)− h(ϕ))ψ +

∫
Qt

P (σ̂ − σ)(h(ϕ̂)− h(ϕ))ψ

−
∫
Qt

(F ′(ϕ̂)− F ′(ϕ)− F ′′(ϕ)ξ)∂ty +

∫
Qt

χz∂ty

+

∫
Qt

y∂ty + χ
∫
Qt

∇y · ∇z −
∫
Qt

Dσ(h(ϕ̂)− h(ϕ)− h′(ϕ)ξ)z

−
∫
Qt

D(σ̂ − σ)(h(ϕ̂)− h(ϕ))z −
∫
Qt

Dh(ϕ)|z|2,

where we denote by I1, ..., I11 the integrals on the right-hand side. Moreover, in the above calculations
we also owe to the fact that the initial data are zero by (4.17). Using the Hölder and Young inequalities,
the Lipschitz continuity of h and the Sobolev embedding (2.26) with q = 4, we have that

|I1|+ |I3|+ |I4| ≤ Ph∞

∫
Qt

|z||ψ|+ Lh

∫ t

0

‖k(s)‖2‖ϕ̂(s)− ϕ(s)‖4‖ψ(s)‖4 ds

+ PLh

∫ t

0

‖σ̂(s)− σ(s)‖4‖ϕ̂(s)− ϕ(s)‖4‖ψ‖2 ds

≤ Ph∞
2

∫
Qt

(|z|2 + |ψ|2) +
1

2

∫ t

0

‖ψ(s)‖2
V ds+ c ‖ϕ̂− ϕ‖2

L∞(0,T ;V )

∫
Qt

|k|2

+ c ‖σ̂ − σ‖2
L∞(0,T ;V )‖ϕ̂− ϕ‖2

L∞(0,T ;V ) + c

∫
Qt

|ψ|2

≤ 1

2

∫ t

0

‖ψ(s)‖2
V ds+ c

(
‖k‖4

L2(0,T ;H) + ‖l‖4
L2(0,T ;H)

)
+ c

∫
Qt

(|z|2 + |ψ|2) ,

where we also invoked the continuous dependence estimate (4.12). Before moving on, let us recall
the Taylor formula with integral remainder which will be useful to estimate some terms. For an arbitrary
function g ∈ C1(R) with g′ Lipschitz continuous, we have that

g(x) = g(x) + g′(x)(x− x) + (x− x)2

∫ 1

0

g′′(x+ s(x− x))(1− s) ds for every x ∈ R.

(4.18)

Applying the above formula to F ′ and h, respectively, we infer that

F ′(ϕ̂)− F ′(ϕ)− F ′′(ϕ)ξ = F ′′(ϕ)y +R1(ϕ̂− ϕ)2, (4.19)

h(ϕ̂)− h(ϕ)− h′(ϕ)ξ = h′(ϕ)y +R2(ϕ̂− ϕ)2, (4.20)
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with the remainders

R1 :=

∫ 1

0

F ′′′(ϕ+ s(ϕ̂− ϕ))(1− s)ds , R2 :=

∫ 1

0

h′′(ϕ+ s(ϕ̂− ϕ))(1− s)ds .

Taking advantage of (2.6) and (A3), we see that

‖R1‖L∞(Q) ≤ R∗1, ‖R2‖L∞(Q) ≤ R∗2,

for some positive constants R∗1, R
∗
2. Thus, making use of (4.20), we are now in a position to estimate

I2 as follows:

|I2| ≤ (P‖σ‖L∞(Q) + A+ ‖u‖L∞(Q))

∫
Qt

(h′∞|y|+R∗2(ϕ̂− ϕ)2)|ψ|

≤
(PK1 + A+ ‖u∗‖L∞(Q))h

′
∞

2

∫
Qt

(|y|2 + |ψ|2)

+ (PK1 + A+ ‖u∗‖L∞(Q))R
∗
2

∫ t

0

‖ϕ̂(s)− ϕ(s)‖2
4 ‖ψ(s)‖2 ds

≤
(PK1 + A+ ‖u∗‖L∞(Q))h

′
∞

2

∫
Qt

(|y|2 + |ψ|2)

+ c‖ϕ̂− ϕ‖4
L∞(0,T ;V ) +

∫
Qt

|ψ|2

≤ c

∫
Qt

(|y|2 + |ψ|2) + c(‖k‖4
L2(Q) + ‖l‖4

L2(Q)) ,

where we also use (4.12), the fact that σ is bounded for (2.4), whereas u is bounded since it is an
admissible control. As for I5, thanks to the Young inequality and (4.19), we have that

|I5| ≤
β

4

∫
Qt

|∂ty|2 +
2‖F ′′(ϕ)‖2

L∞(Q)

β

∫
Qt

|y|2 + 2R∗1
2‖ϕ̂− ϕ‖4

L∞(0,T ;L4(Ω))

≤ β

4

∫
Qt

|∂ty|2 +
2K2

2

β

∫
Qt

|y|2 + c (‖k‖4
L2(Q) + ‖l‖4

L2(Q)).

Moreover, using the Young inequality once more, we have that

8∑
i=6

|Ii| ≤
1

2

∫
Qt

|∇z|2 +
χ2

2

∫
Qt

|∇y|2 +
β

4

∫
Qt

|∂ty|2 +
2χ2

β

∫
Qt

|z|2 +
2

β

∫
Qt

|y|2.
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Lastly, by similar reasoning, we obtain that

11∑
i=9

|Ii| ≤ D‖σ‖L∞(Q)

∫
Qt

(h′∞|y|+R∗2(ϕ̂− ϕ)2)|z|

+DLh

∫ t

0

‖σ̂(s)− σ(s)‖4 ‖ϕ̂(s)− ϕ(s)‖4 ‖z(s)‖2 ds+Dh∞

∫
Qt

|z|2

≤ DK1h
′
∞

2

∫
Qt

(|y|2 + |z|2) +DK1R
∗
2

∫ t

0

‖ϕ̂(s)− ϕ(s)‖2
4 ‖z(s)‖2 ds

+
D2L2

h

4
‖σ̂ − σ‖2

L∞(0,T ;L4(Ω))‖ϕ̂− ϕ‖2
L∞(0,T ;L4(Ω)) +

∫
Qt

|z|2

+Dh∞

∫
Qt

|z|2

≤ DK1h
′
∞

2

∫
Qt

(|y|2 + |z|2) + c‖ϕ̂− ϕ‖4
L∞(0,T ;V )

+ c‖σ̂ − σ‖2
L∞(0,T ;V )‖ϕ̂− ϕ‖2

L∞(0,T ;V ) + (Dh∞ + 1)

∫
Qt

|z|2

≤ c

∫
Qt

(|y|2 + |z|2) + c(‖k‖4
L2(Q) + ‖l‖4

L2(Q)).

Hence, applying Gronwall’s lemma, we deduce that

‖ψ‖2
C0([0,T ];H)∩L2(0,T ;V ) + ‖y‖2

H1(0,T ;H)∩L∞(0,T ;V ) + ‖z‖2
C0([0,T ];H)∩L2(0,T ;V )

≤ C‖(k, l)‖4
L2(Q)×L2(Q),

which in turn implies the validity of (4.11) with the choice G(λ) = Cλ4. This concludes the proof of
the assertion.

4.4 First-order necessary optimality conditions

As already pointed out in Section 2, we would like to employ the adjoint variables in order to elim-
inate the linearized variables from the variational inequality (2.15). Here, we begin with the task of
establishing the well-posedness of the adjoint system. In this direction, let us set

QT
t = (t, T )× Ω for every t ∈ (0, T ).

Proof of Theorem 2.8. The rigorous proof should employ an approximation technique. Anyhow, since
the system is linear and the arguments are standard, we simply point out the estimates which allow
us to conclude, leaving the details to the reader. It is worth recalling that the adjoint system is linear,
so that the uniqueness directly follows from our estimates.

First estimate: First, we add to both sides of (2.16) the term−q. Then, we multiply the new (2.16) by
−∂tq, (2.17) by p, (2.18) by χ2r, add the resulting equations, and integrate overQT

t and by parts. We
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obtain a cancellation and deduce that

α

∫
QT

t

|∂tq|2 +
1

2
‖q(t)‖2

V +
β

2
‖p(t)‖2

H +

∫
QT

t

|∇p|2 +
χ2

2
‖r(t)‖2

H

+ χ2

∫
QT

t

|∇r|2 + χ2B

∫
QT

t

|r|2

=
γ2

1

2β
‖ϕ(T )− ϕΩ‖2

H +
χ2γ3

2

2
‖σ(T )− σΩ‖2

H +

∫
QT

t

q∂tq

+ χ
∫
Qt

∇r · ∇p−
∫
QT

t

F ′′(ϕ)|p|2 +

∫
QT

t

(Pσ − A− u)h′(ϕ)qp

−
∫
QT

t

Dσh′(ϕ)rp+

∫
QT

t

γ2(ϕ− ϕQ)p− χ2

∫
QT

t

Dh(ϕ)|r|2

+ χ3

∫
QT

t

pr + χ2

∫
QT

t

Ph(ϕ)qr + χ2

∫
QT

t

γ4(σ − σQ)r,

where we used the information (2.20) on the final data. In the above equality, the terms on the left-
hand side are nonnegative, whereas we denote the integrals on the right-hand side by I1, ..., I12, in
this order. As far as the right-hand side is concerned, the first four terms can be easily handled with
the aid of (2.4), assumption (A6), and the Young inequality. Indeed, we have

4∑
i=1

|Ii| ≤ c+
α

2

∫
QT

t

|∂tq|2 +
1

2α

∫
QT

t

|q|2 +
1

2

∫
QT

t

|∇p|2 +
χ2

2

∫
QT

t

|∇r|2.

Using Young’s inequality, we can deal with I6 as follows:

|I6| ≤
(P‖σ‖L∞(Q) + A+ ‖u‖L∞(Q))h

′
∞

2

∫
QT

t

(|q|2 + |p|2),

where we employ that σ satisfies (2.4) and that u is an admissible control. The rest of the terms can
be handled using several times the Young inequality to get that

|I5|+
12∑
i=7

|Ii| ≤
Ph∞χ

2

2

∫
QT

t

|q|2 +

(
‖F ′′(ϕ)‖L∞(Q) +

2 +D‖σ‖L∞(Q)h
′
∞ + χ3

2

)∫
QT

t

|p|2

+

(
2 +D‖σ‖L∞(Q)h

′
∞ + χ3

2
+ χ2Dh∞ +

Ph∞χ
2

2

)∫
QT

t

|r|2

+
(γ2

2 + χ4γ2
4)

4

∫
QT

t

(|ϕ− ϕQ|2 + |σ − σQ|2).

Thus, the backward-in-time Gronwall lemma yields that

‖q‖H1(0,T ;H)∩L∞(0,T ;V ) + ‖p‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖r‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ c. (4.21)

Second estimate: By (4.21) and a comparison argument in (2.17) and (2.18), we obtain that

‖∂tp‖L2(0,T ;V ∗) + ‖∂tr‖L2(0,T ;V ∗) ≤ c, (4.22)

which, in turn, gives sense to the final conditions (2.20). In fact, from the standard embeddingH1(0, T ;V ∗)∩
L2(0, T ;V ) in C0([0, T ];H), we deduce that p, r ∈ C0([0, T ];H).

Third estimate: Next, a comparison in (2.16) produces ∆q ∈ L2(0, T ;H), and the elliptic regularity
theory yields that

‖q‖L2(0,T ;W ) ≤ c, (4.23)
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which also allows us to recover q ∈ C0([0, T ];V ) from well-known embedding results.

Summing up, we realize that the estimate

‖q‖H1(0,T ;H)∩C0([0,T ];V )∩L2(0,T ;W ) + ‖p‖H1(0,T ;V ∗)∩C0([0,T ];H)∩L2(0,T ;V )

+ ‖r‖H1(0,T ;V ∗)∩C0([0,T ];H)∩L2(0,T ;V ) ≤ c (4.24)

has been proved. The uniqueness part directly follows, since the system (2.16)–(2.20) is linear.

Finally, we are left with the task of showing the necessary conditions for optimality. To this end, we
begin by checking Theorem 2.7. Then, making use of the adjoint system, we simplify (2.15) and
deduce a variational inequality which is more convenient for the applications.

Proof of Theorem 2.7. This result is a direct consequence of (1.12) and Theorem 2.6. Indeed, com-
bining the Fréchet differentiability of S with the chain rule, we can exploit (1.12) to derive (2.15).

We are now in the position to eliminate the solutions to the linearized system from the necessary
condition (2.15). This procedure leads to (2.25) and thus to Theorem 2.9.

Proof of Theorem 2.9. Comparing the variational inequalities (2.15) with (2.25), it becomes clear that
we are reduced to ensure that

−
∫
Q

h(ϕ)kq +

∫
Q

lr = γ1

∫
Ω

(ϕ(T )− ϕΩ)ξ(T ) + γ2

∫
Q

(ϕ− ϕQ)ξ

+ γ3

∫
Ω

(σ(T )− σΩ)ζ(T ) + γ4

∫
Q

(σ − σQ)ζ, (4.25)

where ξ and ζ are the solution to the linearized system (2.8)–(2.12) corresponding to k = u− u and
l = w − w. In order to show (4.25), let us first point out that combining the Newton-Leibnitz formula
with the initial and final conditions (2.12) and (2.20), respectively, we have that

−
∫ T

0

β〈∂tp(t), ξ(t)〉V dt = β

∫
Q

∂tξ p−
∫ T

0

d

dt

(∫
Ω

βpξ

)
dt

= β

∫
Q

∂tξ p−
∫

Ω

γ1(ϕ(T )− ϕΩ)ξ(T ),

−
∫ T

0

〈∂tr(t), ζ(t)〉V dt =

∫
Q

∂tζ r −
∫ T

0

d

dt

(∫
Ω

rζ

)
dt

=

∫
Q

∂tζ r −
∫

Ω

γ3(σ(T )− σΩ)ζ(T ).

Then, we consider the solution (η, ξ, ζ) to (2.8)–(2.12) corresponding to k = u− u and l = w − w
as test functions in system (2.16)–(2.20). Namely, we test (2.16) by η, (2.17) by ξ, (2.18) by ζ , and
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integrate over (0, T ) to obtain that

0 =

∫
Q

η [−α∂tq −∆q − p]

−
∫
Q

∂tqξ −
∫ T

0

β〈∂tp(t), ξ(t)〉V dt+

∫
Q

∇p · ∇ξ − χ
∫
Q

∇r · ∇ξ +

∫
Q

F ′′(ϕ)pξ

−
∫
Q

(Pσ − A− u)h′(ϕ)qξ +

∫
Q

Dσh′(ϕ)rξ −
∫
Q

γ2(ϕ− ϕQ)ξ

−
∫ T

0

〈∂tr(t), ζ(t)〉V dt+

∫
Q

∇r · ∇ζ +

∫
Q

Brζ +

∫
Q

Dh(ϕ)rζ −
∫
Q

χpζ

−
∫
Q

Ph(ϕ)qζ −
∫
Q

γ4(σ − σQ)ζ.

Hence, we integrate by parts making use of the boundary conditions, the initial data and the above
identities. After rearrangements of the terms, we infer that∫

Ω

γ1(ϕ(T )− ϕΩ)ξ(T ) +

∫
Q

γ2(ϕ− ϕQ)ξ +

∫
Ω

γ3(σ(T )− σΩ)ζ(T )

+

∫
Q

γ4(σ − σQ)ζ =

∫
Q

p [β∂tξ −∆ξ + F ′′(ϕ)ξ − χζ − η]

+

∫
Q

q [α∂tη + ∂tξ −∆η − Pζh(ϕ)− (Pσ − A− u)h′(ϕ)ξ]

+

∫
Q

r [∂tζ −∆ζ +Bζ + χ∆ξ +Dζh(ϕ) +Dσh′(ϕ)ξ].

Finally, we account for the equations of system (2.8)–(2.12) to realize that∫
Ω

γ1(ϕ(T )− ϕΩ)ξ(T ) +

∫
Q

γ2(ϕ− ϕQ)ξ +

∫
Ω

γ3(σ(T )− σΩ)ζ(T )

+

∫
Q

γ4(σ − σQ)ζ = −
∫
Q

h(ϕ)q(u− u) +

∫
Q

(w − w)r,

that is (4.25), so that the variational inequality (2.25) has been shown.

Let us note, the last sentences in the statement of Theorem 2.9 straightforwardly follow by combining
the fact that condition (2.25) can be decoupled by taking first w = w and then u = u and use the
Hilbert projection theorem.
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