982 Supplementary Figures

Supplementary figure 1: Number of GHMs with a significant increase or decrease in hydrological
 performance (KGE) due to HIP. Figures (a), (b), and (c) show for each of the underlying KGE sub-parameters
 (bias ratio, variability ratio, correlation coefficient) the number of models with a significant increase or decrease
 in performance.

993 • >2
994 Supplementary figure 2b: KGE performance of LPJmL under HIP conditions.

1003
1004 Supplementary figure 3: Spatial distribution of dominant KGE sub-component limiting optimal
1005 hydrological performance.

1008 1009 Supplementary figure 4: Share of land area with a significant change in the representation of the exceedance probability curve, as tested with the Kolmogorov-Smirnov test. WaterGAP2 and PCR-GLOBWB are located underneath the results of MATSIRO.

1014
 OManaged catchments O (Near-)natural catchments
 Supplementary figure 5: Scatterplot showing for the individual global hydrological models (GHMs) the
 difference in hydrological extremes due to HIP.

1017 The two sets of panels show the difference (factor) in modelled (a) Q_1 high-flow and (b) Q_{99} low-flow 1018 discharges under the HIP and NOHIP conditions for the managed (blue) and near-natural catchments (orange). 1019 Values >1 imply that discharges are larger under HIP conditions compared to NOHIP conditions, and vice 1020 versa. To improve visibility, results are capped at a value of 2. The absolute differences given in each of the 1021 panels represent the average absolute deviation from unity for the managed and near-natural catchments. The 1022 larger the average absolute deviation, the larger the difference in modelled Q_1 high-flow and Q_{99} low-flow 1023 discharges between HIP and NOHIP conditions.

- 1024
- 1025

1026 Supplementary Tables

1027

Supplementary table 1: Description of the modelling framework and parameterizations of the models.
Table 1.A presents the representation of the hydrological processes in the models, after Zhao et al., 2017.
Table 1.B-I present the representation of the human dimensions and its interactions with the hydrological

1030Table 1.B-I present the representation of the hun1031processes for each of the models.

1032

Model name	Energy balance	Evaporation scheme	Runoff scheme	Snow scheme	Routing scheme	Flow velocity	Soil Water Layer Depth	References
H08	Yes	Bulk formula	Saturation excess, non- linear	Energy balance	TRIP Linear reservoir (Oki and Sud 1998)	0.5m/s	One soil layer with a depth of 1m	Hanasaki et al., 2008a,b
LPJmL	No	Priestley- Taylor	Saturation excess	Degree- day	Continuity equation derived from linear reservoir model	1 m/s	Five hydrologically active layers of 20, 30, 50, 100 and 100 cm thickness, respectively	Bondeau et al., 2007; Schaphoff et al., 2013
MATSIRO	Yes	Bulk formula	Overland flow, infiltration excess, saturation excess, groundwater.	Energy balance	TRIP Linear reservoir (Oki and Sud 1998)	0.5m/s	12 fully resolved layers (5cm, 20cm, 75cm, and nine next layers of 1m) and a 90m groundwater layer.	Takata et al., 2003; Pokhrel et al., 2012; 2015
PCR- GLOBWB	No	Hamon	Saturation Excess Beta Function	Degree Day	Travel time routing (characteristic distance)	Variable based on Manning's equation	Variable up to 1.5 m soil layers and 50 m groundwater layer	van Beek et al., 2011; Wada et al., 2011
WaterGAP2	No	Priestley Taylor with two alpha factors depending on the aridity of the grid cell	Beta function, saturation excess	Degree Day	Linear reservoir	Variable, based on Manning- Strickler	One soil layer, varying depth in dependence on land cover type (0.1 to 4 m)	Müller Schmied et al., 2014,2016; Verzano et al., 2012

1033 1.A Representation of hydrological processes

1034 1035

1.B Representation of livestock water use

Model name	Model	Drivers	Parameters	References
H08	-	-	-	
LPJmL	-	-	-	
MATSIRO	-	-	-	
PCR- GLOBWB	Time-series regression by individual countries and regions	Cattle stock	Set from literature review and time- series data	Wada et al., 2014b
WaterGAP2	Time-series regression by individual countries and regions	Cattle stock	Set from literature review and time- series data	Flörke et al., 2013

7 1.C Representation of domestic water use

Model name	Model	Drivers	Parameters	References
H08	Time-series regression by individual countries and regions	Population	Set from literature review and time- series data	Hanasaki et al., 2008a, b; Yoshikawa et al., 2014
LPJmL	-	-	-	
MATSIRO	Time-series regression by individual countries and regions	Population	Set from literature review and time- series data	Takata et al., 2003; Pokhrel et al., 2012; 2015
PCR- GLOBWB	Time-series regression by individual countries and regions	Population, GDP per capita	Set from literature review and time- series data	Wada et al., 2014b
WaterGAP2	Time-series regression by individual countries and regions	Population, GDP per capita	Calibrated from time-series data	Flörke et al., 2013

1.D Representation of industrial water use

Model name	Model	Sector	Drivers	Parameters	References
Н08	Time-series regression by individual countries and regions	Industry	Infrastructure area	Set from literature review and time- series data	Hanasaki et al., 2008a,b, Yoshikawa et al., 2014
LPJmL	-	-	-	-	
MATSIRO	Time-series regression by individual countries and regions	Industry	electricity production	Set from literature review and time- series data	Takata et al., 2003; Pokhrel et al., 2012; 2015
PCR- GLOBWB	Time-series regression by individual countries and regions	Industry	GDP, electricity production, energy consumption, household consumption	Set from literature review and time- series data	Wada et al., 2014b
	Time-series	Manufacturing	Manufacturing structural water intensity, Manufacturing gross value added (GVA), Technological change rate for manufacturing	Calibrated from time-series data	
WaterGAP2	terGAP2 Time-series regression by individual countries and regions	Electricity production	Annual Electricity Production, Water use intensity of thermal power plants (by type of plant and cooling system), Technological change rate		Flörke et al., 2013

Model name	Calculation of irrigation water requirements	Crop Types	Crop Calendar	Additional components	References
Н08	Model-based	MIRCA 2000 (Portmann et al., 2010)	Planting date was determined to obtain maximum yield under meteorological conditions for 1960-1999. The planting date was fixed throughout the simulation period. Harvesting date was calculated in the model and changed with years according to meteorological conditions.	Country/Region specific irrigation efficiency	Hanasaki et al., 2008a,b
LPJmL	Model-based	MIRCA 2000 (Portmann et al., 2010)	n.a. (simulated growing season length)	Country- specific irrigation efficiencies	Bondeau et al., 2007; Rost et al., 2008
MATSIRO	Model-based	MIRCA 2000 (Portmann et al., 2010)	Model-based	Country- specific irrigation efficiencies	Takata et al., 2003; Pokhrel et al., 2012; 2015
PCR- GLOBWB	Model-based	MIRCA 2000 (Portmann et al., 2010) with rice/non-rice distinction	Fixed calendar	Dynamically calculated irrigation efficiency	Wada et al., 2014b
WaterGAP2	Model-based	Rice/Non-rice	Model-based	Country specific irrigation efficiency	Döll and Siebert 2002; Döll et al., 2012, 2014; Portmann et al., 2010; Müller Schmied et al., 2014, 2016

1.E Representation of irrigation water use

1.F Water a	1.F Water allocation					
Model name	Sources of water included in water use framework	Parameterizations	References			
H08	Surface water (including reservoirs)		Hanasaki et al., 2008a,b			
LPJmL	River discharge (incl. renewable groundwater), green water in soils		Bondeau et al., 2007; Rost et al., 2008			
MATSIRO	Surface water, Groundwater	Pokhrel et al. 2012; 2015	Takata et al., 2003; Pokhrel et al., 2012; 2015			
PCR- GLOBWB	Desalinated, Groundwater, Surface water	Wada et al., 2014a,b	Wada et al., 2014b			
WaterGAP2	Groundwater, surface water	Sectoral groundwater use fractions	Döll et al., 2012			

Model name	Irrigation	Industry	Domestic	Livestock	References
H08	Soil via infiltration; Groundwater: via additional recharge.	-	-	-	Hanasaki et al., 2008b
LPJmL	River; 50% returns	-	-	-	Bondeau et al., 2007; Rost et al., 2008
MATSIRO	River	River	River	-	Pokhrel et al., 2012; 2015
PCR- GLOBWB	Soil Layers via infiltration; Groundwater layer: via additional recharge. Amount determined by irrigation efficiency	River: same day. Amount determined by recycling ratios	River: same day. Amount determined by recycling ratios	No return flow	Wada et al., 2014b
WaterGAP2	Returned to groundwater, Fraction of irrigation water abstraction (from groundwater or surface water) returning to groundwater $f_{rei} = 0.95 -$ $0.75f_{drain}$ (cell-specific artificial drainage fraction).	Returned to surface water. Difference of water abstraction and consumptive use.	Returned to surface water. Difference of water abstraction and consumptive use.	No return flow, as only consumptive use.	Döll et al., 2012, 2014b

1.G Representation of return flows

1.H Representation of Reservoirs (after Pokhrel et al., 2016)

Model name	Purposes included	Parameterizations	References
H08	Non-irrigation	Hanasaki et al., 2006	Hanasaki et al., 2006
LPJmL	Irrigation/Non-irrigation	Biemans et al., 2011	Biemans et al., 2011
MATSIRO	Irrigation/Non-irrigation	Hanasaki et al., 2006	Pokhrel et al., 2012
PCR- GLOBWB	Water supply/Flood control/Hydropower/Navigation	Haddeland et al., 2006; Adam et al., 2007	van Beek et al., 2011
WaterGAP2	Irrigation/Non-irrigation	Hanasaki et al., 2006	Döll et al., 2009

1.I Calibration of runoff and discharge

Model name		References
H08	Bias in runoff corrected with modification of two parameters of subsurface flow for four climatic groups: daily maximum subsurface runoff, relation between subsurface runoff and soil moisture.	Hanasaki et al., 2008a,b
LPJmL	-	

MATSIRO	-	
PCR- GLOBWB	-	
WaterGAP2	Biases in long-term mean annual discharge corrected by adjusting exponent of function where part of effective precipitation becomes runoff from land depending on exponent of ratio of actual to maximum soil storage.	Müller Schmied et al., 2014

1053 Supplementary table 2: Abbreviations

Abbreviation	Full name
GRDC	Global Runoff Data Centre
KGE	Modified Kling-Gupta Efficiency
rKGE	KGE correlation coefficient (Pearson)
βKGE	KGE bias ratio
γKGE	KGE variability ratio
Q ₉₉	Low-flow indicator
Q1	High-flow indicator
NSE	Nash-Sutcliffe Model Efficiency
KS	Kolmogorov-Smirnov test
NOHIP conditions	'naturalized' model run without human influence
HIP conditions	Model run including time-varying human influence
DDM30	Drainage direction map
HIP	Human impact parameterizations
n	Number
Р	Probability
s _i	Simulated discharge
Oi	Observed discharge
i	Station
μ_s	Simulated mean monthly discharge
μ _o	Observed mean monthly discharge
σ_{s}	Standard deviation of simulated discharge
σο	Standard deviation of observed discharge
Qs	Simulated hydrological extreme
Qo	Observed hydrological extreme
GVA	Gross value added

1056 Supplementary results for selected river basins

1057 Twelve GRDC stations (**supplementary table 3**) were selected to serve as illustrative focus cases in 1058 this study. These are: the Amazonas, Amur, Colorado, Congo, Guadiana, Mackenzie, Murray, Ob, 1059 Rhine, Tocantins, Volga, and the Zambezi. The stations are selected for their heterogeneous spatial 1060 distribution and belong to both the managed and near-natural catchment groups. Moreover, station-1061 specific results for all stations are provided as a **separate supplement**.

1062 1063

Supplementary	table 3:	Characteristics	of focus stations.
Supplementary	table 5.	Characteristics	or rocus stations.

11 .	/					
River (station name)	GRDC number	GRDC Catchment area (km ²)	Mean discharge (m ³ /sec)	Start- end- year	data-points coverage (%)	Managed/ near-natural
Amazonas	3629000	4,680,000	170,356	1971-1998	97.9%	near-natural
(Obidos-Porto)						
Amur	2906901	1,790,000	10,386	1971-1987	99.5%	near-natural
(Bogorodskoy)						
Colorado	4352100	631,960	160	1971-1995	92%*	managed
(Lindero						-
Internacional						
Norte)						
Congo	1147010	3,475,000	39,127	1971-2010	100%	near-natural
(Kinshasa)						
Guadiana	6116200	60,883	107	1971-1990	98.8%	managed
(Pulo do Lobo)						
Mackenzie	4208025	1,660,000	9,225	1972-2010	98.1%	near-natural
(Arctic Red						
River)						
Murray	5404270	1,000,001	164	1985-2010	98.1	managed
(Overland						
Corner)						
Ob	2912600	2,949,998	13,132	1971-2010	97.5%	near-natural
(Salekhard)						
Rhine	6435060	160,800	2,235	1971-2010	100%	near-natural
(Lobith)						
Tocantins	3649950	742,300	11,186	1978-2010	94.95%*	managed
(Tucurui)						
Volga	6977100	1,360,000	7,885	1971-2010	97.5%	managed
(Volgograd						
Power Plant)						
Zambezi	1891500	940,000	2,455	1971-1990	96.67%	managed
(Matundo-						
Coie)		1	1	1	1	

1064 1065

*stations do not comply to minimum requirement of data-point coverage in time-series (95%) set for full analysis but were included for their representative spatial distribution and representative human/(near-)natural characteristics.

1066

1067 *1.Impact of HIP in overall hydrological performance*

1068 The change in hydrological performance for 12 managed and near-natural focus stations is shown in 1069 supplementary figure 6. Little to no change in performance (as calculated with the KGE over the full time-series) is found before and after HIP for the Amazonas, Congo, Mackenzie, Ob, Rhine, and the 1070 1071 Tocantins. In contrast, HIP significantly influences the hydrographs of the Amur, Colorado, Guadiana, Murray, Volga, and the Zambezi river. Monthly discharge diminishes significantly for the 1072 latter catchments, either in an equal way throughout all months of the year (Murray, Amur) or 1073 predominantly during the peak-flow months (Colorado, Guadiana, Volga, Zambezi). For the latter 1074 1075 four catchments we observe in most models a significant redistribution of monthly discharge between 1076 the peak-flow and low-flow months due to HIP. These cases highlight the influence of dams and 1077 reservoirs (and their operation), being part of the HIP framework, on the volume and timing of 1078 estimated river discharge. The ability to represent the general hydrologic characteristics varies 1079 significantly from catchment to catchment and across models (supplementary figure 6, supplementary table 4). Results show that some catchments (Amazonas, Amur, Rhine, or the 1080 Tocantins) are generally better represented, whereas the models have relatively more difficulties 1081 1082 representing the hydrologic characteristics of others (Colorado, Murray). On the other hand, different models outperform others looking at the various catchments. An overall best performing model does 1083 1084 not exist, with WaterGAP2 producing the best results for the Colorado, Congo, Murray, Tocantins, Volga, and Zambezi, compared to LPJmL for the Amur, or MATSIRO for the Amazonas and Ob 1085 1086 (supplementary table 4).

1087

 1088
 PCR-GLOBWB
 Ho8
 MATSIRO

 1089
 Supplementary figure 6: Hydrographs for the focus stations under HIP and NOHIP.

Each panel shows the long-term mean monthly discharge for each model. Dashed lines indicate the long-termmean monthly discharges with HIP whilst the solid lines indicate the performance under NOHIP conditions.

1092 Supplementary table 4: Overall hydrological performance (KGE) for different models for the focus 1093 stations.

Performance values with inclusion of human impact parameterizations (HIP) are presented first, performance
values without HIP are presented after the slash. Bold values show the best performing models per station.
Underscored values show the best performing station per model.

	Amazonas	Amur	Colorad	Congo	Guadia	Macken	Murray	Ob	Rhine	Tocanti	Volga	Zambez
			0		na	zie				ns		i
						-						
PCR-	0.45/	0.55/	-4.21/	0.36/	0.32/0.2	0.70/	-13.19/	0.51/	0.54/0.5	0.58/	0.63/	-0.92/
GLO	0.45	0.54	-4 68	0.36	9	0.70	-14 15	0.50	0	0.58	0.58	-0.92
BWB	0.15	0.54	1.00	0.50	,	0.70	14.15	0.50	0	0.50	0.50	0.72
DWD	0.01/	0.17		0.444		0.404	0.444	0.044		0.001		
Wate	0.81/	0.67/	0.13/	0.66/	0.49 /0.1	0.48/	-0.11/	0.34/	0.78/0.8	<u>0.88</u> /	0.73/	0.59/
rGAP	0.82	0.67	0.23	0.66	8	0.47	0.64	0.33	1	0.91	0.85	0.57
2												
H08	0.41/	0.26/	-3.36/	0.24/	-0.32/-	0.48/	-5.51/	0.23/	-0.20/-	0.27/	0.15/	-1.15/
	0.41	0.28	-3.88	0.23	0.41	0.49	-6.42	0.23	0.14	0.23	0.04	-1.43
LPJm	0.41/	0.71/	-7.13/	0.23/	-0.50/-	-0.22/	-16.96/	-0.31/	0.34/0.3	0.41/	0.36/	-1.10/
L	0.40	0.73	-8.56	0.23	1.07	-0.38	-19.44	-0.34	6	0.36	-0.31	-1.37
MAT	0.84/	0.64/	-0.21/	-0.07/	-	0.60/	-0.33/	0.57/	0.76/0.7	0.71/	0.69/	0.52/
SIRO	0.84	0.70	0.14	-0.11	0.16/0.0	0.55	-0.95	0.58	0	0.69	0.72	0.23
					9				-			

1098 2 Impact of HIP in representation of hydrological extremes

1099 **Supplementary figure 7** shows for the focus stations the modelled probability exceedance curves for the different models for both NOHIP and HIP conditions, with as reference the probability 1100 1101 exceedance curves based on observational data. Substantial changes in modelled discharge estimates 1102 that are the result of HIP can be found under various exceedance probability levels for the Amur, Colorado, Murray, Volga, and Zambezi. For some stations, the most substantial changes are being 1103 1104 found at the tails of the exceedance probability curve (at high- and/or low-flows), e.g. the Zambezi or 1105 Volga. Other stations show changes for predominantly intermediate exceedance probability levels, e.g. the Amur or Murray. While all models tend to generally overestimate both high- and low-flows in 1106 the Murray, Colorado, Tocantins and Zambezi; the results are more varied for the Amazonas, Amur, 1107 1108 Guadiana, Mackenzie, and the Ob. For the Congo and Volga most models overestimate high-flows 1109 whereas they underestimate low-flow discharges, even with HIP. For the Rhine, this is the other way around, with mostly underestimations for high-flow discharges but overestimations when moving 1110 towards low-flows. Both the Amur and Mackenzie see a sudden drop in observed discharges at 1111 intermediate levels of exceedance probability. This is likely caused by the strong seasonal 1112 characteristics that play an important role in the generation of discharge in these rivers, with a 1113 1114 substantial period of the year being snow-dominated. None of the models seems to be able to reflect 1115 these particular hydrologic characteristics correctly, both without and with HIP.

1117 Supplementary figure 7: Exceedance probability curves for the focus stations.

Each panel shows the modelled discharge at various levels of exceedance probability with HIP (dashed line) andwithout HIP (solid line). The thick black lines show the observed discharge at various levels of exceedance

1120 probability.