
Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Volume 2012, Article ID 651748, 29 pages
doi:10.1155/2012/651748

Research Article

Support for a Long Lifetime and Short End-to-End Delays with
TDMA Protocols in Sensor Networks

Marcin Brzozowski, Hendrik Salomon, and Peter Langendoerfer

IHP, Technologiepark 25, 15236 Frankfurt, Germany

Correspondence should be addressed to Marcin Brzozowski, brzozowski@ihp-microelectronics.com

Received 15 December 2011; Revised 20 April 2012; Accepted 3 May 2012

Academic Editor: Cristina Cano

Copyright © 2012 Marcin Brzozowski et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This work addresses a tough challenge of achieving two opposing goals: ensuring long lifetimes and supporting short end-to-end
delays in sensor networks. Obviously, sensor nodes must wake up often to support short delays in multi-hop networks. As event
occurs seldom in common applications, most wake-up are useless: nodes waste energy due to idle listening. We introduce a set of
solutions, referred to as LETED (limiting end-to-end delays), which shorten the wake-up periods, reduce idle listening, and save
energy. We exploit hardware features of available transceivers that allow early detection of idle wake-up periods. This feature is
introduced on top of our approach to reduce idle listening stemming from clock drift owing to the estimation of run-time drift. To
evaluate LETED and other MAC protocols that support short end-to-end delays we present an analytical model, which considers
almost 30 hardware and software parameters. Our evaluation revealed that LETED reduces idle listening by 15x and more against
similar solutions. Also, LETED outperforms other protocols and provides significant longer lifetimes. For example, nodes with
LETED work 8x longer than those with a common TDMA and 2x-3x longer than with protocols based on preamble sampling, like
B-MAC.

1. Introduction

Recent development in the electronic industry, especially
miniaturization, allowed the use of tiny wireless devices with
sensing abilities, referred to as sensor nodes. In general,
sensor nodes are the size of a matchbox, work with batteries,
and send data wirelessly. As they work for several months or
years and do not need wires at all that is, they get power from
batteries and send data wirelessly, sensor nodes provide a new
set of applications. In general, nodes form a wireless network,
monitor a specific area by reading sensors, and send sensor
readings to a sink.

This work addresses mainly critical infrastructure protec-
tion (CIP) and similar scenarios. They are most challenging,
since nodes must achieve two opposing goals: ensuring long
lifetimes and supporting various quality-of-service features,
usually short end-to-end delays. In general, nodes check
an area for specific events, and on detection they must
inform the sink within a predefined time. For example,
sensor networks monitor gas leakage on factory facilities.
As soon as they detect it, they send notices to the sink.

However, to prevent explosion danger, the sink must receive
the information about leakage within a few seconds after
detection.

In CIP applications sensor nodes should work reliably for
a long time, month or years, without human intervention.
Besides, nodes cannot usually be mains-powered, as laying
new cables to each node separately is not feasible. Therefore,
they are powered by batteries, which should provide energy
for a long time. To ensure long lifetimes, nodes apply low-
duty cycle (LDC) protocols, which keep them mostly in the
sleep state. As the current consumption in the sleep state is
smaller by approximately. three orders of magnitude than
that in the active state, sensor nodes increase the lifetime
significantly. For example, Tmote Sky [1] nodes work only
a few days in the active state. If the duty cycle is reduced to
0.1%, the lifetime increases to several years.

In general, nodes with LDC protocols wake up rarely to
check for potential transmissions and then continue sleeping.
Thus, on event detection the source node cannot send data
immediately to the next node but waits until it becomes
active. Similarly, in multihop networks each node waits until

http://crossmark.crossref.org/dialog/?doi=10.1155%2F2012%2F651748&domain=pdf&date_stamp=2012-08-26

2 International Journal of Distributed Sensor Networks

the next node wakes up before sending data towards the sink.
Obviously, it results in significant end-to-end delays and the
sink may receive event notices too late. To counter this threat,
nodes should wake up more often, but this increases the duty
cycle and shortens the lifetime.

To guarantee two opposing goals, that is, short end-to-
end delays and long lifetimes, several approaches (DMAC
[2] and Q-MAC [3]) maintain wake-up slots in a staggered
schedule, a type of TDMA (time division multiple access)
approach. The idea resembles the common practice of
synchronizing traffic lights to turn green (wake up) just
in time of the arrival of vehicles (packets) from previous
intersections (hops). Although the staggered schedule sup-
port shorts end-to-end delays, it suffers from the following
problems:

(i) to support short end-to-end delays nodes wakes up
often,

(ii) as events occur seldom in CIP application, most
wake-up periods are useless that is, nodes do not
receive data but only waste energy due to idle
listening.

To cope with these problems, this work introduces the
LETED (limiting end-to-end delays) protocol that shortens
the wake-up periods and saves energy by applying the
following means.

(1) With the ILA (Idle Listening Avoidance) approach,
nodes detect idle wake-up periods in about 100 μs
and early power down the transceiver. In this way,
they reduce idle listening by 15x and prolong the
lifetime by 30% and more.

(2) It applies energy-efficient approaches that deal with
clock drift, based on drift prediction. By doing so,
nodes reduce idle listening caused by clock drift by
95% against common solutions.

To examine the tradeoff between delays and lifetime, we
introduced an analytical model that evaluates various MAC
(medium access control) protocols. If nodes apply LETED
with ILA, they support short end-to-end delay and long life-
times. For instance, they work about 3 years and guarantee
5-second delays, even when they send frames to the sink
once a minute, that is, our approach outperforms other MAC
protocols in scenarios that need short end-to-end delays.

The remainder of this work is organized as follows.
Section 2 introduces research efforts in duty-cycle MAC
protocols and in efficient means to deal with clock drift
problems. Section 3 presents the LETED solution. Idle
listening avoidance (ILA) is introduced in Section 4. We
evaluate LETED in a network simulator and present the
results in Section 5. The next section provides the energy
model and lifetime results of LETED and other protocols that
support short end-to-end delays. Finally, we address some of
our future work and conclude the paper.

2. Related Work

2.1. Duty-Cycled MAC Protocols. The main concern of many
sensor network applications is a limited power source. An
off-the-shelf sensor node Tmote Sky [1] with standard 2x
AA batteries works only few days, if it keeps the transceiver
and the microcontroller permanently powered up. However,
nodes must provide much longer lifetimes, several months or
years. To achieve such long lifetimes, sensor nodes apply low-
duty cycle (LDC) protocols. Such protocols keep the nodes
sleeping most of the time and wake them up for a short
time only, for instance, to get sensor readings or receive data.
However, to send and to receive data nodes must be awake
at the same time, referred to as rendezvous [4]. Obviously,
each node on a multihop route needs rendezvous with the
next node towards the destination. Reference [4] grouping
solutions to the rendezvous problem into three categories.

Asynchronous. In this solution nodes can wake up other
nodes with a dedicated hardware, for example, wake-up
radios [5]. In general, when a node wants to send data to its
neighbor, it wakes up the neighbor and then sends data.

Pseudo-Asynchronous. Since nodes cannot wake up other
nodes like in the asynchronous approach, they apply a
software solution that tries to work like a wake-up radio. For
example, nodes may periodically listen for potential trans-
missions and stay awake, if they detect a transmission wish.
The following protocols belong to this group: STEM (sparse
topology and energy management) [6], preamble sampling
[7, 8], Berkeley Media Access Control (B-MAC) [9], Wire-
less Sensor MAC (WiseMAC) [10], TICER (Transmitter-
Initiated CyclEd Receiver) and RICER (Receiver-Initiated
CyclEd Receiver) [4], and Koala [11].

Synchronous. Nodes agree on specific communication time
slots: they send and receive data only during such slots. In
general, senders and receivers agree on a wake-up schedule
and wake up at the same time to communicate. In general,
TDMA (time division multiple access) protocols belong to
this group, for example, sensor MAC (SMAC) [12], time-out
MAC (T-MAC) [13], Flexible power scheduling [14] (FPS),
Twinkle [15], and Dozer [16]. In addition, the standard
IEEE 802.15.4 [17] defines the Medium Access Control
(MAC) based on beacons, which also provides a synchronous
rendezvous.

This work applies a distributed low-duty cycle MAC
(DLDC-MAC) protocol, introduced in our previous works
[18, 19]. Nodes with DLDC-MAC send periodically beacons
and wake up to receive beacons of neighbors (see Figure 1).
Obviously, this protocol resembles other TDMA approaches,
for example, S-MAC, Dozer, or IEEE 802.15.4 in beacon-
enabled networks. The main differences of DLDC-MAC
from other protocols are as follows.

(i) Dozer is the closest relative of DLDC-MAC, as it uses
beacons in a similar way and supports short active
times. However, the main drawback of Dozer is that
it supports only the tree topology. That is, children

International Journal of Distributed Sensor Networks 3

and transmission of control messages

A

A

B

B

C

C

beacons allow rendezvous

short end-to-end delays

DLDC-MAC

Extra LETED slots to support

Tx beacon
Tx beacon

Rx slot
Tx slot

Figure 1: With DLDC-MAC nodes send periodically beacons and
wake up to receive beacon from neighbors; to support short end-to-
end delays nodes apply extra LETED slots.

receive only parent’s beacons. Should communica-
tion problems on the link to the parent arise, the
routing protocol discovers a new route to the sink.
However, as nodes receive parent’s beacon only they
do not learn about neighbors and the routing cannot
easily find alternative paths.

(ii) S-MAC reduces duty cycle, but the active periods are
still long. First, it does not provide efficient way to
deal with clock drift. According to [12], it may use
guard times as long as 0.5 second, that is, longer by
two orders of magnitude than the time needed to
send a single frame. Second, S-MAC prolongs the
active period by applying extra RTS and CTS frames.
Third, S-MAC neglects important TDMA protocol
problems, like overlap problem of two separate wake-
up schedules.

In addition, DLDC-MAC supports data replication in sensor
networks and handles several TDMA problems (details in
[18, 19]).

Figure 1 depicts the basics of DLDC-MAC. As above
said, nodes send periodically beacons and wake up to
receive beacons from neighbors. In general, nodes send
non-time-critical data included in beacons, for example,
route discovery frames or to set up a new LETED schedule.
According to the evaluation presented in Section 6, in such
a configuration DLDC-MAC needs the energy amount that
nodes consume in the sleep state. Besides, the DLDC-
MAC energy consumption is less than the self-discharge of
batteries. To support short delays, nodes set up extra LETED
wake-up schedule on paths towards the sink (see details in
Section 3).

2.2. Short End-to-End Delays. On the one hand, nodes
reduce the duty cycle and mostly sleep to achieve long
lifetimes. On the other hand, they need to wake up often in
order to take part in potential data transfer and support short
end-to-end delays. Clearly, there is a tradeoff between these
two goals, that is, short delays and long lifetimes.

Some works investigated the tradeoff between delay and
lifetime. The SMAC authors present in [12] energy savings
versus average sleep delay tradeoff. Reference [8] presents
the mean delay and achieved lifetime of CSMA (carrier sense
multiple access) and of various TDMA (time division multi-
ple access) approaches. The tradeoff relationship between the
expected lifetime extension and the corresponding increase
in the average detection delay achieved by different sleep
scheduling algorithms is introduced in [20]. Reference
[21] and explores the energy-latency tradeoff for broadcast
communication in sensor networks. In [22] the authors
examine the delay and lifetime trade-off from another point
of view: the objective is to determine the best path from each
node to a single gateway. Performance metrics of interest are
the expected energy consumption and the probability that
the latency exceeds a certain threshold. In [23] we examined
the tradeoff between the end-to-end delay and the lifetime of
a one-hop sensor network based on IEEE 802.15.4 connected
to a IEEE 802.11 g network.

To preserve energy sensor nodes monitor the covered
area periodically, that is, they keep sensors switched off for
a long time. Clearly, it may result in a large event detection
time (EDT), if an event occurs when all sensors are powered
down. Reference [20] examines various schedule approaches
of sensors that cover the same sensing area in order to
minimize the average EDT. However, we do not address the
problem of sensors’ duty cycle in this paper.

This paragraph introduces main duty-cycled MAC
approaches and their impact on delays in multihop networks.

2.2.1. Duty-Cycled TDMA. With common duty-cycled
TDMA solutions, for example, SMAC [12] or Dozer [16],
nodes mostly sleep and wake up on agreed times to
communicate. Therefore, should source nodes detect events,
they cannot send data immediately to the next node. They
wait until the next node is awake and then forward frames
(see Figure 2). Similarly, each node on the path to the sink
waits until the next node wakes up.

To support short end-to-end delays, nodes wake up
often to take part in potential transmissions. Clearly, there
is a tradeoff between a long lifetime and short delays,
that is, between long and short sleep periods respectively.
On average end-to-end delay dEtE depends on the sleep
period Tsleep:

dEtE = n ·
(
Tsleep

2
+ tframe

)
, (1)

where n is the number of hops to the sink and tframe the frame
length. Therefore, to support certain end-to-end delays,
nodes adapt the sleep period in the following way:

Tsleep = dEtE

n
− tframe. (2)

4 International Journal of Distributed Sensor Networks

Event

Source

A

B

Sink

Source

A

B

Sink

Delay to
next hop

Delay to
next hop

Rx
Tx

Figure 2: By applying low-duty cycle protocols, nodes mostly sleep
and cannot forward data immediately but wait until the next node
is awake. It causes significant end-to-end delays.

Event

Source
Source

A
A

B
B

Sink
Sink

Delay to 1-hop
forwarding

delay

Last hop
delay

Tx
Rx

1st hop

Figure 3: Nodes with staggered (aligned) schedule forwards frames
just after reception and reduce end-to-end delays.

Figure 4 shows sleep periods needed to achieve certain
end-to-end delays. In general, nodes wake up the period
equal to the supported delay divided by the number of hops,
that is, to support 5-second delays in 2-hop networks nodes
wake up every 2.5 seconds. Consequently, in larger networks
nodes wake up more often to support the same delay. For
instance, in 10-hop networks nodes wake up every half a
second to support delays of 5 seconds. Thus, should nodes
apply LDC protocols but keep end-to-end delays short, they
increase the duty cycle and shorten the lifetime significantly,
especially in large networks.

2.2.2. Staggered Schedule. Several protocols, for example,
DMAC [2], Q-MAC [3] and reference [20] introduced the
staggered schedule (see Figure 3) to support short end-to-
end delays and low duty cycles. It resembles the common
practice of synchronizing traffic lights to turn green (wake
up) just in time of the arrival of cars, that is, packets, from
previous intersections (hops). Nodes on the path arrange

0

2

4

6

8

 10

 12

1 5 10

LDC 2 hops
LDC 10 hops

DMAC 2 hops
DMAC 10 hops

0.5 0.1 0.9 0.5

2.5

0.5

4.9 4.5 5

1

9.9 9.5

End-to-end delay (s)

Sl
ee

p
pe

ri
od

 (
s)

Figure 4: To support short end-to-end delays, nodes with common
low duty cycle (LDC) protocols wake up often, especially when the
distance between sources and the sink is long; DMAC introduces the
staggered schedule and lowers the duty cycle; that is, nodes wake
up more rarely than in common LDC protocols to support short
delays; besides, with DMAC the distance to the sink only slightly
impacts the duty cycle.

slots in a way that tx slots follows almost immediately rx
slots. In that way, nodes forward messages just after the
reception and keep the forwarding delay short. Therefore, the
number of hops only slightly influence end-to-end delays.
Obviously, the shorter the needed end-to-end delay is, the
more often nodes have to wake up to take part in potential
data transmission. In general, only the source node waits a
long time for the next node to wake up (see Figure 3). On
average end-to-end delay equals to:

dEtE =
Tsleep

2
+ tframe + (n− 1) · (tframe + toffset), (3)

where toffset in the time between the rx slot and the
corresponding tx slot on each node. Should the sink does not
apply a wake-up schedule, as it is in Figure 3, the number of
hops n is reduced by 2 in (3). Nodes adapt the sleep period
Tsleep to support certain end-to-end delays dEtE:

Tsleep = dEtE − tframe − (n− 1) · (tframe + toffset). (4)

Figure 4 compares the duty cycle, that is, the sleep period,
of the staggered schedule and LDC protocols. As previously
mentioned, the distance between sources and the sink only
slightly impacts the duty cycle of the staggered schedule.
For example, to support 5-second delays nodes wake up 4.9
seconds in 2-hop networks. Should the path to the sink be
10-hop long, nodes wake up every 4.5 seconds. As expected,
the staggered schedule outperforms common LDC protocols
in such scenarios, especially in large networks. With 10-hop
distance to the sink it reduces the duty cycle about 10x.

2.2.3. Preamble Sampling/Cycled Receiver. The protocols that
support asynchronous rendezvous, which were mentioned
previously, synchronize wake-up times by sending long
preambles or wake-up beacons. In general, nodes wakes
up periodically to listen for potential transmissions (see
Figure 5). If a node wishes to send a frame, it sends a long
preamble or many short frames, in front of the data frame. In
the worst case, the preamble length equals the sleep period of

International Journal of Distributed Sensor Networks 5

receivers. On getting the preamble, the receiver stays awake
and gets the data frame.

Although these protocols were not designed to primarily
support end-to-end delays, they can adapt the sleep period
and limit the delays. In general, end-to-end delay dEtE

consists of single forwarding delays along the path:

dEtE =
n∑
i=i

(tn + tframe), (5)

where tn is the forwarding delay on node i and tframe the
frame length. As the average forwarding delay equals the half
of the sleep period Tpreamble, which equals the worst case
preamble length, the average end-to-end delay of a n-hop
path is estimated as:

dEtE = n ·
(
Tpreamble

2
+ tframe

)
. (6)

2.3. Clock Drift Compensation. Sensor nodes derive time
from crystal oscillators, which have certain precision δ,
expressed in parts per million (ppm), according to the
crystal cut. That is, such oscillators provide the system
time that differs from the perfect clock by δ. Therefore, in
the worst case, clocks of two sensor nodes move apart by
2δ. For example, precision of oscillators applied on Tmote
Sky nodes is 20 ppm and results in worst-case drift of
2.4 ms in 1-minute period among two nodes. In addition,
changes of temperature and air pressure cause short-term
drift variations.

Each scheduled MAC protocol suffers from the drift
problem explained in Figure 6. According to the schedule
receivers wake up at specific times to get data from neighbors.
However, as clocks of senders and receivers may run at
different speeds, referred to as clock drift, there is a risk that
receivers wake up too late and miss frames. To counter this
threat, they wake up earlier by guard times and compensate
drift in this way. Clearly, as guard times result in extra idle
listening, nodes should keep them short.

Several approaches (e.g., Dozer [16]) use guard times
based on worst-case drift. However, the authors estimate
worst-case drift only from the oscillator parameter and
neglect other reasons for example, the time to power up
radios is not constant. Besides, as run-time drift is smaller
than the worst case, such solutions may waste energy due
to unnecessary long idle listening. For example, it results in
guard times of a few ms and more for a sleep period of 1
minute. Such long guard times are about as long as the time
needed to send a frame. Clearly, it causes long idle listening
and wastes energy.

To shorten guard times, reference [24] introduces sensor
nodes equipped with two oscillators, reducing frequency
stability to ± 1.2 ppm. Another work [25] applies the LR
(linear regression) to previous drift samples and shorten
guard times.

In [26] we introduced the estimation of guard times
based on the moving average filter, referred to as MADC
(moving average drift compensation). Based on previous
drift samples, nodes predict future drift and can use short

guard times. For instance, to compensate drift of 99% frames
in outdoor scenarios, nodes with MADC apply guard times
of about 130 μs for 1-minute sleep period. With common
solutions to the drift problem, they need guard times of
2.4 ms. As MADC reduces idle listening, it saves energy and
prolongs the lifetime. Our evaluation revealed that nodes
with the IEEE 802.15.4 MAC work longer by 5% and more
owing to the MADC approach (see details in [26]). Owing to
its simplicity, MADC can be easily applied to sensor nodes,
as it does not need the floating-point arithmetic. In addition,
it works well with only 3 previous drift samples and thus
do not occupy too much memory. Therefore, the solutions
presented in this work apply MADC to efficiently deal with
clock drift problems.

3. Limiting End-to-End Delays (LETED)

This chapter introduces LETED, that is, a set of solutions that
limit end-to-end delays in sensor networks. LETED adapts
previous approaches, that is, DMAC [2] and Q-MAC [3], to
save energy and prolong the lifetime. Besides, it handles drift
problems neglected in previous works.

In this work we coupled LETED with DLDC-MAC (see
Figure 1). That is, nodes wake up to send and to receive
beacons. Also, they arrange LETED wake-up schedule along
paths to the sink. Although LETED is based on DLDC-MAC
here, it works with other MAC approaches as well.

We already introduced LETED in our previous work [27]
but presented only analytical results of LETED performance.
Later we implemented LETED and evaluated it with a
network simulator, which revealed some drawbacks of this
protocol. This section presents the improved version of
LETED with extra simulative evaluation.

3.1. Overview. LETED adapts the staggered schedule intro-
duced in DMAC [2]. Nodes on the path to the sink settle a
wake-up schedule in a way that it limits end-to-end delays.
That is, each tx slot follows immediately the rx slot from
the previous node. Therefore, nodes send messages just after
reception.

Nodes with LETED start transmissions exactly at tx
slots that is, they do not apply CSMA/CA (carrier sense
multiple access with collision avoidance) or similar solutions,
which may postpone transmissions. Due to the scheduling
approach presented here, nodes usually do not need such
means. Since the schedule is a TDMA approach, it inherently
avoids contention. However, because of clock drift, slots
may overlap and cause a collision risk, as introduced in
Section 3.5. Nonetheless, extra medium access means cause
excessive idle listening and shorten the lifetime. Therefore,
LETED does not apply such medium access means.

To deal with unreliable wireless links, nodes apply the
ARQ [28] protocol. That is, receivers send an acknowledg-
ment (ACK) to senders on frame reception. Should senders
do not receive ACKs, they assume the frame was lost and send
it again. The number of tx attempts and the delay between
successive retries depends on the application.

6 International Journal of Distributed Sensor Networks

Source

A

B

Sink

Source

A

B

Sink

Forwarding
delay

Event

Reciever wake-up time unknown,

then data is transmitted

No data in this period;
recievers wake up periodically
for potential transmissions

Sleep period

Preamble

Preamble

(rx)
send long preamble until rx wakes up;

Tx

Tx preamble
Rx

Figure 5: With preamble sampling (cycled receiver) nodes send long preambles in front of frames and receivers check periodically for
transmissions. The length of preamble and of sleep periods impacts end-to-end delays resulting in significant end-to-end delays.

Clock drift over
sleep period

Sender

Receiver

Sleep time

Frame transmitted
Expected framereception time

Guard time

Figure 6: To compensate clock drift receivers wake up earlier by
guard times.

3.2. Schedule Setup. The schedule setup involves cross-layer
cooperation among the application, network, and MAC
layers (see Figure 7). First, the application triggers the
network layer to set up a new schedule on the path towards
the sink. The application specifies the longest acceptable end-
to-end delay dEtE. Second, the network layer triggers the
MAC layer, that is, LETED with DLDC-MAC in this case,

to set up new time slots with the next node. Based on the
hop distance to the sink, provided by the routing, LETED
calculates how often nodes must wake up to support dEtE.
That is, to support dEtE the source node needs tx slots every
Tslot time. Since intermediate nodes cause extra delays (see
Figure 3 in the previous section), the source estimates the
total forwarding delay dforwarding and the slot period Tslot as

Tslot = dEtE − dforwarding

dforwarding = n · (tframe + ttx offset),
(7)

where n is the number of hops to the sink, tframe the expected
frame size, and ttx offset the time between rx and tx slots on
intermediate nodes. All nodes on the path apply the same
value for ttx offset.

After the source estimated the slot period, it adds new
tx slots to the schedule. Then, the source sends a frame
with the new tx times to the next node. On receiving it, the
next node adds rx slots to its schedule and sends back an
acknowledgment. If the new slots overlap with existing ones,
the node answers with a negative acknowledgment (NACK).
The node includes preferred time slots in the NACK. In this
case, the source shifts the tx slots and sends a frame with the
new times again.

In next steps each node on the path sets up time slots to
the next node in a similar way.

In this work LETED benefits from the underlying DLDC-
MAC and sends control frames, that is, new tx times and
ACKs, piggybacked in beacons. In that way nodes keep the
LETED overhead small, that is, only several extra bytes in
beacons.

International Journal of Distributed Sensor Networks 7

Application

(1) New schedule
(sink, delay)

(2) New slots
(next, sink, delay)

RoutingRouting

(4) Get next (5) Next node

(3) Slots
setup

(6) Slots
setup

Source node Intermediate
node

node

LETED and
DLDC-MAC

LETED and
DLDC-MAC

Figure 7: Setup of a new wake-up schedule; application triggers the
network layer (routing) to set up a new schedule to the sink; on
each node, the network layer (routing) requests MAC to establish
time slots to the next node.

3.3. Guard Times. Since LETED is a TDMA protocol, it
suffers from the drift problem. That is, receivers may wake
up too late because of clock drift and miss frames. To
counter this threat, LETED applies the solution based on
drift prediction introduced in our previous work [26],
referred to as MADC (moving average drift compensation).
In short, nodes estimate run-time drift to neighbors by
applying the moving average filter. Then, nodes calculate
the time difference (drift) to the sender arisen since the
last synchronization, that is, beacon reception in this work.
Finally, they apply guard times long enough to compensate
drift.

With MADC nodes miss about 1% frames due to not
compensated drift. However, since LETED applies the ARQ
protocol, the number of frames missed due to clock drift is
smaller. That is, should nodes apply too short guard times
and miss a frame, they can still receive it owing to ARQ
retries.

3.4. Slot Synchronization. Due to clock drift timeslots of
different nodes move relatively to each other, as presented in
Figure 8. Should slots move towards each other, they finally
overlap and pose a collision risk. For example, if relative drift
between nodes A and B is 3 ppm (parts per million) and slot
B follows slot A after 50 ms, the slots overlap after about 3.5
hours.

If slots drift away, the forwarding delay increases. Besides,
if slots keep moving relatively to each other, they become
unorganized and cannot support short end-to-end delays.
To counter this threat, nodes adapt repeatedly the schedule
according to relative drift to the source; that is, the timeslots
remain stable relatively to the source tx slots. As a result,
the end-to-end delay remains constant and time slots do not
overlap.

Obviously, each node must find relative drift to the
source in order to shift the time slots. In this example
DLDC-MAC provides estimated run-time drift. (DLDC-
MAC measures run-time drift to neighbors each time a
beacon is received.) Each node with a schedule sends to

Source

A

B

Source

A

B

Initial
schedule

Schedule
affected

by clock drift

Slot positions
without drift

Tx
Rx

Figure 8: Due to clock drift, slots of different nodes move relatively
to each other.

the next node its relative drift to the source repeatedly,
piggybacked in DLDC-MAC beacons in this example. On
receiving relative drift to the source from the previous hop,
nodes add drift to the last sender (neighbor). In that way,
each node estimates relative drift to the source.

In general, nodes shift LETED slots in the following way.

(1) After an rx time slot finishes, nodes calculate the time
of this slot rxnext in the next beacon period as.

rxnext = rxnow + Tbeacon + δsrc · Tbeacon − g, (8)

where Tbeacon is the beacon period and g is the guard time
used for the next slot. Clearly, nodes adapt the schedule
according to relative drift to the source δsrc.

(2) Nodes handle tx slot shifts in a similar way; that is,
they estimate the slot time in the next beacon period
as

txnext = txnow + Tbeacon + δsrc · Tbeacon, (9)

where txnow is the time of the slot just finished.
As nodes may estimate drift not exactly enough, they

still suffer from the drift problem. That is, slots of senders
and receivers still move apart (see Figure 10). Small time
differences between tx and rx slots are compensated with
guard times. However, slots keep moving apart, and the time
difference becomes larger than guard times. In this case, slots
are not synchronized and receivers miss frames (see slots on
the right in Figure 10).

To deal with errors in drift estimation, sources send
extra synchronization (SYNC) frames along paths and nodes
synchronize all slots of the corresponding schedule. In other
words, receivers calculate the time tdiff the slot drifted from
the expected time texpected:

tdiff = texpected − trx, (10)

where ttx is the frame reception time. Then, receivers shift
all slots of this schedule by tdiff. In this way, slots are
synchronized again.

8 International Journal of Distributed Sensor Networks

A

B

C

D

E
A

B

C

D

E

Tx
Rx

A-C-E
path

B-C-D
path

Figure 9: In LETED schedules of different sources may move
relatively to each other and pose an overlap risk.

A

B

C

Slots
synchronized

initially
Slots moved but

communication still
possible

Slot kept moving,
risk of frame loss

as slots not
synchronized

Tx slot
Guard time
Expected rx time

Figure 10: Nodes shift slots according to relative drift to the source.
Because of errors in multihop drift estimation, they shift slots by
different times. Thus, slots of senders and receivers drift away.

Clearly, the frequency of frame transmission depends on
the scenario, for example, the accuracy of drift estimation
or changes in external conditions that affect drift. Figure 11
depicts the time after LETED slots move by 1 ms for various
precision of drift estimation. For example, with the drift
estimation accuracy of 1 ppm, nodes should synchronize
slots every 16 minutes to keep slots not drifted by more than
1 ms.

Another reason for errors in drift estimation are post-
poned SYNC frames transmissions, for example, because of
variable delays in software execution and on transceivers.
As delayed transmissions result in drift estimation errors,
nodes should include tx timestamps in SYNC frames. By
doing so, transmission delays would not result in drift
estimation errors. For example, Chipcon CC2420 transceiver
and MSP430 MCU on Tmote Sky nodes provide accurate
hardware timestamps. On hardware events, like transmission
of the start frame delimiter (SFD), MSP430 stores the current
timer register. As it takes less than 100 μs to handle the timer
interrupt, nodes manage to add the exact tx time to the frame
that is being transmitted.

0

5

 10

 15

 20

0 2 4 6 8 10 12 14 16 18 20

Drift estimation error (ppm)

T
im

e
to

 1
 m

s
dr

if
t

(m
in

u
te

s)

Figure 11: LETED slots move by 1 ms due to errors in drift
estimation after the time depicted here.

3.5. Overlap Risk. Due to clock drift, LETED slots and
beacons overlap and pose a collision risk. Although DLDC-
MAC solves the beacon overlap problem, it does handle the
risk of collisions with LETED slots. Therefore, nodes with
LETED need to apply a solution that avoids the collision risk
of LETED slots and beacons.

The previous paragraph introduced the solution to the
problem of timeslot synchronization. That is, nodes shift
the schedule repeatedly and keep the slot times unchanged
relatively to the source. However, two independent schedules
drift relatively to each other and cause an overlap risk, as
presented in Figure 9. Besides, LETED slots overlap with
beacons of DLDC-MAC as well. Clearly, on timeslot overlap
nodes may not receive data due to collisions.

To detect an overlap, risk nodes look up the local slot
table, which contains LETED slots and beacons with their
start and finish times. However, nodes do not detect all
overlap cases, since they do not learn about LETED schedules
of neighbors that are on different routes. Figure 12 explains
the problem. There are two independent routes to a sink,
that is, A-B and C-D. Both paths set up separate wake-up
schedules to support certain end-to-end delays. However,
nodes A and B do not learn about LETED slots of nodes C
and D, and vice versa. Therefore, should their slots overlap,
they do not detect it and collisions occur. A similar case
presents Figure 13 but both paths, that is, A-B and C-D, are
not within their transmission range. Nonetheless, they still
affect one another, as the transmission signal from another
path increases the noise level on receivers.

When a collision occurs and nodes do not send affected
frames again, the sink does not receive data. Besides, should
nodes send frames again but on a later time, that is, in the
next tx slot, the sink receives data too late. Clearly, frequent
collisions, and indirectly a huge number of overlap cases,
increase the packet error rate. Figure 14 depicts the average
time to an overlap case of nodes that support 10-second
end-to-end delays and receive beacons from 4 neighbors.
For example, with relative drift among nodes of 8 ppm, slots
overlap after less than an hour.

In our previous work [27], we introduced a solution
to the overlap problem. However, simulation runs revealed
some drawbacks of this approach, and therefore we apply a
simpler but a robust solution based on the ARQ protocol.
This approach aims to deal reasonably well with the overlap

International Journal of Distributed Sensor Networks 9

Transmission
range of node C

A B

C D

Figure 12: Two independent LETED paths are within their
transmission range. As nodes do not learn about wake-up schedule
of other paths, they cannot detect overlap risk between independent
paths.

Interference
range of node C

A B

C D

Figure 13: Although both paths are out of their transmission range,
they are within the interference range and affect each other.

risk but remains simple to occupy only a fraction of sensor
node memory. It exploits the nature of low-duty cycle
applications: nodes rarely send data. Therefore, even when
LETED slots overlap with other slots, they usually do not
cause collisions, as they are mostly idle. For that reason nodes
do not shift LETED slots, if they overlap with other LETED
slots or with beacons. On the contrary, on the beacon overlap
risk, nodes shift one of them according to the DLDC-MAC
(details in our previous works [18, 19]).

In general, each node detects an overlap by comparing
start and finish times of slots stored in the slot table. As

0

2

4

6

8

0 2 4 6 8 10 12 14 16 18 20

Relative drift (ppm)

T
im

e
to

 o
ve

rl
ap

 (
h

ou
rs

)

Figure 14: Average time to slot overlap, beacons or LETED slots, of
nodes having four neighbors and a schedule supporting 10-second
delays for different clock drift values.

stated above, nodes do not shift LETED slots, if they cause
the overlap risk. Nonetheless, nodes must react to this, either
skip or use the affected slots. The rule is to use the slot with a
higher priority and skip other slots. However, before skipping
a slot, nodes check if the slot can be partly used. For example,
nodes skip the beginning of an rx slot, as it overlaps with a
beacon, but try to receive retries afterwards. Besides, should
all affected slots be rx slots, either LETED or beacon, the node
switches the transceiver into the listening state for the time of
both slots.

Table 1 depicts slot priorities used in this work. Nodes
favor beacons over LETED slots, as they use beacons for
the wake-up synchronization and any missed beacons result
in longer guard times. Besides, nodes usually apply ARQ
protocol to LETED slots in order to deal with unreliable
wireless links. Thus, if a node skips a part of LETED slot, it
can still send or receive ARQ retries.

Figure 15 presents handling of slot overlap. In this case
node A detects an overlap of tx beacon and of an LETED rx
slot. According to the slot priorities, see Table 1, nodes favor
beacons over LETED slots. However, in this case the beacon
covers only the beginning of the LETED slot; the remaining
ARQ retries are not affected (see Figure 15(a)). Therefore, the
nodes do not skip the LETED slots but only shorten it (see
Figure 15(b)). As a result, node A can receive data, although
there is an overlap risk with a beacon.

3.6. Topology Change. As nodes may stop working or
suffer from various communication problems, source nodes
cannot send data to the sink using the current routes. In
these cases, routing protocols establish a new path towards
the sink. However, the nodes on the new path must also set
up a wake-up schedule to support short end-to-end delays. It
involves the interaction between routing and MAC protocols
depicted in Figure 16. In the following we explain shortly the
steps presented in this figure.

(1) A node on the path to the sink discovers that it cannot
send frames to the next node. In this case, DLDC-
MAC does not receive several consecutive beacons
from the next node and assumes the link is broken.

(2) LETED informs the routing protocol about the link
failure.

10 International Journal of Distributed Sensor Networks

Table 1: Priority of slots in the ARQ-based solution to the overlap
problem; in the case of overlap nodes skip or shorten the slot with a
lower priority.

Slot type Priority

Beacon Tx 4

Beacon Rx 3

LETED Tx 2

LETED Rx 1

(3) The routing protocol sends a message to the source
node, and the source discovers a new path.

(4) Routing at the source triggers LETED to establish
a new schedule along the path, as introduced in
Section 3.2. However, if the routing protocol sup-
ports local repairs, that is, discovering new paths
without notifying the source like in AODV [29], the
intermediate node discovers new routes and sets up
wake-up schedule towards the sink.

Clearly, handling of topology change problems lasts a long
time, as source node must discover a new path and establish
a new wake-up schedule. As source nodes cannot send
data to the sink during the discovery time, the network
cannot guarantee required end-to-end delays. Therefore, in
critical applications, the network should maintain many
paths and wake-up schedules to the sink. In this case,
nodes switch to another path immediately after detecting a
link failure or send frames to the sink over several paths
simultaneously. Although it involves extra overhead, as nodes
on alternative paths wake up as well, it provides more reliable
communications. However, the details of this solutions, like
the number of paths that guarantee a certain degree of
reliability or the impact on the lifetime, are beyond scope
of this paper and need further research efforts. Besides, we
intend to examine the impact of various solutions to the
link failure detection on end-to-end delays and the lifetime.
For example, link failures are detected after missing a certain
number of frames from a neighbor. Obviously, too small
numbers result in false alarms, whereas using large values
increases the delay of finding new paths.

In our future work we intend to examine asymmetric
links and load balancing too. We discuss it shortly later in
this work, in Section 7.

4. Idle Listening Avoidance

This section introduces briefly a hardware support for
LETED that reduces the idle listening time and prolongs the
lifetime significantly. For more details please refer to our
previous work [30].

4.1. Problem Statement. To support end-to-end delays, nodes
must wake up at each rx slot. After waking up nodes listen
for a time needed to receive a frame from the previous node.
If no frame arrives, nodes power down the transceiver and
continue sleeping. Such slots are referred to as passive slots.
However, if nodes receive a frame from the previous node,

they send it to the next node towards the sink in the following
tx slot. Such slots are referred to as active in this work.

Figure 17(a) shows an active rx slot with a common
software approach. After getting the preamble (Receivers use
preambles to detect a new frame, the frame start/end, and to
synchronize bits and symbols) and the following start frame
delimiter (SFD) nodes receive the payload. Then, the payload
is delivered to the application; that is, usually the transceiver
drives the rx pin high and the microcontroller (μC) raises
a receive interrupt (RxINT). After that, an interrupt service
routine (ISR) of the operating system (OS) reads the payload
from the rx buffer of the transceiver and delivers it to the
application. Finally, the application calls an OS function to
switch the transceiver off.

Figure 18 depicts the current consumption of various
rx slot phases measured with an oscilloscope connected to
Tmote Sky sensor node. In this example the node receives
a 62-byte-long MAC frame of IEEE 802.15.4 standard. To
compensate clock drift, the node wakes up 2 ms earlier than
the expected time of incoming frame. In this case the node
consumes an unnecessarily huge amount of energy; that is, it
draws about 22 mA of current, for a time 3x longer than the
frame itself, leading to the following problems in passive and
active slots.

Passive Slots. Applications running on sensor nodes can only
detect that a packet is received, when the operating system
(OS) calls an rx routine, that is, after getting the message
from the rx buffer. If no frame is received, the application will
not know about it. The only indirect means to detect frame
reception is to wait the normal time it takes from waking
up till the OS calls the rx routine. The application powers
down the transmitter as soon as this time interval has expired
w/o any rx interrupt; see Figure 17(a). However, handling
of RxINT and getting a frame from the rx buffer may last
much longer than the frame reception; see Figure 18. Besides,
if the underlying protocols use frames of various length,
the application considers the longest frame when waiting
for RxINT. Obviously, the indirect detection of idle rx slots
causes unnecessary long idle listening.

In our previous work [30] we estimated the RxINT time.
For the payload of 42 bytes, the shortest RxINT handler
took 3.17 ms and the longest 3.23 ms. However, the time
was significantly longer for 127-byte payload: from 8.29 to
8.35 ms. The reason for this is the long time the μC needs
to read data from the rx buffer of the transceiver using the
software-based SPI (serial peripheral interface bus), that is,
without hardware accelerators.

Active Slots. In general, after frame reception the transceiver
stays in the receive state until μC powers it down; for
example, in CC2420 transceiver [31] μC writes a special
command to a strobe register. Before software can power
down the transceiver, it needs to read and handle the frame
payload during ISR to learn whether other frames will follow.
After that it can signal the μC to power down the transceiver;
see Figure 17(a). Of course, if no frames follow the one
just received, the transceiver should be powered down

International Journal of Distributed Sensor Networks 11

Tx beacon Rx after
beacon

Tx beacon Rx potential data frame from B
(LETED rx slot)

Tx data Rx ACK Rx ACKTx retry Tx retryRx ACK

Rx beacon
from A

Tx data frame to A
(LETED tx slot)

A

B

(a) Slot overlap risk: Tx beacon of node A overlaps with LETED slot from B to A

Tx beacon
Rx potential data frame from B
(shortened LETED rx slot)

A

B
Rx ACK Tx retry Rx ACK Tx retry Rx ACK

Tx data frame to A
(shortened LETED tx slot)

Rx beacon
from A

Tx beacon
Rx after
beacon

(b) Joined slots: after beacon finishes there, nodes A and B use the rest of the LETED slot

Figure 15: Joining and shortening of slots on overlap risk.

immediately after receiving the last byte of the incoming
frame to reduce idle listening. However, a node using a
software-based solution handles RxINT, reads the whole
message, and then powers down the transceiver. Thus, the
software solution causes idle listening also in active slots.

4.2. Idle Listening Avoidance (ILA) Solution. Some commer-
cial transceivers (e.g., CC2420 [31] used in Tmote Sky [1]
nodes) offer extra features, such as capturing the exact time
of SFD and raising an interrupt after SFD reception. (CC2420
just sets SFD pin to high/low. In Tmote Sky SFD pin is
connected to a μC pin that is configured to raise an interrupt
either on a falling or on a rising edge.) As it takes only 91 μs to
raise the SFD interrupt on Tmote Sky nodes (see our previous
work [30]), we exploit this feature to detect passive slots
in an early stage and shorten idle listening. This solution,
referred to as idle listening avoidance (ILA), is presented in
the following.

Passive Slots. To reduce idle listening of passive slots, nodes
need an indicator that determines as early as possible
whether a frame arrives. Receiving a preamble and SFD
indicates that a frame is to be received. Thus, if the node
does not receive SFD in the expected time; that is, the
estimated time of SFD includes guard time, preamble, SFD
itself, and SFD interrupt handler, it assumes that no frame
arrives in this slot; see Figure 17(b). As the SFD detect time
is short on Tmote Sky, less than 100 μs, waiting for this time
only before powering down the node shortens idle listening
during passive slots considerably.

Active Slots. After receiving a payload, nodes should power
down the transceiver quickly, if no frames follow the one
just received; see Figure 17(c). When Tmote Sky receives a
frame, it raises two interrupts: the first after SFD detection
and the second when it receives the whole frame. The second
interrupt means only that the transceiver stored the frame
in rx buffer and μC must retrieve it, which takes a few ms.
Clearly, the node can get the frame from rx buffer while the

12 International Journal of Distributed Sensor Networks

(3) Route
broken

Routing Routing

(4) New slots (2) Link down

LETED and
DLDC-MAC

LETED and
DLDC-MAC

(1) Link failure
detected

Source node Intermediate
node

Figure 16: When a node detects a link failure (at the MAC level),
it triggers the network layer (routing) to find a new path; a route
broken message is sent to the source, which discovers another route
and establishes a schedule along the new path.

main transceiver parts are powered off, resulting in energy
savings. However, if another frame follows the one just
received, the node needs to power up the transceiver again.
As it takes a few ms to start up the transceiver, the node may
miss the frame. Therefore, in this work nodes do not apply
the solution to active slots.

4.3. ASIC Solution. The optimal solution for idle listening
reduction involves the use of an application-specific inte-
grated circuit (ASIC), which causes shortest delays in SFD
detection and switching off the transceiver. In general, such a
circuit consists of an extra logic and shorten idle listening in
the following way.

(1) Passive Slots. Similar to ILA solution, ASIC should switch
off the transceiver immediately if SFD is not received within
a desired time; see Figure 17(b). Clearly, the SFD detection
time is shorter on ASIC than the time of SFD detection on
CC2420 transceiver.

(2) Active Slots. After receiving a frame, ASIC reads and
evaluates the payload very quickly; that is, a few of microsec-
onds, in order to check whether another frame follows the
one just received. Therefore, ASIC must be aware of the
message format to determine whether another frame follows
the one received. If no frames follow, ASIC powers down the
transceiver almost immediately after the frame reception; see
min. overhead in Figure 17(c). In this case, a node with ASIC
solution switches off the transceiver a few ms earlier than the
software or ILA solution.
This work does not consider an ASIC solution in detail but
only introduces it as the optimal solution—neglecting above-
mentioned open issues—for comparison reasons.

4.4. Evaluation. To determine idle listening caused by
LETED, this evaluation uses the energy consumption model
introduced in Section 6. Besides, the evaluation uses also the
hardware and scenario parameters, like energy consumption
from that section. For example, in this scenario an event

occurs once an hour, which determines the number of active
slots.

Figure 19 depicts the results of three solutions—software,
ILA, and ASIC—applied to LETED for various end-to-end
delays. Clearly, the shorter the guaranteed end-to-end delay
is, the more receive slots are needed and the longer the total
idle listening time is. For example, for an end-to-end delay of
5 seconds, the software approach causes 163 seconds of idle
listening a day. In this case, the ASIC solution decreases idle
listening 18x (9 sec) and ILA 15x (11 sec). Obviously, as both
ASIC and ILA shorten passive slots, they reduce idle listening
in this way.

Figure 20 presents the corresponding energy gain of ILA
and ASIC against the software solution due to idle listening
reduction. For example, nodes with ILA consume approxi-
mately. 0.9 mAh/day less than the software solution for 5-
second delay. According to the lifetime evaluation presented
in Section 6, nodes w/o ILA (DMAC approach) consume
approximately. 2.5 mAh/day for 5-sec delay. Therefore, the
energy gain of 0.9 mAh/day prolongs the lifetime by about
37%. For shorter delays, ILA achieves even better results.

As expected, ASIC solution reduces idle listening more
than ILA, since it has shorter detection times. However,
it results only in a minor difference in energy gain. For
example, for end-to-end delay of 5-sec ASIC, energy gain is
larger by only 0.008 mAh/day than ILA gain, which is less
than 1% of the total energy consumption.

5. Simulative Evaluation

LETED with DLDC-MAC was implemented as a cross-
platform software and tested with OMNeT++ [32] simulator.
This section introduces the simulation environment and
discusses the results.

5.1. Simulation Environment. All simulations introduced in
this paragraph were carried out with OMNeT++, a discrete
event simulator, which gained popularity in the last several
years. In general, OMNeT++ consists of modules written
in C++. Owing to the modular design, OMNeT++ can be
easily extended with new simulation models and features.
For example, mobility framework (MF) provides several
models for mobile wireless communication. For instance, it
simulates wireless channel at the physical level by considering
signal strength, noise level, and so forth. In this way it
determines whether a data packet will be processed or is
treated as noise. This evaluation applies MF to simulate the
wireless channel. Besides, MF supports moving hosts as well.
However, this evaluation considers a static scenario; that
is, sensor nodes do not move. Another extension—INET—
provides protocol models for TCP, IPv4, IPv6, Ethernet,
IEEE 802.11, OSPFv4, and other protocols. Thus, OMNeT++
allows also simulations of complex heterogeneous networks,
for example, a sensor network connected with gateways to a
local area network (LAN) or to the Internet.

This work utilizes another extension, introduced in
[33], which integrates Reflex [34] operating system (OS)
with OMNeT++. Owing to this extension all applications

International Journal of Distributed Sensor Networks 13

(a)

(b)

(c)

Current
consumption

Current
consumption

Current
consumption

Power
up

Guard
time

P
re

am
bl

e

SF
D

Power
up

Guard
time

P
re

am
bl

e

SF
D

Power
up

Guard
time

P
re

am
bl

e

SF
D

Payload

Payload

Rx
interrupt
handling

Power
down

Power
down

Power
down

Time

Time

Time

Rx on

Rx off

Rx on

Rx off

Rx off

Rx on

SFD
detect
time

Saved

Saved

Min.
over
head

Figure 17: (a) General receive slot (software only). (b) Shortened passive slot with ILA and ASIC. (c) Active slots with reduced idle listening
(ASIC only).

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C
u

rr
en

t
co

n
su

m
pt

io
n

 (
m

A
)

Time (ms)
Guard
time

Radio
starts

Rx MAC frame

−1

Handle payload

µC reads
rx fifo (SPI)

Radio
stops

Figure 18: Rx slot of Tmote Sky sensor node (oscilloscope output:
average from 2 samples); MAC frame 62 bytes data rate 250 kbps.

implemented for Reflex OS run in OMNeT++ simulator and
on platforms provided by Reflex, for example, Tmote Sky
or Mica2. In this way developers can test their applications
with OMNeT++ before deploying them on sensor nodes.
However, LETED and DLDC-MAC implementation goes

0

25

50

75

100

125

150

0 20 40 60 80 100 120

Id
le

 li
st

en
in

g
a

da
y

(s
)

End-to-end delay (seconds)

Software

ILA
ASIC

Figure 19: Idle listening causes by LETED of three various
solutions: software, based on Tmote Sky (ILA) and with a dedicated
hardware (ASIC).

even one step further. It runs not only in OMNeT++ and
on various hardware platforms, thanks to the Reflex OS
extension, but also on any other OS, if they provide suitable
adapters. Such a cross-platform design for sensor networks
was introduced previously in [35].

The following paragraphs give an overview about major
features of the simulation environment.

14 International Journal of Distributed Sensor Networks

0 20 40 60 80 100 120

End-to-end delay (seconds)

ILA
ASIC

0

 0.5

 1

 1.5

2

E
n

er
gy

 g
ai

n
 (

m
A

h
/d

ay
)

Figure 20: Energy gain of solutions to idle listening avoidance based
on hardware: ILA (with CC2420 transceiver) and ASIC (based on
dedicated hardware); as both solutions achieve similar results, the
difference between them can hardly be spotted in this figure.

5.1.1. Integration with Reflex OS. Reflex OS is integrated
with OMNeT++ with a coroutine-based model; that is, the
module code runs in its own thread and usually consists of an
infinite loop with send and receive calls. In general, each time
an event associated with the Reflex module needs handling,
like a message reception or a timer, the simulation kernel
triggers the module to handle the event. From the Reflex OS
perspective, each event is an interrupt. Therefore, each time
the simulator triggers Reflex, an interrupt service routine is
executed.

To simulate the system clock, OMNeT++ triggers the
Reflex module every tick period. The tick value is set
to a millisecond by default. Thus, OMNeT++ raises a
system timer interrupt, every 1 ms on each node separately.
Although such a practice allows exact simulations at a low
operating system level, it results in a significant processing
overhead. Therefore, OMNeT++ simulations take quite a
long time, especially when simulating networks of many
sensor nodes. To overcome this drawback the Reflex module
was slightly adapted. Instead of simulating each clock tick,
OMNeT++ triggers the system timer interrupt, only when
the timer was set previously by applications. For example,
should the MAC layer set the timer to fire in 30 seconds
to send a beacon, OMNeT++ raises the timer interrupt
after this time and not on every clock tick as previously. It
reduces the processing overhead and allows running long-
term simulations with many sensor nodes in a reasonable
time.

5.1.2. Bit Error Simulation. In general, mobility framework
(MF) applies the following steps to decide whether a frame
was correctly received. First, it estimates the received power
Prx according to the Friis free-space equation [36]:

Prx = Ptx · λ2

16 ·Π2 · rα , (11)

where Ptx is the transmission power, λ the wavelength, r the
distance between the transmitter and the receiver, and α the
path loss coefficient with typically α ≥ 2. The coefficient α
equals 2 for free-space path loss and 5 to 6 for shadowed

areas or indoor scenarios [36]. Then, it estimates the signal to
interference and noise ratio (SINR): it considers the constant
thermal noise parameter, defined in a configuration file, and
the noise caused by consecutive transmissions of other nodes.
In this way MF discards frames upon collision, as consecutive
frame transmissions result in noise levels higher than the
frame reception power. Based on the SINR, the simulator
estimates the frame bit error rate (BER) according to the
modulation used. For instance, the BER of binary phase-shift
keying (BPSK) equals

BER = eS

2
,

S = −SNIR · bandwidth
bitrate

.

(12)

Next, MF estimates the probability Pok that the received
frame was not corrupted:

Pok = (1− BER)l, (13)

where l is the frame length. Finally, MF gets a random value
in the range from 0 to 1 and discards the frame, if the value
was higher than Pok.

5.1.3. Clock Drift. OMNeT++ does not consider clock
drift by default. The simulator provides only the current
simulation time tsim. Therefore, to test the drift impact
on LETED and DLDC-MAC, the OMNeT++ was extended
to change node’s local time according to clock drift. In
short, before starting a simulation, OMNeT++ reads a
configuration file and sets the drift parameter δ to each node
separately. Then, each time nodes read the system time, the
simulator calculates the local time tlocal according to its drift
parameter:

tlocal = tsim

1− δ · 10−6
. (14)

Clearly, if nodes have different drift parameters, their clocks
run at different speeds and cause overlap risks of DLDC-
MAC beacons and LETED slots.

5.2. Network Setup. The protocol stack of evaluated nodes
included the application, network and data-link layer. In this
scenario nodes applied AODV [29] routing protocol. In the
data-link layer, nodes used LETED and DLDC-MAC. All
layers were implemented as a cross-platform application in
ANSI C. Thanks to the adaptation layer, the software was
tested and evaluated with OMNeT++.

In this scenario the application was running only on the
sources and on the sink. In the first case, the system timer
triggered the application to send data to the sink once an
hour. Each timer trigger corresponds to an event detected
by the source. However, to examine various delays from an
event detection to the first tx slot, the source nodes added
a random time, within the margin of beacon period, to
the next trigger time. Each frame transmitted contained the
current simulation time used on the sink to estimate the total
delay of multihop communication.

International Journal of Distributed Sensor Networks 15

6

7

3 4 5210
Source

Source

Sink

Figure 21: Two sources—nodes 0 and 6—send data periodically to
the sink (node 5).

The evaluated LETED implementation applied two new
approaches to the overlap problem. First, it used extra
synchronization frames to keep LETED slots arranged along
the path (details in Section 3). Second, it allowed LETED
slots to overlap but reduced the risk of frame loss in overlap
case by applying the ARQ protocol (see Section 3).

As stated above, OMNeT++ simulates frame loss accord-
ing to the path loss model. Table 2 presents the parameters
applied to the simulations.

This evaluation considers the physical layer (PHY) of
IEEE 802.15.4 standard with 2.4 GHz carrier frequency.
Thus, the characteristics of this PHY and of the correspond-
ing transceiver, Chipcon CC2420 [31], were configured
at the beginning. However, the configured binary phase-
shift keying (BPSK) modulation is used in the 868 MHz
and 915 MHz bands only. The 2.4 GHz band uses offset
quadrature-phase-shift Keying (OQPSK) modulation. As
OQPSK was not available, BPSK was selected.

Two different networks—small and large—were evalu-
ated with OMNeT++ simulator. Both setups are introduced
in the following.

Figure 21 presents the small network evaluated with
OMNeT++ simulator. In general, nodes 0 and 6 served as
sources; they sent data to the sink, to node 5. Since nodes 3,4,
and 5 were on two gathering paths, that is, from sources 0 and
6, they set up two schedules, for each path separately. In this
scenario the offset between rx and tx slots on intermediate
nodes was set to 100 ms. It resulted in approximately. 100 ms
forwarding delay of a single hop. Thus, with 5-hop path to
the sink, the nodes had to wake up every 9.5 seconds to
guarantee 10-second delays (see Section 3.2).

The thermal noise parameter was adapted to get a PER
of approximately. 10%, which is higher than common PER
observed in sensor networks. The reason for a higher PER is
to test whether LETED works well in worse conditions than
expected. However, with such a PER the LETED protocol
did not work correctly without ARQ protocol. The problem
stems from the way the slot synchronization works. In short,
in multihop networks, synchronization frames do not reach
the sink due to bit errors. As a result, nodes close to the
sink are not synchronized and miss frames transmitted in
LETED slots. Therefore, the evaluation considers only the
protocol stack with ARQ applied. Three various simulations
were performed with OMNeT++ differing in PER and ARQ

Table 2: Simulation parameters that affect the packet error rate
(PER).

Parameter name Value

Carrier frequency 2.4 GHz

Bitrate 250 kbps

Channel bandwidth 2 MHz

Transceiver Tx power 1 mW

Transceiver sensitivity −94 dBm

Thermal noise −84.5 dBm

Modulation BPSK

Path loss coefficient α 3

Table 3: Packet error rate (PER) and ARQ parameters of three
small-network simulations performed with OMNeT++.

Acronym PER parameter max. ARQ retries

S1 0% 1

S2 Approx. 10% 1

S3 Approx. 10% 2

parameters (see Table 3). Each scenario was simulated 3
months.

The small network introduced previously considers a
high PER, but the number of nodes is small. In such a setup,
beacons and slots overlap rarely and nodes do not handle it
as often as that in common scenarios. Besides, in larger net-
works there is a higher risk of sending frames concurrently, as
DLDC-MAC avoids it only among neighbors. In such cases,
nodes affect each other’s transmissions and cause collisions.
However, the previous scenario dose not suffer from this
problem, as the number of nodes is small.

To evaluate LETED in more realistic conditions, another
simulation was carried out. Figure 22 presents the network
topology of 155 nodes deployed randomly in a square area
of length 250 meters. The sink was placed in the middle
and four sources at the corners. Sources set up routes and
wake-up schedules to the sink (see Figure 22). As previously
mentioned, nodes applied the AODV to find routes to the
sink. They did not care about route metrics, like hop count,
and selected the first available path.

In this scenario only 4 out of 155 nodes sent data
to the sink, as LETED does not yet support efficiently
communication from many sources. In the current version,
each source sets up a separate wake-up schedule to the
sink. Obviously, it causes frequent wake-up times in larger
networks. An effective way to handle many sources is a part
of future research.

Similar to the previous network, nodes support also
10-second end-to-end delays. To counter the frame loss
problem, nodes apply the ARQ protocol with 1 retry.

5.3. PER Results. This paragraph presents the average packet
error rate (PER) in all simulations. As stated above,
OMNeT++ calculates the PER from several parameters, for
example, the tx power or distance between nodes. Nodes
with DLDC-MAC do not apply any solutions to unreliable

16 International Journal of Distributed Sensor Networks

Sink

Source 2 Source 3

Source 4
Source 5

Figure 22: Evaluated network of 155 nodes. Four sources send data
to the sink along the routes depicted in the figure.

S1 S2 S3

M
is

se
d

be
ac

on
s

(%
)

Slots

10

5

0
0%

10.43% 10.42%

Figure 23: Small network: the total number of missed beacons
among all nodes in three scenarios; as nodes did not apply ARQ
for beacon transmission, it shows the average PER of links.

communication, for instance, CSMA/CA or ARQ. Therefore,
the average PER is equal to the number of missed beacons.
However, such a PER does not include LETED frames missed
due to slot overlap.

Figure 23 presents PER values of three scenarios in the
small network. As expected, the nodes did not suffer from
the frame loss risk in the first scenario with a PER of 0%. In
two other scenarios, the PER was close to 10%.

Figure 24 shows the PER results of the large network for
each route separately. It is the average PER of all neighbors
and not the PER of the previous or next node to the sink. As
nodes were deployed randomly, distance among them varied
and resulted in different rx power and PER, that is, from 0%
to 3.35%.

5.4. Small Network Evaluation. To estimate end-to-end
delays, source nodes included in frames event and transmis-
sion times. Each time the sink received a frame, it captured
the reception time. Then, it calculated the time passed from
the event detection.

During all simulations, sources had to deliver event
notices to the sink within 10 seconds. Figure 25 shows the

results of the small-network experiments: the sink received
more than 99% frames within this time. Only less than 0.5%
frames reached the sink too late. There are two reasons for
frames reaching the sink too late. First, if there is an overlap
risk, nodes skipped affected slots. Should a node skip a tx
slot and have awaiting frames, it sends them in the next slot,
that is, in approximately. 10 seconds in this case. The second
reason for frames reaching the sink too late are bit errors.
In this case, nodes apply the ARQ protocol and send frames
again, if they do not receive ACK. It affects end-to-end delays
only if nodes send retries in the next tx slot. However, in this
case, nodes send retries in the same slot and ARQ did not
influence end-to-end delays. Therefore, the main reason for
receiving frames too late are skipped slots. This observation
explains the results presented in Figure 25. That is, in all
simulations a similar number of frames achieved the sink
on time, although they differ in the PER values and ARQ
parameters.

Figure 25 includes only frames received by the sink.
However, here the success rate means the number of event
notices received on time. Clearly, missed frames reduce
the success rate and must be considered as well. Figure 26
presents the number of missed frames in all simulations. To
obtain the success rate, the number of frames on time (see
Figure 25) must be reduced by missed frames. In S1 and S3
scenarios it affects slightly the success rate. For example, in
S3 the success rate is still higher than 99%, as the sink missed
less than 0.5% frames.

Although frames were not affected by bit errors in S1, the
sink missed 0.25% packets (see Figure 26). As stated above,
the sink missed some frames, as nodes skipped slots to reduce
the overlap risk. This shows the performance of the ARQ-
based solution to the overlap problem: it resulted in 0.25%
frame loss.

As expected, in the S3 scenario the sink missed more
frames than that in S1, that is, 0.46% and 0.25%, respectively,
for source 0. However, the number of missed frames from
node 7 is equal in both scenarios. Theoretically, the sink
should miss more frames in S3 due to a higher bit error rate.
This phenomenon can be explained as follows. More retries
in S3 resulted in longer slots, which could be used partly
instead of skipped like that in S1. Figure 29 shows that nodes
in S3 skipped fewer slots than in S1 and also used more slots
partly. In addition, more ARQ retries in S3 recovered from
some bit errors. Thus, the number of missed frames is equal
in both runs.

Figure 29 shows the average number of slots skipped,
partly used, and joined, in the small network scenario. These
numbers depend on the total slot count and their length.
The first one stems from end-to-end delays nodes have to
support. In this scenario it was 10 seconds. The slot length
depends mainly on the frame length and the number of ARQ
retries. Since in S1 and S2 nodes applied 1 ARQ retry, it
resulted in a similar amount of slots skipped, partly used,
and joined. However, S3 applied more retries and resulted in
longer slots. In this case, nodes used such long slots partly
more often than those in previous runs, when they were
skipped. Therefore, the number of partly used slots in S3 is
higher than that in S1 and S2, 0.34% versus 0.20%. Clearly, if

International Journal of Distributed Sensor Networks 17

M
is

se
d

be
ac

on
s

(%
)

2 18 31 44 45 69 70 1

3 15 14 25 38 50 62 73 1

4 137 125 112 99 87 62 73 1

5 126 128 104 105 81 82 1

Node address

Node address

Node address

Node address

3
2
1
0

3
2
1
0

3
2
1
0

3
2
1
0

Figure 24: Large network: the average number of missed beacons
(corresponds to the PER of links) for each route separately.

S1 S2 S3

Fr
am

es
 r

ec
ei

ve
d

on
 t

im
e

(%
)

Scenario

From source 0
From source 7

99.7

99.8

99.6

99.5

99.71%

99.62% 99.62% 99.62%

99.75%

99.62%

Figure 25: Small network: the number of frames (event notices) the
sink received on time; it does not include missed frames.

more slots were used partly in S3 than those in the previous
runs, less slots were skipped: 0.14% and 0.20% skipped slots,
respectively. Besides, with longer slots there was less free
space between them, causing slots to join more often: 0.88%
slots in S3 versus 0.72% in S1 and S2.

5.5. Large Network Evaluation. Although nodes in the large
network (LN) scenario suffered from a smaller PER than
those in the small network (SN), the sink received fewer
frames on time. For example, in SN more than 99% frames
reached the sink on time. In LN, however, the sink got fewer
than 99% frames on time from all routes, that is, within
10 seconds and less (see Figure 27). In the worst case, it

S1 S2 S3

Scenario

From source 0
From source 7

M
is

se
d

fr
am

es
 (

%
)

0.25% 0.13%

1.5% 1.38%

0.46%
0.13%

1.5

1

0.5

0

Figure 26: Small network: the total number of event notices that
the sink did not receive, that is, end-to-end packets, for each source
separately.

Pa
ck

et
s

re
ce

iv
ed

 (
%

)
on

 t
im

e

Packets

99

98

97

96

95

96.99%

98.44%

97.31%

96.41%

From 2 From 3 From 4 From 5

Figure 27: Large network: the amount of frame the sink received
on time, that is, within 10 seconds.

received 96% frames on time. Clearly, the main reason for
worse PER results of LN is the higher overlap risk due to
more neighbors than that in SN. Besides, as nodes applied
only 1 ARQ retry, it resulted in short LETED slots. Should
beacons and LETED slots overlap, nodes skipped the latter
ones and did not used them partly (details in Section 3). In
this case, nodes send awaiting frames in the next slot, that
is, after about 10 seconds, and the sink received it too late.
In the SN scenario, nodes skipped about 0.20% slots due to
overlap (see Figure 29). However, in LN nodes skipped more
slots than those in SN, that is, from 0.45 to 0.65%.

Short LETED slots and a higher overlap risk impact also
the total number of missed events. In the worst case, the sink
missed 1.53% frames (see Figure 28), which is similar to the
number of events missed in SN with 1 retry. However, in the
latter case nodes suffered from a higher PER, that is, 10%
instead of 1-2%. As in LN nodes missed more slots due to
overlap than is SN, it caused a higher frame loss rate. For
instance, nodes in LN missed even 5x more frames due to
overlap than in SN, that is, 0.72% (see source 4 in Figure 30)
and 0.13% (see Figure 29), respectively.

To achieve a better performance, nodes might apply the
following solution. Should nodes use only a few ARQ retries,
they prolong LETED slots by sending ARQ retries later and
not consecutively. In the overlap case, nodes can use such
slots partly and prevent sending frames too late or discarding
them.

Nonetheless, LETED achieved good results in the LN
scenario even without the improvement mentioned above:

18 International Journal of Distributed Sensor Networks

M
is

se
d

pa
ck

et
s

(%
)

Route

2

1.5

1

0.5

0

0.42%

1.53%

1.26%

0.84%

From 2 From 3 From 4 From 5

Figure 28: Large network: missed event notices.

the success rate of all routes is more than 95%; that is, the
total number of frames received on time and not missed.

6. Lifetime Evaluation

This chapter evaluates the lifetime of various approaches that
support short end-to-end delays. It compares the solution
presented in this work, that is, LETED coupled with DLDC-
MAC, with the following protocols:

(1) staggered schedule,

(2) cycled receiver/preamble sampling,

(3) schedule based (TDMA).

Although LETED applies the ARQ protocol to deal with
unreliable wireless links, the model does not consider it. In
this way, we wanted to provide a fair comparison of LETED
with other protocols, which do not apply ARQ.

6.1. Overview. The following paragraphs introduce briefly
solutions to end-to-end delays evaluated in this chapter.

6.1.1. Staggered Schedule. This chapter evaluates also the
generic idea of staggered schedule separately from LETED,
although the latter one applies such a schedule. By doing
so, the evaluation finds energy savings of LETED against the
generic staggered schedule approach.

Apart from a staggered schedule nodes, need an under-
lying MAC protocol, since such a schedule does not provide
rendezvous with all neighbors. This evaluation considers a
staggered schedule coupled with DLDC-MAC. Since LETED
is based on DLDC-MAC as well, the evaluation provides an
accurate estimation of the energy saved by LETED against a
generic staggered schedule.

To estimate energy consumption and the lifetime of
nodes with a staggered schedule, the evaluation considers the
LETED energy consumption from Section 6.2 but without
the idle listening avoidance improvements introduced in this
work.

6.1.2. Preamble Sampling (Cycled Receiver). The following
formulas provide the energy consumption model of pream-
ble sampling approaches.

Total energy consumption of preamble sampling Epreamble

consists of energy needed for sending data Etx and the
reception energy Erx:

Epreamble = Etx + Erx. (15)

Nodes with preamble sampling send data only when they
detect an event. Thus, the total number of transmission slots
Ntx depends on the event frequency Tevent:

Ntx =
Tday

Tevent
, (16)

where Tday is “the amount of time units a day” Tevent is
expressed with, similar to LETED model. As stated above,
nodes may send a series of short frames that imitate a
long preamble. However, for the sake of simplicity, this
model assumes that nodes send continuous preambles. Then,
transmission energy is estimated as

Etx = Ntx ·
(
Tsleep + tframe

)
· Itx + Estartup + Eshutdown. (17)

With the preamble sampling approach nodes periodically
check the channel activity. The number such check opera-
tions a day Nrx is:

Nrx =
Tday

Tsleep
. (18)

On average nodes receive a half of the preamble when
getting data frames and the total reception energy equal

Erx =
[
Nrx · trx + Ntx ·

(
Tsleep

2
+ tframe

)]
· Irx, (19)

where trx is the sampling channel duration, that is, the time
nodes need to discover whether other nodes send a long
preamble before data frames. If nodes use bit streaming
radios, like CC1000, they have a low-level access to individual
bits while sending or receiving. In this case, nodes send long
and continuous preambles and receivers use short times trx

to detect channel activities. For example, low power listening
introduced in B-MAC [9] needs approximately. 350 μs to
detect a preamble. However, nodes with packetizing radios,
for example, CC2420, cannot control the preamble length.
Therefore, they imitate a long preamble by sending short
wake-up frames in a sequence, like those in TICER. In this
case, trx is longer than that in B-MAC. For instance, if wake-
up frames are 30-byte long with the preamble included,
nodes receive such frames in about 1 ms in the best case.
However, trx is usually longer, as nodes need an extra time
to get frames from the rx buffer. Experiments presented in
Section 4 revealed that nodes need a few ms to read data from
the rx buffer.

Preamble sampling causes idle listening on both senders,
because of long preambles, and on receivers, due to periodic
checks of the channel activity. Besides, should nodes detect
a preamble on the channel, they remain in the receive state
until the frame arrives and increase idle listening as well.
Clearly, to prolong the lifetime nodes should reduce idle

International Journal of Distributed Sensor Networks 19

Skipped Partial Joined Missed (overlap)

Slots

S1
S2
S3

Sl
ot

s
(%

)

1

0.75

0.5

0.25

0

Figure 29: Small network: the number of slots skipped, used
partially, and joined upon an slot overlap risk among all nodes, for
each test run separately.

From source 2

From source 3

From source 4

From source 5

N
u

m
be

r
of

 s
lo

ts
 (

%
) 0.57% 0.39%

1.78%

0.56%

0.65%
0.33%

1.86%

0.72%

Skipped Partial Joined Missed (overlap)

Skipped Partial Joined Missed (overlap)

Skipped Partial Joined Missed (overlap)

Skipped Partial Joined Missed (overlap)

Slots

Slots

Slots

Slots

0.5% 0.56%

1.99%

0.48%

2

1

0

2

1

0

2

1

0

2

1

0

0.45% 0.37%

1.5%

0.32%

Figure 30: Large network: slots statistics for each route separately.

listening by adapting the preamble length. There is a tradeoff
in preamble length: short preambles reduce idle listening of
transmissions but increase it on receivers, as they check the
channel more often. However, with frequent transmissions,
short preambles may reduce idle listening on receivers, as
they do not need to wait long for data frames after preamble
detection.

To find the optimal preamble length, the formulas
introduced previously were applied to the scenario from
Section 6.3. In short, sources in a 5-hop network send data
frames to the sink with a different frequency: once a minute,
once an hour, and every 12 hours. Figure 31 presents the
lifetime results of B-MAC and TICER protocols. By adapting
the preamble length, nodes balance idle listening in send

0

1

2

3

0 5 10 15 20 25 30

L
if

et
im

e
(y

ea
rs

)

Preamble length (seconds)

12 hours
1 hour
1 minute

(a) B-MAC generates long preambles and receivers need approxi-
mately. 350 μs to detect it; B-MAC runs only on radios that support
a low-level access to individual frame bits

0

1

2

3

0 5 10 15 20 25 30
L

if
et

im
e

(y
ea

rs
)

Preamble length (seconds)

12 hours
1 hour
1 minute

(b) TICER emulates long preambles by sending consecutive beacon
frames; nodes need almost a millisecond to receive a beacon and detect
channel activity. Although TICER achieves worse results than B-MAC,
it works with all transceivers

Figure 31: There is the optimal preamble length in solutions based
on preamble sampling; the results show the lifetime for various duty
cycle, that is, nodes send frames once a minute, once an hour and
every 12 hours.

and receive states and find the optimal preamble. B-MAC
achieves the longest lifetime with a preamble of 120 ms with
an average tx period of a minute (see Figure 31 and Table 4).
Should nodes send data more rarely, idle listening on senders
becomes smaller. In this case, to balance idle listening in
tx and rx states, node apply longer preambles. Thus, the
optimal preamble length is longer in scenarios with lower
duty cycles. For example, the optimal preamble with the
average tx period of an hour is about 8x longer than in the
scenario with 1-minute tx frequency.

TICER differs from B-MAC mainly in a longer time
receivers need to check the channel. In this scenario, nodes
with TICER expect “preamble beacons” of 30 bytes and
therefore need about 960 ms to detect it. With a longer
channel check time, TICER achieves worse results than B-
MAC. For instance, with an average tx period of 1 hour
nodes reduce the lifetime by 15%, if they apply TICER
instead of B-MAC. However, the advantage of TICER is the
fact it works with every transceiver, as it sends ordinary
frames. On the contrary, B-MAC needs a low-level access to
individual bits. Besides, the transceiver supporting B-MAC

20 International Journal of Distributed Sensor Networks

Table 4: The optimal preamble length of B-MAC and TICER causes
smallest idle listening and results in the longest lifetime, presented
in brackets.

Average tx time

1 minute 1 hour 12 hours

B-MAC
120 ms

(1.1 years)
0.94 s

(2.76 years)
3.27 s

(3.27 years)

TICER
200 ms

(0.76 years)
1.56 s

(2.41 years)
5.42 s

(3.12 years)

must allow transmission of any-length preambles, which
nodes can freely adapt.

6.2. LETED Energy Model. This section introduces the
energy consumption model of nodes using LETED coupled
with DLDC-MAC. Table 5 lists the symbols used in the
model. The parameters related to the scenario show Tables
6, 7, and 8.

6.2.1. Lifetime and Daily Energy Consumption. The lifetime
of sensor nodes with LETED and DLDC-MAC is estimated
as

Lifetime = Q

Eday
, (20)

where Q is the available battery capacity and Eday is the
total energy consumption a day, that is, the sum of energy
consumed by all activities:

Eday = ELETED + ELDC

Emcu + Eselfdischarge,
(21)

where ELETED and ELDC are the energy consumed by LETED
and DLDC-MAC, respectively, Emcu energy consumed by
the microcontroller in both active and sleep states, and
Eselfdischarge the self-discharge rate of batteries.

6.2.2. LETED Energy Consumption. LETED consumes
energy when sending and receiving data in active slots and
while listening for potential transmissions in passive slots.
For the sake of simplicity, listening in passive slots is just
keeping the transceiver in the reception state. Therefore, here
LETED consumes energy either while sending frames Etx slots

or when keeping the radio in the rx state Erx slots:

ELETED = Etx slots + Erx slots (22)

The number of active slots Nactive depends on the average
event period Tevent:

Nactive =
Tday

Tevent
. (23)

The number of passive slots depends on end-to-end
delays dEtE the network supports. In other words, each node
wakes up every Tslot period to receive and send potential data:

Tslot = dEtE − n · (tframe + ttx offset), (24)

where tframe is the expected frame length and ttx offset the gap
between receiving a frame and sending it to the next node.
Then, the total number of passive slots a day Npassive is

Npassive =
Tday

Tslot
−Nactive. (25)

As nodes send data during active slots only, the total tx
energy is estimated as

Etx slots = Nactive ·
(
tframe · Itx + Estartup + Eshutdown

)
, (26)

where Itx is the transceiver current consumption while
sending data, Estartup and Eshutdown energy consumed to power
up and down the transceiver. The expected frame length
tframe in time units is calculated as follows:

tframe =
λframe + λpreamble + λSFD

ϑ
, (27)

where λframe is the expected data length and ϑ is the
transceiver data rate. tframe includes also the preamble
λpreamble and the start of frame delimiter λSFD.

The single reception time during active and passive
slots, trx active and trx passive, is necessary to estimate energy
consumption of frame reception:

trx active = tguard + tframe + trx post, (28)

where tguard is the guard time, tframe the average frame length
and trx post the extra time needed to detect that no frames
follow the current one. Nodes apply the moving average drift
compensation (MADC) to deal with clock drift and estimate
tguard in the same way as DLDC-MAC does (see (38)).

By applying the idle listening avoidance (ILA) solution,
introduced in Section 4, nodes shorten passive slots to:

trx passive = tguard + tpreamble + tSFD, (29)

where tSFD is the time needed to detect the start frame
delimiter of incoming frames and tpreamble the preamble
reception time together with the SFD field. tpreamble is
estimated similarly to tframe (see (27)).

As stated before, nodes with LETED consume energy
Erx slots, while receiving in both active and passive slots:

Erx slots = Nactive · (trx active · Irx)

+ Npassive ·
(
trx passive · Irx

)

+
(
Nactive + Npassive

)
·
(
Estartup + Eshutdown

)
,

(30)

Erx slots = Irx ·
(
Nactivetrx active + Npassivetpassive

)

+
(
Nactive + Npassive

)
·
(
Estartup + Eshutdown

)
,

(31)

where Irx is the current drawn the receive state.

6.2.3. Energy Consumption of DLDC-MAC. DLDC-MAC
protocol consumes energy when sending Etxbeacon and receiv-
ing Erxbeacon beacons:

ELDC = Etxbeacon + Erxbeacon. (32)

International Journal of Distributed Sensor Networks 21

Table 5: Symbols used in the model.

Symbol Description

Eday Daily energy consumption

ELETED LETED energy consumption

ELDC Energy consumption of the underlying low-duty cycle protocol

Etxbeacon, Erxbeacon Energy consumed to send and to receive beacons during a day

Etx slots, Erx slots Energy consumed in a day for sending and receiving data

Emcu Daily energy consumption of μC

Emcuactive Daily energy consumption of μC in active mode when radio is powered down

Esleep Daily energy consumption when the node sleeps

trx active, trx passive Length of rx active/passive slot

ttxbeacon Transmission time of a single beacon

trxbeacon Average reception time of a single beacon

trxbeacon after Listening time after sending a beacon

tguard Guard time for clock drift compensation

tframe Transmission time of single data frame

tpreamble Time to send or receive the preamble with the start of frame delimiter field

Tsleep Total sleep time in a day

Tslot LETED slot period needed to support certain end-to-end delays

Tday
The number of time units (e.g., seconds) a day that the beacon period Tbeacon is expressed (e.g.,
Tday equals 86 400 seconds a day, when Tbeacon is expressed in seconds)

Nactive, Npassive Number of active/passive slots a day (LETED solution)

B The number of beacons a node sends during a day

Table 6: Scenario parameters.

Parameter Description Value

λframe Data frame length 128 bytes

Tevent How often events occur Various

n Hop count: source to sink 2, 5, and 10

dEtE Maximum end-to-end delay Various

Tmcuactive How long μC is active a day when radio is powered down 10 minutes

Table 7: LETED and DLDC-MAC parameters.

Parameter Description Value

ttx offset The time a tx slot follows the corresponding to rx slot in LETED 50 ms

trx post The time to get a frame in the application layer after it was received by the transceiver 4.5 ms

tSFD SFD detection time 100 μs

Tsync The period of sending SYNC frames to align wake-up schedule along the path 5 minutes

Parameters of the underlying DLDC-MAC protocol

Tbeacon Beacon period 120 secs

λbeacon Beacon length 128 bytes

λbeacon after How long (bytes) the node waits in listening after sending a beacon 128 bytes

nbours The number of neighbors 4

MBR The average missed beacon rate 1%

22 International Journal of Distributed Sensor Networks

Table 8: Hardware parameters of the energy consumption model together with values used for evaluation.

Parameter Description Value

Q Available energy 1800 mAh

Imcuactive Current consumption when μC is active 2 mA

Itx Current consumption when sending and receiving
20 mA

Irx 22 mA

Isleep Current consumption when the node sleeps 0.01 mA

ϑ Transceiver data rate 250 kbps

Eself discharge Daily self-discharge rate of batteries 0.74 mAh

Estartup Energy needed to power the transceiver up and to power it down
7.2 nAh

Eshut down 4.2 nAh

Etx rx switch Energy needed to change the transceiver mode from sending to receiving 4 nAh

δ Relative clock drift between two nodes when MADC (moving average drift compensation) is applied 2.18 ppm

λpreamble Preamble length 4 bytes

λSFD The length of SFD (start of frame delimiter) field 1 byte

Thus, to estimate the energy consumption of DLDC-
MAC, the total number of beacons a day B must be
calculated:

B = Tday

Tbeacon
, (33)

where Tbeacon is the beacon period, that is, the time between
two successive beacons.

Beacon Transmission. Nodes with DLDC-MAC send beacons
periodically every Tbeacon time. After sending a beacon, nodes
stay trxbeaconafter time in the receive state to get potential
network control frames, like network join request. Clearly, as
nodes switch from the tx state to the reception, they consume
additional energy Etxrxswitch. The total energy consumed for
sending beacons equals

Etxbeacon = B · (ttxbeacon · Itx + trxbeaconafter · Irx

+ Etxrxswitch + Estartup + Eshutdown

)
.

(34)

Both parameters beacon length λbeacon and the listening
time after beacons λbeacon after are expressed in bytes. The
following formulas express them in time unit, according to
the transceiver data rate ϑ:

ttxbeacon = λbeacon

ϑ
,

trxbeaconafter = λbeacon after

ϑ
.

(35)

Beacon Reception. Nodes with DLDC-MAC receive beacons
from all neighbors and thus consume energy Erxbeacon for
beacon reception:

Erxbeacon = B · nbours ·
(
trxbeacon · Irx + Estartup + Eshutdown

)
,

(36)

where nbours in the neighbors count and trxbeaconis the time
needed to receiving a single beacon. As nodes compensate

clock drift, they apply guard times tguard for each beacon.
Therefore, the time to receive a single beacon equals

trxbeacon = tguard + ttxbeacon. (37)

Obviously, guard times depend on the beacon period
Tbeacon, that is, on the last time when nodes synchronized
their times by receiving beacons. Besides, if nodes miss a
beacon, they double the guard time for the next reception try.
The average guard time tguard over a beacon period Tbeacon is
estimated as

tguard = δ · Tbeacon

1−MBR
, (38)

where δ is relative drift among neighbors and MBR is the
average missed beacon rate. In this scenario nodes apply the
solution to guard times based on drift prediction introduced
in our previous work [26].

6.2.4. Microcontroller Energy Consumption. Although micro-
controllers (μC) use several power consumption states, this
evaluation considers only two: active Emcuactive (executing
code, reading sensors, sending, receiving, etc.) and sleep Esleep

(only a low rate clock is running). The total energy the
microcontroller consumes a day Emcu equals

Emcu = Emcuactive + Esleep

Emcuactive = Tmcuactive · Imcuactive,
(39)

where Tmcuactive is the time the μC is active a day and Imcuactive

is the μC current consumption in the active state. Similarly,
the energy in the sleep state is estimated as

Esleep = Tsleep · Isleep, (40)

where Tsleep is the total μC sleep time a day and Isleep is the
current consumption in the sleep state. In other words, Tsleep

is the period when sensor nodes do not perform any task,
that is, they sleep to save energy. Clearly, Tsleep is calculated
as a complement of other activities, that is, sending and
receiving data, listening for potential transmissions, and code
execution.

International Journal of Distributed Sensor Networks 23

6.3. Scenario. This evaluation considers sensor nodes that
monitor specific events, for example, moving object or gas
leakage. After source nodes detect an event, they send notice
frames to the sink. Tables 6, 7, and 8 present the scenario
parameters, introduced in the following.

As end-to-end delay depends on the hop distance from
the source, especially for approaches not based on the
staggered schedule, three different scenarios are considered:
with 2, 5, and 10 hops to the sink. Besides, the lifetime
depends on end-to-end delay that nodes must support, since
it impacts the duty cycle. Thus, the evaluation considers
various end-to-end delays, starting from less than a second.

In this scenario nodes send small frames on event
detection, that is, only 128 bytes. However, it is big enough to
include event notice, like gas detection at a specific place. The
frequency of events impacts the number of transmissions as
well. The more the events sources detect, the more frames
they send. This evaluation considers various event periods,
that is, from 1 minute to 12 hours.

On frames reception nodes with LETED wait the time
ttx offset before sending it to the next node. The smallest
ttx offset must compensate drift arisen between the sender and
the receiver over the sleep period. Therefore, ttx offset should
be long enough to counter the drift problem. However,
ttx offset impacts end-to-end delay and duty cycle; see (3.2),
and therefore should be short enough. In this scenario nodes
apply ttx offset of 50 ms.

To cope with errors in multihop drift estimation, nodes
with LETED synchronize wake-up schedules each time they
receive data frames. To synchronize schedules in long idle
periods, nodes send extra SYNC frames. The SYNC period
should be short enough to recover from multihop drift
changes. In this scenario, nodes send SYNC frames every 5
minutes.

Table 7 presents DLDC-MAC parameters. Although the
beacon period Tbeacon equals 2 minutes, it does not impact
end-to-end delay, since nodes use LETED slots to send event
notices. As nodes with DLDC-MAC receive beacons from all
neighbors, the neighbor number impacts duty cycle and the
lifetime. In this scenario nodes have 4 neighbors on average.
On missing a beacon nodes apply a double-length guard
time to receive the following beacon. It results in longer
idle listening and shortens the lifetime. In this scenario the
average missed beacon rate is as high as 1%; that is, the bit
error rate (BER) equals approximately. 10−6.

Although nodes miss beacons and data frames in this
scenario, they do not apply the ARQ approach that handles
the frame loss problem, as already mentioned.

Finally, Table 8 lists the hardware parameters of the
sensor platform. In this evaluation an off-the-shelf sensor
node—Tmote Sky—was considered. Thus, the parameters
come from Tmote Sky datasheet [1] and from measurements.
The values of current and energy consumption are specified
in mA and mAh units, and not in W and Ws, as hardware
datasheets usually provide the former ones.

Tmote Sky nodes use two AA batteries as the energy
source. In this scenario they have 2x rechargeable batteries
Sanyo eneloop each with the overall capacity of 2000 mAh.
However, Tmote Sky uses approximately. 80% of the available

energy, as these batteries provide 80% of capacity with
required 1.2 V voltage. Besides, the scenario considers also
the self-discharge of the batteries. In general, Sanyo eneloop
batteries lose approximately 15% of the capacity in a year,
resulting in a day loss of about 0.74 mAh.

To reduce idle listening stemming from guard times,
nodes apply the drift prediction solution based on moving
average (MADC), introduced in our work [26]. Accord-
ing to the experiment results, relative drift among two
nodes decreases to approximately. 2.18 ppm after applying
MADC.

6.4. LETED and Preamble Sampling. This paragraph com-
pares LETED against B-MAC and TICER, which are state-
of-the-art MAC protocols for sensor networks. As previously
mentioned, both B-MAC and TICER apply the preamble
sampling approach. However, only B-MAC sends long con-
tinuous preambles and benefits from a short time needed to
detect the channel activity. On the contrary, TICER emulates
long preambles by sending successive wake-up beacons.

This evaluation considers three scenarios with a different
event frequency: 1 minute, 1 hour, and 12 hours. As nodes
sent notices to the sink on event detection, all cases differ in
the average data rate. The scenarios are referred to as S-1, S-2,
and S-3, respectively.

As above said, there is the optimal preamble length that
achieves best results in the lifetime (see Table 4). Since this
evaluation applies such preambles, it presents the best-case
results of B-MAC and TICER.

6.4.1. Comparison. In S-1 LETED outperforms preamble
sampling and achieves significant longer lifetimes. For
example, nodes with LETED work 2x or 3x longer than
those with B-MAC and TICER (see Figure 32(a)). Such
a huge difference stems from the energy consumed for
transmissions. LETED needs only 0.033 mAh a day for
transmissions and 0.078 mAh to receive data, as presented
in Figure 33. Nodes with B-MAC, however, consume an
order of magnitude more energy, that is, 0.992 mAh and
0.564 mAh to send and to receive data. As LETED applies
short tx and rx slots, nodes consume little energy in total
when sending or receiving data. On the contrary, preamble
sampling sends a long preamble in front of each frame. In this
case, nodes apply a preamble of 120 ms, but the frames are
only 4 ms long. Clearly, it results in a significant B-MAC and
TICER overhead. Besides, on frame reception nodes listen for
a half of the sleep period on average and cause extra energy
waste. Therefore, preamble sampling suffers from huge idle
listening especially in scenarios with high data rates.

LETED and preamble sampling achieve similar results in
S-2 and S-3. The lifetime of LETED is 5% to 10% better
than that of B-MAC in S-2, for example, 2.96 and 2.76
years, respectively, for end-to-end delays of 5 seconds (see
Figure 32(b)). In this case, B-MAC uses preambles of 940 ms
and consumes slightly more energy for communication than
LETED (see Figure 33). That is, B-MAC needs 0.126 mAh
tx and 0.07 mAh rx energy whereas LETED consumes 0.007
mAh and 0.016 mAh, respectively. As expected, nodes with

24 International Journal of Distributed Sensor Networks

0

1

2

3

0 1 2 3 4 5

L
if

et
im

e
(y

ea
rs

)

End-to-end delay (seconds)

LETED
B-MAC
TICER

(a) S-1 scenario: event notices sent once a minute

0

1

2

3

L
if

et
im

e
(y

ea
rs

)

End-to-end delay (seconds)

0 5 10 15 20

LETED
B-MAC
TICER

(b) S-2 scenario: event notices sent once an hour

0

1

2

3

L
if

et
im

e
(y

ea
rs

)

End-to-end delay (seconds)

0 5 10 15 20

LETED
B-MAC
TICER

(c) S-3 scenario: event notices sent every 12 hours

Figure 32: The lifetime of nodes with LETED and with Preamble
Sampling (B-MAC and TICER).

TICER work shorter than B-MAC, as they need a longer time
to check the channel activity (see Figure 32(b)).

In the S-3 scenario B-MAC achieves better lifetime results
for delays longer than 2.4 seconds (see Figure 32(c)), since
it consumes only 0.056 mAh a day in total for tx and
rx (see Figure 33). Although LETED consumes even less
energy for transmissions than B-MAC (see Figure 33), it
needs extra energy for the underlying DLDC-MAC protocol.
Therefore, nodes LETED works slightly shorter than those
with B-MAC. However, there are only minor differences in
lifetime between these two solutions. For example, nodes
with LETED work 5% shorter than B-MAC for 5-second
end-to-end delays. However, LETED still achieves better
results than TICER for delays shorter than 13 seconds. As

Tx Rx

1 minute
1 hour

12 hours

E
n

er
gy

 (
m

A
h

/d
ay

)

0.15

0.1

0.05

0

0.033

0.007 0.007

0.078

0.016 0.016

(a) LETED results. Nodes consume the same amount of energy with tx
frequency 1 hour and 12 hours, since they send SYNC frame every 5
minutes in these cases

Tx Rx

E
n

er
gy

 (
m

A
h

/d
ay

) 1.25

1

0.75

0.5

0.25

0

0.992

0.126
0.036

0.564

0.07 0.02

1 minute
1 hour

12 hours

(b) B-MAC: as nodes send a long preamble in front of every data frame,
they consume a huge amount of energy with high data rates (1 frame a
minute)

Figure 33: Energy of data transmission and reception for various
data rates (a frame sent every 1 minute, 1 hour, and 12 hours) when
supporting 5-second end-to-end delays.

0

5

 10

 15

 20

0 5 10 15 20

Sl
ee

p
pe

ri
od

 (
se

co
n

ds
)

End-to-end delay (seconds)

LETED
Schedule-based

Figure 34: Sleep period of LETED and schedule-based MAC for
various end-to-end delays in 5-hop networks: the longer the sleep
period, the better.

stated above, TICER results in long idle listening time due
to longer periods needed to check the channel activity.

6.4.2. Preamble Sampling. The lifetime of nodes with B-
MAC and TICER depends mainly on the data rate. For

International Journal of Distributed Sensor Networks 25

 0 5 10 15 20

L
if

et
im

e
(y

ea
rs

)

End-to-end delay (seconds)

3

2

1

0

LETED
Schedul -based

Figure 35: Lifetime of nodes with LETED and with schedule-based
MAC protocols.

 0

 2

 4

 6

 8

 10

Tx beac. Rx beac. Tx data Rx data Sleep

E
n

er
gy

 (
m

A
h

/d
ay

)

4.10

8.65

0.0005 0.0006 0.24

Figure 36: DLDC-MAC energy consumption; short sleep periods
(1 second here) and a long time of beacons transmission and
reception (about 12 ms altogether) result in an excessive energy
waste.

example, nodes with B-MAC work 2.76 years when sup-
porting 5-second delays and sending data rarely, that is,
once an hour (see Figure 32(b)). Should nodes send frames
once a minute, they reduce the lifetime to 1.1 years (see
Figure 32(a)). TICER works in a similar way; that is, nodes
work significantly shorter when sending data often. As stated
above, nodes send long preambles in front of every data
frame. Therefore, they consume a huge amount of energy for
preamble transmissions with high data rates. For example,
with a tx frequency of 1 hour nodes with B-MAC consume
the tx energy of about 0.126 mAh a day (see Figure 33).
Should they send frames once a minute, they increase
the energy consumption 8 times to 0.992 mAh. Besides,
with each frame nodes receive also a half of the preamble
on average. Thus, high data rates increase also rx energy
consumption (see Figure 33).

6.4.3. LETED. There are only minor differences in the life-
time of nodes based on LETED working with various data
rates. For example, with an event frequency of 1 minute;
that is, data rate is one frame a minute, nodes work 2.82
years and support 5-second delays (see Figure 32(a)). Should
event occur once an hour, the lifetime is longer by 4% only.
Such minor differences in various data rates stem from a tiny
amount of energy consumed for communication in general.
For instance, transmissions with 1-minute period need only
0.033 mAh a day (see Figure 33). Thus, lower data rates
cannot reduce the energy consumption significantly.

 0

 0.1

 0.2

 0.3

DLDC-MAC Tx data Rx data Rx passive Sleep

E
n

er
gy

 (
m

A
h

/d
ay

)

0.19

0.007 0.02
0.06

0.24

Figure 37: Energy consumed by LETED; owing to Idle Listening
Avoidance nodes consume little energy while waiting for potential
transmissions (Rx passive).

Two LETED scenarios with an event period of 1 hour and
12 hours achieve the same results. That is, nodes work equally
long and consume the same amount of energy. In both cases
nodes apply the same 5-minute period for SYNC frames to
cope with multihop drift. Therefore, although events occur
rarely, every 1 and 12 hours, respectively, nodes send SYNC
frames every 5 minutes. As they transmit the same amount
of frames in both cases, the results do not differ at all.

6.4.4. Summary. The above observations show that LETED
fits better than preamble sampling (PS) to scenarios with
moderate data rates, that is, about one frame a minute. In
these cases, nodes with LETED work significantly longer.
With lower-duty cycles PS achieves similar results to LETED.

The main advantage of PS over LETED is the small code
size. For example, B-MAC needs 4 kB of ROM [9] whereas
LETED with DLDC-MAC occupy about 10x more memory.
Besides, PS does not rely on time synchronization and works
with imprecise clock oscillators as well. Nonetheless, some PS
features lead to various problems in sensor networks.

(1) As usually several sources detect the same event, they
try to send notices to the sink. In this case, PS poses
a high collision risk, since many sources send long
preambles at the same time. Clearly, by applying the
CSMA/CA approach, PS postpones transmissions on
busy channels and reduce the collision risk. However,
it causes extra end-to-end delays.

(2) Receivers wake up periodically to check shortly for
the channel activity. The above evaluation consid-
ered the best scenario with nodes reliably detecting
activities. However, receivers can wrongly sense the
channel, that is, either miss an activity or detect an
idle channel as active (false positive).

(a) In B-MAC nodes sample the channel to detect
the activity. However, there is a risk of false
positives, that is, the receivers detect an activity
on idle channels. In this case, they wait the
time needed to get the long preamble, do not
receive a frame, and power down the radio.
Obviously, it increases idle listening and causes
energy waste.

26 International Journal of Distributed Sensor Networks

 0

 1

 2

 3

 0 5 10 15 20

L
if

et
im

e
(y

ea
rs

)

End-to-end delay (seconds)

LETED
DMAC

Figure 38: Lifetime of LETED and DMAC; owing to idle listening
avoidance (ILA), LETED shortens significantly passive slots, saves
the energy, and prolongs the lifetime.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

DLDC-MAC Tx data Rx data Rx passive Sleep

E
n

er
gy

 (
m

A
h

/d
ay

)

LETED
DMAC

0.19

0.007 0.02 0.06

0.240.19

0.001 0.001

1.011

0.24

Figure 39: Energy consumed by LETED and DMAC, which
represents MAC protocols with staggered schedule.

(b) Receivers with TICER expect wake-up beacons
before data frames. Should receivers miss bea-
cons, the sender must send them for another
sleep period to wake up the receivers. It results
in extra energy consumption and shortens the
lifetime.

In general, LETED should work better in dense networks
and/or with higher data rates. Owing to the TDMA,
approach of LETED solves the collision problem. Besides,
even with low data rates, LETED achieves as good results as
B-MAC. Although the LETED size is 10x bigger than B-MAC,
it fits into the limited memory of sensor nodes. In addition,
as with recent developments sensor nodes get more memory,
they do not suffer from large LETED size. LETED poses the
risk that nodes lose the synchronization and do not wake up
at the same time. For example, should the clock oscillators
start running imprecisely, nodes with LETED cannot handle
it and the protocol does not work. Although nodes did not
encounter such oscillator problems during drift experiments
introduced in our previous work [26], we cannot exclude
such risks.

6.5. LETED and Schedule-Based MAC. This paragraph com-
pares LETED with schedule-based MAC (S-B) protocols
based on a wake-up schedule represented by DLDC-MAC
in this case. Since schedules of S-B approaches are not
aligned along the path, nodes wake up often to support short

0

2

4

6

8

 10

Total length Guard time Frame detect. time

T
im

e
(m

s)

9.02

0.26

8.76

0.250.260.51

LETED
DMAC

Figure 40: Passive slots consist of guard times that compensate
clock drift and the time needed to detect that no frame arrives in
the current slot.

delays. In general, the sleep period equals the delay time
divided by the number of hops to the sink. Figure 34 presents
sleep periods of LETED and S-B. Owing to the staggered
schedule, nodes with LETED sleep long, almost the time
equal to supported delays. For example, to support 5-second
delays nodes wake up every 4.7 seconds in this case. On the
contrary, S-B shortens the sleep period to about a second.
Thus, nodes with S-B wake up often, consume more energy,
and shorten the lifetime.

As expected, LETED outperforms S-B protocols in
scenarios with short end-to-end delays. Figure 35 shows that
LETED achieves an 8x longer lifetime than S-B for delays
of 5 seconds and shorter. For example, nodes with LETED
work almost 3 years and support 5-second delays. In this
case, the S-B lifetime is only 0.35 years. For longer delays, that
is, from 5 to 10 seconds, LETED achieves on average lifetimes
6x longer than S-B.

Figure 36 presents energy consumption of DLDC-MAC.
As above stated, nodes wake up often to be ready for potential
transmissions. With DLDC-MAC, nodes send or receive
beacons during wake-up times. By doing so, they consume a
huge amount of energy only to be ready for transmissions.
That is, nodes need about 13 mAh for beacons altogether
(see Figure 36), which is larger by four orders of magnitude
from the energy consumed on data transmission. Other S-
B protocols achieve similar or worse results. For example,
Dozer [16] applies beacons as well but uses longer guard
times than DLDC-MAC. Therefore, it spends even more
energy for beacons. Besides, S-MAC [12] needs longer times
in the active state than DLDC-MAC, as it uses extra RTS
and CTS frames apart from guard times. Thus, DLDC-MAC
achieves results close to the best case of S-B protocols.

LETED keeps nodes ready to transmissions in passive
slots; that is, nodes listen periodically for incoming data. The
energy of keeping nodes ready is depicted in Figure 37 as
Rx passive. In this case, nodes spent 0.06 mAh a day to be
ready for transmissions. It is about 200x less than DLDC-
MAC needs for the same. As already mentioned, it stems
from longer sleep periods of LETED. Besides, owing to the
idle listening avoidance (see Section 4) and moving average
drift compensation nodes wake up for 0.55 ms only in passive

International Journal of Distributed Sensor Networks 27

slots. Therefore, LETED saves consumes less energy than S-B
protocols.

Nodes with LETED apply also DLDC-MAC as the under-
lying protocol. However, in this case DLDC-MAC consumes
less energy (0.19 mAh a day) than DLDC-MAC working as
a stand-alone protocol (13 mAh/day) that supports short
delays. In the first case, nodes do not have to send beacons
often, since LETED takes care of fast transmissions along
the path. They use beacons to send control frames only, for
example, to set up a new schedule. Therefore, they apply a
beacon period of 2 minutes. In the latter case, nodes with
DLDC-MAC send beacons every second to support 5-second
delays. Therefore, DLDC-MAC consumes a different amount
of energy in both cases.

6.6. Staggered Schedule. In general, LETED is based on the
staggered schedule introduced in DMAC [2] but applies
new solutions that reduce idle listening. First, it minimizes
passive slots and therefore powers down the transceiver
early, referred to as ILA and introduced in Section 4.
Second, LETED shortens guard times owing to the drift
prediction based on the moving average. Since DMAC does
not introduce a way to detect and to shorten passive slots,
this work assumes it uses a generic software solution (see
Section 4).

Figure 38 presents the lifetime of nodes working with
LETED and with DMAC. Owing to the energy-saving
solutions, LETED prolongs the lifetime by more than 50%
for delays of 5 seconds and shorter. For example, with 5-
second delays nodes with LETED work almost 3 years and
with DMAC 2 years. LETED achieves such good results, as it
reduces significantly the energy consumption of passive slots
(see Figure 39). That is, nodes with DMAC need 16x more
energy in passive slots than LETED.

In this scenario, LETED shortens passive slots by more
than 10x, that is, from 9 ms to 500 μs (see Figure 40). Each
passive slot consists of two parts: a guard time and the time
tdetect needed to detect that no frame arrives in the current
slot. In this case, tdetect of LETED equals 250 μs, as nodes need
approximately. 150 μs to receive a preamble with the start
frame delimiter (SFD) and about 100 μs to handle the SFD
interrupt. Should the transceiver not raise the SFD interrupt
within this time, nodes power it down. DMAC, however, uses
a generic software approach. That is, it usually needs long
times to get frames from the tx buffer, almost 9 ms in this
case. Thus, after 9 ms listening nodes do not receive frames,
assume that nothing arrives in the current slot, and switch
off the radio. Clearly, such a huge difference in tdetect, that
is, 0.25 ms versus 8.76 ms, is the main reason for such good
results of LETED.

In this work, LETED and DMAC applied the same
solution to drift compensation and thus do not differ in
the length of guard times (see Figure 40). However, DMAC
should uses an external time synchronization protocol and
not the energy-efficient solution to guard times based on
the moving average. Therefore, DMAC should achieve even
worse results.

7. Future Work

The idea of load balancing was not considered, that is,
alternating routes from sources to the sink. Thus, the
network uses the same routes for a long time, exhausting
energy of some nodes in an early stage. In this case, the
network may partition, and some sources cannot reach
the sink. Therefore, routing protocols should alternate
paths to distribute the communication burden, prevent-
ing the partition risk. Clearly, it involves a cooperation
with LETED to set up wake-up schedules along many
paths. These challenges will be investigated in future
work.

Sensor nodes can also provide load balancing by using
multiple paths to the sink in parallel. In this case, the wake-
up times alternate between paths. For example, if nodes
with LETED have to support 5-second delays, they wake
up every 5 seconds. However, if there are two paths to
the sink available, intermediate nodes wake up every 10
seconds, provided sources can select any of two paths for
transmissions. In this case, sources can send data using
the path that has earlier wake-ups. Owing to this solution,
the network spreads the wake-up load to multiple nodes
and prevents early partitioning. Another aspect of load
balancing addresses the problem of nodes that are on many
gathering paths, for example, as they are close to the sink,
and gathering paths converge towards them. Obviously,
if such nodes frequently wake up, they quickly exhaust
energy and stop working. Thus, future work will consider
solutions that reduce the duty cycle of such nodes without
affecting end-to-end delays. For example, these nodes can
wake up more rarely and save energy, as previous nodes
send some frames with full TX power and directly reach the
sink.

Currently, the support of wake-up schedules from dif-
ferent nodes is not efficient, as LETED sets up a sepa-
rate schedule for each source. As a result, intermediate
nodes maintain schedules of several sources and wake
up frequently. To save energy, LETED should limit the
number of wake-up schedules. For example, there should
be only a few global schedules in the network, and nodes
should use common wake-up slots instead of separate
ones. We intend to address this issue in future research
efforts.

Although some wireless links are asymmetric, DLDC-
MAC ignores such links by default and LETED does not
use them for transmissions. First, the amount of asymmetric
links is rather small, and discarding them should not affect
connectivity considerably. According to [37], 5–15% of all
links are asymmetric. Another experiment [38] revealed that
more than 10% of link pairs have a packet loss difference
greater than 50%, meaning they are asymmetric. Second,
the use of asymmetric links results in extra transmission
overhead. For example, when applying the ARQ protocol,
nodes cannot send acknowledgments directly to senders but
over multihop paths. In our future work, we intend to
investigate the impact of asymmetric links on LETED, espe-
cially on energy consumption and on the communication
performance.

28 International Journal of Distributed Sensor Networks

8. Conclusion

This work introduced the main challenges of particular
sensor network applications. That is, nodes must work for a
long time and support short end-to-end delays in multihop
networks. It presented previous research efforts that address
such challenges. For instance, many medium-access control
(MAC) protocols keep nodes mostly sleeping to save energy
and synchronize wake-up times to allow communication.
Some of them, for example, DMAC, align the wake-up
schedule in a way that it minimizes multihop delay in data
transfer. Although such protocols support short end-to-end
delays and a lifetime of several years, they still suffer from
idle listening. The main reason is the long time needed
to detect an idle channel and to power down the radio.
This work introduces a novel solution to this problem and
exploits features of some off-the-shelf transceivers. By doing
so, it reduces idle listening about 15x and prolongs the
lifetime significantly, that is, by approximately. 30% in some
scenarios.

A lifetime evaluation model for various MAC protocols
was presented in this work. The model estimates the lifetime
and energy consumption according to various parameters
of hardware and software. It turned out that off-the-shelf
sensor nodes achieve good results in lifetime and end-to-end
delays. For example, should nodes apply solutions presented
here and support 5-second delays in multihop networks,
they work as long as 3 years. Besides, the evaluation consid-
ered standard rechargeable batteries with a significant self-
discharge rate. Therefore, with dedicated long-life batteries,
nodes work even longer.

In this work we evaluated also our solution for limiting
end-to-end delays (LETED) with other duty-cycled MAC
protocols. Owing to the energy-efficient solutions, LETED
achieves better results than protocols based on preamble
sampling. For example, with a data rate of 1 frame per
minute, nodes with LETED work 2x or 3x longer. In addition,
LETED outperforms common TDMA protocols in scenarios
that need short end-to-end delays. That is, LETED prolongs
the lifetime by 8x when nodes support 5-second delays in
multihop networks.

Although this work addressed particular applications
only, the solutions presented here can be used in other
scenarios and with different protocols. For instance, any
TDMA protocol can benefit from the solution to the idle
listening reduction based on the early detection of idle
channel. Besides, owing to the analytical model, researches
and developers can quickly estimate energy consumption
and the lifetime of low-duty cycle protocols running on
various hardware platforms.

References

[1] Moteiv Corporation, “Tmote Sky Ultra low power IEEE
802.15.4 compliant wireless sensor module,” 2006, http://
www.sentilla.com.

[2] G. Lu, B. Krishnamachari, and C. S. Raghavendra, “An adap-
tive energy-efficient and low-latency MAC for tree-based data

gathering in sensor networks,” Wireless Communications and
Mobile Computing, vol. 7, no. 7, pp. 863–875, 2007.

[3] N. A. Vasanthi and S. Annadurai, “Energy efficient sleep
schedule for achieving minimum latency in query based sen-
sor networks,” in Proceedings of the IEEE International Confer-
ence on Sensor Networks, Ubiquitous, and Trustworthy Comput-
ing, pp. 214–219, June 2006.

[4] E. Y. A. Lin, J. M. Rabaey, and A. Wolisz, “Power-efficient
Rendez-vous schemes for dense wireless sensor networks,” in
Proceedings of the IEEE International Conference on Communi-
cations, pp. 3769–3776, June 2004.

[5] L. C. Zhong, R. Shah, C. Guo, and J. Rabaey, “An ultra-low
power and distributed access protocol for broadband wireless
sensor networks,” in Proceedings of the IEEE Broadband Wire-
less Summit, vol. 3, 2001.

[6] C. Schurgers, V. Tsiatsis, S. Ganeriwal, and M. Srivastava,
“Optimizing sensor networks in the energy-latency-density
design space,” IEEE Transactions on Mobile Computing, vol. 1,
no. 1, pp. 70–80, 2002.

[7] A. El-Hoiydi, “Aloha with preamble sampling for sporadic
traffic in Ad Hoc wireless sensor networks,” in Proceedings of
the International Conference on Communications (ICC ’02), pp.
3418–3423, May 2002.

[8] A. El-Hoiydi, “Spatial TDMA and CSMA with preamble sam-
pling for low power ad hoc wireless sensor networks,” in
Proceedings of the ISCC, 2002.

[9] J. Polastre, J. Hill, and D. Culler, “Versatile low power media
access for wireless sensor networks,” in Proceedings of the
Proceedings of the 2nd International Conference on Embedded
Networked Sensor Systems, pp. 95–107, November 2004.

[10] A. El-Hoiydi and J. D. Decotignie, “WiseMAC: an ultra low
power MAC protocol for multi-hop wireless sensor networks,”
in Proceedings of the ALGOSENSORS, 2004.

[11] M. E. Rǎzvan, C. J. M. Liang, and A. Terzis, “Koala: ultra-
low power data retrieval in wireless sensor networks,” in
Proceedings of the International Conference on Information
Processing in Sensor Networks (IPSN ’08), pp. 421–432, April
2008.

[12] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient MAC
protocol for wireless sensor networks,” in Proceedings of the
IEEE Infocom, pp. 1567–1576, June 2002.

[13] T. Van Dam and K. Langendoen, “An adaptive energy-efficient
MAC protocol for wireless sensor networks,” in Proceedings
of the First International Conference on Embedded Networked
Sensor Systems (SenSys ’03), pp. 171–180, November 2003.

[14] B. Hohlt, L. Doherty, and E. Brewer, “Flexible power schedul-
ing for sensor networks,” in Proceedings of the 3rd International
Symposium on Information Processing in Sensor Networks
(IPSN ’04), pp. 205–214, April 2004.

[15] B. Hohlt and E. Brewer, “Network power scheduling for
TinyOS applications,” in Proceedings of the DCOSS, 2006.

[16] N. Burri, P. Von Rickenbach, and R. Wattenhofer, “Dozer:
ultra-low power data gathering in sensor networks,” in
Proceedings of the 6th International Symposium on Information
Processing in Sensor Networks (IPSN ’07), pp. 450–459, April
2007.

[17] IEEE Standard for Information Technology, Specific require-
ments Part 15.4: Wireless MAC and PHY, 2006.

[18] M. Brzozowski, K. Piotrowski, and P. Langendoerfer, “A cross-
layer approach for data replication and gathering in decen-
tralized long-living wireless sensor networks,” in Proceedings
of the International Symposium on Autonomous Decentralized
Systems (ISADS ’09), pp. 49–54, March 2009.

International Journal of Distributed Sensor Networks 29

[19] M. Brzozowski, H. Salomon, and P. Langendoerfer, “Com-
pletely distributed low duty cycle communication for long-
living sensor networks,” in Proceedings of the 7th IEEE/IFIP
International Conference on Embedded and Ubiquitous Com-
puting (EUC ’09), pp. 109–116, August 2009.

[20] Q. Cao, T. Abdelzaher, T. He, and J. Stankovic, “Towards
optimal sleep scheduling in sensor networks for rare-event
detection,” in Proceedings of the 4th International Symposium
on Information Processing in Sensor Networks (IPSN ’05), pp.
20–27, April 2005.

[21] M. J. Miller, C. Sengul, and I. Gupta, “Exploring the energy-
latency trade-off for broadcasts in energy-saving sensor
networks,” in Proceedings of the 25th IEEE International
Conference on Distributed Computing Systems, pp. 17–26, June
2005.

[22] W. Lai and I. C. Paschalidis, “Sensor network minimal energy
routing with latency guarantees,” in Proceedings of the 8th ACM
International Symposium on Mobile Ad Hoc Networking and
Computing (MobiHoc ’07), pp. 199–208, September 2007.

[23] M. Brzozowski and P. Langendoerfer, “On prolonging sen-
sornode gateway lifetime by adapting its duty cycle,” in
Proceedings of the WWIC, 2009.

[24] T. Schmid, J. Friedman, Z. Charbiwala, Y. H. Cho, and M.
B. Srivastava, “Low-power high-accuracy timing systems for
efficient duty cycling,” in Proceedings of the 13th ACM/IEEE
International Symposium on Low Power Electronics and Design
(ISLPED ’08), pp. 75–80, August 2008.

[25] S. Ganeriwal, I. Tsigkogiannis, H. Shim, V. Tsiatsis, M. B.
Srivastava, and D. Ganesan, “Estimating clock uncertainty
for efficient duty-cycling in sensor networks,” IEEE/ACM
Transactions on Networking, vol. 17, no. 3, pp. 843–856, 2009.

[26] M. Brzozowski, H. Salomon, and P. Langendoerfer, “On
efficient clock drift prediction means and their applicability
to IEEE 802.15.4,” in Proceedings of the IEEE/IFIP 8th Inter-
national Conference on Embedded and Ubiquitous Computing
(EUC ’10), pp. 216–223, December 2010.

[27] M. Brzozowski, H. Salomon, and P. Langendoerfer, “Limiting
end-to-end delays in long-lasting sensor networks,” in Pro-
ceedings of the 8th ACM International Symposium on Mobility
Management and Wireless Access (MobiWac ’10), pp. 11–20,
October 2010.

[28] S. Lin and D. J. Costello, Error Control Coding, Prentice-Hall,
Englewood Cliffs, NJ, USA, 1983.

[29] C. E. Perkins and E. M. Royer, “Ad-hoc on-demand distance
vector routing,” in Proceedings of the IEEE Workshop on Mobile
Computing Systems and Applications (WMCSA ’99), pp. 90–
100, February 1999.

[30] M. Brzozowski, H. Salomon, and P. Langendoerfer, “ILA: idle
listening avoidance in scheduled wireless sensor networks,” in
Proceedings of the WWIC, 2010.

[31] Texas Instruments, “2.4 GHz IEEE 802.15.4/ZigBee-ready RF
Transceiver,” 2007, http://focus.ti.com/docs/prod/folders/pri-
nt/cc2420.html.

[32] A. Varga, “Using the OMNeT++ discrete event simulation sys-
tem in education,” in Proceedings of the ESM, 2001.

[33] S. Hoeckner, A. Lagemann, and J. Nolte, “Integration of event-
driven embedded operating systems into OMNet++—a case
study with reflex,” in Proceedings of the SIMUTools, 2009.

[34] K. Walther and J. Nolte, “A flexible scheduling framework for
deeply embedded systems,” in Proceedings of the 21st Inter-
national Conference on Advanced Information Networking and
ApplicationsWorkshops/Symposia (AINAW ’07), pp. 784–791,
May 2007.

[35] M. Brzozowski, H. Salomon, K. Piotrowski, and P. Langendo-
erfer, “Cross-platform protocol development for sensor net-
works: lessons learned,” in Proceedings of the 2nd International
Workshop on Software Engineering for Sensor Network Applica-
tions (SESENA ’11), pp. 7–12, May 2011.

[36] T. S. Rappaport et al., Wireless Communications: Principles and
Practice, Prentice Hall PTR, NJ, USA, 2002.

[37] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin,
and S. Wicker, “Complex behavior at scale: an experimental
study of lowpower wireless sensor network,” Tech. Rep.
UCLA/CSD-TR 02, 2002.

[38] J. Zhao and R. Govindan, “Understanding packet delivery per-
formance in dense wireless sensor,” in Proceedings of the
Proceedings of the 1st International Conference on Embedded
Networked Sensor Systems (SenSys ’03), pp. 1–13, November
2003.

