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ABSTRACT. We present a new approach to study limit cycles of planar systems of
autonomous differential equations with a cylindrical phase space Z. It is based on an
extension of the Dulac function which we call Dulac-Cherkas function Ψ. The level
set W := {ϕ,y) ∈ Z : Ψ(ϕ,y) = 0} plays a key role in this approach, its topological
structure influences existence, location and number of limit cycles. We present two
procedures to construct Dulac-Cherkas functions. For the general case we describe
a numerical approach based on the reduction to a linear programming problem and
which is implemented by means of the computer algebra system Mathematica. For the
class of generalized Liénard systems we present an analytical approach associated
with solving linear differential equations and algebraic equations.

1. INTRODUCTION

We consider systems of two scalar autonomous differential equations
dx
dt

= P(x,y),
dy
dt

= Q(x,y),(1.1)

where P and Q are periodic in x with period 2π . Under this assumption we can identify
the phase space of (1.1) with the cylinder Z := S1 ×R, where S1 is the unit circle.
Interpreting x as arclength ϕ on S1 we will use for the sequel the notation

dϕ

dt
= P(ϕ,y),

dy
dt

= Q(ϕ,y).(1.2)

Let γ1 and γ2 be two closed curves on Z which do not intersect and which are not
contractible to a point, that is, they surround the cylinder Z. We denote by Ω the finite
region on Z bounded by γ1 and γ2 .
An isolated periodic solution of (1.2) with some minimal period is called a limit cycle. It
is well known that we have to distinguish two kinds of limit cycles of (1.2) in Ω. A limit
cycle Γ ∈Ω is called a limit cycle of the first kind, if Γ is contractible to a point in Ω, Γ

is called a limit cycle of the second kind if Γ surrounds the cylinder Z, that means, it is
not contractible to a point in Ω [1, 7].

To investigate limit cycles of the first kind, the well-known methods for planar au-
tonomous systems (1.1) can be applied (see e.g. [2, 8]). Especially, the existence of a
limit cycle of the first kind of system (1.2) in Ω requires the existence of an equilibrium
of (1.2) in Ω. In contrast to that fact, the existence of a limit cycle of the second kind
in Ω does not need the existence of any equilibrium in Ω.
One method to investigate the existence (non-existence) of limit cycles of the first kind
and to estimate their number is based on the construction of a Dulac function and its
generalization [3]. The method of Dulac function can be also applied to investigate
limit cycles of the second kind, see e.g. [2]. In what follows we want to show that also
generalizations of the method of Dulac function [3, 6] can be used to study limit cycles
of the second kind of system (1.2).

The paper is organized as follows: In section 2 we introduce the notation of a Dulac-
Cherkas function Ψ and characterize its relationship to a Dulac function. Section 3 is
devoted to some properties of the curve W := {(ϕ,y) ∈Ω : Ψ(ϕ,y) = 0}. In section 4
we exploit the topological structure of the branches of the curve W to derive results
on the existence of limit cycles of the second kind, to estimate their number and
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location and to characterize their hyperbolicity and stability. Section 5 deals with the
numerical construction of a Dulac-Cherkas function for system (1.2) in form of a linear
combination of some base functions by using the reduction to a linear programming
problem. In section 6 we present an algorithm to construct a class of Dulac-Cherkas
functions for the second order differential equation

d2ϕ

dt2 =
l

∑
j=0

h j(ϕ)
(dϕ

dt

) j
(1.3)

by solving linear differential equations and algebraic equations.

2. ASSUMPTIONS, DEFINITIONS, PRELIMINARIES

Throughout the sections 2 - 5 we assume

(A1). P and Q belong to the class C1(Ω,R), and are 2π-periodic in the first variable.

Let f be the vector field defined on Ω by system (1.2), let D be a subregion of Ω.

Definition 2.1. A function B ∈C1(D,R) with the properties

(i). B(ϕ,y) = B(ϕ +2π,y) ∀(ϕ,y) ∈ D,

(ii). div(B f ) := ∂ (BP)
∂ϕ

+ ∂ (BQ)
∂y = (gradB, f )+Bdiv f ≥ 0 (≤ 0) in D,

where div(B f ) vanishes only on a subset of D of measure zero

is called a Dulac function of system (1.2) in D.

The following result can be found in [2].

Theorem 2.2. Let B be a Dulac function of (1.2) in D. If the boundary ∂D of D is
connected and contractible to a point, then (1.2) has no limit cycle in D. In case that
∂D consists of two closed curves in Ω which do not intersect and which are not con-
tractible to a point, then (1.2) has no limit cycle of the first kind in D and at most one
limit cycle of the second kind of (1.2) in D.

Now we introduce a generalization of a Dulac function which we call Dulac-Cherkas
function.

Definition 2.3. A function Ψ ∈C1(D,R) with the properties

(i). Ψ(ϕ,y) = Ψ(ϕ +2π,y) ∀(ϕ,y) ∈ D,
(ii). The set W := {(ϕ,y) ∈ D : Ψ(ϕ,y) = 0} has measure zero,
(iii). There is a real number k 6= 0 such that

Φ(ϕ,y) := (gradΨ, f )+ kΨdiv f ≥ 0 (≤ 0) in D,(2.1)

where the set V := {(ϕ,y) ∈ D : Φ(ϕ,y) = 0} has the properties
(a). V has measure zero,
(b). If Γ is a limit cycle of (1.2), then it holds Γ∩V 6= Γ,
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(iv).

(gradΨ, f )|W 6= 0(2.2)

is called a Dulac-Cherkas function of (1.2) in D,

Remark 2.4. If the inequalities in (2.1) hold strictly, then also condition (2.2) is valid.

Remark 2.5. If Φ does not depend on y, that is Φ(ϕ,y) ≡ Φ0(ϕ) and if Φ0 vanishes
only in finitely many points ϕi in [0,2π], then the conditions on the set V are fulfilled.

In order to give an example of a Dulac-Cherkas function, we consider the system

dϕ

dt
= y,

dy
dt

= sinϕ +3cosϕ− 61
2

+
(

3cosϕ− 57
2

)
y+3y2 + y3(2.3)

and introduce the function Ψ : Z → R by

Ψ(ϕ,y) :=
y2

2
+ y+ cosϕ−10.(2.4)

Setting k =−2/3 we get from (2.1)

Φ(ϕ,y)≡Φ0(ϕ) =−441
2

+42cosϕ + sinϕ−2cos2
ϕ < 0 for 0≤ ϕ ≤ 2π.(2.5)

By Remark 2.4 and Remark 2.5 all conditions in Definition 2.3 are fulfilled. Therefore,
Ψ is a Dulac-Cherkas function of (2.3) in Z.

Lemma 2.6. From (2.1) and (2.2) we get

Φ(ϕ,y)|W = (gradΨ, f )|W > 0 (< 0),(2.6)

that is, dΨ/dt has on all branches of W the same sign as the function Φ.

A relationship between a Dulac function and a Dulac-Cherkas function is described in
the following lemma.

Lemma 2.7. Let Ψ be a Dulac-Cherkas function of (1.2) in D. Let D̃ be a subregion
of D, where Ψ is either positive or negative. Then B := |Ψ| 1

k is a Dulac function in D̃.

Proof. By (2.1) we have

div(B f ) = div
(
|Ψ|

1
k f

)
=

1
k
|Ψ|

1
k−1signΨ

[
(gradΨ, f )+ kΨdiv f

]
= signΨ

1
k
|Ψ|

1
k−1

Φ≥ 0 (≤ 0).

Since Φ vanishes only on a set of measure zero, the proof is complete. �

In the next section we derive some properties of a Dulac-Cherkas function which we
exploit to estimate the number of limit cycles of the second kind.
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3. PROPERTIES OF A DULAC-CHERKAS FUNCTION

Let Ψ be a Dulac-Cherkas function of system (1.2) in D. In case that the set W is
empty, that is we have Ψ > 0 (Ψ < 0) in D, the function |Ψ| 1

k represents by Lemma 2.7
a Dulac function and we can restrict ourselves to methods based on a Dulac function.
Therefore, in what follows we assume that the set W is not empty. Our goal is to
investigate some properties of the curve W .
First we prove the following transversality result.

Lemma 3.1. Any trajectory of system (1.2) meeting the curve W intersects W transver-
sally.

Proof. We denote by dΨ

dt the derivative of the function Ψ along system (1.2). From
(2.2) we get

dΨ

dt |W
= (gradΨ, f )|W 6= 0.

�

Corollary 3.1. The function Ψ changes its sign when crossing W .

Lemma 3.2. The curve W does not contain any equilibrium of system (1.2).

Proof. Let E be an equilibrium of (1.2), that is f (E) = 0. Suppose E ∈W , then we get
from (2.1) Φ(E)|W = 0 which contradicts to (2.6). �

Lemma 3.3. Let W1 and W2 be two smooth local open branches of the curve W such
that ∂W1∩∂W2 is empty. Then W1 and W2 do not meet.

Proof. Suppose W1 and W2 meet at the point M. Then M is an interior point with re-
spect to W1 and with respect to W2. Let γM be the trajectory of (1.2) passing through
M ∈W . According to Lemma 3.1, γM intersects W1 and W2 transversally in M. Since
Φ(M) 6= 0 by (2.6), we may assume for definiteness Φ(M) = (gradΨ(M), f (M)) > 0.
Thus, there is a small neighborhood NM of M in D with the following properties:
(i) (gradΨ, f ) > 0 in NM.
(ii) W1∩NM and W2∩NM are connected sets.
(iii) (W1∩NM)∩ (W2∩NM) = M.
(iv). All trajectories of (1.2) which are sufficiently near to γM intersect W1 and W2
transversally in NM.
Let γ be such a trajectory intersecting W1 transversally at the point M1 in NM and W2
transversally at the point M2 in NM. Let g be the solution of (1.2) representing γ such
that g(t1) = M1 and g(t2) = M2, where we assume t2 > t1 and g(t)∈NM for t1 ≤ t ≤ t2.
If we introduce the function h(t) := Ψ(g(t)), then we have

h(t1) = Ψ(M1) = h(t2) = Ψ(M2) = 0.

Concerning the derivative of h along system (1.2) we have
dh
dt

(t) = (gradΨ(g(t)), f (g(t))) > 0 for t1 ≤ t ≤ t2.

Thus, from the relation h(t1) = 0 we get h(t2) > 0 for t2 > t1. The obtained contradiction
implies that W1 and W2 do not meet. �
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Corollary 3.1 and Lemma 3.3 imply immediately the result:

Lemma 3.4. The curve W decomposes the region D in subregions on which Ψ is
definite and where the transition from one subregion to an adjacent subregion is con-
nected with a sign change of Ψ.

From lemma 3.4 we get the following result:

Theorem 3.5. Let Ψ be a Dulac-Cherkas function of system (1.2) in D ⊂ Ω. Then
any limit cycle of system (1.2) which is entirely located in D does not intersect the
curve W .

Proof. Let Γ be a limit cycle of system (1.2) entirely located in D. We assume that Γ

intersects W . Since W decomposes D into subregions where Ψ is definite and since
Γ is a closed curve, Γ must intersect W twice. But this is impossible by Lemma 2.6.

�

According to Theorem 3.5, the topological structure of the branches of the curve W
strongly influences the localization of the limit cycles of system (1.2) completely lo-
cated in D. This will be studied in the next section.

4. ON THE LIMIT CYCLES OF THE SECOND KIND

For the sequel we assume that the boundary of the region D ⊂ Ω is formed by the
curves ∆1 and ∆2 surrounding the cylinder Z, and that ∆1 and ∆2 have the representa-
tions ∆1 := {(ϕ,y) ∈Ω : y = δ1(ϕ),0≤ ϕ ≤ 2π} and ∆2 := {(ϕ,y) ∈Ω : y = δ2(ϕ),0≤
ϕ ≤ 2π}, respectively, where δ1 and δ2 are 2π-periodic functions. Without loss of gen-
erality we suppose δ2(ϕ) < δ1(ϕ) for all ϕ .

Theorem 4.1. Let Ψ be a Dulac-Cherkas function of (1.2) in D. Then it holds:
(i). If the set W is empty, then system (1.2) has at most on limit cycle of the second
kind in D.
(ii). If the set W contains at least two branches connecting the curves ∆1 and ∆2, then
system (1.2) has no limit cycle of the second kind in D.
(iii) If the curve W consists in D of s closed branches (ovals) W1,W2, ...,Ws surrounding
the cylinder Z and if D contains no equilibrium of (1.2), then system (1.2) has at least
s−1 but not more than s+1 limit cycle of the second kind in D.

Proof. If W is empty, then |Ψ| 1
k is a Dulac function in D. Hence, the claim (i) follows

from Theorem 2.2.
Now we suppose that W contains at least two branches W1 and W2 connecting the
curves ∆1 and ∆2. By Theorem 3.5, any limit cycle of (1.2) does neither meet W1 nor
W2. Thus, there is no limit cycle of the second kind of (1.2) in D.
To prove (iii) we assume that W consists of s ovals W1, ...,Ws, where the oval Wi,
1 ≤ i ≤ s, has the representation Wi := {(ϕ,y) ∈ D : y = wi(ϕ),0 ≤ ϕ ≤ 2π}. Without
loss of generality we may assume

δ1(ϕ) > w1(ϕ) > w2(ϕ) > ... > ws(ϕ) > δ2(ϕ) for 0≤ ϕ ≤ 2π.
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For 1 ≤ i ≤ s−1 we denote by Di the (open) strip bounded by Wi and Wi+1, the strip
bounded by ∆1 and W1 is denoted by D0, the strip bounded by Ws and ∆2 is denoted
by Ds. By Lemma 3.4, the function Ψ is different from zero in any strip D j, 0 ≤ j ≤ s,
and changes its sign when crossing any oval Wj. According to Lemma 2.7, |Ψ| 1

k is
a Dulac function in D j,0 ≤ j ≤ s. Therefore, by Theorem 2.2 any strip D j contains
at most one limit cycle of the second kind. For definiteness we assume Φ ≥ 0 in D
and Ψ < 0 in D0. Then (gradΨ, f ) is strictly positive on all ovals W1, ...,Ws. Thus, any
trajectory of (1.2) crossing the boundary of each of the strips D1,D3, ... enters it for
increasing t, and any trajectory of (1.2) crossing the boundary of each of the strips
D2,D4, ... leaves it for increasing t. Therefore, the strips D1,D3, ... contain a unique
limit cycle of the second kind which is asymptotically orbitally stable, and the strips
D2,D4, ... contain a unique limit cycle of the second kind which is orbitally unstable.
Moreover, the strips D0 and Ds might contain at most one limit cycle of the second
kind. This completes the proof.

�

Theorem 4.1 contains no assumption on the sign of k. The following theorem shows
that the topological structure of the branches of the curve W described in case (iii) of
Theorem 4.1 is only possible for negative k.

Theorem 4.2. Let Ψ be a Dulac-Cherkas function of (1.2) in D such that the set W
contains s≥ 2 ovals W1, ...,Ws surrounding the cylinder. Then it holds
(i). The number k in the expression (2.1) for Φ is negative.
(ii). The unique limit cycle of the second kind located in the strip D j bounded by two
consecutive ovals Wj and Wj+1 is hyperbolic.

Proof. For definiteness we suppose Φ ≥ 0 in D and Ψ > 0 in D j. From the proof of
Theorem 4.1 we get that the strip D j contains a unique limit cycle Γ of the second
kind which is asymptotically orbitally stable. Thus it holds∮

Γ

div f ds≤ 0,(4.1)

where the equality occurs only in the case that Γ is a multiple limit cycle.

From (2.1) we get any trajectory of (1.2) crossing the boundary

div f =
Φ− dΨ

dt
kΨ

such that we have ∮
Γ

div f ds =
1
k

∮
Γ

Φ

Ψ
ds.

By Φ≥ 0 in D and since Ψ is positive in D j and Γ∩V 6= Γ by Definition 2.3, we have∮
Γ

Φ

Ψ
ds > 0.

Hence, it holds

∮
Γ

div f ds < 0,
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sign
∮

Γ

div f ds = signk.

Hence, the claims (i) and (ii) hold true.

�

In the following section we present a numerical approach to construct a Dulac-Cherkas
function for the general system (1.2) in a closed finite region Ω⊂ Z.

5. COMPUTER ASSISTED CONSTRUCTION OF A DULAC-CHERKAS FUNCTIONS

Analogously to the construction of a Dulac-Cherkas function for planar systems [3, 5]
in some closed finite region Ω we use the ansatz

Ψ(ϕ,y) =
N

∑
j=1

c jψ j(ϕ,y),(5.1)

where the functions ψ j, j = 1, ...,N, are base functions belonging to the space C1(Ω,R),
and which are 2π-periodic in ϕ , c = (c1, ...,cN) ∈ RN is a vector to be determined. If
we plug the ansatz (5.1) into (2.1), then Φ can be also represented in the form

Φ(ϕ,y,c,k) =
N

∑
j=1

c jφ j(ϕ,y,k),(5.2)

where the functions φ1, ...,φN are some functions determined by the base functions
ψ1, ...,ψN , their derivatives with respect to ϕ and y, and the parameter k. If there is a
parameter k 6= 0 such that it holds

max
|c|=1

min
(ϕ,y)∈Ω

Φ(ϕ,y,c,k) > 0,(5.3)

where |.| is some norm in Rn, then we can conclude that the function Ψ defined in (5.1)
is a Dulac-Cherkas function (5.1) for system (1.2) in Ω. In this way, the construction
of a Dulac-Cherkas function can be reduced to the linear programming problem

L →max,
N

∑
j=1

c jφ j(ϕp,yp)−L ≥ 0, |c| ≤ 1(5.4)

on a grid of nodes (ϕp,yp), p = 1, . . . ,N0, in the region Ω.
As base functions on the cylinder Z we use the functions yicos(lϕ) and yisin(lϕ),
where i and l are positive integer, such that we have

Ψ(ϕ,y) :=
n+1

∑
i=1

yi−1
[ m

∑
l=1

(
ailcos((l−1)ϕ)+bilsin((l−1)ϕ)

)]
.(5.5)

As an example we consider the system
dϕ

dt
= y2 +1,

dy
dt

= (y−1.5−0.3sinϕ)(y+1.5+0.3sinϕ)(y−0.3sinϕ),(5.6)

which has no equilibrium and therefore no limit cycle of the first kind. Our goal is
to estimate the number of limit cycles of the second kind for system (5.6) in the re-
gion Ω : −π ≤ ϕ ≤ π, −2π ≤ y ≤ 2π . For this purpose we use the ansatz (5.5) with
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m = 4,n = 4 and set k = −0.5 in the corresponding function Φ. We cover Ω with a
uniform grid containing 900 nodes. By solving the linear programming problem (5.4)
we get 20 constants ail and 20 constants bil . Using these constants, we get from
(5.5) and (1.2) that Φ(ϕ,y,ail,bil,−0.5) > 0.4 is strictly positive in Ω, and the set W
consists of 4 ovals W1,W2,W3,W4 surrounding the cylinder and which define the strips
D0,D1,D2,D3,D4 (see Fig. 1). The light strips D0,D2,D4 correspond to Ψ > 0, the
black strips D1 and D3 correspond to Ψ < 0. According to Theorem 4.1, each of the
strips D1,D2,D3 contains exactly one limit cycle of the second kind of system (5.6).
That is, our numerical study shows that system (5.6) has at least three limit cycles in
Ω.

Fig. 1

The following section is devoted to the problem of analytical construction of a Dulac-
Cherkas function for a class of autonomous systems with cylindrical phase space
which originates from the pendulum equation [2].

6. ALGORITHM TO CONSTRUCT A FUNCTION Ψ SUCH THAT Φ DOES NOT DEPEND ON
y

We consider the generalized Liénard system

dϕ

dt
= y,

dy
dt

=
l

∑
j=0

h j(ϕ)y j, l ≥ 1(6.1)

on the cylinder Z under the assumption
(A2). The functions h0, ...,hl are continuous on R and 2π-periodic, where

hl(ϕ) 6≡ 0.(6.2)

The corresponding vector field will be denoted by fl .
It can be easily verified that under the condition (A2), which is weaker than condi-
tion (A1), a Dulac-Cherkas function Ψ for system (6.1) can be defined on the whole
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cylinder Z. For Ψ we make the ansatz

Ψ(ϕ,y) =
n

∑
j=0

Ψ j(ϕ)y j, n≥ 1(6.3)

with

Ψn(ϕ) 6≡ 0,(6.4)

where we assume that the functions Ψ0, ...,Ψn are continuously differentiable and 2π-
periodic.

Analogously to the construction of a Dulac-Cherkas function for generalized Liénard
system in the plane [4] we describe an algorithm to determine the functions Ψ j in (6.3)
and the constant k such that the corresponding function Φ determined by

Φ(ϕ,y) := (grad Ψ(ϕ,y), fl(ϕ,y))+ kΨ(ϕ,y)div fl(ϕ,y)(6.5)

does not depend on y, that is, Φ(ϕ,y)≡Φ0(ϕ). By this way, the inequalities in (2.1) are
valid globally in y, and we have the possibility to get global estimates on the number
of limit cycles.
If we put (6.3) into the right hand side of (6.5) and take into account that the vector
field fl is determined by (6.1) we get

Φ(ϕ,y)≡
(

Ψ
′
0(ϕ)+Ψ

′
1(ϕ)y+ ...+Ψ

′
n(ϕ)yn

)
y

+
(

Ψ1(ϕ)+2Ψ2(ϕ)y+ ...+nΨn(ϕ)yn−1
)

×
(

h0(ϕ)+h1(ϕ)y+ ...+hl(ϕ)yl
)

+ k
(

Ψ0(ϕ)+Ψ1(ϕ)y+ ...+Ψn(ϕ)yn
)

×
(

h1(ϕ)+2h2(ϕ)y+ ...+ lhl(ϕ)yl−1
)
.

(6.6)

For the sequel we represent Φ(ϕ,y) in the form

Φ(ϕ,y)≡
m

∑
i=0

Φi(ϕ)yi,(6.7)

where Φ0, ...,Φm are 2π-periodic continuous functions depending on h0, ...,hl ,
Ψ0, ...,Ψn, Ψ′

0, ...,Ψ
′
n, and of k.

Concerning the highest power m of y in (6.7) we get from (6.6)

m = max{n+1,n+ l−1}.(6.8)

Our goal is to determine the functions Ψ j, j = 0, ...,n, and the real number k in such a
way that we have

Φi(ϕ)≡ 0 for i = 1, ...,m.(6.9)

Then it holds

Φ(ϕ,y)≡Φ0(ϕ) := Ψ1(ϕ)h0(ϕ)+ kΨ0(ϕ)h1(ϕ).(6.10)

If we additionally require
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Φ0(ϕ)≥ 0 (≤ 0) for 0≤ ϕ ≤ 2π,(6.11)

where Φ0 vanishes only at finitely many points in [0,2π], and if the inequality (2.2) is
valid, then Ψ is a Dulac-Cherkas function of (6.1) in Z.
From (6.6)–(6.8) we get that for l = 1 and l = 2 the relations (6.9) represent a system
of n+1 linear differential equations to determine the n+1 functions Ψ j, j = 0, ...,n. In
case l = 1, system (6.9) can be solved successively by simple quadratures, starting
with Ψn. In case l = 2, this system can also be integrated by solving inhomogeneous
linear differential equations, starting with Ψn. The general solution depends on n + 1
integration constants and on the constant k, but we get no restriction on k in the
process of solving this system. An appropriate choice of these constants can imply
that Ψ is a Dulac-Cherkas function for (6.1) in Z.

For l ≥ 3, system (6.9) consists of l−2 algebraic equations and n+1 linear differential
equations

0≡ (n+ lk)hl(ϕ)Ψn(ϕ),
0≡ (k(l−1)+n)hl−1(ϕ)Ψn(ϕ)+(n−1+ lk)hl(ϕ)Ψn−1(ϕ),
0≡ (n−1+ k(l−1))hl−1(ϕ)Ψn−1(ϕ)

+(n+ k(l−2))hl−2(ϕ)Ψn(ϕ)+(n−2+ lk)hl(ϕ)Ψn−2,

......................................

0≡Ψ
′
n(ϕ)+nh2(ϕ)Ψn(ϕ)+(n−1)h3(ϕ)Ψn−1(ϕ)+ ...

+(n− l)hl+2(ϕ)Ψn−l(ϕ)+2kh2(ϕ)Ψn(ϕ)
+3kh3(ϕ)Ψn−1(ϕ)+ ...+ klhl(ϕ)Ψn−l+2(ϕ),

......................................

0≡Ψ
′
1(ϕ)+(1+2k)h2(ϕ)Ψ1(ϕ)+3kh3(ϕ)Ψ0(ϕ)

+(2+ k)h1(ϕ)Ψ2(ϕ)+3h0(ϕ)Ψ3(ϕ),

0≡Ψ
′
0(ϕ)+2kh2(ϕ)Ψ0(ϕ)

+(k +1)h1(ϕ)Ψ1(ϕ)+2h0(ϕ)Ψ2(ϕ)

(6.12)

to determine k and the functions Ψ0, ...,Ψn. Taking into account (6.2) and (6.4) we get
from the first equation in (6.12)

k =−n
l
.

For l ≥ 4, system (6.12) has generically no solution. In this case we have to derive
additional conditions on the functions hi in order that system (6.12) has a solution
such that Φ0 satisfies (6.11).

Now we apply this algorithm in the case l = 3 and n = 2 using system (2.3). Here, we
have m = 4, k =−2/3, and system (6.12) without the first equation takes the following
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form

0≡Ψ
′
2(ϕ)+

2
3

h2(ϕ)Ψ2(ϕ)−h3(ϕ)Ψ1(ϕ),

0≡Ψ
′
1(ϕ)− 1

3
h2(ϕ)Ψ1(ϕ)−2h3(ϕ)Ψ0(ϕ)+

4
3

h1(ϕ)Ψ2(ϕ),

0≡Ψ
′
0(ϕ)− 4

3
h2(ϕ)Ψ0(ϕ)+

1
3

h1(ϕ)Ψ1(ϕ)+2h0(ϕ)Ψ2(ϕ).

(6.13)

It is easy to verify that

Ψ2(ϕ)≡ 1
2
, Ψ1(ϕ)≡ 1,Ψ0(ϕ)≡ cosϕ−10(6.14)

is a solution of (6.13) and represents the Dulac-Cherkas function introduced in (2.4)
for system (2.3).

In the case of system (2.3), Theorem 4.1 can be used to get the following estimation
of all limit cycles on the whole cylinder.

Theorem 6.1. System (2.3) has on the cylinder Z exactly three limit cycles of the
second kind which are hyperbolic.

Proof. The equation

Ψ(ϕ,y)≡ 1
2

y2 + y+ cosϕ−10 = 0

describes two ovals

W1 := {(ϕ,y) ∈ Z : y =−1+
√

21−2cosϕ}
and

W2 := {(ϕ,y) ∈ Z : y =−1−
√

21−2cosϕ}
surrounding the cylinder. The corresponding function Φ takes by (2.5) only negative
values.
Using Theorem 4.1 we get that the strip D1 between W1 and W2 contains a unique
asymptotically orbitally stable limit cycle of second kind. It follows from system (2.3)
that there is a positive number y0 such that

dy
dt

> 0 for y≥ y0,
dy
dt

< 0 for y≤−y0.

Therefore, system (2.3) has no limit cycle in the regions y > y0 and y <−y0. Now we
introduce the notation

D0 := {(ϕ,y) ∈ Z :−1+
√

21−2cosϕ < y < y0}
and

D2 := {(ϕ,y) ∈ Z :−y0 < y <−1−
√

21−2cosϕ}.
In these regions the Dulac-Cherkas function Ψ takes only positive values, that is, it
represents a Dulac function there. Thus, in D0 and in D2 there exists at most one limit
cycle of the second kind, respectively. It can be verified that any trajectory of (2.3),
which meets the boundary of D0 (D2) leaves D0 (D2) for increasing t. Consequently,
the strips D0 and D2 contain a unique limit cycle, respectively, which is orbitally unsta-
ble. Therefore, the statement of the theorem holds. �
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