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Abstract

A finite test set for an integer maximization problem enables us to verify whether a feasible point
attains the global maximum. We establish in this paper several general results that apply to integer
maximization problems with nonlinear objective functions.
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1 Introduction and related work

Given a feasible point z* of an optimization
problem P, one important concern is to estab-
lish a set of points T = T'(z*, P) with which
one can verify whether z* is optimal for P .
We refer to such a set 1" as a test set. Usually,
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for a test set 1", we compare feasible elements
of {z* +1 t € T} , via objective value,
against z* . Our goal is to establish, in vari-
ous settings, the existence of a finite test set
T . An initial feasible solution together with a
description of a finite test set for any feasible
point allows us to design an algorithm that it-
eratively builds up a sequence of better and
better points.

It is preferred that a test set T does not de-
pend on z* | but this is not always possible.
In general, it is interesting to establish a finite
test set 7" and to understand the dependence

of T on z* and on the parameters that define
pP.

Before proceeding, we briefly set some nota-
tion. Z (resp., R) denotes the set of integers
(resp., real numbers). Z, (resp., Z_) denotes
the set of non-negative (resp., non-positive)
integers, and we use Z_,, = Z U {—0} ,



Ziw =7V {400} and Ziy = Z U {£o0}.
Analogously, we use such notation for R. For
S C Z", and simple variable bounds ! € Z" __,
u€eZ ,withl <u,let

+o0 )
F(S,l,u):={z €S : I <z <u}.

For a function f : R*"—R , we consider the
optimization problem

P(f(z),S,l,u) :

max {f(z) : x € F(S,l,u)}.

Often, we focus on the case in which §' is de-
fined by linear equations. For A € Z™*" and
right-hand side b € Z™ (l,u as above), we
sometimes consider S of the form S := {z €
Z" : Az = b}, and we write

F(Ablu) ={z€Z": Ax =01 <z <u}

and

P(f(z),A,b,l,u) :
max { f(z)

Also, we write L(A) :={z € R* : Az =0} .
An augmentation for z* € F(A,b,l,u) is an
h € Z" such that x*+h € F(A,b,l,u) . Neces-
sarily, an augmentation A isin L(A). The aug-
mentation h is improving if f(xz*) < f(z*+h).

We let O} denote the j-th orthant of R" , for
integers j satisfying 0 < j < 2™ . Specifically,
the j-th orthant of R" is defined, for 0 < j <
2" by having z > 0 (resp., zx < 0) if bit &
is 0 (resp., 1) in the binary representation of
J - Hence O = R .

cx e F(A b lu)}.

While it is no surprise that for a linear con-
tinuous optimization problem a finite test set
(appropriately defined) can be given, the sit-
uation becomes more difficult when we con-
sider linear integer optimization. The follow-
ing general result establishes a finite test set
for linear integer optimization.

Theorem 1.1 (Graver [3]) For all A €
Z™*™ | there ezists a finite set T(A) C Z"
such that for every c € R* ;b € Z™ , and
leZ ,uelZl ,wthl <u,thepointz* €
F(A,b,1,u) is optimal for P(c'z, A, b,1,u) if
and only if c*'(z* +t) < cTx* for allt € T(A)
such that x* +t € F(A,b,l,u) .

One such set T(A) is the so-called Graver
basis G(A), which will be defined and used
in Section 2. Interestingly, Graver’s result
can be refined and generalized in order to
provide us with an optimality criterion for
P(f(z),A,b,l,u) when f(z) has a certain
property related to superadditivity. We re-
fer to Section 3 for the precise definition of
this class of functions. This class of functions
contains all functions that one can represent
as a sum of univariate integer concave func-
tions composed with affine functions, thus we
generalize the following.

Let F be the set of functions f : R*—R of
the form f(z) = Y0_, ¢i(cl'z) , where ¢; € Z™
and ¢; : R—R is concave (univariate), for : =
1,...,7r.

Theorem 1.2 (Murota, Saito and Weis-
mantel [5]; Hemmecke[4]) For all f € F
A€ zZmm  beZm, andl € TP
u € 2%, , with | < u , there erists a finite
set T(f(z),A) C Z" N L(A) such that z* €
F(A,b,l,u) is optimal for P(f(x),A,b,l,u)
if and only if f(z* +t) < f(a*) for all
teT(f(x),A) suchthatz*+t € F(A,b,l,u).

It is our intention with this note to demon-
strate the existence of finite test sets for
quite general integer optimization problems
P(f(x),S,l,u) . More precisely, in Section 2,
we study the general problem P(f(x), S, [, u)
with varying [, v . In this case it is possible to
derive, for every feasible point z* , a finite set
for verifying its optimality. In Section 3 we
introduce the notion of oriented subadditive



and superadditive functions and exploit their
structure. In Section 4, we construct finite
test sets for integer optimization problems
where the objective function is oriented sub-
additive or superadditive. In this setting, the
sets that we construct are always universal in
that they do not depend on the feasible point
z* that we test for optimality.

2 Finite test sets for feasible points

Define a partial order C on Z" that extends
the coordinate-wise partial order < on Z'} as
follows: For a pair of vectors u,v € Z" , we
write v C v and say that u is conforms to v
if |u;| < |v| and wv; > 0fori =1,...,n,
that is, v and v lie in the same orthant of
Z" , and each component of u is bounded by
the corresponding component of v in absolute
value. Points with some zero components are
in multiple orthants, but it is easy to see that
C is well defined.

Here and throughout the paper, we make
heavy use of the following natural exten-
sion to C and Z" of the well-known Gordan
Lemma [2| for < and Z7 .

Lemma 2.1 (Extended Gordan Lemma)
For every set S C Z™ , the set T(S) C S of
C-minimal elements of S is finite.

We can now define the Graver basis G(A) of an
m X n integer matrix A (mentioned in the dis-
cussion following Theorem 1.1): it is defined
to be the set G(A) := T'(S) of C-minimal el-
ementsin S:={r € Z"NL(A) : z#0}.

Theorem 2.2 For every set S C Z" , func-
tion f : Z"—>R |, and point x* € S, there is
a finite set T'(z*, f(x),S) C Z"™ such that, for
every l € Z% ., u € 27  withl < x* < u
the point x* is optimal for P(f(x),S,l,u) if
and only if there is no t € T(z*, f(x), S) with

[<xr+t<u.

PROOF. Let

H(z*, f(z),S) ={heZ" :
z*+hes, f(z*) < f(z*+ h)}.

We claim that the set T(z*, f(z),S) C
H(z*, f(z),S) of C-minimal elements, guar-
anteed to be finite by the Extended Gordan
Lemma 2.1, is the desired set. Consider any
leZ  ,ueZi withl <z* <wu.Ifz"is
not optimal for P(f(x),S,,u) , then there is
anZz € Swithl <z <wand f(z*) < f(Z),
and hence h := z — 2* € H(z* f(x),S5) .
Therefore there is a t € T(z*, f(z),S) with
tCh.NowtChandl <z*z*+h=z<u
imply that [ < z* +t < u.

Conversely, if there is a t € T(z*, f(x),S)
with [ < z* + ¢ < u, then T(z*, f(z),S) C
H(z*, f(z),S) implies that z* +¢ € F(S, 1, u)
and f(z*) < f(z*+1t), and therefore z* is not
optimal for P(f(zx),S,l,u) . This completes
the proof. O

We next present a refined result for the case
in which the set S is defined using linear equa-
tions. In this case the test set does not depend
on the set S but only on the matrix A defining
the system of equations, and it applies to the
family of integer problems with varying right
hand sides. We make use of the Graver basis
of the defining matrix.

Theorem 2.3 Let f : R*—=R be a function,
and let A € Z™*". For every x* € 7", there
erists a finite set T(z*, f(z), A) C Z™ N L(A)
such that for alll € 7"  , u € 77} with | <
x* <, letting b* := Az* |, z* € F(A,b*, 1, u)
is optimal for P(f(x), A, b*,1,u) if and only if
thereisnot € T(x*, f(z), A) withl < x*+t <
u .



PROOF. Let G(A) = {g1,-..,9x} be the
Graver basis of A and let G be the n x k£ ma-
trix with columns g, ..., gx. Let

c fl@") < f(z"+ Ga)}.

Let B(z*) C A(z*) be the subset of A(z*)
of <-minimal elements, which is finite by the
(standard) Gordan Lemma. We claim that the
desired test set is provided by

T(z*, f(x),A) == {GB : B € B(z")}.

First, note that T'(z*, f(z),A) C L(A) and
therefore, for all ¢ € T, we have A(z* +t) =
Az* = b*. Also, for all t € T(z* f(x), A),
we have f(z*) < f(z* +t) by the construc-
tion of T'(z*, f(x), A). So if there is a t €
T(z*, f(z),A) withl < z*+t < u then z* + ¢
is a better feasible point than z*, so x* is not
optimal. Conversely, suppose z* is not opti-
mal and let 2’ be a better feasible point. Put
h := z' — z*. Then h € L(A) and therefore
there is an o € Z% providing a conformal de-
composition of h into Graver bases elements,
that is, h = G and g; C h whenever «; > 0.
Now f(z*) < f(2') = f(z*+Ga) implies that
a € A(z*) and hence there is a § € B(z*) sat-
isfying 8 < «. Consider the element ¢ := Gf3
in T'(z*, f(z), A). Then h = Ga being a con-
formal decomposition of A and 5 < « imply
t C h.Nowl < z*,2*+h =2 < uimply
[ <zr+t<wu. 0O

A(z*) == {a € Zt

Note that, in an actual construction of the
test set in the proof of Theorem 2.3, it might
be useful to represent the Graver basis as the
union of its intersections H; = G(A) N O}
with the orthants of R", for 0 < j < 2". Then
each H; is the so-called Hilbert basis of the ra-
tional cone OFNL(A), and, using the so-called
integer Caratheodory property (see [6]), one
can restrict attention in the definition of the
set A(z*) in the proof of Theorem 2.3 to those

o € Z’j with at most 2n — 2 nonzero compo-
nents corresponding to elements of some H;.

3 Oriented sub/superadditive func-
tions

In this section we introduce the notion of ori-
ented subadditive (and superadditive) func-
tions and show how to manipulate these func-
tions. The next definition makes precise what
we mean by this.

Definition 3.1 Let X, D;,D; C R" be
given. A function f : Z"—>R is (X, Dy, Dy)-
oriented superadditive if for all integral
r € X, y€ D,z € Dysuch that x + y, x +
z, t+y+2z€ X, we have

fla+y+2)+flz) > flz+y)+ flz+2).

Definition 3.2 The function f is oriented
subadditive if — f is oriented superadditive.

Note that the definition does not depend
on the order of D; versus Dy . That is, f
is (X, Dy, Dy)-oriented superadditive if and
only if f is (X, Dy, D;)-oriented superaddi-
tive. In the special case when D = Dy = Ds,
then a function is (X, D, D)-oriented super-
additive (subadditive) if and only if the family
of functions g, : D N Z"—R defined by

9:(y) = f(z +y) — f(z)

is superadditive (subadditive), for all z € X .

Various functions are readily seen to be
(X, D1, Do)-oriented superadditive. Trivially,
all affine functions are (R*, R”, R")-oriented
superadditive. Any univariate convex func-
tion is (X, Dy, Ds)-oriented superadditive for
suitably chosen (X, Dy, Dy) . More precisely,
in [5] it was shown that a univariate convex
function is (R, ,R,,R, )-oriented superaddi-
tive as well as (R, ,R_R_)-oriented superad-



ditive. Other superadditive functions can be
defined based on rounding. For example, for
c € R” , the function

f:Z"=>Z, f(z) = [CT$J

is (R} ,R%},R? )-oriented superadditive, but
not (R", R™, R")-oriented superadditive (even
for n = 1) as, for example, using ¢ = 3
and evaluating at (x = 1,y = =5,z = 3),
we have that [(0.5 — 2.5+ 1.5)] + [0.5] #
1(0.5—2.5)]+(0.541.5)]. In order to exploit
the property of oriented sub/superadditivity,
we need the notion of an orthant refinement

of a linear space.

Definition 3.3 For a d-dimensional sub-
space L C R" | an orthant refinement of L
is a finite set C of d-dimensional (convex)
polyhedral cones such that:

(1) L =UcecC';

(2) int(C)Nint(D) =0 ,forC # D, C,D €
C;

(3) For all C € C: int(C) C OF , for some
0<j<2m.

Of course we trivially have that the set of or-
thants is an orthant refinement of R" .

We can perform operations on oriented
sub/superadditive functions. In particular,
we obtain

Theorem 3.4 Let C be an orthant refine-
ment of R* , and let f : Z"—R be (R*,C, C)-
oriented superadditive (subadditive) for all
CeC.LetW e Z™™ | and define the lin-
ear function w : Z™—Z" by w(z) = Wz ,
for all x € R™ . Then there exists an orthant
refinement C of R™ | such that the composed
function

fow:Z™—>R

is (R™,C, 0) -oriented superadditive (subaddi-
tive), for allC € C .

PROOF. Without loss of generality, we
consider the case where the function f
is (R™,C,C)-oriented superadditive. For
0<j<2™and C € C, we define

Ci={zeO : WaeC},
and we let
é::{éj :0<j<2™and C €C}.

Since the family of cones C is an orthant re-
finement of R” , the family of cones C is an
orthant refinement of R™ . Moreover, for all
r € Z™ and y,z € C’j N Z™ , we have that
Wy, Wz € C,and hence f(Wz+Wy+W2z)+
fWz) > f(Wa+Wy)+ f(Wz+Wz). O

Theorem 3.4 illustrates that, indeed, the fam-
ily of oriented sub/superadditive functions is
not pathological. In combination with an or-
thant refinement of R" , the structure of a ori-
ented sub/superadditive objective functions
f allows us to establish finite universal test
sets for the family of optimization problems
P(f(x),A,b,l,u) with varying integral data
[,u . This is the topic of the next section.

4 Oriented sub/superadditive integer
maximization

Our first result applies to the family of op-
timization problems P(f(x),A,b,l,u) with
varying integral data [,u when f is oriented
subadditive in correspondence with an or-
thant refinement of R™. The proof follows
directly from Theorem 6 of [5].

Theorem 4.1 Let A € Z™*™ , and let f :
Z"—R be (R*,C, C)-oriented subadditive, for
all C € C , with respect to some orthant re-
finement C of L(A) . Then there is a finite
set T(f(x),A) C Z™ N L(A), such that z* €



F(A,b,l,u) is optimal for P(f(z), A, b,l,u) if
and only if f(z* +1t) < f(z*) for all t €
T(f(x),A) withl <z*+t<u.

As a next step, we consider the family of opti-
mization problems P(f(z), A, b, , u) when fis
oriented superadditive. It turns out that this
situation is more complex than the oriented
subadditive case. Henceforth, we proceed in
two stages. As a first step we consider the fam-
ily of problems P(f(z), A,b,0,00), where the
explicit bounds describe R?} (i.e., l; =0, u; =
oo, for all # = 1,...,n). Then, we can de-
duce that the set of all non-optimal solutions
for this infinite family of problems with vary-
ing right-hand side b has a nice combinatorial
structure, namely it is closed up. More pre-
cisely, we have

Theorem 4.2 Let A € Z™"™ , and let
[ 1 Z"=R be (R}, R}, R")-oriented superad-
ditive. Then there is a finite set T(f(x), A) C
Z"NL(A) , such that for any x* € Z} , letting
b* := Ax* | the point z* € F(A,b*,0,00) is
optimal for P(f(x), A, b*,0,00) if and only if
flz*+1t) < f(z*) forallt € T(f(x), A) with
0<zx*+t.

PROOF. Note that z* € F(A,b*,0,00) is
not optimal for P(f(z), A, b*,0, 00) if and only
if it belongs to

X(f(zx),A):={2"€Z} : 3teZ"NL(A),
+t>0, f(o') < f(z' +1)}.

We claim that the set X (f(x), A) is closed up;
that is, 2’ € X(f(z), A) implies that ' + h €
X(f(z),A), forallh € Z7 .

To see this, suppose that 2’ € X(f(z),A) .
Therefore, there is a t € Z" N L(A) with 2’ +
t>0and f(z') < f(z'+1t) . We wish to show
that 2’ + h € X(f(z),A), for all h € Z7 . To
do this, we just need to show that there is a

t € Z" N L(A) such that (z' 4+ h) + > 0 and
fl@'+h) < f((a'+h)+1).

We simply choose ¢ := ¢ . Then we check
f((@'+h)+t)—f(z'+h) > f(a'+t)—f(z") >0,

using (R} ,R%,R")-oriented superadditivity
of f.

We have actually shown that every improving
augmentation for a feasible point z’ is also
an improving augmentation for every feasible
point that dominates z’.

By the Gordan Lemma, there exists a finite
set X(f(z), A) € X(f(x), A) such that for all
z* € X(f(x), A) there exists i* € X (f(z), A)
with 2* < z* . By what we have already
shown, it follows that z* € X(f(z),A) if
and only if there is a #* € X(f(z), A) with
Tr<z*.

Now we just take T'(f(z),A) to consist of
one improving augmentation for each point
in X(f(z), A), and the proof is complete. O

It remains to establish existence of a finite test
set for verifying optimality in the presence of
lower and upper bounds. We obtain

Theorem 4.3 Let A € Z™*" , and let f :
Z"—R be (O}, 07, R")-oriented superadditive
for all0 < j < 2™ . Then there is a finite set
T(f(z),A) C Z™ N L(A) such that, for every
e, el ,uell jwithl <z* <u,
letting b* := Ax* | the point x* € F(A,b*, 1, u)
is optimal for P(f(x), A, b*,1,u) if and only if
flz*+1t) < f(z*) forallt € T(f(x),A) with
[ <z*+t<u.

PROOF. Our point of departure is the proof
of Theorem 2.3. More precisely, in this proof
we defined a test set T'(z*, f(x), A) that de-
pends on the point x*. Next, we establish that,



using the hypothesized oriented superadditiv-
ity condition, the set

T(f(x)vA) = U T(x*;f(x)vA)

z* EZTL

is finite. This will imply the result.

In order to verify that 7'(f(z), A) is finite we
resort to the notation introduced in the proof
of Theorem 2.3. For every 0 < j < 2" and
h e G(A), let

a(h,j) = sup {ah : o€ B(zY)
for some z* € O} N Z" } .

We want to argue that a(h, j) is finite , so that
the sup operator can indeed be replaced by
the max operator. For the purpose of deriving
a contradiction, let us assume that a(h, j) is
infinite. Then there exists an infinite sequence
of points z',7*,7%,... € O} NZ" , and an

infinite sequence &', a2, ... € Z',, such that

a'e€B(@),anda, <a; <---

Next, we define the set

E:={(@a"), @ a",...} .

By the Gordan Lemma, there exists a finite
E C E , such that for every (z',a) € E |
there exists (i’, &) € E , satisfying |7¢| < |z/|
and &' < &' (where | - | is component wise).
Therefore, there exists a pair of indices k£ < i
for which &* < &' and &* # &' . Then, us-
ing the fact that B(z) is the subset of A(z)
of <-minimal elements (refering to the proof
of Theorem 2.3), we obtain the following rela-
tions:

f(@F + Ga*) — f(z*) >0,
f(@* + Gak) — f(z%) <0.

(+)

On the other hand, 7' = " 4+ v with v € O} N
Z"™ . Using the hypothesized superadditivity
condition, we obtain f(Z*+v+Gak)+ f(z*) >
f(z* +v) + f(z*F + GaF) , which is equivalent
to f(Z'+Gak)+ f(z*) > f(z°)+ f(T*+GaF) .

Rearranging terms, we obtain

(@' +Gab) - f(&)
> f(@* + Gah) - f(3¥)

which is in contradiction with (x). In conclu-
sion, a(h, j) is a finite number, for all 0 < j <
2" . h € G . This completes the proof. O

Finally, we demonstrate that if the function
f satisfies a property that is very closely re-
lated to that of being oriented (O}, 0%, R")-
oriented superadditive, then again a universal
test set exists.

Theorem 4.4 Let f : R* >R be a function
such that

flat+y+2)+f(z) 2 flz+y)+ flz+2)

forallx,y,z € Z™ such that z, y lie in the same
orthant, and let A € Z™*". Then there exists a
finite set T'(f(x), A) C Z"NL(A) such that for
foreveryx* € Z", 1 € Z" ., u € L7 withl <
z* <, letting b* .= Az* , z* € F(A,b* [, u)
is optimal for P(f(x), A, b*,1,u) if and only if
flz*+1t) < f(z*) forallt € T(f(x),A) with
[<x*+t<u.

PROOF. Let G(A) = {g1,..-,9x} be the
Graver basis of A and let G be the n x k ma-
trix with columns g, ..., gx. Let

A={(z,a):2€Z",a e Zt
f(z) < fz+Ga)}.

Let B C A be the subset of A of C-minimal
elements, which is finite by the Extended Gor-



dan Lemma. We claim that the desired test
set is provided by

T(f(x),A):={GB:3z € Z" (z,B) € B}.

First, note that T'(f(x), A) C L(A) and there-
fore, for all t € T(f(x), A), we have A(z* +
t) = Az* = b*. So if thereisat € T(f(z), A)
with | < z*+t < wand f(z*) < f(z* + 1)
then z* is not optimal.

Conversely, suppose z* is not optimal and let
2’ be a better feasible point. Put h := 2’ —
z*. Then h € L(A) and therefore there is an
o € Zﬁ providing a conformal decomposition
h = Ga of h into Graver basis elements. Now
f(z*) < f(2') = f(z* + Ga) implies (z*, ) €
A and hence there is a (y*, 3) € B satisfying
y*Ca* <o

Consider the element ¢ := Gf in T(f(z), A).
Then h = Ga being a conformal decomposi-
tion of h and f < « imply ¢t © h. So now
I <zt 2z*+h=2 <wuimplyl < z* 4+t < u.
So x* +t is feasible. We claim that it is also
better than z*. Let v := 2* —y*. Then y* C z*
implies that y* and v lie in the same orthant.
Also, (y*, B) € B C Aimplies f(y*) < f(y* +
Gp) = f(y* +t). Now, by the property of f,
we find that, as claimed,

fle+t) = fla)=fy" +v+1) - fy" +v)

>fly +t) - f(y") > 0.
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