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Abstract

In this work we present a new mixture theory of a liquid solvent containing completely
dissociated ions to study the space charge layer of electrolytes in contact with some in-
ert metal. We incorporate solvation shell effects (i) in our derivation of the mixing entropy
and (ii) in the pressure model. Chemical potentials of ions and solvent molecules in the
incompressible limit are then derived from a free energy function. For the thermodynamic
equilibrium the coupled equation system of mass and momentum balance, the incom-
pressibility constraint and the Poisson equation are summarized. With that we study the
space charge layer of the electrolytic solution for an applied half cell potential and compare
our results to historic and recent interpretations of the double layer in liquid electrolytes.
The novelties of the new model are: (i) coupling of momentum- and mass-balance equa-
tions, (ii) calculation of entropic contributions due to solvated ions and (iii) the potential and
pressure dependence of the free charge density in equilibrium.

1 Introduction

First theoretical investigations of the space charge layer in electrolytic solutions date back
around 100 years to the work of L. Gouy[8], D. Chapman[4] and O. Stern[13], who extend the
original idea of Helmholtz that the electrochemical interface is basically a simple capacitor. The
picture drawn from that time stated a charge layer which exponentially decays (diffuse layer)
in addition to an adsorption layer (Stern layer). Grahame’s profound measurements[9] on the
capacity of the double layer, which were in disagreement to the commonly accepted theory at
that time, gave the hint to Bikerman[1] in 1942 that the Boltzmann distribution (nα ∝ e−zαϕ(x) )
is inappropriate, as no volumetric effects of the ions are considered. Even though he was the
first who extended the double layer model with respect to volumetric restrictions (steric effect),
however, he was not able to reconstruct the measured capacities of Grahame and his model
was not recognized widely. All modeling efforts at that time had in common that the species
densities nα were heuristically modeled as function of the electrostatic potential ϕ, in order to
obtain an explicit representation of the free charge density q = q(ϕ). The space charge layer
was then obtained by solving the (non-linear) Poisson-equation

div (ε0(1 + χ)∇ϕ) = −q(ϕ). (1)

The theoretical description of electrolytic solutions tended towards coupled Poisson–Nernst–
Planck equation systems, which, in equilibrium, also lead to explicit representations q = q(ϕ).
The main difference, however, is that such representations are now derived from free energy
functions, which describe the respective material. Borukhov et. al stated 1997 a free energy[3]
which incorporates ion size effects in their entropy of mixing and consequently derived a relation
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q = q(ϕ), for which the Poisson equation gave qualitative satisfactory results. However, their
main parameter a (ion radius) was quite arbitrary set to 1nm.

Nevertheless, almost all continuum mechanical approaches to model the space charge layer
in real electrolytic solutions start with some a priori knowledge of its actual structure, which is
then used to tailor a specific model for the desired problem. In contrast, a consistent formulation
of a material model for liquid electrolytes should be able to predict the structure of the double
layer, i.e. the decomposition of the Stern-layer and the diffuse layer, as function of the applied
potential.

In this letter we show that the application of non-equilibrium thermodynamics, and its rational
coupling to electrodynamics[12, 5], naturally reveals the pressure p and the electric potential ϕ
as independent variables. We derive a free energy function which embodies solvation effects of
the dissociated ions, in additional to mechanical stress and calculate the chemical potentials of
all constituents in the incompressible limit. We further show that eq. (1) is only a special case of
generic coupled equation system

div (ε0(1 + χ)∇ϕ) = −q(ϕ, p) (2)

∇p = −q(ϕ, p)∇ϕ, (3)

which self consistently computes ϕ and the pressure p.

With this model we are able to propose the actual structure of the space charge region in
electrolytic solutions and study its decomposition in diffuse and Stern layer regions, as function
of the applied potential. The resulting concentrations of ions in the charge layer are physically
meaningful and the charge stored in the double layer is in agreement with experimental data.

2 Configurational entropy

Consider a mixture ofN0 solvent molecules andNα, α = 1, . . . , N ions (with charge number
zα and mass mα), with the total number of particlesN =

∑N
α=0Nα. Classically it is assumed

that all particles of the mixture may exchange, leading to the number W Boltz of micro-states as

W Boltz =

(
N

N0,N1, . . . ,NN

)
. (4)

In contrast, we consider a mixture in which some of the solvent molecules are bounded to the
ions, forming solvated cations and anions[11]. Hence, the N0 solvent molecules split into N F

0

free solvent molecules andNB
0 bounded solvent molecules,

N0 = N F
0 +NB

0 . (5)

Each ion of constituentα is assumed to bound κα solvent molecules, and thusNB
0 =

∑N
α=1 καNα.

The exchange of a particle in the solvation shell with a free solvent molecule is thus not an ad-
missible permutation (c.f. FIG 1). The number of (entropically) exchangeable particles Ñ is
hence

Ñ = N F
0 +

∑N
α=1Nα, (6)

2



Bounded solvent 
molecules

Solvated anion

Cation

Free solvent molecules

prohibited permutation

allowed permutation

Figure 1: Each ion is supposed to bind some solvent molecules and forms a solvated ion.
The mixture thus consists of free solvent molecules (gray), solvated anions (blue) and solvated
cations (red). An exchange between a free and bounded solvent molecule is a prohibited per-
mutation, while the exchanging a solvated ion and a free solvent is allowed.

leading to the number of possible configurations

W =

(
Ñ

N F
0 ,N1, . . . ,NN

)
(7)

and thus to a mixing entropy S = kB ln (W ) of

S = −kB

(
N F

0 ln

(
N F

0

Ñ

)
+

N∑
α=1

Nαln

(
Nα
Ñ

))
, (8)

where the Sterling approximation has been used. Transition to particle number densities Nα
V
→

nα, α = 0, 1, . . . , N with ñ = nF0 +
∑N

α=1 nα and the introduction of

ỹ0 :=
nF0
ñ

and ỹα :=
nα
ñ

(
N∑
α=0

ỹα = 1), (9)

leads to a configurational entropy contribution of the free energy as

ρψS = kBT ñ

(
N∑
α=0

ỹαln (ỹα)

)
. (10)

3 Mechanical contributions

Mechanical contributions to the free energy are derived from a simple linear elastic relation

p = pR +K

(
VpR

V
− 1

)
(11)

where VpR is the volume of the mixture under pressure pR. For the volume VpR a linear relation
to the number of particlesNα, α = 0, 1, . . . , N is assumed, i.e.

VpR =
∑N

α=0 v
R
α (T, pR)Nα, (12)
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where vRα (T, pR) denotes the partial molar volume of species α at temperature T and refer-
ence pressure pR. Note thatN0 denotes here the total amount of solvent molecules. Using the
relation between free solvent moleculesN F

0 and bounded solvent moleculesNB
0 gives

VpR = vR0 N F
0 +

∑N
α=1(κα v

R
0 + vRα ) Nα. (13)

Expectably, the partial molar volume a solvated ions consists of the volume of the central ion
itself and the volume of κα solvent molecules (κα vR0 + vRα ). With

H := vR0 ỹ0 +
∑N

α=1(καv
R
0 + vRα ) ỹα, (14)

the pressure of the mixture is

p = pR+K (ñ H(ỹ0, ỹ1, . . . , ỹN−1)− 1) (15)

and hence dependent on the (local) composition. Since p = − ∂ ψ
∂ ρ−1 [6], where ρ denotes the

mass density ρ =
∑N

α=0mαnα, one obtains the mechanical free energy

ρψM = (K − pR)(1− ñ H) +K ñH ln (ñ H) (16)

upon integration and ρψM vanishes for p = pR.

4 Free energy and chemical potentials

The free energy of an electrolytic mixture is

ρψ =
N∑
α=0

nαψ
R
α + ρψS + ρψM (17)

where ψRα denotes the free energy of species α in the reference state 1.

For (T, n0, . . . , nN) as independent variables, the chemical potentials of the (unsolvated) ions
and (all) solvent molecules are defined as

µα(T, n0, . . . , nN) =
∂ ρψ

∂ nα
α = 0, 1, . . . , N. (18)

Note that the solvation effects are implicitly covered in the free energy function ρψ, independent
of the set of variables. For the incompressible limit (K → ∞) the new set of variables is
(T, p, ỹ1, . . . , ỹN)[7] and the chemical potentials are

µ0 = ψR0 + kBT ln (ỹ0) + vR0 p (19)

µα = ψRα + kBT ln (ỹα)− kBT καln (ỹ0) + vRα p. (20)

1There is a further contribution, viz. − 1
2ε0χ|∇ϕ|

2, which, however, drops in the chemical potential for χ =
const.
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Note, incompressibility K→∞ implies
V
pR

V
→1 and thus

ñ (vR0 ỹ0 +
∑N

α=1(καv
R
0 + vRα ) ỹα)

!
= 1. (21)

The free charge density q is related to the species densities via

q = e0ñ
∑N

α=1 zαỹα. (22)

5 Equilibrium properties

In equilibrium the following equations hold[5, 12, 7]

∇(µα − mα
m0
µ0) + e0zα∇ϕ = 0 α = 1, . . . , N (23)

∇p = −q∇ϕ (24)

div (ε0(1 + χ)∇ϕ) = −q (25)

ñ
(
vR0 ỹ0 +

∑N
α=1(καv

R
0 + vRα ) ỹα

)
= 1 (26)

which are the mass balances (23), the momentum balance (24), Poisson’s equation (25) and
the incompressibility constraint (26). The constraint (26) is simply used to compute ñ and thus
leading to

q = e0

∑N
α=1 zαỹα

(vR0 ỹ0 +
∑N

α=1(καv
R
0 + vRα ) ỹα)

. (27)

Next, note that from the momentum balance (24) and the mass balances (23) one concludes
∇µ0 = 0[7]. With that, the linear combinations (for α = 1, . . . , N )

∇(µα + καµ0) = −e0zα∇ϕ (28)

lead to the representation (α = 0, 1, . . . , N )

ỹα(x) = ỹBα e−
zαe0
kBT

(ϕ(x)−ϕB)− (vRα+καv
R
0 )

kBT
(p(x)−pB) , (29)

where the superscript B denotes the respective bulk values at x = xB . Hence, all ỹα are
expressed as functions of ϕ and p and thus, according to eq. (27), q = q(ϕ, p).

It is quite noteworthy that for an ideal, incompressible mixture (denoted by IM), which is obtained
by setting κα = 0 and vRα = vR0 , the pressure dependence in (27), with the representation (29),
could be reduced and thus leading to q = qIM(ϕ). Even though the pressure is reduced, it is
not constant through the electrolyte[7]. In contrast, the classical assumption that the pressure
p remains constant in the electrolyte, i.e. p(x) ≡ pB (in addition to κα = 0), leads to the
Poisson–Boltzmann approximation (superscript PB) with q = qPB(ϕ) (qPB 6= qIM).
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Figure 2: Numerical solutions of eqs. (24) & (25) for ϕ0 = 30mV, representing the space charge
layer within an electrolytic solution in contact with some inert metal. The diffuse layer is about
2.5nm wide and characterized by the deviations of the anion and cation concentrations nα(x)
from their respective bulk values nBα , α = {A,C}.

6 The space charge layer in electrolytic solutions

The proposed model is now used to study the space charge layer of electrolytic solutions, i.e. the
region where q 6= 0, for an externally applied potential ϕ|x=0 = ϕ0. Exemplarily we consider a
0.5M KCl aqueous solution in contact with an inert metal, which means here that no adsorption
onto the metal surface takes place. The mixture consist hence of constituents α = {0, A, C}
with zA = −1 and zC = 1. Each ion is considered to bound κα = 15 solvent molecules in its
solvation shell and the specific volume vRα of constituents α = {A,C} is assumed to be equal
to vR0 . Equations (24)&(25), with (27)&(29), were solved in 1−D for the following boundary
conditions and parameters:

ϕ|x=0 = ϕ0 ϕ|x=xB = 0 χ = 80
p|x=0 = 1atm vR0 = 1.797 10−3 `

mol nB0 = 1
vR0
≈ 55 mol

`

κA = κC = 15 nBA = nBC = 0.5mol
`

T = 293.75K.

In the low potential regime (ϕ0 = 30mV, FIG.2) the space charge layer is about xd = 2.5nm
wide (note that the Debye length for a 0.5M KCl aqueous solution is only λD = 0.43nm) and
mainly characterized by an exponential-increase of nA(x) (blue line) and -decrease of nC(x)
(red line) as function of the distance of the metal surface. Historically this layer is called diffuse
layer, as the equilibrium concentration profiles nα(x) result from the interplay of simple diffusion
and electro-migration. However, since more anions are attracted from the metal surface, cations
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are pushed out of the charge layer, resulting in a net charge

Q :=
∫ xB

0
q(x)dx [µC cm−2] (30)

of about Q(30mV) = −4.85µC cm−2. The potential distribution ϕ(x) (black line) in the elec-
trolyte shows also the well know exponential decay[2].
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Figure 3: Space charge region at ϕ0 = 1.2V with a characteristic Stern layer xS of about 3
layers of solvated ions (≈ 21 Å). Due to the incompressibility constraint (26) a local increase
of solvated anions entails a decrease of free solvent molecules and thus leads to a (local)
saturation of anions.

At about ϕ0 = 75mV the cation concentration at the metal surface starts to vanish and at
ϕ0 = 280mV the cation concentration is almost zero in the first nm in front of the metal sur-
face. Increasing ϕ0 further clearly entails an increasing anion concentration in the charge layer,
and thus a decreasing net charge Q (c.f. FIG. 4 ). In order to fulfill the incompressibility con-
straint (26), the concentration of free solvent molecules has to decrease, which finally vanishes
at about ϕ0 = 0.9V closest to the metal surface. We call this anion saturation point, as only sol-
vated anions are then present in front of the metal. Note that still solvent molecules are present
in this layer, covered in the solvation shell (c.f. FIG. 3).

The specific width of a (ball shaped) solvated anion computes aswA = 3
√

6(vRA + κA vR0 )π−1 ≈
6.8Å and one could ask for the potential at which the first layer of width wA is filled with sol-
vated anions. This layer is historically called Stern layer and describes the specifically adsorbed
solvated anions. In our picture, however, the Stern layer is simply a result of the anion satura-
tion, since solvation effects are covered in our free energy model (17). It is clear that the actual
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width of the Stern layer is highly dependent on the applied potential ϕ0, and we suggest the
inflection point of the anion concentration nA(x) as definition of the Stern layer width xS (i.e.
∂xxnA(x)

∣∣
xS

= 0, ∂xxxnA(x)
∣∣
xS
6= 0). The inflection point xS was numerically computed

for an external potential ϕ0 = 1.2V as xS ≈ 2.1nm, which coincides with almost 3 layers of
solvated ions in front of the metal.
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Figure 4: Charge Q stored in the double layer as function of the applied potential ϕ0 for the PB
approximation, the ideal mixture and our solvation model. Experimental data of the charge Q
is in the order of ±(0−50)µC cm−2 [9, 10], which is highly overestimated by the PB- and the
ideal mixture model.

Finally, a comparison of the double layer charge Q between the Poisson–Boltzmann approx-
imation, an ideal, incompressible mixture and our new solvation model is provided in FIG. 4.
Until ±60mV the models are similar, since the main contribution of the charge Q is the diffuse
layer (c.f. FIG. 2). Thereafter the deviation of the (mixture) models becomes enormous. It is well
known that experimental data of the double layer charge is in the order of ±(0−50)µC cm−2

[9, 10]. At 0.25V, however, the PB approximation gives already QPB ≈ 600µC cm−2, while
QIM ≈ 100µC cm−2 and our new model predicts Q ≈ 28µC cm−2. The total error at ϕ0 =
0.25V between the PB approximation and our solvation model is already ∆PB

Q = 570µC cm−2,
with a relative error of δPB

Q ≈ 2018%! The incompressible, ideal mixture [7] is far better, however,
still overestimating the charge at 0.25V by ∆IM

Q = 72µC cm−2 or δQ ≈ 256 %.

Bockris mentions that the “Gouy–Chapman theory might best be described as a brilliant failure”
[2, p. 882], but the same holds true for the Poisson–Boltzmann approximation beyond 60mV.
The incompressible, ideal mixture is a better approximation, however, we suggest our new mix-
ture model as starting point for a rigorous thermodynamic description of electrolytic solutions.
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