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Abstract

Dulac-Cherkas functions can be used to derive an upper bound for the number
of limit cycles of planar autonomous differential systems, at the same time
they provide information about their stability. In this paper we present a
method to construct such functions for generalized Liénard systems dx

dt =
y, dy

dt =
∑l

j=0 hj(x)yj with l ≥ 1 by means of linear differential equations.
In case 1 ≤ l ≤ 3, the described algorithm works generically. By means of
an example we show that this approach can be applied also to systems with
l ≥ 4.

1 Introduction

The problem of estimating the number of limit cycles for two-dimensional systems
of autonomous differential equations

dx

dt
= P (x, y),

dy

dt
= Q(x, y) (1)

in some open region G ⊂ R2 represents one of the famous problems formulated by
D.Hilbert [6] which is still open. There are several approaches to attack this problem,
including intentions to weaken it [7]. One known method to estimate the number of
limit cycles of (1) from above is the method of Dulac function [2]. Here, the upper
bound on the number of limit cycles also depends essentially on the connectivity
of the region G. Frequently, this method is used to establish that system (1) has
in some simply connected region no limit cycle or in a doubly connected region at
most one limit cycle.
The method of Dulac function has been generalized into different directions. One
promising generalization is due to the first author who introduced in 1997 a func-
tion which we call now Dulac-Cherkas function that not only permits to get an
upper bound for the number of limit cycles but also provides an information about
their stability (see [1]). The problem of construction of such a function has been
investigated by the first and the second author in [4] with respect to the Liénard
system

dx

dt
= y,

dy

dt
= −g(x)− f(x)y (2)
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with g(0) = 0. In that paper, it has been shown that linear differential equations
combined with the method of linear programming can be used to determine Dulac-
Cherkas functions. Recently, Gasull and Giacomini used in [3] principally the same
method to estimate the number of limit cycles for the Kukles system

dx

dt
= y,

dy

dt
= h0(x) + h1(x)y + h2(x)y2 + y3. (3)

Our paper is devoted to the problem of construction of a class of Dulac-Cherkas
functions for the generalized Liénard system

dx

dt
= y,

dy

dt
=

l∑
j=0

hj(x)yj (4)

with l ≥ 1 and

hl(x) 6≡ 0. (5)

It is organized as follows: In section 2 we recall some definitions and known results.
In section 3 we present an algorithm to construct a class of functions which repre-
sent Dulac-Cherkas functions under some additional conditions. We prove that this
algorithm works for 1 ≤ l ≤ 3 generically. By considering a class of systems (4),
we show in section 4 how this algorithm can be applied also in case l ≥ 4 in order
to derive conditions on the functions hi implying that the corresponding system (4)
has at most one limit cycle.

2 Preliminaries

First we recall the definition of a Dulac function.

Definition 2.1 Let P, Q ∈ C1(G, R), let X be the vector field defined by (1). A
function B ∈ C1(G, R) is called a Dulac-function of (1) in G if

div(BX) ≡ ∂(BP )

∂x
+

∂(BQ)

∂y

does not change sign in G and vanishes only on a set N of measure zero, where no
simply closed curve (oval) in N is a limit cycle.

The existence of a Dulac function implies the following estimate on the number of
limit cycles of system (1) in G.
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Proposition 2.2 Let G be a p-connected (p ≥ 1) region in R2, let P, Q ∈ C1(G, R).
If there is a Dulac function B of (1) in G, then (1) has not more than p − 1 limit
cycles in G.

The method of Dulac function has been generalized in different ways. One possibility
is to admit that B is not necessarily C1 at any equilibrium provided the number of
equilibria is finite in G. This generalization has been proposed by the third author
in 1968 (see [8]). Another generalization is due to the first author (see [1]). The
corresponding generalized Dulac function, which we call Dulac-Cherkas function, is
defined as follows.

Definition 2.3 Let P, Q ∈ C1(G, R). A function Ψ ∈ C1(G, R) is called a Dulac-
Cherkas function of system (1) in G if there exists a real number k 6= 0 such that

Φ := (grad Ψ, X) + kΨ div X > 0 (< 0) in G. (1)

Remark 2.4 Condition (1) can be relaxed by assuming that Φ may vanish in G on
a set of measure zero, and that no closed curve of this set is a limit cycle of (1).

For the sequel we introduce the subset W of G by

W := {(x, y) ∈ G : Ψ(x, y) = 0}.

The following two theorems can be found in [1].

Theorem 2.5 Let G be a p-connected region, let Ψ be a Dulac-Cherkas function of
(1) in G. If we additionally assume that W has no oval in G, then system (1) has
at most p− 1 limit cycles in G.

Theorem 2.6 Let Ψ be a Dulac-Cherkas function of (1) in the region G. Then any
limit cycle Γ of (1) in G is hyperbolic and its stability is determined by the sign of
the expression kΦΨ on Γ.

Theorem 2.5 has been generalized in [5] by the second and the third authors as
follows.

Theorem 2.7 Let G be a p-connected region, let Ψ be a Dulac-Cherkas function of
(1) in G such that W has s ovals in G. Then system (1) has at most p− 1 + s limit
cycles in G.

Remark 2.8 In [5] it has been also shown that the differentiability conditions of Ψ
in Theorem 2.7 can be weakened in the same manner as in case of a Dulac function.
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The problem to construct a Dulac-Cherkas function has been solved by the first
author for the Liénard system (2). He uses as Ψ the function

Ψ(x, y) ≡ y2 + G(x)− α, (2)

where α is an appropriate constant and G is defined by G(x) :=
∫ x

0
g(σ)dσ. Accord-

ing this choice of Ψ, the curve Ψ(x, y) = 0 has at most one oval. Moreover, we get
from (1) and (2)

Φ(x, y) ≡ −(k + 2)f(x)y2 − k(G(x)− α)f(x).

Setting k = −2 we obtain

Φ(x, y) ≡ 2(G(x)− α)f(x).

Thus, Φ does not depend on y, and applying Theorem 2.7 we get the result:

Theorem 2.9 Suppose f, g : R → R to be continuous. Additionally, we assume
that there is a constant α∗ such that the function Φ1 defined by

Φ1(x) :=
(
G(x)− α∗

)
f(x) (3)

does not change sign in R and vanishes only at finitely many points. Then system
(2) has at most one limit cycle.

In the case
g(x) ≡ x, f(x) ≡ µ(x2 − 1)

system (2) represents the van der Pol equation, and we get

Ψ(x, y) ≡ y2 +
x2

2
− α, Φ1(x) ≡ µ

(x2

2
− α

)
(x2 − 1).

Setting α = 1/2 we have

Φ1(x) ≡ µ

2
(x2 − 1)2,

that is, condition (ii) in Theorem 2.9 is fulfilled for µ 6= 0, and the curve Ψ(x, y) = 0
consists in R2 of exactly one oval. Thus, we get the well-known result that for µ 6= 0
the van der Pol equation has at most one limit cycle.

We note that in case of Liénard system (2), to the Dulac-Cherkas function Ψ in (2)
there belongs a function Φ defined in (1) that does not depend on y for a special
value of k. This was the reason for the first and second author to look in [4] for
an algorithmic way to construct a Dulac-Cherkas function Ψ for the Liénard system
(2) in the form

Ψ(x, y) =
n∑

j=0

Ψj(x)yj (4)
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with

Ψn(x) 6≡ 0, (5)

where the coefficient functions Ψj can be determined by means of linear differential
equations such that the corresponding function Φ in (1) does not depend on y. Ad-
ditionally, the problem to derive conditions such that Φ is either positive or negative
in the considered region was formulated as a problem of linear programming.
In [3] Gasull and Giacomini consider the class of planar autonomous systems (3),
where the functions hi : R → R, 0 ≤ i ≤ 2, are continuous. This system represents
a generalized Liénard system. They also look for a Dulac-Cherkas function in the
form (4) and prove that to any given positive integer n there is a function Ψ as in (4)
and a special value k such that the corresponding function Φ does not depend on y,
and that the functions Ψj can be determined by solving linear differential equations.
They did not mention that this approach in case of the Liénard system (2) has been
introduced by the first and second author in [4], probably, they were not aware of
that paper.

In the next section we consider the generalized Liénard system (4) and describe an
algorithm to find a function Ψ and a number k such that the corresponding function
Φ in (1) does not depend on y.

3 Algorithm to construct a function Ψ such that

Φ does not depend on y

We consider the vector field Xl(x, y) defined by the differential system (4) in some
region G ⊂ R2. For the Dulac-Cherkas function Ψ(x, y) of (4) in G we make the
ansatz (4) with n ≥ 2. In what follows we describe an algorithm to determine
the functions Ψj(x) in (4) and the constant k such that the corresponding function
Φ(x, y) determined by

Φ(x, y) := (grad Ψ(x, y), Xl(x, y)) + kΨ(x, y) div Xl(x, y) (1)

does not depend on y.
If we put (4) into the right hand side of (1) and take into account that the vector
field Xl is determined by (4) we get

Φ(x, y) ≡
(
Ψ′

0(x) + Ψ′
1(x)y + ... + Ψ′

n(x)yn
)
y

+
(
Ψ1(x) + 2Ψ2(x)y + .... + nΨn(x)yn−1

)
×

(
h0(x) + h1(x)y + ... + hl(x)yl

)
+ k

(
Ψ0(x) + Ψ1(x)y + ... + Ψn(x)yn

)
×

(
h1(x) + 2h2(x)y + .... + lhl(x)yl−1

)
.

(2)
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For the sequel we represent Φ(x, y) in the form

Φ(x, y) ≡
m∑

i=0

Φi(x)yi, (3)

where Φi(x) is a function of the known coefficient functions h0(x), ..., hl(x), of the un-
known coefficient functions Ψ0(x), ..., Ψn(x), of their first derivatives Ψ′

0(x), ..., Ψ′
n(x),

and of k.
Concerning the highest power m of y in (3) we get from (2)

m = max{n + 1, n + 1 + l − 2}. (4)

Our goal is to determine the functions Ψj(x), j = 0, ..., n, and the real number k in
such a way that we have

Φi(x) ≡ 0 for i = 1, ....,m. (5)

Then it holds

Φ(x, y) ≡ Φ0(x) ≡ Ψ1(x)h0(x) + kΨ0(x)h1(x). (6)

If we additionally require

Φ0(x) ≥ 0 (≤ 0) in G (7)

and if Φ0(x) vanishes only at finitely many values of x, then Ψ is a Dulac-Cherkas
function of (4) in G.

From (2)–(4) we get that for l = 1 and l = 2 the relations (5) represent a system of
n + 1 linear differential equations to determine the n + 1 functions Ψj, j = 0, ..., n.
In case l = 1 this system reads

0 ≡ Ψ′
n(x),

0 = Ψ′
n−1(x) + (k + n)h1(x)Ψn(x),

0 ≡ Ψ′
n−2(x) + (k + n− 1)h1(x)Ψn−1(x) + nh0(x)Ψn(x),

......................................

0 ≡ Ψ′
1(x) + (k + 2)h1(x)Ψ2(x) + 3h0(x)Ψ3(x),

0 ≡ Ψ′
0(x) + (k + 1)h1(x)Ψ1(x) + 2h0(x)Ψ2(x).

(8)

It is easy to see that this system can be solved successively by simple quadratures,
starting with Ψn. The general solution depends on n + 1 integration constants and
on the constant k. An appropriate choice of these constants leads to conditions on
the functions hi such that Ψ is a Dulac-Cherkas function for (4) in G.
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As an example, we consider system (4) with l = 1, i.e.

dx

dt
= y,

dy

dt
= h0(x) + h1(x)y. (9)

We look for a Dulac-Cherkas function in the form

Ψ(x, y) = Ψ0(x) + Ψ1(x)y + Ψ2(x)y2 (10)

with Ψ2(x) 6≡ 0. Putting n = 2 in (8) we obtain the following system of differential
equations

Ψ′
2 = 0,

Ψ′
1 = −(k + 2)h1(x)Ψ2,

Ψ′
0 = −(k + 1)h1(x)Ψ1 − 2h0(x)Ψ2.

(11)

Setting k = −2 we get from the first two equations

Ψ2(x) ≡ c2 6= 0, Ψ1(x) ≡ c1, (12)

where c2 and c1 are real constants. Putting c1 = 0 we obtain from the last differential
equation in (11)

Ψ0(x) ≡ −2c2

∫ x

0
h0(τ)dτ + c0, (13)

where c0 is any real constant. Thus, we have

Ψ(x, y) = −2c2

∫ x

0

h0(τ)dτ + c0 + c2y
2,

Φ0(x) = −2
(
− 2c2

∫ x

0

h0(τ)dτ + c2

)
h1(x) =

4c2

( ∫ x

0

h0(τ)dτ + c∗0

)
h1(x).

To guarantee the validity of one of the inequalities Φ0(x) ≤ 0, Φ0(x) ≥ 0, we impose
on h0 and h1 the following assumption.
(H). h0, h1 : R → R are continuous and such that there is a constant c∗0 ensuring
that the function

Φ̃0(x) :=
( ∫ x

0

h0(τ)dτ + c∗0

)
h1(x)

satisfies one of the inequalities Φ̃0(x) ≤ 0, Φ̃0(x) ≥ 0, where Φ̃0(x) vanishes only in
finite many points xk.

Proposition 3.1 Suppose hypothesis (H) to be valid. Then system (4) has at most
one limit cycle in the finite part of the phase plane.
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We note that Proposition 3.1 coincides with Theorem 2.9.

In case l = 2 we get the system

0 ≡ Ψ′
n(x) + (2k + n)h2(x)Ψn(x),

0 ≡ Ψ′
n−1(x) + (2k + n− 1)h2(x)Ψn−1(x)

+ (k + n)h1(x)Ψn(x),

0 ≡ Ψ′
n−2(x) + (2k + n− 2)h2(x)Ψn−2(x)

+ (k + n− 1)h1(x)Ψn−1(x) + nh0(x)Ψn(x),

......................................

0 ≡ Ψ′
1(x) + (2k + 1)h2(x)Ψ1(x)

+ (k + 2)h1(x)Ψ2(x) + 3h0(x)Ψ3(x),

0 = Ψ′
0(x) + 2kh2(x)Ψ0(x)

+ (k + 1)h1(x)Ψ1(x) + 2h0(x)Ψ2(x).

(14)

This system can also be integrated successively by solving inhomogeneous linear
differential equations, starting with Ψn. We note that the functions Ψj depend on
the parameter k, but we get no restriction on k in the process of solving this system.
Of course, in order to be able to fulfill the inequalities (7) we have to choose k and
the integration constants appropriately.

Next we consider the case l = 3. From (2) and (3) we obtain

0 ≡ (n + 3k)h3(x)Ψn(x),

0 ≡ Ψ′
n(x) + (2k + n)h2(x)Ψn(x)

+ (n− 1 + 3k)h3(x)Ψn−1(x),

0 ≡ Ψ′
n−1(x) + (n− 1 + 2k)h2(x)Ψn−1(x)

+ (n + k)h1(x)Ψn(x) + (n− 2 + 3k)h3(x)Ψn−2,

0 ≡ Ψ′
n−2(x) + (2k + n− 2)h2(x)Ψn−2(x)

+ (k + n− 1)h1(x)Ψn−1(x) + nh0(x)Ψn(x)

+ (n− 3 + 3k)h3(x)Ψn−3(x),

......................................

0 ≡ Ψ′
1(x) + (1 + 2k)h2(x)Ψ1(x) + 3kh3(x)Ψ0(x)

+ (2 + k)h1(x)Ψ2(x) + 3h0(x)Ψ3(x),

0 ≡ Ψ′
0(x) + 2kh2(x)Ψ0(x)

+ (k + 1)h1(x)Ψ1(x) + 2h0(x)Ψ2(x).

(15)

The first equation is an algebraic equation which determines according to (5) and (5)
the constant k uniquely as k = −n

3
. The remaining equations represent a system of

n + 1 linear differential equations. Its general solution depends on n + 1 integration
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constants which can be used to try to fulfill the relations (7). If this is not possible
we have to look for corresponding conditions on the functions hi.

In case l ≥ 4 system (5) consist of n + 1 linear differential equations and l− 2 alge-
braic equations to determine k and the functions Ψ0, ..., Ψn. Thus, this system has
generically no solution. In what follows we show that under additional conditions on
the functions hi system (5) has a nontrivial solution which satisfies the inequalities
(7).

4 Construction of Cherkas-Dulac functions in case

l = 4

In what follows we consider the case l = 4 in (4). Our aim is to construct a Dulac-
Cherkas function in the form (4) with n = 2 under the assumption hi(x) ≡ ci for
i = 3, 4, where c3 and c4 are real parameters satisfying

c3c4 6= 0. (1)

Thus, the system under consideration reads

dx

dt
= y,

dy

dt
= h0(x) + h1(x)y + h2(x)y2 + c3y

3 + c4y
4. (2)

It is easy to see that the equilibria of system (2) are determined by the roots of
h0(x) = 0. In order to exclude the trivial situation that (2) has no equilibrium, that
means, system (2) has no limit cycle in any finite part of the phase plane, we assume

h0(0) = 0. (3)

We look for a Dulac-Cherkas function in the form

Ψ(x, y) =
2∑

j=0

Ψj(x)yj (4)

with

Ψ2(x) 6≡ 0. (5)

By (4) it holds m = 5, that is, the corresponding function Φ in (3) has the form

Φ(x, y) =
5∑

j=0

Φj(x)yj.

Taking into account (2) we get from (5) and (2)

2(1 + 2k)c4Ψ2(x) ≡ 0, (6)
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(1 + 4k)c4Ψ1(x) + (2 + 3k)c3Ψ2(x) ≡ 0, (7)

Ψ′
2 + 2(1 + k)h2(x)Ψ2 + (1 + 3k)c3Ψ1 + 4kc4Ψ0 ≡ 0, (8)

Ψ′
1 + (1 + 2k)h2(x)Ψ1 + (2 + k)h1(x)Ψ2 + 3kc3Ψ0 ≡ 0, (9)

Ψ′
0 + 2kh2(x)Ψ0 + (1 + k)h1(x)Ψ1 + 2h0(x)Ψ2 ≡ 0. (10)

By (1) and (5) we get from (6)

k = −1

2
. (11)

Taking into account (1) and (11) we obtain from (7)

Ψ1(x) =
c3

2c4

Ψ2(x). (12)

Substituting (12) and (11) into (8) and (9) we get

Ψ′
2 +

(
h2(x)− c2

3

4c4

)
Ψ2 − 2c4Ψ0 = 0, (13)

Ψ′
2 +

3c4

c3

h1(x)Ψ2 − 3c4Ψ0 = 0. (14)

A function Ψ2 satisfying the differential equations (13) and (14) has also to obey
the homogeneous equation

Ψ′
2 + h(x)Ψ2 = 0 (15)

with

h(x) := 3h2(x)− 3c2
3

4c4

− 6c4

c3

h1(x). (16)

Thus, we have

Ψ2(x) = ce−
R x
0 h(σ)dσ, (17)

where c 6= 0 by (5). From (1), (5), (12) and (17) we get that the functions Ψ1 and
Ψ2 never take the value zero.
A solution of (15) satisfies the differential equation (13) only if the relation

(
− h2(x) +

c2
3

4c4

+
3c4

c3

h1(x)
)
Ψ2(x) = c4Ψ0(x) (18)

is valid. We get the same relation if we consider equation (14).
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Substituting (17) together with (11) and (12) into (10) we obtain

Ψ′
0 − h2(x)Ψ0 +

( c3

4c4

h1(x) + 2h0(x)
)
ce−

R x
0 h(σ)dσ = 0. (19)

Introducing the function

ĥ(x) :=
c3

4c4

h1(x) + 2h0(x), (20)

the differential equation (19) takes the form

Ψ′
0 − h2(x)Ψ0 + cĥ(x)e−

R x
0 h(σ)dσ = 0. (21)

Its general solution reads

Ψ0(x) = e
R x
0 h2(σ)dσ

(
d− c

∫ x

0

ĥ(σ)e−
R σ
0 h̃(τ)dτdσ

)
, (22)

where

h̃(x) ≡ h(x) + h2(x) (23)

and d is any real constant. If we substitute the function Ψ2(x) defined in (17) and
the function Ψ0(x) defined in (22) into (18) we get the relation

c
(
− h2(x) +

c2
3

4c4

+
3c4

c3

h1(x)
)
e−

R x
0 h̃(σ)dσ

≡ c4

(
d− c

∫ x

0

ĥ(σ)e−
R σ
0 h̃(τ)dτdσ

)
.

(24)

That means, the functions Ψ0, Ψ2, and Ψ1 defined in (22), (17) and (12), respectively,
satisfy the equations (7)–(10) with k = −1/2 only if the relation (24) is fulfilled.
This relation represents a restriction for the coefficient functions h0, h1 and h2.

In order to guarantee that Ψ defined in (4) is a Dulac-Cherkas function we have to
require that the function Φ0 defined in (6) satisfies (7). Thus, we have the following
Theorem.

Theorem 4.1 Consider system (2) under the following assumptions:

(A1). The coefficients c3, c4 satisfy c3c4 6= 0.

(A2). The functions hi : R → R, i = 0, 1, 2, are continuous, and such that

(i). h0(0) = 0.

(ii). There are constants c and d such that the relation (24) is valid for all
x ∈ R, where ĥ and h̃ are defined in (20) and (23), respectively, and that
the function

Φ0(x) := Ψ1(x)h0(x)− 1

2
Ψ0(x)h1(x) (25)
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satisfies

Φ0(x) ≥ 0 (Φ0(x) ≤ 0) ∀x (26)

and vanishes only in finitely many points. Here, Ψ0 and Ψ1 are defined
by (22), (12), (17), (16), respectively.

Then system (2) has at most one limit cycle in R2.

In what follows we consider (2) under the assumption

h̃(x) := h(x) + h2(x) ≡ 0. (27)

In that case we have by (12), (17), and (22)

Ψ1(x) :=
cc3

2c4

e
R x
0 h2(σ)dσ, (28)

Ψ0(x) := e
R x
0 h2(σ)dσ

(
d− c

∫ x

0

ĥ(σ)dσ
)
. (29)

Substituting these relations into (25) we get

Φ0(x) =
c

2
e

R x
0 h2(σ)dσ

(c3

c4

h0(x)− h1(x)
[d

c
−

∫ x

0

ĥ(σ)dσ
])

. (30)

Thus, introducing the function

Φ̃0(x) :=
c3

c4

h0(x)− h1(x)
[d

c
−

∫ x

0

ĥ(σ)dσ
]

(31)

we have

Φ0(x) =
c

2
e

R x
0 h2(σ)dσΦ̃0(x), (32)

and the inequalities Φ0(x) ≥ 0 (Φ0(x) ≤ 0) are fulfilled if it holds

Φ̃0(x) ≥ 0 (Φ̃0(x) ≤ 0). (33)

We note that the assumption (27) implies

h2(x) ≡ 3

16

c2
3

c4

+
3c4

2c3

h1(x). (34)

Taking into account (27) and (34), relation (24) takes the form

c2
3

16c4

− dc4

c
+

3c4

2c3

h1(x) ≡ −
∫ x

0

ĥ(σ)dσ. (35)
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Using this relation we obtain from (31)

Φ̃0(x) ≡ c3

c4

h0(x)− h1(x)
[ c2

3

16c4

+
d

c
(1− c4)

]
− 3c4

2c3

h2
1(x). (36)

To determine the function h1 we substitute (20) into (35) and get the integral equa-
tion

c2
3

16c4

− dc4

c
+

3c4

2c3

h1(x) ≡ −
∫ x

0

[c3

c4

h1(σ) + 2h0(σ)
]
dσ (37)

which is equivalent to the initial value problem

h′1 +
c2
3

6c2
4

h1 +
4c3

3c4

h0(x) = 0,

h1(0) =
2

3
c3

(d

c
− c2

3

16c2
4

)
.

(38)

Its explicit solution reads

h1(x) = e
− c23x

6c24

(
h1(0)− 4c3

3c4

∫ x

0

e
c23σ

6c24 h0(σ)dσ
)
. (39)

Theorem 4.2 Consider system (2) under the following assumptions:

(A1). The coefficients c3, c4 satisfy c3c4 6= 0.

(A2). The function h0 : R → R is continuous and satisfies h0(0) = 0.

(A3).

h2(x) :=
3

16

c2
3

c4

+
3c4

2c3

h1(x).

(A4).

h1(x) := e
− c23x

6c24

(
α− 4c3

3c4

∫ x

0

e
c23σ

6c24 h0(σ)dσ
)

with

α =
2c3

3c4

(dc4

c
− c2

3

16c4

)
6= 0,

where c and d are real constants different from zero.

(A5). There are constants c 6= 0 and d 6= 0 such that the function Φ̃0 defined in (36)
satisfies one of the inequalities in (33) for all x ∈ R.

Then system (2) has at most one limit cycle in R2.
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Taking into account (3) and using (31) we get from (32)

Φ0(0) = −d

2
h1(0).

Thus, we have the following corollary.

Corollary 4.3 Under the assumptions of Theorem 4.2 there exist an interval I
containing the origin such that system (2) has in the region I ×R at most one limit
cycle.

The following example shows that the interval I can coincide with the real axis.
We consider system (2) under the assumptions (A1) − (A4) of Theorem 4.2. As
function h0 we choose

h0(x) ≡ −x.

Then, the function h1 reads

h1(x) = e
− c23x

6c24

[
h1(0) +

48c3
4

c3
3

]
+

8c4

c3

(
x− 6c2

4

c2
3

)
. (40)

Setting

c3 = c4 = c = d = 1 (41)

we have

h1(x) =
389

8
e−

x
6 + 8(x− 6). (42)

The following relations cab be easyly verified

lim
x→±∞

h1(x) = +∞, (43)

h′1(x) = −389

48
e−

x
6 + 8, h′′1(x) =

389

288
e−

x
6 . (44)

Hence, we have

h′′1(x) > 0 ∀x ∈ R, (45)

and we can conclude that h1(x) has a unique minimum at x = xm. From

h′1(xm) = −389

48
e−

xm
6 + 8 = 0

and from (42) we get

xm = −6 ln
384

389
> 0, h1(xm) = 8xm > 0.

14



Thus, we have

h1(x) > 0 ∀x ∈ R. (46)

Especially, we obtain from (42) and (43)

h1(0) = 5/8, h′1(0) = −5/48, (47)

h1

(−1

2

)
=

1

8

(
389e

1
12 − 416

)
> 0.85, (48)

h′1

(−1

2

)
=

1

48

(
− 389e

1
12 + 384

)
< −0.80. (49)

From (36) and (41) we obtain

Φ̃0(x) = −x− h1(x)
( 1

16
+

3

2
h1(x)

)
, (50)

Φ̃′0(x) = −1− 1

16
h′1(x)− 3h1(x)h′1(x), (51)

Φ̃′′0(x) = − 1

16
h′′1(x)− 3h1(x)h′′1(x)− 3(h′1(x))2. (52)

From (42), (43), and (50) we get

lim
x→±∞

Φ̃0(x) = −∞.

From (45), (46), and (52) it follows Φ̃′′0(x) < 0, that is Φ̃0(x) has a unique maximum
at x = xM . By (51) and (47) we have Φ̃′0(0) = −613/768 < 0, that is xM < 0. By
(48), (49) we have

−3h1

(
− 1

2

)
h′1

(
− 1

2

)
> 2.04

such that by (51) it holds Φ̃′0(−1
2
) > 0, that is xM > −1/2. By (50) and our results

about h1(x) we have

Φ̃0(x) < 0.5− 3

2

(5

8

)2

< 0 for − 1/2 ≤ x ≤ 0

such that all conditions of Theorem 4.2 are fulfilled and we have the result

Corollary 4.4 The system

dx

dt
= y,

dy

dt
= −x + h1(x)y + h2(x)y2 + y3 + y4 (53)

with

h1(x) ≡ 389

8
e−

x
6 + 8(x− 6), h2(x) ≡ 3

16
+

3

2
h1(x)

has at most one limit cycle in R2.
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