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1. INTRODUCTION

The last years have seen an interest in the analysis of lattice measures under stochastic time-evolu-
tions, with a particular view on the possible production of singularities of such measures [4–7,19–21].
These singularities are related to the emergence of long spatial memory in the conditional probabilities
of the time-evolved measures at given transition times. When the initial measure is a Gibbs measure in
a low-temperature phase for some absolutely summable potential it may happen that a time-evolved
potential ceases to exist, and one speaks of a Gibbs-non Gibbs transition. Such phenomena are
proved to occur on the lattice for weakly interacting Glauber dynamics, based on the detection of
’hidden phase transitions’. Suggested by mean-field analogues, singularities are expected to appear
(and even more easily so) for strongly interacting reversible dynamics. While the focus of this research
has been much on reversible dynamics, one expects similar singularities during time-evolution in the
huge field of irreversible dynamics, see for example [23,24], which are even harder to analyze.

This possible occurrence of non-localities in turn poses difficulties to control the large time behavior of
trajectories of time-evolved measures [14]. It is the purpose of this paper to exploit the key concept of
relative entropy change along trajectories in this context, including situations of multiple phases, and
including situations of irreversible dynamics. Relative entropy has a huge importance in the probability
theory of statistical mechanics in infinite volume, via its relevance in large deviations, via the Gibbs
variational principle, see for example [2, 8, 20], and also via a new formulation to analyze Gibbs-non
Gibbs transitions in terms of a variational principle in path space, see [5, 7]. Its successful use as a
Lyapunov function in the context of stochastic time evolutions goes back to very early work of Holley
[12,13]. In [22] zero entropy loss is used to classify invariant states, but the more difficult issue of the
behavior of trajectories for starting measures off the invariant states is not studied.

In this paper we build up on these initial steps, go beyond the reversible case, and provide also a
treatment of general Glauber dynamics (which to our knowledge has not appeared in the literature).

We work in the setting of stochastic dynamics for lattice systems in the infinite volume and in contin-
uous time. Our local state spaces are finite and the dynamics is specified by giving the rates to jump
between different symbols in this alphabet. These rates depend on the initial configuration around the
site at which the jump occurs, but usually they depend also on the configurations around the site at
which the jump occurs. This makes the jump processes non-independent over the sites and creates
the possibility for macroscopically non-trivial collective behavior. In all what follows we assume lattice-
translation invariance for the rules specifying the dynamics, namely the possible sets of sites on which
the spins are jointly updated and their rates. We will not assume that the dynamics is reversible for a
particular measure.

We look at initial configurations which are chosen from lattice-translation invariant starting measures,
and will then be interested in the corresponding trajectories of lattice-translation invariant infinite-
volume measures. We ask for possible large time limiting behavior. In the language of dynamical
systems, we want to know the omega-limit sets of the dynamics, that is the set of possible weak limit
points of νtn where tn tends to infinity. Here the usual weak convergence is chosen in which con-
vergence of measures is checked in terms of local observables. In particular, by compactness, there
are always weak limit points. The dynamics has at least one time-stationary measure µ, which might
be ergodic w.r.t. lattice translations or not. In fact we have examples for both situations. For this mea-
sure we will assume that it is even a Gibbs measure w.r.t. a quasilocal specification γ, in other words
µ ∈ G(γ). This is the case for Glauber dynamics, and for a class of irreversible dynamics [15]. How-
ever, there are examples of irreversible dynamics with non-Gibbsian invariant measures [3]. If there is
one non-Gibbsian invariant measure, the other invariant measures must be non-Gibbsian too [22].
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We want to use the relative entropy h(ν|µ) w.r.t. to a time-stationary measure µ ∈ G(γ) as a Lya-
punov function to investigate trajectories and limit points. Let us note that in the uniqueness regime,
|G(γ)| = 1, the subject of entropy decay under time-evolutions is intimately linked to Log-Sobolev
inequalities for infinite-volume measures, see [1, Chapter 5] or [10]. Proving a Log-Sobolev inequality
for a non-equilibrium model implies the exponential decay of the relative entropy distance and thus
gives not only the attractor property but also the rate of convergence to the unique equilibrium. We
cannot use these methods here since our interest goes beyond situations of uniqueness to situations
where multiple invariant measures may occur.

The difficulties using the relative entropy as a Lyapunov function in the infinite volume are caused by
the potential lack of continuity. Recall that the relative entropy density ν 7→ h(ν|µ) is a lower semi-
continuous (l.s.c.) function in the weak topology, but in general it is not upper semicontinuous (u.s.c.).
Looking at the time-derivative of the relative entropy g(νtn |µ), as defined in (3), along trajectories
which are sampled at time instances tn tending to infinity, we have limn↑∞ g(νtn |µ) = 0. We would
like to conclude that g(ν∗|µ) = 0 where ν∗ denotes a weak limit point of the trajectory. This equation
expresses zero entropy loss of the limiting measure and is in itself very useful to characterize possible
limits. In interesting cases it may have multiple solutions ν∗. In many cases, and even irreversible
situations as in [15], it allows to characterize ν∗ by concluding that these solutions must be elements
of G(γ).

Now, in order to prove g(ν∗|µ) = 0, we would have to know that ν 7→ g(ν|µ) is u.s.c.. A proof that
g is u.s.c. has been given in a reversible situation for the particular case of the stochastic Ising model
for which the corresponding Ising Gibbs measures are reversible measures in [11, 12]. It is the prime
aim of the present paper to move into the realm of non-reversibility. As our main result, we prove that
g is u.s.c. also for general types of non-reversible dynamics and also in the situation of general finite
state spaces. As a byproduct we also prove the attractor property for reversible dynamics w.r.t. Gibbs
measures for irreducible finite state space interacting particle systems (IPS) on the lattice.

Here is a rough outline of the proof. We are looking for monotonicity in certain finite-volume approx-
imations of g to conclude that g is u.s.c.. This is what is done in [11] successfully in the reversible
two-spin situation. In our non-reversible situation there is more, and we give a useful decomposition of
g into a weakly continuous term and a potentially dangerous term, the latter of which can be realized
as a monotone limit in the volume. To show monotonicity in the volume of the approximating sequence
of the latter term, we use Jensen’s inequality for certain conditional measures on outer annuli ap-
pearing as volume differences, after things have been rewritten such that convex functions appear as
integrants. In order to show that boundary terms do not spoil this picture we only need to impose as
some minimal regularity the non-nullness of the limiting measure. We stress that we do not need any
assumption on quasilocality along the trajectory which in many cases indeed would not hold. Even
the non-nullness requirement can be dropped if an alternate zero entropy loss condition, without the
boundary terms, is satisfied. In the reversible situation, where the dynamics is also assumed to be
irreducible, we show that the alternate conditions are indeed satisfied, leading to the attractor property
for such IPS.

Let us compare the present result with the results of an earlier paper of us [14], where we treated the
same problem with a different approach, and explain why the present result is much stronger. Rather
than looking at semicontinuity of g along any trajectory, as we do now, we were in that paper proving
continuity of g but only along nice trajectories. In particular we proved: If a trajectory νtn is uniformly
Gibbs, meaning that for each time instant there is a Gibbsian potential Φn and those potentials all stay
inside of a ball in the Banach space of Gibbsian potentials, we also have that a weak limit ν∗ satisfies
zero entropy loss g(ν∗|µ) = 0. A version of this theorem with weaker assumptions was also given,
allowing for some degree of non-Gibbsianness in the measures appearing along the trajectory. The
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proofs of the latter statements are simpler than the proof of the general u.s.c. result of the present
paper. This explains that, even though we do not need to mention non-Gibbsian measures explicitly in
the present paper, their appearance poses the main difficulty to exclude discontinuities in entropy gain
in a simple way.

One particular motivation for considering the relative entropy decay under irreversible dynamics comes
from a class of models we consider in [15, 17]. These models exhibit dynamical non-ergodicity, in the
sense of IPS, in the presence of a unique time-stationary Gibbs measure, making rigorous a heuristics
of [25]. In the analysis of a mean-field version of these rotation dynamics in [16] we were able to
show the attractor property of the limiting cycle using relative entropy techniques on finite-dimensional
simplexes. This proves synchronization in the sense of attractivity of macroscopically coherent rotating
states. Let us mention that a similar type of synchronization is also frequently studied for other, however
mostly mean-field models, for example the Kuramoto model for coupled noisy phase oscillators [9].

2. ENTROPY DECAY FOR INTERACTING PARTICLE SYSTEMS

2.1. Gibbs measures and relative entropy. Consider translation-invariant probability measures µ
and ν on the configuration space Ω = {1, . . . , q}Zd equipped with the usual product topology and
the Borel sigma-algebra S . For a finite set of sites Λ b Zd define the local relative entropy via

hΛ(ν|µ) :=

{∑
ωΛ∈{1,...,q}Λ ν(ωΛ) log ν(ωΛ)

µ(ωΛ) , if ν << µ,

∞, else.

and the relative entropy density via

h(ν|µ) := lim
Λ↑Zd

1

|Λ|
hΛ(ν|µ)

where Λ runs over hypercubes centered at the origin, whenever the limit exists. We use notations like
ωΛ := {σ ∈ Ω : σi = ωi for all i ∈ Λ}, ω∆ωΛ\∆ := ω∆ ∩ ωΛ\∆, ∆c := Zd \∆ etc.

We will be interested in situations where µ is a Gibbs measures for a translation-invariant non-null
quasilocal specification on Ω. A specification is a family γ = (γΛ)ΛbZd of proper probability kernels
γΛ(ηΛ|ηΛc) satisfying the consistency condition γΛ(γ∆(η∆|·)|ηΛc) = γΛ(η∆|ηΛc) when ∆ ⊂ Λ.

Definition 2.1. The specification γ is called

1 translation invariant, if for all Λ b Zd and i ∈ Zd we have γΛ+i(ηΛ+i|η(Λ+i)c) = γΛ(ηΛ|ηΛc)
where Λ + i denotes the lattice translate of Λ by i;

2 non-null, if infη γ0(η0|η0c) ≥ δ for some δ > 0;
3 quasilocal, if for all Λ b Zd, lim∆↑Zd supη,ξ |γΛ(ηΛ|η∆\Λξ∆c)− γΛ(ηΛ|ηΛc)| = 0.

The infinite-volume probability measure µ is called a Gibbs measure for γ, i.e. µ ∈ G(γ), if µ satisfies
the DLR equation, namely for all Λ b Zd and ηΛ we have µ(γΛ(ηΛ|·)) = µ(ηΛ). For details on
Gibbs measures and specifications see [3,8].

In order to guarantee existence of the relative entropy density, µ has to be asymptotically decoupled
as defined in [20,26]. Denote Λn the centered box with side-length 2n+ 1.

Definition 2.2. A positive measure µ on (Ω,S) is called asymptotically decoupled if

1 there exist d : N 7→ N and c : N 7→ [0,∞), such that

lim
n↑∞

d(n)/n = 0 and lim
n↑∞

c(n)/|Λn| = 0.
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2 for all i ∈ Zd, n ∈ N, A ∈ S measurable w.r.t. Λn + i and B ∈ S measurable w.r.t.
(Λn+d(n) + i)c, we have

e−c(n)µ(A)µ(B) ≤ µ(A ∩B) ≤ ec(n)µ(A)µ(B).

The following result, proved in [26, Proposition 3.2], guarantees existence of the relative entropy den-
sity w.r.t. asymptotically decoupled measures.

Lemma 2.3. Let ν and µ be translation-invariant probability measures on (Ω,S) and µ asymptotically
decoupled. Then the relative entropy density h(ν|µ) exists.

For example specifications defined via translation-invariant absolutely summable potentials Φ =
(ΦA)AbZd are translation invariant, non-null and quasilocal. Gibbs measures for such Gibbsian spec-
ifications are moreover asymptotically decoupled and hence the relative entropy density exists.

Note that for general translation-invariant specifications without any further assumptions on locality
properties, existence of an absolutely summable translation-invariant potential is not guaranteed, see
[3,18,27]. This is why we are imposing asymptotic decoupledness as an additional requirement.

The equilibrium model considered in [15] provides an example of such asymptotically decoupled Gibbs
measures, where the specification is a priori not given in terms of an absolutely summable translation-
invariant potential. More precisely, the translation-invariant specification γ′ on (Ω,S) is given via

γ′Λ(ω′Λ|ω′Λc) =
µΛc [ω

′
Λc ](λ

Λ(e−HΛ1ω′Λ))

µΛc [ω′Λc ](λ
Λ(e−HΛ))

(1)

where µΛc [ω
′
Λc ] is the unique continuous-spin Gibbs measure for the continuous spin XY -model

with Hamiltonian HΛ =
∑

A∩Λ 6=∅ΦA on the volume Λc, not interacting with Λ and conditioned to

a discrete configuration ω′Λc ∈ {1, . . . , q}Λ
c
. λ here denotes the Lebesgue measure on the one-

dimensional unit sphere. Under further suitable conditions on parameter values appearing in the dis-
cussion in [15], one could construct a translation-invariant potential for γ′. Nevertheless, it is much
easier to verify the condition of asymptotic decoupledness for elements of G(γ′) directly from (1),
more specifically with parameters d ≡ 0 and c(n) = 4

∑
A∩Λn 6=∅,A 6⊂Λn

‖ΦA‖. Moreover, γ′ is
again translation invariant, non-null and quasilocal.

2.2. IPS dynamics and relative entropy. Consider time-continuous, translation-invariant Markovian
dynamics on Ω, namely IPS characterized by time-homogeneous generators L with domain D(L)
and its associated Markovian semigroup (PLt )t≥0. For the IPS we adopt the exposition given in [23,
Chapter I]. In all generality the generator L is given via jump-rates c∆(η, ξ∆) in finite volumes ∆ b
Zd, continuous in the starting configurations η ∈ Ω

Lf(η) =
∑

∆bZd

∑
ξ∆

c∆(η, ξ∆)[f(ξ∆η∆c)− f(η)]. (2)

To ensure well-definedness, the jump-measures must satisfy a number of conditions, most importantly
the single-site jump-intensities have to be bounded, i.e. for c∆(η) :=

∑
ξ∆
c∆(η, ξ∆) and c∆ :=

supη c∆(η) we assume
∑

∆30 c∆ < ∞. In fact the definition of L in (2) should be read in such a
way that the two summations are only over those ∆ and ξ∆ with c∆(η, ξ∆) > 0. We will call an IPS
well-defined if it is well-defined in the sense of [23, Chapter I].

The following additional conditions on IPS will be used in the sequel.

Definition 2.4. Let Lf(η) =
∑

∆bZd
∑

ξ∆
c∆(η, ξ∆)[f(ξ∆η∆c)−f(η)] be a well-defined transla-

tion-invariant IPS. We say that
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1 for L there are only finitely many types of transitions, if there exists a finite set 0 ∈ Γ b Zd
such that c∆ = 0 if 0 ∈ ∆ 6⊂ Γ;

2 for L the rates are uniformly continuous, if
limΛ↑Zd sup∆30 supη,ξ,σ |c∆(ηΛξΛc , σ∆)− c∆(η, σ∆)| = 0;

3 L can not enter trap states, if for all η ∈ {1, . . . , q}Zd and σ ∈ {1, . . . , q}∆ we have that
c∆(η, σ∆) > 0 implies that c∆(σ∆η∆c) > 0;

4 L has a minimal transition rate, if for all ∆ b Zd with c∆ > 0 we have
infη,σ∆:c∆(η,σ∆)>0 c∆(η, σ∆) > 0.

Examples of IPS satisfying the above conditions are the stochastic Ising model or more general
Glauber dynamics. As another example consider the exclusion process on {0, 1}Zd with rates

c{x,y}(η; (1− ηx), (1− ηy)) = p(x, y)ηx(1− ηy) + p(y, x)ηy(1− ηx).

Here p(x, y) describes the possibly non-symmetric rate of moving a particle from x to site y. Such
processes are contained in the class of IPS satisfying above conditions as long as p(x, y) > 0 implies
p(y, x) > 0. Contact processes or voter models have trap states and thus our approach can not be
applied.

In this paper we want to consider models given in terms of translation-invariant non-null quasilocal
specifications γ and transformations given by translation-invariant IPS dynamics. Recall the notion of
non-nullness for probability measures.

Definition 2.5. A random field ν is non-null if there exists δ > 0 and a version of the single-site
conditional probabilities such that ν(η0|η0c) ≥ δ for ν-a.a. η.

For any translation invariant probability measure ν, let us define the relative entropy loss density via

gL(ν|µ) := lim
Λ↑Zd

1

|Λ|
d

dt |t=0
hΛ(PLt ν|µ) (3)

where Λ runs over hypercubes centered at the origin, whenever the limit exists. As we will explain in
more detail in the next subsection, the limit exists if ν is non-null. In particular in that case gL(ν|µ) ≤ 0
as proved in the following lemma.

Lemma 2.6. Let ν be a translation-invariant and non-null probability measure and L a well-defined
translation-invariant IPS generator with finitely many types of transitions and uniformly continuous
rates. Assume that for L there exists a translation-invariant asymptotically-decoupled time-stationary
Gibbs measureµ ∈ G(γ) where γ is translation-invariant non-null and quasilocal. Then gL(ν|µ) ≤ 0.

Let us note, that the relative entropy density w.r.t. translation-invariant probability measures is a non-
increasing function under rather general transformations see for example [3, Lemma 3.3]. We will
assume that under the dynamics the following zero entropy loss condition holds:

Condition 2.7. Let the well-defined IPS dynamics L be such that there exists a translation-invariant
asymptotically-decoupled time-stationary Gibbs measure µ ∈ G(γ) where γ is translation-invariant
non-null and quasilocal. Further, for any translation-invariant measure ν with gL(ν|µ) = 0 it follows
that ν ∈ G(γ).

Without the time derivative this condition is one direction of the Gibbs variational principle, see for ex-
ample [8, Theorem 15.37]. All conditions given in Definition 2.4 plus the above Condition 2.7 involving
the time-derivative is proved to hold for example for the stochastic Ising model in [12, 13, 23] or more
general Glauber dynamics and even non-reversible rotation dynamics see [15]. It is also satisfied for
the symmetric exclusion process if we assume that ν and µ have the same particle density see [14].

5



In the following subsection we give a representation of gL(ν|µ) and state our main result about the
attractor property for IPS.

2.3. A representation of the relative entropy loss density. If µ is a translation-invariant Gibbs
measure for the Gibbsian specification γΦ, then the relative entropy density h(ν|µ) is just the free
energy per site of ν with respect to the absolutely summable potential Φ, i.e.

h(ν|µ) =

∫
ν(dω)

∑
A30

1

|A|
ΦA(ω)− lim

Λ↑Zd
1

|Λ|
hΛ(ν) + P (Φ). (4)

Here the first summand is the specific energy, the second summand is the specific entropy with

hΛ(ν) := −
∑

ωΛ∈{1,...,q}Λ
ν(ωΛ) log ν(ωΛ)

and P (Φ) is a constant often referred to as the pressure. For details see for example [8, Theorem
15.30].

A similar decomposition can be given also for the relative entropy loss density gL(ν|µ) if µ is a
translation-invariant asymptotically-decoupled time-stationary Gibbs measure for the translation-
invariant non-null quasilocal specifications γ. Let us define the specific entropy loss by

gL(ν) := lim
Λ↑Zd

1

|Λ|
∑

ωΛ∈{1,...,q}Λ
ν(L1ωΛ) log ν(ωΛ)

whenever the limit exists. In [14, Proposition 2.7] we give a representation of gL(ν) for general well-
defined dynamics L and ν assumed to be non-null of the following form

gL(ν) =
∑
∆30

∑
ξ∆

∫
ν(dη)c∆(η, ξ∆)

1

|∆|
log

ν(ξ∆|η∆c)

ν(η∆|η∆c)

and derive condition under which ν 7→ gL(ν) is weakly continuous. Let us further define the specific
energy loss by

ρL(ν, µ) := − lim
Λ↑Zd

1

|Λ|
∑

ωΛ∈{1,...,q}Λ
ν(L1ωΛ) logµ(ωΛ)

whenever it exists and note that

gL(ν|µ) = ρL(ν, µ) + gL(ν)

if the right hand side is well-defined. Observe the analogy to the first two terms on the right hand side
of (4). In [14, Equation 4] we give a representation of ρL(ν, µ) for general well-defined dynamics L
and µ being a Gibbs measure for a Gibbsian specification with potential Φ of the form

ρL(ν, µ) =
∑
∆30

∑
ζ∆

∫
ν(dη)c∆(η, ζ∆)

1

|∆|
∑

A∩∆ 6=∅

[ΦA(ζ∆η∆c)− ΦA(η)]

and show continuity of ν 7→ ρL(ν, µ) w.r.t. the weak topology.

Let us present here a generalization of the representation of ρL(ν, µ) for cases where µ is a Gibbs
measure for a quasilocal specification which is not necessarily coming from an absolutely summable
translation-invariant potential.
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Proposition 2.8. Let L be a well-defined IPS and µ a translation-invariant Gibbs measure for the
translation-invariant non-null quasilocal specifications γ. Then

ρL(ν, µ) =
∑
∆30

∑
ξ∆

∫
ν(dη)c∆(η, ξ∆)

1

|∆|
log

γ∆(η∆|η∆c)

γ∆(ξ∆|η∆c) (5)

and ν 7→ ρL(ν, µ) is continuous w.r.t. the weak topology.

We come to our main result which states the existence and upper semicontinuity of ν 7→ gL(ν) in
ν if ν is non-null. The approach is inspired by the works [11, 12] which only deal with the case of the
stochastic Ising model.

Theorem 2.9. Let L be a well-defined translation-invariant IPS with finitely many types of transitions,
where the rates are uniformly continuous and have a minimal transition rate and L can not enter trap
states. Then ν 7→ gL(ν) exists and is upper semicontinuous in ν if ν is non-null and translation-
invariant.

Under the zero entropy loss Condition 2.7 this implies the attractor property of the set of translation-
invariant Gibbs measures.

Corollary 2.10. Let L be a well-defined translation-invariant IPS with finitely many types of transi-
tions, where the rates are uniformly continuous and have a minimal transition rate. Also assume that
L can not enter trap states and satisfies Condition 2.7 with time-stationary µ ∈ G(γ). Then, for any
translation-invariant starting measure ν where the sequence (PLtnν)n∈N consists of non-null proba-
bility measures and converges weakly to the non-null probability measure ν∗ as tn ↑ ∞, ν∗ ∈ G(γ).

Let us remark that the non-nullness condition is stronger then necessary for the proof of the above
results. What is really needed is that

sup
Λ30

∑
∆30

∑
σ∆

∫
ν(dη)c∆(η, σ∆) log

ν(η∆∩Λ|ηΛ\∆)

ν(σ∆∩Λ|ηΛ\∆)
<∞

which is implied if ν is non-null. In the next subsection we show that the non-nullness requirement
can be dropped if the zero entropy loss Condition 2.7 is replaced by an approximating zero entropy
loss condition. Moreover we prove that this approximating condition is satisfied if the time-stationary
measure µ is even reversible for L. This in particular implies the attractor property for reversible
dynamics.

2.4. Avoiding the non-nullness condition and the attractor property for reversible dynamics.
Imposing non-nullness for the measure ν in gL(ν) as well as for µ in ρL(ν, µ) is a way to avoid
degeneracies which could lead for example to gL(ν) being minus infinity or ρL(ν, µ) being infinity.
Requiring the specification γ for the Gibbs measure µ to be non-null is not a strong condition, since it is
satisfied for example for every Gibbsian specification. It is natural to believe that under dynamics which
have a non-null Gibbs measure as a time-stationary measure and satisfy the additional conditions
given in Definition 2.4, also measures propagated by the dynamics should be non-null for positive
times. But we could not prove it.

Consider cubes of the form Λn := [−2n + 1, 2n− 1]d and Λ̃n := [−2n +n+ 1, 2n−n− 1]d and
the approximated specific entropy loss given by g̃L(ν) := limn↑∞ g̃

n
L(ν) whenever the limit exists,

where

g̃nL(ν) :=
1

|Λn|
∑
i∈Λ̃n

∑
∆3i

∑
σ∆

∫
ν(dη)c∆(η, σ∆)

1

|∆|
log

ν(σ∆∩Λ|ηΛ\∆)

ν(η∆∩Λ|ηΛ\∆)
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and L is assumed to be well-defined. Further define the approximated relative entropy loss as
g̃L(ν|µ) := g̃L(ν) + ρL(ν, µ). Working around the argument where we used non-nullness in the
proof of Theorem 2.9 we can show the following.

Theorem 2.11. Let L be a well-defined translation-invariant IPS with finitely many types of transitions,
where the rates are uniformly continuous and have a minimal transition rate and L can not enter trap
states. Then g̃L(ν) exists, g̃L(ν) ≥ gL(ν) and ν 7→ g̃L(ν) is upper semicontinuous.

Let us assume that under the dynamics the following approximated zero entropy loss condition holds:

Condition 2.12. Let the well-defined IPS dynamics L be such that there exists a translation-invariant
asymptotically-decoupled time-stationary Gibbs measure µ ∈ G(γ) where γ is translation-invariant
non-null and quasilocal. Further, for any translation-invariant measure ν we have existence of
g̃L(ν|µ) ≤ 0 and the following property: g̃L(ν|µ) = 0 implies that ν ∈ G(γ).

Under the approximated zero entropy loss condition we can prove the attractor property avoiding a
non-nullness requirement.

Corollary 2.13. LetL be a well-defined translation-invariant IPS with finitely many types of transitions,
where the rates are uniformly continuous and have a minimal transition rate. Further assume that L
can not enter trap states and satisfies Condition 2.12 with time-stationary measure µ ∈ G(γ). Then,
for any translation-invariant starting measure ν where the sequence (PLtnν)n∈N converges weakly to
ν∗ as tn ↑ ∞, ν∗ ∈ G(γ).

Finally we show that Condition 2.12 can be verified if µ is a reversible measure for L and the require-
ment that L has no trap states is replaced by the following stronger assumption of irreducibility.

Definition 2.14. Let Lf(η) =
∑

∆bZd
∑

ξ∆
c∆(η, ξ∆)[f(ξ∆η∆c)− f(η)] be a well-defined trans-

lation-invariant IPS. We say thatL is irreducible, if for all η(0) ∈ Ω and σ ∈ {1, . . . , q}∆ with ∆ b Zd

there exists a finite sequence of configurations {η(1), . . . , η(n)} with η(i) ∈ Ω and η(n) = η
(0)
∆cσ∆

such that the transition rates to jump from η(i−1) to η(i) are positive for all i ∈ {1, . . . , n}.

The following proposition together with Corollary 2.13 implies the attractor property for reversible dy-
namics.

Proposition 2.15. Let L be a well-defined translation-invariant irreducible IPS with finitely many types
of transitions, where the rates are uniformly continuous and have a minimal transition rate. Further
let µ ∈ G(γ) be a translation-invariant asymptotically-decoupled Gibbs measure and γ translation-
invariant non-null and quasilocal. If µ is reversible w.r.t. L then g̃L(ν|µ) exists and g̃L(ν) ≤ 0.
Further, the assumption g̃L(ν|µ) = 0 implies that ν ∈ G(γ).

3. PROOFS

3.1. Proof of Lemma 2.6. The proof is based on a finite-volume argument for an approximating
dynamics, using Jensen’s inequality. Consider the approximating finite-volume process LΛ

LΛ1ωΛ(ηΛ) =
∑
i∈Λ

∑
∆3i

1

|∆|
∑
ξ∆

c∆(ηΛ, ξ∆)[1ωΛ(ξ∆ηΛ\∆)− 1ωΛ(ηΛ)]

where the approximating rates are defined by c∆(ηΛ, ξ∆) =
∫
µ(dσ|ηΛ)c∆(ηΛσΛc , ξ∆) with µ the

time-stationary Gibbs measure for L. Note that also LΛ is well-defined. This construction in particular

8



implies, that µ as a measure on {1, . . . , q}Λ is invariant w.r.t. LΛ. Indeed, for every ωΛ we have

µ(LΛ1ωΛ) =
∑
i∈Λ

∑
∆3i

1

|∆|
∑
ξ∆

∑
ηΛ

µ(ηΛ)c∆(ηΛ, ξ∆)[1ωΛ(ξ∆ηΛ\∆)− 1ωΛ(ηΛ)]

=
∑
i∈Λ

∑
∆3i

1

|∆|
∑
ξ∆

∫
µ(dη)c∆(η, ξ∆)[1ωΛ(ξ∆ηΛ\∆)− 1ωΛ(ηΛ)] = 0.

Let (PLΛ
t )t≥0 denote the semigroup associated to LΛ, then by Jensen’s inequality applied to the

non-positive concave function Ψ(u) := −u log u+ u− 1 we have

hΛ(PLΛ
t ν|µ) = −

∑
ηΛ

µ(ηΛ)Ψ(
PLΛ
t ν(ηΛ)

µ(ηΛ)
) ≤ −

∑
ηΛ

µ(ηΛ)Ψ(
ν(ηΛ)

µ(ηΛ)
) = hΛ(ν|µ).

This is a standard argument for finite Markov processes, see for example [8, Theorem 3.A3]. Conse-
quently the derivative

d

dt |t=0
hΛ(PLΛ

t ν|µ) =
∑
i∈Λ

∑
∆3i

1

|∆|
∑
ξ∆

∑
ηΛ

ν(ηΛ)c∆(ηΛ, ξ∆) log
ν(ηΛ)µ(ξ∆∩ΛηΛ\∆)

ν(ξ∆∩ΛηΛ\∆)µ(ηΛ)

must be non-positive. What remains to show, is that the approximation of the dynamics is of boundary
order. But this is the case, we have

| d
dt |t=0

hΛ(PLt ν|µ)− d

dt |t=0
hΛ(PLΛ

t ν|µ)|

≤ sup
∆30

sup
η,ξ,σ
|c∆(ηΛσΛc , ξ∆)− c∆(η, ξ∆)|

∑
i∈Λ

∑
∆3i

1

|∆|
∑
ξ∆

∫
ν(dη)| log

ν(ηΛ)µ(ξ∆∩ΛηΛ\∆)

ν(ξ∆∩ΛηΛ\∆)µ(ηΛ)
|

where sup∆30 supη,ξ,σ |c∆(ηΛσΛc , ξ∆)−c∆(η, ξ∆)| tends to zero as Λ tends to Zd by the uniform
continuity condition on the rates. Note that by the chain rule of conditional expectations as well as the
non-nullness condition on ν and µ we have

ν(η∆∩Λ|ηΛ\∆)µ(ξ∆∩Λ|ηΛ\∆)

ν(ξ∆∩Λ|ηΛ\∆)µ(η∆∩Λ|ηΛ\∆)
≤ 1

ν(ξ∆∩Λ|ηΛ\∆)µ(η∆∩Λ|ηΛ\∆)
≤ 1

δ2|∆|

for some δ > 0. This implies

1

|Λ|
∑
i∈Λ

∑
∆3i

1

|∆|
∑
ξ∆

∫
ν(dη) log

ν(ηΛ)µ(ξ∆∩ΛηΛ\∆)

ν(ξ∆∩ΛηΛ\∆)µ(ηΛ)
≤ 2 log

1

δ

∑
∆30

q|∆| <∞.

Using the exact same argument, we also have

1

|Λ|
∑
i∈Λ

∑
∆3i

1

|∆|
∑
ξ∆

∫
ν(dη) log

ν(ξ∆∩ΛηΛ\∆)µ(ηΛ)

ν(ηΛ)µ(ξ∆∩ΛηΛ\∆)
≤ 2 log

1

δ

∑
∆30

q|∆| <∞.

This finishes the proof. 2

Let us remark, that instead of imposing the condition that L has only finitely many types of transitions,
a similar proof can be given if L has the minimal transition rate property.

3.2. Proof of Proposition 2.8. The finite-volume specific energy loss is given by

ρΛ
L(ν, µ) :=− 1

|Λ|
∑
σΛ

ν(L1σΛ) logµ(σΛ)

=
1

|Λ|
∑
i∈Λ

∫
ν(dη)

∑
∆3i

∫
1

|∆|
c(η, dξ∆) log

µ(η∆∩Λ|ηΛ\∆)

µ(ξ∆∩Λ|ηΛ\∆)
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On the other hand by translation-invariance the r.h.s. of (5) can be written as

1

|Λ|
∑
i∈Λ

∫
ν(dη)

∑
∆3i

∫
1

|∆|
c(η, dξ∆) log

γ∆(η∆|η∆c)

γ∆(ξ∆|η∆c)
=: RL(ν, µ).

Thus the finite-volume difference can be expressed as

RL(ν, µ)− 1

|Λ|
∑
ωΛ

ν(L1ωΛ) logµ(1ωΛ)

=
1

|Λ|
∑
i∈Λ

∑
∆3i

1

|∆|

∫
ν(dη)

∫
c(η, dξ∆) log

γ∆(η∆|η∆c)µ(ξ∆∩Λ|ηΛ\∆)

γ∆(ξ∆|η∆c)µ(η∆∩Λ|ηΛ\∆)

(6)

and it suffices to show that this difference tends to zero as Λ ↑ Zd. For any fixed ∆ b Zd with ∆ ⊂ Λ
we can estimate

γ∆(η∆|η∆c)µ(ξ∆|ηΛ\∆)

γ∆(ξ∆|η∆c)µ(η∆|ηΛ\∆)
=
γ∆(η∆|η∆c)µ(γΛ(ξ∆ηΛ\∆|σΛc))

γ∆(ξ∆|η∆c)µ(γΛ(η∆ηΛ\∆|σ̃Λc))

=
µ(

γ∆(ξ∆|ηΛ\∆σΛc )

γ∆(ξ∆|η∆c ) γΛ(ηΛ\∆|σΛc))

µ(
γ∆(η∆|ηΛ\∆σ̃Λc )

γ∆(η∆|η∆c ) γ∆(ηΛ\∆|σ̃Λc))
≤

supξ,η,σ
γ∆(ξ∆|ηΛ\∆σΛc )

γ∆(ξ∆|η∆c )

infη,σ̃
γ∆(η∆|ηΛ\∆σ̃Λc )

γ∆(η∆|η∆c )

.

By the chain rule for conditional probabilities and the non-nullness assumption we have
infη γ∆(η∆|η∆c) ≥ δ|∆| and hence

1− δ−‖∆||γ∆(ξ∆|ηΛ\∆σΛc)− γ∆(ξ∆|η∆c)| ≤
γ∆(ξ∆|ηΛ\∆σΛc)

γ∆(ξ∆|η∆c)

≤ 1 + δ−‖∆||γ∆(ξ∆|ηΛ\∆σΛc)− γ∆(ξ∆|η∆c)|
(7)

where left and right hand side tend to one by the quasilocality assumption on the specification uniformly
in the configurations.

For any Γ,Θ b Zd we can split the sum in (6) and write

1

|Λ|
∑
i∈Λ

∑
∆3i

1

|∆|

∫
ν(dη)

∫
c(η, dξ∆) log

γ∆(η∆|η∆c)µ(ξ∆∩Λ|ηΛ\∆)

γ∆(ξ∆|η∆c)µ(η∆∩Λ|ηΛ\∆)

=
1

|Λ|
∑

i∈Λ:Γ+i⊂Λ

∑
∆3i,∆⊂Θ+i

1

|∆|

∫
ν(dη)

∫
c(η, dξ∆) log

γ∆(η∆|η∆c)µ(ξ∆∩Λ|ηΛ\∆)

γ∆(ξ∆|η∆c)µ(η∆∩Λ|ηΛ\∆)

+
1

|Λ|
∑

i∈Λ:Γ+i⊂Λ

∑
∆3i,∆ 6⊂Θ+i

1

|∆|

∫
ν(dη)

∫
c(η, dξ∆) log

γ∆(η∆|η∆c)µ(ξ∆∩Λ|ηΛ\∆)

γ∆(ξ∆|η∆c)µ(η∆∩Λ|ηΛ\∆)

+
1

|Λ|
∑

i∈Λ:Γ+i 6⊂Λ

∑
∆3i

1

|∆|

∫
ν(dη)

∫
c(η, dξ∆) log

γ∆(η∆|η∆c)µ(ξ∆∩Λ|ηΛ\∆)

γ∆(ξ∆|η∆c)µ(η∆∩Λ|ηΛ\∆)

=: I + II + III.

For the boundary term III we can use

| log
γ∆(η∆|η∆c)µ(ξ∆∩Λ|ηΛ\∆)

γ∆(ξ∆|η∆c)µ(η∆∩Λ|ηΛ\∆)
| ≤ (|∆|+ |∆ ∩ Λ|) log

1

δ
≤ 2|∆| log

1

δ

and estimate

|III| ≤ 1

|Λ|
∑

i∈Λ:Γ+i 6⊂Λ

2 log
1

δ

∑
∆30

c∆ ≤
#{i ∈ Λ : Γ + i 6⊂ Λ}

|Λ|
2 log

1

δ

∑
∆30

c∆
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which tends to zero for Λ ↑ Zd. For the error term arising from the truncation of the rates represented
by II , pick Θ such that

∑
∆30,∆ 6⊂Θ c∆ < ε. As a consequence we have

|II| ≤ log
1

δ2

∑
∆30,∆ 6⊂Θ

c∆ < 2ε log
1

δ

by the same estimate as for III . Finally for the bulk term I we can pick Γ(Θ) such that, using the
estimate (7) for finitely many finite sets ∆ ⊂ Θ,

max
∆30,∆⊂Θ

|
∫
ν(dη)

∫
c(η, dξ∆) log

γ∆(η∆|η∆c)µ(ξ∆∩Λ|ηΛ\∆)

γ∆(ξ∆|η∆c)µ(η∆∩Λ|ηΛ\∆)
| < ε

for all Γ(Θ)⊂Λ− i. Hence

|I| = 1

|Λ|
∑

i∈Λ:Γ(Θ)⊂Λ−i

∑
∆30,∆⊂Θ

1

|∆|
|
∫
ν(dη)

∫
c(η, dξ∆) log

γ∆(η∆|η∆c)µ(ξ∆|ηΛ\∆)

γ∆(ξ∆|η∆c)µ(η∆|ηΛ\∆)
|

≤ ε
∑

∆30,∆⊂Θ

1

|∆|
= Const ε.

This finishes the representation part of the proof.

For the continuity let Γ b Zd then

ρL(ν, µ) =

∫
ν(dη)

∑
∆30,∆⊂Γ

∫
c(η, dξ∆)

1

|∆|
log

γ∆(η∆|η∆c)

γ∆(ξ∆|η∆c)

+

∫
ν(dη)

∑
∆30,∆ 6⊂Γ

∫
c(η, dξ∆)

1

|∆|
log

γ∆(η∆|η∆c)

γ∆(ξ∆|η∆c)
=: ρΓ

L(ν) + ρΓc

L (ν)

and the maps ν 7→ ρΓ
L(ν) is weakly continuous as a finite sum of weakly continuous functions by the

continuity of the rates and the quasilocality of the specification. The second summand can be bounded
from above and below by

− log
1

δ

∑
∆30,∆ 6⊂Γ

c∆ ≤ ρΓc

L (ν) ≤ log
1

δ

∑
∆30,∆ 6⊂Γ

c∆

which can be made arbitrarily small since we assumed
∑

∆30 c∆ <∞. Thus ρL(ν, µ) is continuous
as a uniform limit of continuous functions. 2

3.3. Proof of Theorem 2.9. The strategy of the proof is the following: We consider the entropy loss
before the volume limit Λ ↑ Zd and eliminate boundary terms in the summation over sites in Λ. The
bulk summation can be written as a sum of two terms, where additional rates are included in the
logarithm in such a way, that the entropy loss appears like a new relative entropy. The compensation
term is continuous and can be ignored. For a sequence of finite boxes with exponentially growing size,
the new relative entropy can be approximated by a non-increasing sequence of continuous functions
which in the volume limit gives the upper semicontinuity. The crucial ingredient for the monotonicity
is to subdivide given boxes into congruent subboxes, apply Jensen’s inequality and use translation
invariance.

For convenience let us write cσ∆
∆ (η) := c∆(η, σ∆) and recall c∆(η) :=

∑
σ∆
cσ∆

∆ (η), c∆ :=

supη c∆(η). The finite-volume unnormalized entropy loss is given by

gΛ
L(ν) :=

∑
σΛ

ν(L1σΛ) log ν(σΛ) =
∑
i∈Λ

∑
∆3i

1

|∆|
∑
σ∆

∫
ν(dη)cσ∆

∆ (η) log
ν(σ∆∩Λ|ηΛ\∆)

ν(η∆∩Λ|ηΛ\∆)

11



and note that by non-nullness of ν and the chain rule for conditional measures,

−|Λ| log
1

δ

∑
∆30

c∆ ≤ gΛ
L(ν) ≤ |Λ| log

1

δ

∑
∆30

c∆. (8)

Consider cubes of the form Λn := [−2n + 1, 2n − 1]d and Λ̃n := [−2n + n + 1, 2n − n − 1]d.
Further consider 2d disjoined and congruent subcubes ∆n,k of Λn with total side length 2n − 1

as well as 2d disjoined congruent subcubes ∆̃n,k of Λ̃n with total side length 2n − n − 1. Let the

subcubes be centered such that ∆̃n,k ⊂ ∆n,k. Moreover we will consider balls w.r.t. the Euclidian
norm Bn(i) := {j ∈ Zd : |i − j| ≤ n}. Let us take away boundary terms of the i-summation in
gΛ
L(ν) and define

g̃Λn
L (ν) =

∑
i∈Λ̃n

∑
∆3i

1

|∆|
∑
σ∆

∫
ν(dη)cσ∆

∆ (η) log
ν(σ∆∩Λn |ηΛn\∆)

ν(η∆∩Λn |ηΛn\∆)
.

Note that the error |gΛn
L (ν)− g̃Λn

L (ν)| is of boundary order o(|Λn|) which is immediate from equation

(8). Let us rewrite g̃Λn
L (ν) as a sum of two terms

g̃Λn
L (ν) =−

∑
i∈Λ̃n

∑
∆3i

1

|∆|
∑
σ∆

∫
ν(dη)cσ∆

∆ (η) log
ν(ηΛn)q|∆|cσ∆

∆ (η)

ν(σ∆∩ΛnηΛn\∆)c∆(η∆cσ∆)

+
∑
i∈Λ̃n

∑
∆3i

1

|∆|
∑
σ∆

∫
ν(dη)cσ∆

∆ (η) log
q|∆|cσ∆

∆ (η)

c∆(η∆cσ∆)
=: sn(L, ν) + rn(L, ν)

(9)

where the well-definedness of rn(L, ν) is guaranteed by the no-trap Condition 3 in Definition 2.4. By
translation invariance the density of the second summand is given by

lim
n↑∞

1

|Λn|
rn(L, ν) =

∑
∆30

1

|∆|
∑
σ∆

∫
ν(dη)cσ∆

∆ (η) log
q|∆|cσ∆

∆ (η)

c∆(η∆cσ∆)
=: r(L, ν)

and ν 7→ 〈ν, L〉 is continuous by the continuity of the rates and the finite-range property of L. Thus it
suffices to show upper semicontinuity for sn(L, ν).

Instead of sn(L, ν) we want to consider an approximation by using suitable rate truncations and
expressing the integral as a sum over suitable concave functions

fn(ν) :=
1

q|∆|

∑
i∈Λ̃n

∑
∆3i

1

|∆|
∑
σ∆

∑
ηΛn

ν(σ∆∩ΛnηΛn\∆)c̃∆(ηBn−1(i)\∆σBn−1(i)∩∆)

×Ψ[
1

ν(σ∆∩ΛnηΛn\∆)

∫
ν(dξ)1ηΛn

(ξ)
q|∆|cσ∆

∆ (ξ)

c∆(ξ∆cσ∆)
].

Here the truncated rates c̃σ∆
∆ (ηBn−1(i)) := infξ c

σ∆
∆ (ηBn−1(i)ξBn−1(i)c) depend only on the sites

in Bn−1(i) ⊂ Λn, c̃∆(ηBn−1(i)) :=
∑

σ∆
c̃σ∆

∆ (ηBn−1(i)) and Ψ(u) := −u log u + u − 1 is a
non-positive concave function. We will show that

1 limn↑∞ |Λn|−1fn(ν) = f(ν) exists and is upper semicontinuous by an application of Jensen’s
inequality w.r.t. a partial summation and

2 the error sn(L, ν)− fn(ν) is of boundary order.

This gives the upper semicontinuity of ν 7→ gL(ν).
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Step 1: First note since Ψ is non-positive and
⋃
k ∆̃n,k ( Λ̃n, by dropping some terms in the sum

we have the inequality

fn(ν) ≤ 1

q|∆|

2d∑
j=1

∑
i∈∆̃n,j

∑
∆3i

1

|∆|
∑
σ∆

∑
ηΛn

ν(σ∆∩ΛnηΛn\∆)c̃∆(ηBn−1(i)\∆σBn−1(i)∩∆)

×Ψ[
1

ν(σ∆∩ΛnηΛn\∆)

∫
ν(dξ)1ηΛn

(ξ)
q|∆|cσ∆

∆ (ξ)

c∆(ξ∆cσ∆)
]

=
1

q|∆|

2d∑
j=1

∑
i∈∆̃n,j

∑
∆3i

1

|∆|
∑
σ∆

∑
η∆n,j

c̃∆(ηBn−1(i)\∆σBn−1(i)∩∆)
∑

ηΛn\∆n,j

ν(σ∆∩ΛnηΛn\∆)

×Ψ[
1

ν(σ∆∩ΛnηΛn\∆)

∫
ν(dξ)1ηΛn

(ξ)
q|∆|cσ∆

∆ (ξ)

c∆(ξ∆cσ∆)
]

where we also used i ∈ ∆̃n,j , Bn−1(i) ⊂ ∆n,j to move the truncated rates in front of the sum over
configurations in Λn\∆n,j . There existsm ∈ N such that c∆ = 0 if 0 ∈ ∆ 6⊂ Bm−1(0) by the finite
range condition on L. For n ≥ m from ∆ 3 i and i ∈ ∆̃n,j follows ∆ ⊂ ∆n,j . Thus for n ≥ m,
by translation invariance of ν and the rates and an application of Jensen’s inequality w.r.t. the partial
sum over configurations in Λn \∆n,j to the concave function Ψ we have

fn(ν) ≤ 1

q|∆|

2d∑
j=1

∑
i∈∆̃n,j

∑
∆3i

1

|∆|
∑
σ∆

∑
η∆n,j

c̃∆(ηBn−1(i)\∆σBn−1(i)∩∆)ν(σ∆∩∆n,jη∆n,j\∆)

×Ψ[
1

ν(σ∆∩∆n,jη∆n,j\∆)

∫
ν(dξ)1η∆n,j

(ξ)
q|∆|cσ∆

∆ (ξ)

c∆(ξ∆cσ∆)
] ≤ 2dfn−1(ν).

Notice that in the last inequality we used that truncating the rates over smaller volumes only decreases
the rates which gives the upper bound by non-positivity of Ψ. To compensate for the different volumes

define G(n) :=
∏∞
l=n

(2l+2−2)d

(2l+2−1)d
which goes to one for n ↑ ∞, then

G(n)

(2n+1 − 1)d
fn(ν)

is non-increasing in n since fn(ν) ≤ 2dfn−1(ν) and thus

lim
n↑∞

G(n)

(2n+1 − 1)d
fn(ν) = f(ν) ≥ −∞

exists which implies limn↑∞
1
|Λn|fn(ν) = f(ν). Since ν 7→ fn(ν) is continuous ν 7→ f(ν) is upper

semicontinuous.
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Step 2: We show fn(ν) = sn(L, ν) + o(|Λn|). For n ≥ m let us start by decomposing Ψ in fn(ν),
we have

fn(ν) =
1

q|∆|

∑
i∈Λ̃n

∑
∆3i

1

|∆|
∑
σ∆

∑
ηΛn

ν(σ∆ηΛn\∆)c̃∆(ηBn−1(i)\∆σ∆)

×Ψ[
1

ν(σ∆ηΛn\∆)

∫
ν(dξ)1ηΛn

(ξ)
q|∆|cσ∆

∆ (ξ)

c∆(ξ∆cσ∆)
]

= −
∑
i∈Λ̃n

∑
∆3i

1

|∆|
∑
σ∆

∫
ν(dη)

c̃∆(ηBn−1(i)\∆σ∆)cσ∆
∆ (η)

c∆(η∆cσ∆)

× log[
1

ν(σ∆ηΛn\∆)

∫
ν(dξ)1ηΛn

(ξ)
q|∆|cσ∆

∆ (ξ)

c∆(ξ∆cσ∆)
]

+
∑
i∈Λ̃n

∑
∆3i

1

|∆|
∑
σ∆

∫
ν(dξ)

c̃∆(ξBn−1(i)\∆σ∆)cσ∆
∆ (ξ)

c∆(ξ∆cσ∆)

− 1

q|∆|

∑
i∈Λ̃n

∑
∆3i

1

|∆|
∑
σ∆

∑
ηΛn

ν(σ∆ηΛn\∆)c̃∆(ηBn−1(i)\∆σ∆).

(10)

The sum given by the last two lines on the right hand side of (10) is of boundary order. This can be
seen by rewriting this sum as∑

i∈Λ̃n

∑
∆3i

1

|∆|
[
∑
σ∆

∫
ν(dξ)

c̃∆(ξBn−1(i)\∆σ∆)cσ∆
∆ (ξ)

c∆(ξ∆cσ∆)
−
∑
ηΛn

ν(ηΛn)c̃∆(ηBn−1(i))]

=
∑
i∈Λ̃n

∑
∆3i

1

|∆|

∫
ν(dη)[

∑
σ∆

c̃∆(ηBn−1(i)\∆σ∆)cσ∆
∆ (η)

c∆(η∆cσ∆)
− c̃∆(ηBn−1(i))]

(11)

and showing that the term in square brackets goes to zero as n ↑ ∞ uniformly in η and i. But this is
the case, indeed if c∆ = 0 by the definition L, ∆ is not included in the summation and hence there is
nothing to show. If c∆ > 0 with ∆ 3 i we have for all η with c∆(η) > 0,

|
∑
σ∆

cσ∆
∆ (η)

c̃∆(ηBn−1(i)\∆σ∆)

c∆(η∆cσ∆)
− c̃∆(ηBn−1(i))|

≤ |
∑
σ∆

cσ∆
∆ (η)

c̃∆(ηBn−1(i)\∆σ∆)− c∆(η∆cσ∆)

c∆(η∆cσ∆)
|+ sup

η
|c∆(η)− c̃∆(ηBn−1(i))|

≤ sup
η
|c∆(η)− c̃∆(ηBn−1(i))|

∑
σ∆

cσ∆
∆ (η)

c∆(η∆cσ∆)
+ sup

η
|c∆(η)− c̃∆(ηBn−1(i))|

where∑
σ∆

cσ∆
∆ (η)

c∆(η∆cσ∆)
=

∑
σ∆:c

σ∆
∆ (η)>0

cσ∆
∆ (η)

c∆(η∆cσ∆)
≤ c∆(η)

minσ∆:c
σ∆
∆ (η)>0 c∆(η∆cσ∆)

≤ sup
η:c∆(η)>0

c∆(η)

minσ∆:c
σ∆
∆ (η)>0 c∆(η∆cσ∆)

≤ c∆

infη,σ∆:c
σ∆
∆ (η)>0 c∆(η∆cσ∆)

which is finite by Condition 4 in Definition 2.4. Hence by the uniform continuity of the rates (11) is of
boundary order.
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It remains to compare the first line on the right hand side of (10) with sn(L, ν). This amounts to
showing that for all i ∈ Λ̃n∑

∆3i

1

|∆|
∑
σ∆

∫
ν(dη)cσ∆

∆ (η) log
ν(ηΛn)q|∆|cσ∆

∆ (η)

ν(σ∆∩ΛnηΛ\∆)c∆(η∆cσ∆)

−
∑
∆3i

1

|∆|
∑
σ∆

∫
ν(dη)

c̃∆(ηBn−1(i)\∆σ∆)cσ∆
∆ (η)

c∆(η∆cσ∆)
log[

∫
ν(dξ)

1ηΛn
(ξ)q|∆|cσ∆

∆ (ξ)

ν(σ∆ηΛn\∆)c∆(ξ∆cσ∆)
]

tends to zero as n ↑ ∞. Adding and subtracting the mixed term we first show boundary order of

−
∑
∆3i

1

|∆|
∑
σ∆

∫
ν(dη)cσ∆

∆ (η) log[

∫
ν(dξ|ηΛn)

cσ∆
∆ (ξΛcnηΛn)c∆(η∆cσ∆)

cσ∆
∆ (η)c∆(ξΛcnηΛn\∆σ∆)

]...

Define the minimal transition rate guaranteed by Condition 4 in Definition 2.4 as cmin
∆ then for the lower

bound

cσ∆
∆ (ξΛcnηΛn)

cσ∆
∆ (η)

≤ 1 +
1

cmin
∆

sup
η,ξ,σ∆

|cσ∆
∆ (ηΛnξΛcn)− cσ∆

∆ (η)| and

c∆(η∆cσ∆)

c∆(ξΛcnηΛn\∆σ∆)
≤ 1 +

1

cmin
∆

sup
η,ξ
|c∆(ηΛnξΛcn)− c∆(η)|

(12)

and similar from below for the upper bound. This yields the boundary order.

Secondly we show boundary order of∑
∆3i

1

|∆|
∑
σ∆

∫
ν(dη)cσ∆

∆ (η) log[

∫
ν(dξ)

1ηΛn
(ξ)q|∆|cσ∆

∆ (ξ)

ν(σ∆ηΛn\∆)c∆(ξ∆cσ∆)
]

−
∑
∆3i

1

|∆|
∑
σ∆

∫
ν(dη)

c̃∆(ηBn−1(i)\∆σ∆)cσ∆
∆ (η)

c∆(η∆cσ∆)
log[

∫
ν(dξ)

1ηΛn
(ξ)q|∆|cσ∆

∆ (ξ)

ν(σ∆ηΛn\∆)c∆(ξ∆cσ∆)
].

Note that by equation (11) the second summand equals fn(ν) + o(|Λn|) where fn(ν) is written in
terms of the function Ψ. We want to write also the first summand in terms of Ψ. We have for all ∆ 3 i∑

σ∆

∫
ν(dη)cσ∆

∆ (η) log[

∫
ν(dξ)

1ηΛn
(ξ)q|∆|cσ∆

∆ (ξ)

ν(σ∆ηΛn\∆)c∆(ξ∆cσ∆)
]

= − 1

q|∆|

∑
σ∆

∫
ν(dη)

cσ∆
∆ (η)ν(σ∆ηΛn\∆)∫
ν(dξ)

1ηΛn
(ξ)c

σ∆
∆ (ξ)

c∆(ξ∆cσ∆)

Ψ[

∫
ν(dξ)

1ηΛn
(ξ)q|∆|cσ∆

∆ (ξ)

ν(σ∆ηΛn\∆)c∆(ξ∆cσ∆)
]

+

∫
ν(dη)c∆(η)− 1

q|∆|

∑
σ∆

∫
ν(dη)

cσ∆
∆ (η)ν(σ∆ηΛn\∆)∫
ν(dξ)

1ηΛn
(ξ)c

σ∆
∆ (ξ)

c∆(ξ∆cσ∆)

.

(13)

The last line is of boundary order. Indeed it can be rexpressed as∑
ηΛn

ν(ηΛn)c̃∆(ηΛn)

∫
ν(dη|ηΛn)

c∆(η)

c̃∆(ηΛn)

− 1

q|∆|

∑
σ∆

∑
ηΛn

ν(σ∆ηΛn\∆)c̃∆(ηΛn\∆σ∆)

∫
ν(dη|ηΛn)cσ∆

∆ (η)∫
ν(dξ|ηΛn)

c
σ∆
∆ (ηΛnξΛcn )c̃∆(ηΛn\∆σ∆)

c∆(ξΛcnηΛn\∆σ∆)
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where
∑

ηΛn
ν(ηΛn)c̃∆(ηΛn) − 1

q|∆|

∑
σ∆

∑
ηΛn

ν(σ∆ηΛn\∆)c̃∆(ηΛn\∆σ∆) = 0. Hence it suf-
fices to note that

|
∫
ν(dη|ηΛn)

c∆(η)

c̃∆(ηΛn)
− 1| ≤

∫
ν(dη|ηΛn)|c∆(η)− c̃∆(ηΛn)

c̃∆(ηΛn)
|

≤ 1

cmin
∆

sup
η
|c̃∆(ηΛn)− c∆(η)|

(14)

tends to zero as n ↑ ∞ and also

|
∫
ν(dη|ηΛn)cσ∆

∆ (η)∫
ν(dξ|ηΛn)

c
σ∆
∆ (ηΛnξΛcn )c̃∆(ηΛn\∆σ∆)

c∆(ξΛcnηΛn\∆σ∆)

− 1|

≤
∫
ν(dη|ηΛn)

∫
ν(dξ|ηΛn)|1− c

σ∆
∆ (ηΛnξΛcn )c̃∆(ηΛn\∆σ∆)

c
σ∆
∆ (η)c∆(ξΛcnηΛn\∆σ∆)

|∫
ν(dξ|ηΛn)

c
σ∆
∆ (ηΛnξΛcn )c̃∆(ηΛn\∆σ∆)

c
σ∆
∆ (η)c∆(ξΛcnηΛn\∆σ∆)

which also tends to zero as n ↑ ∞ as can be seen by the estimates given in (12). Hence all that
remains is to compare the first line on the right hand side of (13) with fn(ν). This can be written as

1

q|∆|

∑
i∈Λ̃n

∑
∆3i

1

|∆|
∑
σ∆

∑
ηΛn

ν(σ∆ηΛn\∆)c̃∆(ηBn−1(i)\∆σ∆)

×Ψ[

∫
ν(dξ)

1ηΛn
(ξ)q|∆|cσ∆

∆ (ξ)

ν(σ∆ηΛn\∆)c∆(ξ∆cσ∆)
][1−

∫
ν(dη|ηΛn)cσ∆

∆ (η)∫
ν(dξ|ηΛn)

c
σ∆
∆ (ξΛcnηΛn )c̃∆(ηBn−1(i)\∆σ∆)

c∆(ξΛcnηΛn\∆σ∆)

].
(15)

Notice, that by the estimates given in (12)

a1(n) ≤ 1−
∫
ν(dη|ηΛn)cσ∆

∆ (η)∫
ν(dξ|ηΛn)

c
σ∆
∆ (ξΛcnηΛn )c̃∆(ηBn−1(i)\∆σ∆)

c∆(ξΛcnηΛn\∆σ∆)

≤ a2(n)

where a1(n) and a2(n) tend to zero as n tends to infinity. Thus the term in (15) is bounded from above
by a1(n)fn(ν) and from below by a2(n)fn(ν). From step one we know that the limit
limn↑∞ |Λn|−1fn(ν) ≥ −∞ exists. If limn↑∞ |Λn|−1fn(ν) > −∞ then the term in
(15) tends to zero as n tends to infinity. The case limn↑∞ |Λn|−1fn(ν) = −∞ implies
limn↑∞ |Λn|−1sn(L, ν) = −∞. This completes the proof. 2

3.4. Proof of Corollary 2.10. Note that by Lemma 2.6, Proposition 2.8 and Theorem 2.9 we have

0 = lim
k↑∞

gL(νtk |µ) = lim
k↑∞

gL(νtk) + ρL(ν∗, µ) ≤ gL(ν∗) + ρL(ν∗, µ) = gL(ν∗|µ) ≤ 0.

Thus gL(ν∗|µ) = 0 and by Condition 2.7 we have ν∗ ∈ G(γ). 2

3.5. Proof of Theorem 2.11. Inspecting the proof of Theorem 2.9 we see that the non-nullness as-
sumption on ν appears only in one place, namely in the boundedness of gΛ

L(ν) given in (8). Note that

the upper and lower bound is only used in order to establish boundary order of |gΛn
L (ν) − g̃Λn

L (ν)|.
For this theorem we only need to prove gΛn

L (ν) ≤ g̃Λn
L (ν) which can be seen using log x ≤ x. More
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precisely we have

gΛn
L (ν)− g̃Λn

L (ν) =
∑

i∈Λn\Λ̃n

∑
∆3i

1

|∆|
∑
σ∆

∫
ν(dη)cσ∆

∆ (η) log
ν(σ∆∩Λn |ηΛn\∆)

ν(η∆∩Λn |ηΛn\∆)

≤
∑

i∈Λn\Λ̃n

∑
∆3i

1

|∆|
∑
σ∆

∑
ηΛn

∫
ν(dη|ηΛn)cσ∆

∆ (η)ν(σ∆∩ΛnηΛn\∆)

≤
∑
∆30

1

|∆|
c∆q

|∆||Λn \ Λ̃n| = o(|Λn|).

The existence and upper semicontinuity of g̃L(ν) is what is in fact proven in Theorem 2.9. 2

3.6. Proof of Corollary 2.13. Note that by Lemma 2.6, Proposition 2.8 and Theorem 2.11 we have

0 = lim
k↑∞

gL(νtk |µ) = lim
k↑∞

gL(νtk) + ρL(ν∗, µ) ≤ lim
k↑∞

g̃L(νtk) + ρL(ν∗, µ)

≤ g̃L(ν∗) + ρL(ν∗, µ) = g̃L(ν∗|µ).

Since by Condition 2.12 also g̃L(ν∗|µ) ≤ 0 we have g̃L(ν∗|µ) = 0 and thus again by Condition
2.12, ν∗ is a Gibbs measure for γ. 2

3.7. Proof of Proposition 2.15. The first part of the proof is similar to the proof of Theorem 2.9.
Recall that in (9) we write g̃Λn

L (ν) as a sum of two terms. To simplify notation let us assume n to be
large enough such that

∑
∆30:∆6⊂Bn−1(0) c∆ = 0. This can be done without loss of generality since

we are interested in the large n limit and L is assumed to have the property that there are only finitely
many types of transitions.

Since we are now in a reversible setting it is more convenient to extend g̃Λn
L (ν) in the following way

g̃Λn
L (ν) =−

∑
i∈Λ̃n

∑
∆3i

1

|∆|
∑
σ∆

∫
ν(dη)cσ∆

∆ (η) log
ν(ηΛn)cσ∆

∆ (η)

ν(σ∆ηΛn\∆)cη∆
∆ (η∆cσ∆)

+
∑
i∈Λ̃n

∑
∆3i

1

|∆|
∑
σ∆

∫
ν(dη)cσ∆

∆ (η) log
cσ∆

∆ (η)

cη∆
∆ (η∆cσ∆)

=: sn(L, ν) + rn(L, ν)

where, by the continuity of the rates

lim
n↑∞

1

|Λn|
rn(L, ν) =

∑
∆30

1

|∆|
∑
σ∆

∫
ν(dη)cσ∆

∆ (η) log
cσ∆

∆ (η)

cη∆
∆ (η∆cσ∆)

=: r(L, ν).

Note that sn(L, ν) is still well-defined since by the reversibility assumption cσ∆
∆ (η) > 0 implies that

cη∆
∆ (η∆cσ∆) > 0. Indeed, the reversibility implies that for all ηΛ and σ∆ with ∆ ⊂ Λ∫

µ(dξ)γΛ(ηΛ|ξΛc)c
σ∆
∆ (ξΛcηΛ) =

∫
µ(dξ)γΛ(ηΛ\∆σ∆|ξΛc)c

η∆
∆ (ξΛcηΛ\∆σ∆). (16)

Hence, if cσ∆
∆ (η) > 0 by the continuity also cσ∆

∆ (ξΛcηΛ) > 0 for any ξ, for a large enough vol-
ume Λ. Further since the specification is assumed to be non-null, also cη∆

∆ (ξΛcηΛ\∆σ∆) > 0 and
cη∆

∆ (η∆cσ∆) > 0 for any ξ, for the same large volume Λ.

The reversibility in particular implies that r(L, ν) + ρ(ν, µ) = 0, i.e.

0 =
∑
∆30

1

|∆|
∑
σ∆

∫
ν(dη)cσ∆

∆ (η) log
cσ∆

∆ (η)γ∆(η∆|η∆c)

cη∆
∆ (η∆cσ∆)γ∆(σ∆|η∆c)

.
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This can be seen in the following way. As a consequence of (16) we have

γ∆(η∆|η∆c)cσ∆
∆ (η)

γ∆(σ∆|η∆c)cη∆
∆ (η∆cσ∆)

=

∫
µ(dξ)

γ∆(σ∆|ηΛ\∆ξΛc )c
η∆
∆ (ξΛcηΛ\∆σ∆)

γ∆(σ∆|η∆c )c
η∆
∆ (η∆cσ∆)∫

µ(dξ)
γ∆(η∆|ηΛ\∆ξΛc )c

σ∆
∆ (ξΛcηΛ)

γ∆(η∆|η∆c )c
σ∆
∆ (η)

.

where the right hand side tends to one as Λ tends to infinity by the continuity and non-nullness as-
sumptions on the rates as well as on the specification.

In other words, in a reversible setting, g̃L(ν|µ) := limn↑∞
1
|Λn|sn(L, ν). Very similar to the proof of

Theorem 2.9, one can show, using Jensen’s inequality, that in the limit as n tends to infinity, sn(L, ν)
can be replaced by

fn(ν) :=
∑
i∈Λ̃n

∑
∆3i

1

|∆|
∑
σ∆

∑
ηΛn

ν(σ∆ηΛn\∆)c̃η∆
∆ (ηBn−1(i)\∆σ∆)

×Ψ[
1

ν(σ∆ηΛn\∆)

∫
ν(dξ)1ηΛn

(ξ)
cσ∆

∆ (ξ)

cη∆
∆ (ξ∆cσ∆)

].

where anfn(ν), with an > 0 some volume-factor, is a non-increasing sequence of non-positive
functions. Since Ψ ≤ 0 this in particular implies that g̃L(ν|µ) exists and g̃L(ν|µ) ≤ 0, which is the
first statement of the proposition.

As for the second statement, assume that g̃L(ν|µ) = 0 which then implies that fn(ν) = 0 for every
large n. Consequently, for all i ∈ Λ̃n, ∆ 3 i, σ∆ and ηΛn we have

ν(σ∆ηΛn\∆)c̃η∆
∆ (ηBn−1(i)\∆σ∆)Ψ[

1

ν(σ∆ηΛn\∆)

∫
ν(dξ)

1ηΛn
(ξ)cσ∆

∆ (ξ)

cη∆
∆ (ξ∆cσ∆)

] = 0. (17)

Let us assume c̃η∆
∆ (ηBn−1(i)\∆σ∆) > 0 and note, as above, that this implies

cη∆
∆ (ξΛcnηΛn\∆σ∆) > 0 and cσ∆

∆ (ξΛcnηΛn) > 0 for all ξ, by continuity and reversibility. Under this
assumption from ν(ηΛn) = 0 it must follow ν(σ∆ηΛn\∆) = 0 since otherwise

ν(σ∆ηΛn\∆)c̃η∆
∆ (ηBn−1(i)\∆σ∆)Ψ[

1

ν(σ∆ηΛn\∆)

∫
ν(dξ)

1ηΛn
(ξ)cσ∆

∆ (ξ)

cη∆
∆ (ξ∆cσ∆)

] < 0.

In other words, whenever a jump is possible from a configuration ηΛn to a configuration σ∆ηΛn\∆
then ν(ηΛn) = 0 implies ν(σ∆ηΛn\∆) = 0. By the condition that L is irreducible this implies that
from ν(ηΛn) = 0 it follows that ν(ξΛ̃n

ηΛn\Λ̃n) = 0 for all ξΛ̃n
. Further assume ν(ηΛn) = 0

for some ηΛn . Let m ≥ n be such that Λ̃m ⊃ Λn, then it follows ν(ξΛm\ΛnηΛn) = 0 for all
ξΛm\Λn . Consequently ν(ξΛm\ΛnξΛn) = 0 for all ξΛn and thus ν(ξΛn) = 0 for all ξΛn which is a
contradiction. Hence ν(ηΛn) > 0 for all ηΛn .

Finally, let η by given with c̃η∆
∆ (ηBn−1(i)\∆σ∆) > 0, then using (17) and the reversibility (16), we

have

1 =

∫
ν(dξ|ηΛn)

cσ∆
∆ (ηΛnξΛcn)ν(η∆|ηΛn\∆)

cη∆
∆ (ξΛcnηΛn\∆σ∆)ν(σ∆|ηΛn\∆)

=

∫
ν(dξ|ηΛn)

γ∆(σ∆|ηΛn\∆ξΛcn)ν(η∆|ηΛn\∆)

γ∆(η∆|ηΛn\∆ξΛcn)ν(σ∆|ηΛn\∆)
.

By martingale convergence, this implies that ν almost surely

γ∆(η∆|η∆c)

γ∆(σ∆|η∆c)
=
ν(η∆|η∆c)

ν(σ∆|η∆c)
. (18)
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Again by the assumption that L is irreducible the above equation is true for ν almost all η and σ∆ ∈
{1, . . . , q}∆. Recall the following general fact: Let (a1, ...aq) and (b1, ....., bq) be probability vectors

with al
ak

= bl
bk

for all k, l ∈ {1, ....., q} then

al =
al∑q
k=1 ak

=
1

1 +
∑

k 6=l
ak
al

=
1

1 +
∑

k 6=l
bk
bl

= bl.

Hence (18) implies γ∆(σ∆|η∆c) = ν(σ∆|η∆c) for ν almost all η and σ∆ ∈ {1, . . . , q}∆. But this
implies that ν is a Gibbs measure for the specification γ. 2
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