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Abstract

We show the velocity solutions to the convective, skew-symmetric, and rota-
tional Galerkin finite element formulations of the Navier-Stokes equations are iden-
tical if Scott-Vogelius elements are used, and thus all three formulations will the
same pointwise divergence free solution velocity. A connection is then established
between the formulations for grad-div stabilized Taylor-Hood elements: under mild
restrictions, the formulations’ velocity solutions converge to each other (and to the
Scott-Vogelius solution) as the stabilization parameter tends to infinity. Thus the
benefits of using Scott-Vogelius elements can be obtained with the less expensive
Taylor-Hood elements, and moreover the benefits of all the formulations can be re-
tained if the rotational formulation is used. Numerical examples are provided that
confirm the theory.

1 Introduction

We consider finite element formulations of the Navier-Stokes equations (NSE), and
for simplicity we restrict to the equilibrium case with homogeneous Dirichlet boundary
conditions on a polygonal or polyhedral domain Ω,

u ·∇u+∇p−ν∆u = f in Ω, (1.1)

∇ ·u = 0 in Ω, (1.2)

u = 0 on ∂Ω, (1.3)

where u is velocity, and p is the zero mean pressure. The results herein are easily
extendable to the time-dependent case and more general boundary conditions.

We prove that when computing solutions to the Galerkin finite element method for (1.1)-
(1.3) using Scott-Vogelius (SV) elements (see below for a detailed description), the
velocity solutions obtained by convective, skew-symmetric, and rotational (1.8)-(1.9)
formulations are identical. For general LBB stable elements, these formulations can
give very different answers [10], and thus this result shows that if one formulation is
attractive for a particular problem (e.g. type of flow, use of particular preconditioners,
conservation properties, etc.), then using SV elements can alleviate adverse conse-
quences due to the chosen formulation. This equivalence result is then used to prove
our second result, which establishes a new connection between the formulations for
grad-div stabilized Taylor-Hood (TH) elements. We prove that under mild restrictions,
as the stabilization parameter tends to infinity, the velocity solutions of the formulations
all converge to the SV solution, and thus to each other.
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The difference in accuracy between different discrete NSE formulations is well docu-
mented, and is not restricted to finite element formulations. In [5, 6], Horiuti and Itami
found using finite difference methods that discretization errors in near wall regions can
be worse with rotational form, causing overall accuracy to suffer. Zang, in [16], found
in spectral methods, rotational form usage can lead to greater aliasing errors, although
for (Pk,Pk−2) spectral elements, although Wilhelm and Kleiser found that instabilities
can occur if the rotational form is not used. In the finite element context, even though
matrix properties of the rotational form can allow for better preconditioning of the re-
sulting linear systems [1, 2], its use of Bernoulli pressure can result in larger error in
both pressure and velocity solutions [10]. The results herein show how, in a particular
(although not restrictive) setting, the best features of each of the formulations can be
retained, even using the less expensive TH elements.

Denote the L2(Ω) inner product by (·, ·), and with LBB stable finite dimensional spaces
(Xh,Qh) ⊂ (H1

0(Ω),L2
0(Ω)). Listed below are the three common finite element formula-

tions of (1.1)-(1.3): Find (uh, ph) ∈ (Xh,Qh) satisfying ∀(vh,qh) ∈ (Xh,Qh),

Convective Form:

(uh ·∇uh,vh)− (ph,∇ · vh)+ν(∇uh,∇vh) = ( f ,vh) (1.4)

(∇ ·uh,qh) = 0 (1.5)

Skew-symmetric Form:

(uh ·∇uh,vh)+
1
2
((∇ ·uh)uh,vh)− (ph,∇ · vh)+ν(∇uh,∇vh) = ( f ,vh) (1.6)

(∇ ·uh,qh) = 0 (1.7)

Rotational Form:

((∇×uh)×uh,vh)− (ph,∇ · vh)+ν(∇uh,∇vh) = ( f ,vh) (1.8)

(∇ ·uh,qh) = 0 (1.9)

Each of the formulations arises from a consistent variational formulation of (1.1)-(1.2),
followed by the usual Galerkin finite element discretization procedure. Skew symmetry
adds an additional term to the convective formulation to enforce unconditional stability,
and rotational form arises from the identity

u ·∇u = (∇×u)×u+
1
2

∇|u|2 (1.10)

being applied at the continuous level, then forming the Bernoulli pressure P = p+ 1
2|u|

2.
Thus the pressure ph in (1.9) approximates P, but in (1.7) and (1.5) it approximates p.

1.1 Scott-Vogelius elements

Scott-Vogelius elements have recently become interesting for approximating NSE so-
lutions due to results of Zhang [17] and Burman and Linke [3]. Zhang showed that the
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((Pk)
d
,Pdisc

k−1) element pair is LBB stable with optimal approximation properties provided
k ≥ d and the mesh is constructed as a barycenter refinement of a quasi-uniform mesh
(a mild restriction). With SV elements, the weak enforcement of mass conservation
provides pointwise mass conservation. This is because ∇ ·Xh ⊂ Qh, and thus one can
choose the special test function qh = ∇ ·uh (in (1.5),(1.7), or (1.9), resulting in

‖∇ ·uh‖ = 0 =⇒ ∇ ·uh = 0.

In general, e.g for TH elements, such a choice of test functions is not possible. We note
a drawback of these elements is the use of a discontinuous pressure space, which
leads to significantly larger linear systems.

Work in [3, 12, 4] has shown that using the SV element pair can provide excellent re-
sults for approximating NSE solutions, as well as providing pointwise mass conserva-
tion. Moreover, it can be shown that with SV elements, the velocity error is independent
of the pressure error, whereas for most element choices the velocity error can be scaled
(at least) by Re∗ pressureError [9, 10].

Since only in the case of k ≥ d and the mesh condition are SV elements known to be
LBB stable with optimal approximation properties, all references to SV elements will
assume these restrictions are met.

2 A equivalence theorem for the formulations with SV
elements

We now prove the equivalence of the velocities of the three formulations.

Theorem 2.1. Suppose SV elements are used to solve the problems (1.4)-(1.5), (1.6)-
(1.7), and (1.8)-(1.9), and the data (Ω, f ,ν) is such that the formulations have unique
solutions. Then the velocity solutions of these problems are identical.

Remark 2.1. Using the theorem, it is trivial to show the pressures are the same for the
convective and skew-symmetric formulations. However, this is not true for the rotational
form pressure since it approximates the Bernoulli pressure.

Proof. The equivalence of the convective and skew-symmetric forms is trivial, since
we have that ∇ · uh = 0 and thus 1

2((∇ · uh)uh,vh) = 0 in (1.6). Since this makes the
two formulations identical, solution uniqueness of each formulation guarantees that
computed velocity solutions of these two formulations must be identical as well.

For the equivalence of the rotational form’s velocity, since (Xh,Qh) is LBB stable, we
pass to the equivalent Vh formulations, where the velocity is searched for in

Vh := {vh ∈ Xh : (∇ · vh,qh) = 0 ∀qh ∈ Qh},

and the test functions are restricted to be in Vh. Thus consider

Vh convective form: (uh ·∇uh,vh)+ν(∇uh,∇vh) = ( f ,vh) ∀vh ∈Vh, (2.1)

Vh rotational form: ((∇×uh)×uh,vh)+ν(∇uh,∇vh) = ( f ,vh) ∀vh ∈Vh. (2.2)
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Using the vector identity (1.10), these two formulations are identical since Vh contains
only pointwise div-free functions and vh ∈ H1

0 :

((∇×uh)×uh,vh) = (uh ·∇uh,vh)−
1
2
(∇|uh|

2
,vh)

= (uh ·∇uh,vh)+
1
2
(|uh|

2
,∇ · vh)−

1
2

∫

∂Ω
|uh|

2(vh ·n)ds

= (uh ·∇uh,vh). (2.3)

Therefore we have that these formulations are equivalent, and since solutions exist
uniquely, their respective velocity solutions must be identical.

2.1 Numerical verification

We present here a numerical example to verify Theorem 2.1. The test problem we
consider has solution

u =

(

2x2(x−1)2y(2y−1)(y−1)
−2x(x−1)(2x−1)y2(y−1)2

)

, p = y,

and was taken from [8]. A plot of the true solution in given in figure 1.
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Figure 1: LEFT: Velocity vector field and pressure contours of true solution for the
numerical experiments; RIGHT: The mesh used for first numerical experiment

Using ν = 0.01, we calculate f from the NSE and the selected solution. Then using
the domain Ω = (0,1)2, use it to solve each of the three formulations (1.4)-(1.5), (1.6)-
(1.7), and (1.8)-(1.9), we use ((P2)

2
,Pdisc

1 ) elements and a Newton method. The mesh,
shown in Figure 1, is a barycenter refinement of a quasi-uniform mesh, which provided
3,300 total degrees of freedom. Denoting the computed velocity solutions by ucon

h , uss
h ,

and urot
h , respectively, we found the SV velocity solutions are identical up to machine

precision, as predicted by Theorem 2.1:

‖uss
h −ucon

h ‖ = 1.063E −16, ‖urot
h −ucon

h ‖ = 8.403E −17
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3 A connection between formulations using Taylor-Hood
elements

Recent work in [10, 14] has shown that when using TH elements, accuracy and physical
fidelity can be increased through the use of grad-div stabilization, that is, adding the
term γ(∇ · uh,∇ · vh) to (1.4), (1.6), (1.8). This term, which can be derived for use in
the discrete scheme by adding 0 = −γ∇(∇ ·u) to the continuous NSE, and also arises
in the SUPG formulations, penalizes for lack of mass conservation and relaxes the
effect of the pressure error on the velocity error. Since rotational form uses Bernoulli
pressure, which is typically much more complex than usual pressure, this stabilization
seems natural and has proven quite effective when the rotational formulation is used
[10]. Although its effect is less dramatic when used with the other formulations, grad-div
stabilization can still have a significant positive effect [13, 7].

Related work in [4] has shown that on a barycentric mesh and for k ≥ d, the grad-
div stabilized skew-symmetric form solutions corresponding to a sequence of grad-div
stabilization parameters γi → ∞, converge to the convective form SV solution, when the
SV solution is unique; otherwise convergence is for a subsequence to a SV solution.
This leads us to the following result.

Theorem 3.1. Suppose the mesh is a barycenter refinement of a quasi-uniform mesh,
and grad-div stabilized TH elements with k ≥ dim are used to solve (1.6)-(1.7), and
(1.8)-(1.9). If the solution to (1.4)-(1.5) using SV elements (with the same k) is unique,
then for any sequence of stabilization parameters γi →∞, the corresponding sequences
of grad-div stabilized TH velocity solutions of the skew-symmetric and rotational formu-
lations converge to each other and to the SV solution.

Remark 3.1. For TH elements, the skew-symmetric formulation should be used in place
of the convective formulation for unconditionally stable, as the convective formulation is
(only) conditionally stable, e.g. for h small enough [11]. Thus for h small enough, Theo-
rem 3.1 can be extended to include the convective formulation. Moreover, following [4],
in this case one can show the sequence of modified pressures pγi

h := ph + γi(∇ ·uh) of
the the convective and skew symmetric formulations converge to each other and to the
SV pressure of the convective formulation.

Proof. For either the rotational or skew symmetric formulations with grad-div stabiliza-
tion and TH elements, taking vh = uh gives the a priori bound

ν‖∇uh‖
2 + γi‖∇ ·uh‖

2 ≤C(data), (3.1)

for any γi chosen from the sequence. Thus both sequences {uss,i
h }i and {urot,i

h }i are
bounded and therefore have convergent subsequences, and moreover their limits must
be divergence free.

Denote by U rot
h the limit of the convergent subsequence {{urot

h }i} j, and consider the Vh

formulation satisfied by an element of the subsequence urot, j
h ,

ν(∇urot, j
h ,∇vh)+γ j(∇ ·urot, j

h ,∇ ·vh)+((∇×urot, j
h )×urot, j

h ,vh) = ( f ,vh) ∀vh ∈V T H
h . (3.2)
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Since V SV
h ⊂ V T H

h , we can restrict vh ∈ V SV
h in (3.2). This vanishes the grad-div term,

and then using the uniform boundedness and finite dimensionality of urot, j
h , we can take

the limit as γ j → ∞ to get

ν(∇U rot
h ,∇vh)+(U rot

h ·∇U rot
h ,vh) = ( f ,vh) ∀vh ∈V SV

h . (3.3)

Now by (3.1), ∇ ·U rot
h = 0. Since U rot

h ∈ XT H
h = XSV

h , and is divergence free, U rot
h ∈V SV

h ,
and by (3.3) also satisfies the Vh convective formulation of the NSE with SV elements.
Thus U rot

h is a rotational form SV solution, and by assumption and Theorem 2.1, U rot
h

is the SV solution. Therefore all convergent subsequences of {urot,i
h }i must converge to

the SV solution, and hence so must the entire sequence.

From [4] and Theorem 2.1, we have that the entire sequence of skew-symmetric solu-
tions also converges to the SV solution. Thus both the skew symmetric and rotational
forms’ sequences of velocity solutions converge to the same limit, and thus the theorem
is proven.

3.1 Numerical verification

To experimentally verify Theorem 3.1, we use the same test problem as in Section 2.
For γi = {0, 1, 10, 100, 1,000, 10,000}, we find solutions to all three grad-div stabilized
TH formulations, then calculate the differences between their velocity solutions. Results
are given in Table 1, and confirm the theory.

γ ‖uss
h,γ −ucon

h,γ ‖ ‖uss
h,γ −urot

h,γ‖ ‖uSV −uss
h,γ‖ ‖∇ ·uss

h,γ‖

0 1.3569E-06 2.7352E-04 2.8780E-04 1.5530E-02
1 1.5149E-08 6.9127E-06 6.9911E-06 2.1946E-04

10 1.5472E-09 7.2828E-07 7.3620E-07 2.2585E-05
100 1.5506E-10 7.3227E-08 7.4022E-08 2.2654E-06

1,000 1.5477E-11 7.3267E-09 7.4062E-09 2.2661E-07
10,000 6.3895E-12 7.3306E-10 7.4106E-10 2.2661E-08

Table 1: Convergence of the grad-div stabilized TH solutions for the different formula-
tions toward each other, toward the SV solution, and toward a divergence free velocity
field as γ → ∞.

4 Further extensions

It is important to note that the results herein can easily be extended to the time-
dependent case. With the restriction that the time-step be small enough to ensure solu-
tion uniqueness, analogous theorems can be proven in a similar manner to those herein
for the steady case. Moreover, these results are also extendable to time-dependent
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equations that include NSE-type systems where velocity-pressure is approximated by
LBB stable element pairs, e.g. the α models of turbulence, and MHD.

One important extension is for general TH elements, i.e. not on a barycenter refined
mesh or k = 2 in 3D. In this case, similar proofs hold, with the limit solution living in
the divergence free subspace of the velocity spaces. However, one cannot expect this
limit solution to be accurate (see [4, 13]), as except in special cases, large grad-div
stabilization parameters can over-stabilize.

The results herein can also be extended to other element choices. For example, the
two-dimensional (Pbubble

2 ,Pdisc
1 ) element is a common element choice that has found

success in two-dimensional fluid flow computations. This element pair is LBB stable,
but does not exactly conserve mass; it only provides local mass conservation, although
for many problems this is much better than only global mass conservation [15]. If grad-
div stabilization is added, then the limiting results for the velocity solution would be the
solution from using (P2,Pdisc

1 ) Scott-Vogelius elements. For, the cubic volume bubble
function can be represented on the reference element as (xy− x2y− xy2)(u0,v0)

T and
its divergence is in the linear pressure space only, if u0 = 0 and v0 = 0. Therefore, a
large grad-div stabilization eliminates all the degrees of freedom corresponding to the
element bubble functions. Thus the different formulations of the nonlinear convection
term would have to converge to each other. Similar arguments can also be made for
other element choices such as (P2,P0), (P3,P1), and so forth, since in the limit they
converge, e.g., to the Scott-Vogelius elements (P2,Pdisc

1 ) and (P3,Pdisc
2 ).
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