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Abstract
A continuum model for yttria-stabilized zirconia (YSZ) in the framework of non-equilibrium thermodynamics is developed.
Particular attention is given to (i) modeling of the YSZ-metal-gas triple phase boundary, (ii) incorporation of the lattice
structure and immobile oxide ions within the free energy model and (iii) surface reactions. A finite volume discretization
method based on modified Scharfetter-Gummel fluxes is derived in order to perform numerical simulations. The model is
used to study the impact of yttria and immobile oxide ions on the structure of the charged boundary layer and the double
layer capacitance. Cyclic voltammograms of an air-half cell are simulated to study the effect of parameter variations on
surface reactions, adsorption and anion diffusion.
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Introduction

Detailed continuum models of high temperature solid
oxide electrochemical cells (SOEC)1 describe the under-
lying chemistry with spatially distinguished phases (oxide
ion conductor, electric conductor, gas) of the triple phase
boundary [1–4]. Surface physics processes such as tangen-
tial diffusion and surface chemical reactions of the surface
species are employed. In particular, the electron-transfer
reaction at the triple phase boundary is usually modelled
with Butler-Volmer-type kinetics containing overpotential,
the difference of the electric potential between the metal
and the bulk of the YSZ, as the driving force. The ioni-
cally or electrically conductive parts of a solid oxide cell
are electroneutral in the respective bulks. The overpotential,
appearing at the phase interface, is caused by formation of a

1Either fuel cells, or electrolysis cells.
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charged double layer of oxide ions in YSZ and electrons in
the electrode. Although the overpotential correlates with the
excess concentration of oxide ions available for the electron-
transfer reaction in steady-state scenarios, it cannot capture
the dynamics of the double layer. Therefore, if such a model
is compared to the results of a dynamic current-voltage mea-
surement, e.g., electrochemical impedance spectroscopy or
linear-sweep voltammetry, the dynamics of the double layer
is underrepresented.

To determine the structure and dynamics of the space-
charge layer of oxide ions in the YSZ, a generalized
Poisson-Nernst-Planck (PNP) system can employed. By the
generalization it is possible to account for the effect of the
finite density of available lattice sites for oxide ions at the
continuum level.

Such an approach was already used to capture the
formation and behavior of the electrochemical double layers
at electrode-electrolyte interfaces [5, 6]. The PNP system
was successfully applied to the solid-state electrochemical
systems, e.g., lithium batteries [7–9]. In [10], the PNP
equations were already applied for proton ceramic fuel cells;
however, the thermodynamics of the crystalline lattice and
of the surface were not taken into account.

In this work, we apply a modeling approach for
charged bulk-surface interfaces based on first principles
of nonequilibrium thermodynamics [11, 12]. The resulting
generalized Poisson-Nernst-Planck system is used to
formulate the model of dynamics of the space-charged layer

(2019) 23:2907–2926

/Published online: 12     September      2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s10008-019-04356-9&domain=pdf
http://orcid.org/0000-0001-5952-0025
mailto: petr.vagner@wias-berlin.de


at the YSZ-metal-air triple interface. The main advantage
of this approach is its consistency between the free energy
(equilibrium) and fluxes (dynamics).

The paper is organized as follows. The free energy
model of the bulk YSZ, capturing the crystalline structure,
immobile oxide ions and elastic deformation, is developed
in the “Bulk YSZ” section. The resulting chemical
potentials are introduced into the gPNP model [11] after its
modification for the description of the lattice velocity. In the
following section, bulk metal and bulk gas phases are treated
under the assumption of diffusional equilibrium. The free
energy of the surface and the surface dynamics are described
and developed in the the “Surface—triple phase boundary”
section. The modeling approach results in a coupled system
of evolution equation describing the transport of oxide ions
in the bulk of electrolyte, adsorption of oxide ions from bulk
to the surface and electron-transfer reaction alongside with
the Poisson equation.

Using a finite volume based discretization, double layer
capacitance and linear-sweep voltammetry simulations are
performed in the “Simulation of a SOC half-cell” section.
The performed simulations study the effects of the newly
introduced concept of immobile oxide ions, the free energy
parameters and the kinetic rates on the current response.

The novelty of the approach lies in the synthesis of
the crystalline lattice bulk-surface free energy description
and the coupled bulk-surface dynamics in non-equilibrium
thermodynamics framework. Owing to this, it is possible
to simulate the equilibrium behavior, e.g., the double
layer capacitance, and dynamic behavior, e.g., the cyclic
voltammetry, using a single model. Notable contribution to
the state of the art models of YSZ is the thermodynamic
treatment of the surface dynamics.

Bulk YSZ

We consider the charge transport exclusively in the
isothermal electrostatic setting, therefore the temperature T

is assumed to be constant and the electric field is given
as E = −∇ϕ. Moreover, a simple material model for
polarization based on a constant susceptibility χ is chosen.

General mixture and crystalline structure

Mixture quantities We model YSZ as mixture of four
constituents: zirconium and yttrium cations denoted by Zr
and Y, respectively, and oxide anions. We assume that only
a part of the oxide anions is freely mobile and refer to these
as Om, whereas the remaining immobile oxide anions Oi
are fixed to the underlying crystal structure. For referencing
the different constituents of the mixture we use the index set
IYSZ = {Zr, Y, Oi, Om}. Each constituent is characterized

by the atomic mass mα and its atomic charges zαe0, where
α ∈ IYSZ. The constant e0 is the elementary charge and zα

is the charge number of the constituent. Multiplication of the
number densities nα by mα gives the partial mass densities,

ρα = mαnα . (2.1)

The (total) mass density ρ and the free charge density nF of
YSZ are defined as follows,

ρ =
∑

α∈IYSZ

mαnα, nF = e0

∑

α∈IYSZ

zαnα . (2.2)

While each species is transported by its partial velocity υα ,
we introduce for the mixture the barycentric velocity

υ = 1

ρ

∑

α∈IYSZ

ραυα . (2.3)

The diffusion fluxes of the constituents are determined by
the transport relative to the barycentric velocity, viz.,

J α = ρα(υα − υ) implying the constraint
∑

α∈IYSZ

J α = 0. (2.4)

Crystalline structure The crystalline structure of pure ZrO2

is well known (see e.g. [13]) and might be described
conveniently in terms of unit crystal cells. Unit crystal
cells of yttria-doped zirconia are, due to the yttria doping,
difficult to be described systematically [14].

To overcome this, we introduce cation and anion spatial
lattices, so that they coincide with the respective lattices in
pure cubic ZrO2, i.e., locations of Zr4+ or O2− (see Fig. 1).
Contrary to the pure ZrO2, the cation lattice of YSZ is

Fig. 1 Illustration of the yttria-stabilized zirconia structure. The cation
lattice is occupied by Zr4+ (blue) and Y3+ (orange). The anion lattice
is occupied by mobile and immobile O2− (gray) or vacant (dashed)
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occupied also by Y3+ and some of the anion lattice sites
may be empty. The cation lattice unit cell is assumed to
be face-centered cubic and contains 8 cations in its vertices
and 4 in the centers of the faces. Each vertex site is shared
by seven other unit cells and each face-center site by one
additional unit cell. Hence, there are M#

C = 4 cation lattice
sites belonging to one unit cell. There are M#

A = 8 anion
lattice sites contained in the cation lattice unit cell, these
are located inside the unit cell and not being shared by the
neighboring unit cells. In general, the ratio m = M#

A/M#
C is

a fixed constant that results from the given combination of
materials. In the case of YSZ, we have m = 2. The spacing
of the lattice can be described by a number density n# of
unit crystal cells, that may be non-homogeneous in space
due to the non-uniformity of the lattice. The densities of
the cation lattice sites are then given as n#

C = M#
Cn# while

for the anion lattice sites is m M#
C n#. We assume that all

cation lattice sites are actually occupied by either zirconium
or yttrium cations whereas some of the anion sites may be
left unoccupied. We thus have

n#
C = nZr + nY, m n#

C ≥ nOi + nOm. (2.5)

To further specify the state of the YSZ , we introduce the
proportion ν# of immobile oxide ions and the filling ratio y

of the anion lattice sites,

ν# = nOi

m n#
C

, y = nOm

m n#
C − nOi

. (2.6)

In addition, we define the molar fraction x# of Y2O3 in
YSZ,

x# =
1
2nY

n#
C − 1

2nY
. (2.7)

To simplify the model, we assume the zirconium, yttrium
and immobile oxide ions are bound to the lattice and thus all
are transported with identical lattice velocity

υα = υ# for α ∈ {Zr, Y, Oi}. (2.8)

Free energy and chemical potentials

The free energy density2 ρψ of YSZ is assumed to be a
function of temperature T , partial mass densities ρα and the
electric field E. We suppose that the free energy density
ρψ(T , ρα, E) can be split into four additive parts: reference
energy, entropy of mixing, elastic energy and polarization
energy,

ρψ(T , (ρα)α∈IYSZ ,E) = ρψ ref + ρψpolar + ρψmech + ρψmix, (2.9)

where only ρψpolar depends on the electric field E and only
ρψmix depends on the crystal structure.

2The free energy function is defined here as ρψ = ρu − P · E − Tρs,
where ρu is the density of internal energy.

The entropy density ρs and the chemical potentials of the
respective species μα are defined with respect to the free
energy density as

∂ρψ

∂T
= −ρs,

∂ρψ

∂ρα

= μα . (2.10)

Reference energy The reference free energy describes a
suitable chosen reference state and is assumed to be

ρψ ref =
∑

α∈IYSZ

ραμref
α . (2.11)

Here, μref
α denotes the temperature-dependent reference

chemical potential of each individual constituent.

Polarization energy On top of the free charge density nF

according to 2.2right, an excess charge density nP may arise
in the material due to the presence of the electric field,
mechanical strain, etc. (see for example [15, Chapter 2]).
This excess charge is usually described by a polarization
vector P so that

−divP = nP. (2.12)

We refrain from a comprehensive discussion of constitutive
modeling of polarization like, e.g., in [11] and assume that
in bulk YSZ, the relaxation time of the polarization is small
and the polarization vector P is proportional to the electric
field E, i.e.,

∂ρψ

∂E
= −P , P = χε0E. (2.13)

The number χ is the electric susceptibility of YSZ, which
for simplicity is assumed spatially homogeneous here.
Integrating (2.13) such that ρψpolar vanishes for E → 0
yields the free energy density due to polarization

ρψpolar = −ε0χ

2
|E|2. (2.14)

Elastic energy We introduce the material pressure p, which
is independent of the electric field E, and is defined by the
Gibbs-Duhem relation

p = −ρψ̃ +
∑

α∈IYSZ

ραμα, (2.15)

where ρψ̃ = ρψ ref + ρψmix + ρψmech. The elastic
contribution to the free energy is based on a simple linear
constitutive relation between the material pressure p and the
number densities nα of YSZ,

p = pref + K

⎛

⎝
∑

α∈IYSZ

vref
α nα − 1

⎞

⎠ . (2.16)

Here K is the bulk modulus of YSZ and vref
α are the

specific volumes of the YSZ species under the reference
pressure pref. In general, the specific volumes are functions
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of temperature and pressure, but for simplicity we assume
vref
α are constant.

By use of an alternative set of variables for the free
energy density ρψ̃ the Gibbs-Duhem relation (2.15) can be
written as (cf. [6, equation A.6]),

p

ρ2
= ∂ψ̌

∂ρ
. (2.17)

Here ρψ̌(t, ρ, cα) denotes the free energy density ρψ̃ as a
function of the total mass density ρ and the mass fractions
cα = ρα

ρ
.

Insertion of (2.16) into (2.17) and integration such that
ρψmech vanishes for p → pref yields the desired elastic
contribution to the free energy ρψmech, viz.

ρψmech = (pRef − K)(ρf − 1) + Kρf ln(ρf ), (2.18)

where ρf = ∑
α∈IYSZ

vref
α nα .

Entropy of mixing The entropy of mixing depends on the
microscopic configuration of the mobile oxide ions in the
anion lattice. We therefore consider a YSZ specimen that is
homogeneous, so that nα = Nα/V , where Nα is the total
number of a species in a volume V . Let W represent the
number of possible realizations to arrange the mobile oxide
ions on the anion lattice. Then, the mixing entropy density,
according to Boltzmann’s formula, reads

ρηmix = kB

V
ln(W). (2.19)

Every immobile oxide ion is assumed to be fixed at a certain
anion lattice site. The number of anion lattice sites available
for the mobile oxide ions is therefore (m N#

C − NOi). Thus,
there are

W = (m N#
C − NOi)!

NOm! (m N#
C − NOi − NOm)! (2.20)

ways to place the mobile oxide ions, which are indistin-
guishable, at the admissible lattice sites. Using Stirling’s
formula, we obtain for the mixing entropy density

ρηmix ≈ −kB(m n#
C − nOi)(y ln y + (1 − y) ln(1 − y)),

(2.21)

with the filling ratio y according to (2.6). Then, the entropic
contribution to free energy density follows by integration of
(2.10)left with respect to the temperature,

ρψmix = kBT (m n#
C − nOi)(y ln y + (1 − y) ln(1 − y)).

(2.22)

The integration constant is chosen such that the entropy of
mixing contribution to the free energy density vanishes at
T = 0.

Chemical potentials The chemical potentials are indepen-
dent of the electric field due to the choice of a constant sus-
ceptibility. With the above contributions to the free energy,
the chemical potentials are

μOm = μref
Om + kBT

mOm
ln

(
y

1 − y

)
+ vref

Om
mOm

(
pref+ K ln

(
1+p − pref

K

))
, (2.23a)

μOi = μref
Oi − kBT

mOi
ln (1 − y) + vref

Oi
mOi

(
pref + K ln

(
1 + p − pref

K

))
, (2.23b)

μα = μref
α + mkBT

mα
ln (1 − y) + vref

α

mα

(
pref + K ln

(
1 + p − pref

K

))
, α = Zr, Y. (2.23c)

Bulk governing equations and constitutive
modeling

The electro-thermodynamic state of YSZ, occupying an
interval �YSZ ⊂ R at any time t , is described by the
number densities nα (α ∈ IYSZ), the barycentric velocity
υ and the electrostatic potential ϕ, which all are functions
of time and position. In the isothermal electrostatic setting
with a constant susceptibility, the evolution equations for
the electro-thermodynamic state variables in the bulk are
given by the Poisson equation, partial mass balances and the
quasi-static momentum balance [11, 16],

− ε0(1 + χ)∂zzϕ = nF, (2.24a)

∂tρα + ∂z(ραυ + Jα) = 0, α ∈ IYSZ, (2.24b)

∂zp + nF∂zϕ = 0. (2.24c)

The diffusion flux The constraint (2.4)right and the consti-
tutive equations (2.8) imply that the diffusion fluxes have
to be pairwise linear dependent. We chose JOm as the
independent flux and obtain

Jα = − ρα

ρZr + ρY + ρOi
JOm for α ∈ {Zr, Y, Oi}. (2.25)
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An entropy principle [11] is exploited to obtain the constitu-
tive equation for the flux JOm. To this end, the entropy produc-
tion due to diffusion is written as a sum of binary products
as

ξD =
∑

α∈IYSZ

JαDα

!≥ 0, (2.26)

where the driving forces are, in isothermal conditions, given
by the gradients of the electrochemical potentials3, that is,

3The electrochemical potential is defined as μe
α = μα + zαe0

mα
ϕ

Dα = −
(

∂z

μα

T
+ zαe0

mα

1

T
∂zϕ

)
for α ∈ IYSZ. (2.27)

To satisfy the second law of thermodynamics, i.e., to
guarantee that the entropy production is non-negative, we
insert the relations (2.25) into the entropy production (2.26)
and then choose a linear relation between the diffusion flux
JOm and the resulting term depending on the driving forces.
We obtain

JOm = −M

(
ρZr(DZr − DOm) + ρY(DY − DOm) + ρOi(DOi − DOm)

ρZr + ρY + ρOi

)
with M > 0. (2.28)

Here, mobility coefficient M may be a function of the
thermodynamic variables and their derivatives, as long as it
is guaranteed to be non-negative.

Incompressibility A useful simplification of the YSZ bulk
model is possible when taking the large bulk modulus K

of YSZ into account. Hayashi et al. in [17] reported a bulk
modulus of YSZ of K = 205 GPa at 25 ◦C and we assume
it to be in a comparable order of magnitude at the operating
temperature of YSZ at 600 ◦C. This motivates to study the
incompressible limit K

pref → ∞. Under the assumption that
the pressure p is bounded, we obtain from the constitutive
relation (2.16) the constraint

K/pref → ∞ :
∑

α∈IYSZ

vref
α nα = 1. (2.29)

Thus, the pressure p becomes an independent variable of the
system and the sum of all number densities is independent
of the pressure. For simplicity we assumed that the crystal
lattice does not deform over time and that all species except
species Om move with the lattice velocity. To be consistent
with the incompressibility constraint (2.29), we thus have
to require that the specific volume of the mobile oxide ions
vanishes, i.e.,

vref
Om = 0. (2.30)

In the incompressible limit K/pref → ∞, the chemical
potentials (2.23) are linear in the pressure:

μOm = μref
Om + kBT

mOm
ln

(
y

1 − y

)
, (2.31a)

μOi = μref
Oi − kBT

mOi
ln (1 − y) + vref

Oi
mOi

p, (2.31b)

μα = μref
α + mkBT

mα
ln (1 − y) + vref

α

mα
p α = Zr, Y. (2.31c)

Vanishing lattice velocity For further simplification of the
YSZ model, we assume that the lattice does not deform over

time such that an appropriate reference frame can be chosen
where the lattice velocity υ# vanishes,

υ# = 0. (2.32)

Then, the mass balance equations imply constant number
densities for the immobile species, i.e., ∂tnα = 0 for α =
Zr, Y, Oi, and the barycentric velocity is given by ρυ =
ρOmυOm which can be expressed in terms of the diffusion
flux of the mobile oxide ions as

(ρZr + ρY + ρOi)υ = JOm. (2.33)

The assumptions of incompressibility and vanishing
lattice velocity may be also viewed alternatively as a
description of the charge transport in the reference frame of
the cation lattice which does not undergo any deformation.

Summary of the bulk YSZmodel

The constitutive modeling above motivates to change the
set of variables from the number densities (nα)α∈I to
{n#

C, ν#, x#, y}. Due to the vanishing lattice velocity, the
quantities n#

C, x# and ν# are constant in time and are
further considered as model parameters. Therefore, the
thermodynamic state of the bulk YSZ is described by
three quantities: filling ratio y, electrostatic potential ϕ and
pressure p. In addition, we define the lattice volume V #,
lattice mass m# and lattice charge number z# as

V #n#
C = nZrv

ref
Zr + nYvref

Y + nOiv
ref
O

= n#
C

(
1 − x#

1 + x# vref
Zr + 2x#

1 + x# vref
Y + mν# vref

O

)
, (2.34a)

m#n#
C = n#

C

(
1 − x#

1 + x# mZr + 2x#

1 + x# mY + mν# mO

)
, (2.34b)

z#n#
C = n#

C

(
1 − x#

1 + x# zZr + 2x#

1 + x# zY + mν# zO

)
, (2.34c)

respectively.
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The evolution of the thermodynamic state is then
described by

− ε0(1 + χ)∂zzϕ = nF, (2.35a)

mOm
(1 − ν#)m

V # ∂t y + ∂z

((
1 + mOm

(1−ν#)m

m# y
)

JOm

)
= 0, (2.35b)

∂zp + nF∂zϕ = 0. (2.35c)

Let us assume that M is linearly dependent [18] on ρOm

as M = D
mOm
kB

ρOm. Eventually, the free charge and the
diffusion flux of mobile oxide ions are given as

nF = e0n
#
C(z# + zO(1 − ν#)m y), (2.36a)

JOm = −mOm D
(1−ν#)m

V #

(
1 + mOm

(1−ν#)m

m# y
)(

∂zy

1 − y
+ y

e0zOm
kBT

∂zϕ

)
,

(2.36b)

where (2.35c) was used in place of the pressure gradient
term. The final form of the diffusion flux of the
mobile oxide ion is proportional to the gradient of the
electrochemcal potential.

The parameter x# has usually values in the range of [0, 0.2]
and we have ν# ∈ [0, 1

m
2+x#

1+x# ].The remaining parameters of
the YSZ model are given in Table 1.

Bulk metal and gas phase

In order to act as an electrolyte in a SOEC, the YSZ has
to be connected to two different materials: a gas phase and
some electric conductor. In this paper, we do no consider
the internal structure of these parts of the SOEC. Therefore,
we assume the gas to be equilibrated such that boundary
conditions at the gas-YSZ surface can be determined easily.
Although not appropriate for the use in real SOEC, we
will treat the conductor as a pure metal, since this way

Table 1 Characteristic values. Per-particle masses mα are used in the
calculations

Temperature T 800 ◦C

YSZ dielectric susceptibility χ 27

Zr cation charge number zZr +4

Y cation charge number zY +3

Oxide ion charge number zOm, zOi −2

Zr molar mass MZr 91.22 g mol−1

Y molar mass MY 88.91 g mol−1

O molar mass MO 16 g mol−1

Ratio of C/A lattices m 2

YSZ molar fraction x# 0.08

Ratio of immobile O2− ν# [0, 1
m

2+x#

1+x# ]
Specific lattice volume of YSZ V # 3.35 × 29−29 m3

Lattice cation number density n#
C (V #)−1

Diffusion coefficient D 1×10−11 m2/s

the conductor can be almost completely removed from the
model.

Bulk gas The gas in the bulk is assumed to behave as an
ideal mixture of ideal gases. We introduce the index set Igas

of the constituents of the gas phase. For each constituent,
the partial pressure is pα = cαRT . The chemical potential
of a gaseous species reads

μα(pα, T ) = μref
α (T ) + kBT

mα

ln

(
pα

pref

)
for α ∈ Igas, (3.1)

where the reference pressure is given by the standard
atmospheric pressure pref = 100 kPa and μref

α is the
chemical potential of the pure substance.

In the bulk domain �gas ⊂ R
3, we assume that the

diffusion is fast such that the chemical potentials are
homogeneous in space, i.e., ∇μα = 0 for α ∈ Igas. Since
there are no charge carriers in the gas, we assume that the
electric potential ϕ is also homogeneous in the gas phase.

Bulk metal For the description of the conductor, we apply
the Sommerfeld model of metals (cf. [19]). The metal is
considered as a mixture of positively charged metal ions
M+ and free electrons e− with negligible volume and high
mobility. Thus, we use the index set Imetal = {M+, e−}
for the constituents. We assume the metal ions to be
incompressible and thus the density of metal ions to be
homogeneous in the whole metal domain �metal ⊂ R

3

(cf. Landstorfer et al. [6]). Sufficiently far away from the
metal boundary, i.e., outside of double layers, the metal is
electroneutral and therefore the bulk number density ne− of
the electrons and the corresponding bulk chemical potential
μe− are material dependent constants. Neglecting electric
resistance, the electric potential ϕ is homogeneous in the
metal bulk. Moreover, we assume quasi-equilibrium in the
metal such that in particular the electrochemical potential of
the electrons is constant not only in the bulk but also inside
double layers, i.e.,

∇(me−μe− − e0ϕ) = 0. (3.2)

Surface—triple phase boundary

The electrodes in solid oxide cells are combined of YSZ,
metal and the gas phase. Thus, an interface model should,
in principle, treat three thermodynamically distinct surfaces
and one triple phase line present in the electrode. For a start, in
this work, we aim at a strongly simplified 1D model of the
electrodes. To incorporate the triple phase boundary into
such a 1D model, we assume that the only contribution of the
metal as an electric conductor is to provide free electrons for
the charge transport. We make the following assumptions:
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i) The YSZ surface is endowed with a thin layer of metal
ions and their corresponding free electrons.

ii) The tangential transport of electrons along the surface
is assumed to be fast compared to all the other treated
kinetic processes.

iii) Apart from the reference free energy, the metal ions
and electrons do not further contribute to the free
energy and entropy of the surface.

Due to the first assumption, the electrons are transported only
tangentially to the surface. The second assumption implies
spatially homogeneous surface electrochemical potentials
which only may change in time. The last assumption restricts
the interaction between the metal and YSZ surface species.
It allows to approximate the triple phase boundary by a
simple surface model, which can be reduced to a 1D model
in a straightforward way. There could be further contribu-
tions to the free energy, for example due to the surface
tension of the metal ions, and/or due to an interaction of
the metal species and the YSZ species. Since this would
presumably add further parameters requiring fitting, we
decided to treat the metal surface species, so that they do not
introduce further interaction with the YSZ species.

A more detailed derivation of this reduction of a triple
phase line into a 1D model can be found in the context of
intercalation electrodes in [20].

The following derivation of the YSZ surface model is
based on the general approach developed in [11, 16].

Surface constituents and basic quantities

As in the bulk, we describe the YSZ surface as a mixture
of different surface constituents and apply for the surface
quantities analogous notation with an underset “s” added. In
the isothermal case, the surface temperature T

s
is identical

to the constant bulk temperature T and appears in the
equations only as a parameter. In addition to the constituents
from the metal and the bulk phases of the gas and YSZ bulk,
surface reaction products may be present on the surface.
Thus, the index set of all surface constituents is of the form

Fig. 2 Illustration of the YSZ-gas-metal surface

IS = IYSZ ∪ Igas ∪ Imetal ∪ Ireact, where Ireact is the index
set of surface reaction products.

Each surface constituent is characterized by its surface
number density n

s
α , atomic mass mα and electric charge

number zα . The partial mass densities ρ
s
α , the total mass

density ρ
s

and the free electric charge density for the surface

are defined by

ρ
s
α = mαn

s
α, ρ

s
=

∑

α∈IS

ρ
s
α, n

s
F =

∑

α∈IS

zαe0n
s
α . (4.1)

We assume that proper preparation and cutting of the bulk
YSZ crystal results in the formation of a planar face which
can be represented by our surface model. Therefore, as in
the bulk YSZ case, the surface lattice density of cations is
in certain relation to the surface density of anion lattice, i.e.,
the surface anion density is m

s
n
s

#
C. The surface cation lattice

is assumed to be fully occupied by zirconium and yttrium
cations, whereas the anion lattice is partially occupied by
mobile and immobile oxide ions (see Fig. 2).

n
s

#
C = n

s
Zr + n

s
Y, m

s
n
s

#
C ≥ n

s
Oi + n

s
Om. (4.2)

The surface model needs to reflect the structure of the bulk YSZ
model. The YSZ surface is defined by the cation crystal
lattice. The deformation of the cation lattice therefore pres-
cribes the surface velocity. In order to maintain the compa-
tibility of the bulk model and the surface model, we have

υ
s

= υ#. (4.3)

On the YSZ surface gaseous species may adsorb and some
reaction products may be formed. The admissible adsorption
sites for gaseous species and reaction products in general
depend on the lattice sites of the YSZ crystal. We assume
that the density of the adsorption sites is proportional to the
density of the anion surface lattice sites of YSZ. Several
chemical reactions may occur. Denoting the constituents by
Aα for α ∈ IS , the reactions can be written in the form

(4.4)

The constants ai
α , bi

α are positive integers and γ i
α := bi

α −ai
α

denote the stoichiometric coefficients of the reactions. Here
Ri

f > 0 denotes the forward reaction rate and accordingly

Ri
b > 0 denotes the backward reaction rate. The net reaction

rate is defined as Ri = Ri
f − Ri

b. Since charge and mass
have to be conserved in every single reaction, we have

∑

α∈IS

mαγ i
α = 0 and

∑

α∈IS

zαγ i
α = 0 for i = 1, . . . , M . (4.5)
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Surface free energy

The surface free energy can in general be assumed to be
independent of the electric field. Here, we also assume that
there is no elastic energy contribution and we distinguish
two different entropic contributions to the free energy
density. One takes into account the entropy of mixing of the
mobile oxide ions on the anion lattice and the other is due to
for the mixing of adsorbed gas species and reaction products
on the adsorption sites. The metal ions and electrons only
contribute to the reference energy. The free energy density
for the surface is of the form
ρ
s
ψ
s
(T

s
, (ρ

s
α)α∈IS

) = ρ
s
ψ
s

ref + ρ
s
ψ
s

mix, anions + ρ
s
ψ
s

mix, adsorbates. (4.6)

The surface entropy and the surface chemical potentials are
defined as
⎛

⎝
∂ρ

s
ψ
s

∂T
s

⎞

⎠=−ρ
s
s
s
,

⎛

⎝
∂ρ

s
ψ
s

∂ρ
s
α

⎞

⎠ = μ
s
α α ∈ IS . (4.7)

In general an elastic energy contribution has to be taken
into account. The derivation of the energy is quite similar to
the bulk. In [6] an example for a metal-electrolyte interface
can be found. It turns out that if the constitutive equation
of the surface tension depends only on the immobile YSZ
species, and the lattice velocity υ# is equal to the surface
velocity, then the remaining equations for the adsorption and
surface reaction are independent of the elastic contribution.
Therefore, for simplicity, we ignore the surface elasticity.

Surface mixing of oxide ions On the surface we introduce
the coverage of anion lattice sites as

y
s

=
n
s

Om

m
s

n
s

#
C − n

s
Oi

. (4.8)

Then, the free energy contribution due to the mixing entropy
of the oxide ions can be derived in analogous way like in the
bulk as

ρ
s
ψ
s

mix,anions = kBT
s

(m
s

n
s

#
C − n

s
Oi)

(
y
s

ln(y
s
)+ (1 − y

s
) ln(1 − y

s
)

)
. (4.9)

Surface mixing of gaseous adsorbates and reaction prod-
ucts Since some of the adsorption sites for gaseous con-
stituents might not be occupied, we can define the number
density of vacancies and the surface coverage of the gaseous
species as

n
s
V = m

s
n
s

#
C −

∑

α∈Igas∪Ireact

n
s
α, (4.10)

y
s
α =

n
s
α

m
s

n
s

#
C

for α ∈ Igas ∪ Ireact ∪ {V }. (4.11)

The free energy contribution due to the configuration of
adsorbed gaseous species can be derived by Boltzmann’s

formula where the vacancies are taken into account. We
obtain

ρ
s
ψ
s

mix,adsorbates = kBT
s

m
s

n#
C
s

∑

α∈Igas∪Ireact∪{V }
y
s
α ln y

s
α . (4.12)

Reference surface energy As in the bulk, the reference
surface free energy describes a suitable chosen reference
state of the surface and is assumed to be

ρ
s
ψ
s

ref =
∑

α∈IS

ραμ
s

ref
α . (4.13)

μref
α denotes the temperature dependent reference chemical

potential of each individual constituent.

Surface chemical potentials. The surface chemical poten-
tials are given in terms of the surface number densities
according to definition (4.7)right as

μ
s

Om = μ
s

ref
Om + kBT

s
mOm

ln

⎛

⎝
y
s

1 − y
s

⎞

⎠ , (4.14a)

μ
s

Oi = μ
s

ref
Oi − kBT

s
mOi

ln

(
1 − y

s

)
, (4.14b)

μ
s
α = μ

s

ref
α + m

s
kBT

s
mα

(
ln

(
1 − y

s

)
+ ln y

s
V

)
, α = Zr, Y, (4.14c)

μ
s
α = μ

s

ref
α + kBT

s
mα

ln

⎛

⎝
y
s
α

y
s
V

⎞

⎠ , α ∈ Igas ∪ Ireact, (4.14d)

μ
s
α = μ

s

ref
α , α ∈ Imetal. (4.14e)

Governing equations, constitutivemodeling
and coupling to the bulk

For the coupling of bulk and surface, we have to introduce
the boundary traces of the bulk quantities. For a generic
function u(t, x) in the YSZ bulk, we define

u|YSZ
S = lim

x∈�YSZ→S
u. (4.15)

In analogous way, traces for functions in the gas bulk domain
can be defined. Due to the choice of pairwise disjoint index
sets for the bulk domains, most of the quantities are only
defined in one of the subdomains. Therefore, we assume
the simplification u|S = limx→S u. By convention, we let ν

denote the outer normal of the YSZ domain.
In the planar one-dimensional approximation of the

general surface mass balance equation (cf. [11, 16]), the
tangential transport and the curvature related terms vanish.
Only the surface chemical reactions (4.4) and mass transport
normal to the surface can change the surface densities of the
constituents. The surface mass balances and the remaining
surface equation for the electric field in the electrostatic
approximation read

∂tρ
s
α =

M∑

i=1

γ i
αmαRi +

((
Jα + ρα(υ − υ

s
)
)

ν
)∣∣∣

S
, α ∈ IYSZ. (4.16a)
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∂tρ
s
α =

M∑

i=1

γ i
αmαRi −

((
Jα + ρα(υ − υ

s
)
)

ν
)∣∣∣

S
, α ∈ Igas. (4.16b)

∂tρ
s
α =

M∑

i=1

γ i
αmαRi, α ∈ Ireact. (4.16c)

ε0 ((1 + χ)∇ϕ ν)|YSZ
S = n

s
F. (4.16d)

We assume that Zr, Y and Oi are not involved in any surface
reaction. Since υα = υ# = υ

s
for α ∈ {Zr, Y, Oi} according

to (2.8) and (4.17), the surface mass balance (4.16a)
implies that the corresponding surface number densities are
constant, i.e.,

0 = ρα(υ# − υ
s
)|S =

(
Jα + ρα(υ − υ

s
)
)∣∣∣

S
= ∂tn

s
α (4.17)

for α = Zr, Y, Oi.

Maxwell’s surface equations in the electrostatic setting
imply that the electrostatic potential is continuous at the gas-
YSZ interface (see, e.g. [15] for further details). This allows
us to introduce the surface electrostatic potential,

ϕ
s

= ϕ

∣∣∣YSZ
S = ϕ

∣∣∣
gas

S
. (4.18)

Constitutivemodeling

To derive constitutive equations for the normal mass fluxes
and surface reaction rates, we apply the entropy principle
according to [11].

At first, we reduce the entropy production ξ
s

derived

in [11, eqn. (6.14)] to the isothermal electrostatic one-
dimensional setting4, viz.,

ξ
s

= − 1

T
s

M∑

k=1

⎛

⎝
∑

β∈IS

γ k
β mβμ

s
β

⎞

⎠ Rk

︸ ︷︷ ︸
ξ
s

react

+
∑

α∈IYSZ

((
Jαν + ρα(υ − υ

s
)ν

) (
μα

T
−

μ
s
α

T
s

))∣∣∣∣∣∣

YSZ

S︸ ︷︷ ︸
ξ
s

YSZ

+
∑

α∈Igas

(
−

(
Jαν + ρα(υ − υ

s
)ν

) (
μα

T
−

μ
s
α

T
s

))∣∣∣∣∣∣

gas

S︸ ︷︷ ︸
ξ
s

gas

!≥ 0 (4.19)

on S.

4For the representation of the entropy production, we assumed that the
kinetic term 1

2 ρ(υ
s

− υ)2 is small and can be ignored.

The entropy production can be split into the three contributions:
ξ
s

react, ξ
s

YSZ and ξ
s

gas, stemming from surface the reactions

(4.4), adsorption from the bulk YSZ and adsorption from
the gas phase, respectively. In analogous way like in the
bulk, the structure of the entropy production (4.19) allows
to derive constitutive equations such that the second law of
thermodynamics is satisfied, i.e., the entropy production is
non-negative.

Adsorption from YSZ bulk Let us define the adsorption of
oxide ions from the bulk to the surface as

(4.20)

According to (4.17), ξ
s

YSZ contains only the term with

normal flux of mobile oxide ions, i.e.,

ξ
s

YSZ =
(
JOmν + ρOm(υ − υ

s
)ν

)
⎛

⎝μOm

T
−

μ
s

Om

T
s

⎞

⎠

∣∣∣∣∣∣

YSZ

S

, (4.21)

where the second bracket on the right-hand side is equal
to affinity of (4.20). By using a linear relation between the
differences of chemical potentials and the mass flux, the
entropy production ξ

s
YSZ is guaranteed to be non-negative,

(JOmν + ρOm(υ − υ
s
)ν)

∣∣∣∣∣∣

YSZ

S

= D
s

⎛

⎝μOm

T
−

μ
s

Om

T
s

⎞

⎠

∣∣∣∣∣∣

YSZ

S

with D
s

≥ 0.

(4.22)

Adsorption fromgas phase In the bulk gas phase, the fluxes
are restricted by the constraint

∑
α∈Igas

Jα = 0 and on the
surface, (4.3) has to be satisfied. Therefore, we reformulate
the entropy production due to the gas adsorption, as

ξ
s

gas = −ρ(υ − υ
s
)ν |S

⎛

⎝μ0

T
−

μ
s

0

T
s

⎞

⎠

∣∣∣∣∣∣

gas

S

+
∑

α∈Igas\{0}

(
−

(
Jαν + ρα(υ − υ

s
)ν

))
⎛

⎝μα − μ0

T
−

μ
s
α − μ

s
0

T
s

⎞

⎠

∣∣∣∣∣∣

gas

S

,

(4.23)

where an arbitrary species is selected and denoted by
the index 0. Linear relations are employed to define the
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constitutive relations for the mass fluxes of the gas species
on S,

−
(
Jαν + ρα(υ − υ

s
)ν

)∣∣∣
gas

S
= M

s
α

⎛

⎝μα − μ0

T
−

μ
s
α − μ

s
0

T
s

⎞

⎠

∣∣∣∣∣∣

gas

S

for α ∈ Igas \ {0}, (4.24a)

− ρ(υ − υ
s
)ν

∣∣∣
gas

S
= M

s

⎛

⎝μ0

T
−

μ
s

0

T
s

⎞

⎠

∣∣∣∣∣∣

gas

S

with M
s

α, M
s

≥ 0. (4.24b)

The phenomenological coefficients M
s

α and M
s

are positive

to guarantee a non-negative entropy production.
Surface reactions For the surface reactions, we use the
nonlinear closure developed in [16]

Ri = R0
s

i

⎡

⎣exp

⎛

⎝− βi

kBT
s

∑

α∈IS

γ i
αmαμ

s
α

⎞

⎠ − exp

⎛

⎝ (1 − βi)

kBT
s

∑

α∈IS

γ i
αmαμ

s
α

⎞

⎠

⎤

⎦ , (4.25)

with Ri
0 ≥ 0. The constants βi ∈ (0, 1) are called symmetry

factors.
Note that the arguments of the exponentials in (4.25)

only depend on the surface-related quantities like surf.
temperature and the chemical potentials of the surface
species. Equation (4.25) is a surface generalization of
the mass action kinetics. The adopted modeling approach
implies the electric potential to be continuous, the
overpotential5 appearing in the Butler-Volmer equation
can be seen as an accounting for the potential drop due
to the (unresolved) charge double layer. The presented
model resolves the structure of the charged layer in
the bulk YSZ and, in this sense, represents a more
detailed description than the Butler-Volmer equation. In
an asymptotic limit of vanishing double layer width the
constitutive equation (4.25) allows to derive generalized
Butler-Volmer equations for the surface reactions (see [21]).

Summary of the surfacemodel

On the surface, we consider a single surface net reaction
(5.2)right with β = 1/2. From the YSZ phase only the
mobile oxide ions and from the conductor only the surface
electrons are allowed to participate in this reaction. We
assume fast adsorption from the gas phase, i.e., μα|S = μ

s
α

for α ∈ Igas.

5Discontinuity in the electric potential between the neighboring
phases.

R
s

= −2R
s

0 sinh

⎛

⎝1

2

⎡

⎣�GR

kBT
+γOm ln

⎛

⎝
y
s

1 − y
s

⎞

⎠

+
∑

α∈Igas

γα ln

(
pα

pref

)
+

∑

α∈Ireact

γα ln

⎛

⎝
y
s
α

y
s
V

⎞

⎠

⎤

⎦

⎞

⎠ ,

(4.26a)

�GR = γOmmOmμ
s

ref
Om + γe−me−μ

s

ref
e−

+
∑

α∈Igas

γαmαμref
α +

∑

α∈Ireact

γαmαμ
s

ref
α (4.26b)

Moreover, we choose

D
s

= A
s

0
m2

O

kB
, (4.27)

so that [A
s

0] = 1/m2/s. Finally, only the following evolution

equation is solved for on the surface,

mO∂t

(1−ν#
s
)m

s

a# y
s
− A

s
0mO

[
−�GA

kBT
+ ln

(
y|S

1−y|S
1
s
−y

y
s

)]
= mOγOmR

s
,

(4.28)

�GA = mOmμ
s

ref
Om − mOmμref

Om

∣∣∣
S

. (4.29)

with the parameters of the surface model are given in
Table 2.

Simulation of a SOC half-cell

We consider an YSZ-air electrode that contains the YSZ
and gas bulk domains and the YSZ-gas surface S located
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Table 2 Characteristic values and parameters for the surface part of
the model

Reaction kin. coef. R
s

0 1×1010/m2/s

Oxide ion adsorption coef. A
s

0 1×1017/m2/s

Surface density of cations a
s

#
3
2
√

V # ≈ 1.04 × 10−19 m2

Surface ratio of imm. ox. ions ν
s

# 0.9

Surface anion lattice num. m
s

[0,4]

Gibbs energy of adsorption �GA 0.2e V

Gibbs energy of reaction �GR 0.2 eV

Partial pressure of O2 pO2 21 kPa

Standard pressure pref 100 kPa

at xS . We chose a point xB > xS outside of the double
layer, located in the bulk YSZ sufficiently far away from
S. Thus, the YSZ can be assumed to be electroneutral and
consequently also isobaric in the YSZ bulk including xB .
We assume that the pressure at xB corresponds to the outer
pressure6 and the filling ratio of the anion lattice sites y at
xB is determined by the crystal lattice, i.e.,

yB = y(t, xB) = − z#

zOm (1 − ν#)m
, (5.1a)

p(t, xB) = 100 kPa. (5.1b)

The gas phase consists of nitrogen7 N2 and oxygen O2 and
values for the spatially homogeneous chemical potentials
μN2 and μO2 are prescribed.

On the YSZ surface, two reaction take place: dissociation
of oxygen molecules and electron transfer to form oxide
anions, viz.,

(5.2)

The adsorption of gaseous species is assumed to be con-
siderably faster than the reaction and diffusion processes.
Hence, the phenomenological coefficients in (4.24) for
gaseous adsorbates are large, implying that the surface
chemical potential and bulk chemical potential of the gas
species are equal. Moreover, we assume fast dissociation,
i.e., the reaction rate for the dissociation reaction (5.2) is
large, and we obtain from (4.25)

fast adsorption: μN2 |S = μ
s

N2 , μO2 |S = μ
s

O2 , (5.3a)

fast dissociation of O2 : 2mOμ
s

O = mO2 μ
s

O2 . (5.3b)

All implemented model equations are summarized in
Appendix B.

6 In general, the total stress has to specified, but due to electroneutrality
assumption at xB and the one dimensional approximation, the total
stress and material pressure p coincide.
7 We chose nitrogen as the reference species for the gas phase, i.e.,
A0 = N2.

Cell potential The thin metal layer on the YSZ surface
is assumed to be connected to a metal current collector,
e.g., a wire. Therefore, there is an electric contact at
the YSZ surface to an external circuit. Let μext

e− and
ϕext denote the (spatially homogeneous) chemical and
the electrostatic potential in the current collector bulk,
respectively. Assuming, that the electrochemical potential of
the electrons is continuous at the surface, we can determine
the contact potential U ref

0 = ϕext − ϕ
s

as

U ref
0 = kBT

e0
me−

(
μext

e− − μ
s

e−
)

. (5.4)

Due to the incompressibility of the metal bulk and the
constitutive equation (4.14e) on the surface, the contact
potential is a material dependent constant, i.e., ∂tU

ref
0 = 0.

In principle, we are capable to measure the electrostatic
potential ϕB at xB , e.g., with a suitable reference electrode.
We define the half cell potential U of the solid oxide
half-cell as

U = ϕext − ϕB = U ref
0 + ϕ

s
− ϕB . (5.5)

Thus, boundary condition for the electrostatic potential in
the YSZ domain is given by the half cell potential U , and a
normalization condition for ϕB , e.g., ϕB = 0.

Electric current We are interested in the electric current I

flowing through the electric wire contacted to the SOC electrode.
The global mass balance equations allows us to relate the
electric current I , flowing through the wire, to the quantities
of the SOC electrode model as follows,

I

A
= − d

dt

(
e0zOmn

s
Om

)
+ d

dt
((1 + χ)ε0∇ϕν)

∣∣∣∣
YSZ

S

−ze−e0

M∑

i=1

γ i
e−Ri, (5.6)

where A is the area of the cross section of the gas-YSZ
interface. The derivation of formula (5.6) is summarized in
the “Appendix A: Electric current” section.

Double layer capacitance of blocking electrode

First, we want to investigate the equilibrium properties
of the model derived above and therefore assume that no
electron transfer reaction take place on the surface. This
situation can be met if the contact of gas phase and YSZ
is prevented by, e.g., metal layer. When an applied voltage
is sustained so that the system is allowed to relax to an
equilibrium state, and mobile oxide ions adsorb or desorb
between the bulk and the surface and a charged layer in the
bulk of YSZ is formed. We introduce the boundary layer
charge QBL and the surface charge QS of the gas-YSZ
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interface as

QBL = −
∫ xB

xS

nF dz (5.7)

QS = −zOme0n
s

Om. (5.8)

In equilibrium both the surface charge and the boundary
layer charge are function of the applied half cell potential
U , or—equally well—of the voltage U − U ref

0 = ϕ
s

− ϕB

(cf. [6]). This allows us to define the corresponding surface,
boundary layer and double layer capacitance as

CS = d

d(U − U ref
0 )

QS, (5.9a)

CBL = d

d(U − U ref
0 )

QBL, (5.9b)

CDL = CS + CBL, (5.9c)

respectively. Due to the 1D approximation, we are able
to derive explicit representations of the bulk and surface
capacitance as functions of the potential difference U −
U ref

0 . The homogeneity of the electrochemical potential in
equilibrium, i.e.,

μOm + zOm
e0

mOm
ϕ = μOm(xB) + zOm

e0
mOm

ϕ(xB), (5.10)

allows to express the filling ratio and the free charge
dependence on ϕ − ϕB as

nF(ϕ− ϕB) = e0n
#
C(z# + zOm(1−ν#)m y(ϕ − ϕB)), (5.11)

y(ϕ − ϕB) = X(ϕ − ϕB)

1 + X(ϕ − ϕB)

with

X(ϕ−ϕB)= yB

1 − yB

exp
(
− zOme0

kBT
(ϕ−ϕB)

)
. (5.12)

Then, multiplication of the Poisson equation (2.24a) with ∂xϕ

and integration yields, assuming vanishing ∂xϕ in the bulk,

∂xϕ = −sign(ϕ − ϕB)

√
2e0n

#
C

(1 + χ)ε0

kBT

e0
(1 − ν#)m ln ((1 − yB)(1 + X(ϕ − ϕB))) − (ϕ − ϕB)z#

=: F(ϕ − ϕB). (5.13)

Clearly, the derivative of the potential is a monotonous
function, thus, we can express the boundary layer charge
and capacitance as

QBL =
∫ ϕS−ϕB

0

nF(ϕ̃)

F (ϕ̃)
dϕ̃, CBL = nF(ϕS − ϕB)

F (ϕS − ϕB)
. (5.14)

The impact of the mobility ratio ν# and of dielectric
constant χ on the bulk layer capacitance is shown in Fig. 3.
To screen a positive surface potential, a negatively charged
layer in the YSZ has to be formed by occupying available
anion lattice sites. Clearly, this number of available anion
lattice sites is independent of the mobility ratio ν# and thus,
the charge layer profile and the double layer capacitance
CBL have to be independent of ν# for positive applied
potentials. To the contrary, when the surface potential is
more negative than the bulk, a small ν#, i.e., a large portion
of the oxide anions is mobile, allows to vacate many anion
lattice sides near the surface, leading to effective screening
of the surface potential by a high negative charge density
in the boundary layer and resulting in high capacity. The
growth of the double layer capacitance for increasing χ , can
be attributed to a spreading of the boundary layer due to the
greater amount of the polarized charge.

We fix χ = 27 and ν# = ν
s

# = 0.9 for all the following

numerical simulations if not stated otherwise.

On the surface, we have

y
s
(ϕ

s
− ϕB) =

Y (ϕ
s

− ϕB)

1 + Y (ϕ
s

− ϕB)
(5.15)

with Y (ϕ
s

− ϕB) = yB

1 − yB

exp

(
−�GA

kBT
− zOme0

kBT
(ϕ

s
− ϕB)

)
.

(5.16)

Thus, we can express the surface charge and capacitance
as.

QS = −zOme0

(
(1 − ν#

s
)m

s
n#

C
s

)
y
s

(5.17a)

CS = z2
Ome2

0

kBT
(1 − ν#

s
)m

s
n#

C
s

Y (ϕ
s

− ϕB)

(
1 + Y (ϕ

s
− ϕB)

)2
. (5.17b)

Figure 4 shows the influence of �GA on the double layer
capacitance of a blocking electrode. Negatively charged
oxide ions tend to move into higher electric potential. If
the adsorption energy, �GA = mOmμ

s

ref
Om − mOmμref

Om, is

positive, then energy is required to for oxide ion to pass
from the bulk to the surface. Stronger negative values of
�GA foster the adsorption of oxide anions to the surface
and thereby shift the surface capacitance maximum to
more negative potentials. This can be seen most clearly
in Fig. 4left where only the surface contribution is shown.
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Fig. 3 Dependence of the
double layer capacitance CDL as
a function of the applied half
cell potential U on the mobility
ratio ν# (left) and on the
dielectric constant χ (right)

Comparison of the Figs. 3 and 4 suggests that the bulk
contribution remains undisturbed. The maxima of surface
capacitance in Fig. 4left are due to the saturation of the
surface for growing potential difference. The position of the
maxima occurs for

(ϕ
s

max − ϕB) = �GA

2e0
− kBT

2e0
ln

(
yB

1 − yB

)
. (5.18)

Comparison to experiment Figure 5 compares simulations
with fitted data to experimentally measured capacitance
curves for different temperatures [22]. For the simulation
we used fitted parameters according to Table 3. The
experimentally observed capacitances of the solid interface
(see also [23] and [24]) are higher than for a metal electrode
in aqueous solution. This is consistent with the absence of
solvation shell formation in YSZ solid electrolyte.

We do not attempt to systematically adjust the model
parameters to the data due to the polycrystalline nature
of the YSZ studied in the experiment, instead, we try to
illustrate the possible temperature dependence and the effect
of the fitted parameters. As the temperature dependencies

would need additional modeling efforts, as a first step, we
performed the fit separately for each temperature.

It is difficult to assert that a particular oxide ion is
mobile or immobile in the microscopic picture. It is suitable
to consider the parameters ν# and ν

s
# determining certain

(dynamic) equilibrium between the admissible and occupied
vacancies in state with vanishing macroscopic free charge
density. As this is usually an effect of thermal excitations,
the values of ν# and ν

s

# should depend on temperature. Also

�GA presumably depends on the temperature.
To this end also m

s
was treated as a fitting parameter

shared for the three cases.

Capacitive currents

In the case of time-dependent applied voltages, the current
representation (5.6) simplifies in the absence of reactions to
the case of no electron transfer:

I

A
= − d

dt

(
zOme0n

s
Om

)
+ d

dt
((1 + χ)ε0∇ϕν)

∣∣∣
YSZ

S

= d

dt
QS + d

dt
QBL. (5.19)

Fig. 4 Left: surface capacitance
CS for different values of �GA.
Right: the combined double
layer capacitance CDL.
Remaining parameters are
χ = 27, ν# = ν

s
# = 0.9
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Fig. 5 Blocking electrode capacitance, marked plots: experimental
8◦mol polycrystalline YSZ [22], solid: fit of the blocking electrode
model

Thus, the current is composed of two contributions
describing the change of the surface charge and the
boundary layer charge, respectively. However, unlike in the
equilibrium case, QS and QBL are not uniquely determined
by the applied voltage. Consider a small time depending
perturbation around the half cell equilibrium potential Ū ,
i.e., the applied voltage is U(t) = Ū + �U(t). For a
time scale of the perturbation considerably slower than the
diffusion and adsorption, the system can be assumed to
behave quasi-static and the current I can be linearized at Ū

such that

I ≈ CDL(Ū )
d�U

dt
. (5.20)

Thus, the double layer capacitance can be measured at low
frequencies using impedance spectroscopy, or with cyclic
voltammetry (CV) at low sweep rate. Here, sweep rate refers
to the slope of voltage change during one linear cycle.

Kinetic coefficients The blocking electrode model contains
two kinetic parameters: diffusion coefficient D and
adsorption rate A

s
0. If one of those parameters is small w.r.t.

sweep rate, a limitation of the total current occurs. To this
end the sweep rate is fixed to 1 mV s−1 in this paragraph.
Small values of adsorption coefficient limit charging and
discharging of the surface oxide ions as it is shown in Fig. 6.

Table 3 Fitted parameters, see Fig. 5

Temperature T 475 ◦C 525 ◦C 575 ◦C

Gibbs adsorption energy �GA 0.14 eV 0.16 eV 0.18 eV

Bulk immobiles ratio ν# 0.85 0.57 0.07

Surf. immobiles ratio ν
s

# 0.85 0.64 0.44

Surf. lattice ratio m
s

0.26 0.26 0.26

The current due to charging of the bulk double layer is not
affected by this.

Similarly, small values of D lead to limitation of the rate
of charging the bulk double as documented in Fig. 7. In this
case, the charging of the surface is affected, because the bulk
diffusion limits the supply of the oxide ions.

Length of domain and sweep rate Faster sweep rates affect
the current response of the blocking electrode similarly
as small values of the kinetic coefficients. Fast-changing
voltage unveils limited rates of oxide ion transportation
that can be attributed to concrete mechanisms. Figure 8
illustrates this for the oxide ion adsorption. Figure 8right

in particular shows that the rate of the surface charging
is limited due to the adsorption. For even greater sweep
rates, the decreasing rates of current to the bulk diffusion
limitation are displayed in Fig. 9left.

The bulk diffusion limitation depends also on the domain
length (see Fig. 9right).

Currents of full half cell

Let us now investigate a scenario where the electrochemical
reaction (5.2)right proceeds on the surface .

In the constitutive relation for the reaction rate according
to (4.25), we choose the symmetry factor β = 1

2 , yielding

R
s

= −2R
s

0 sinh

(
1

2kBT
(mOmμ

s
Om − 2me−μ

s
e− − 1

2
mO2μ

s
O2 )

)
. (5.21)

With the chemical potential (4.14) and �GR = mOmμ
s

ref
Om −

2me−μ
s

ref
e− − 1

2mO2μ
s

ref
O2

, we get

R
s

= −2R
s

0 sinh

⎛

⎝ 1
2kBT

⎛

⎝�GR + ln
y
s

1 − y
s

− 1

2
ln

pO2

pref

⎞

⎠

⎞

⎠ . (5.22)

Cyclic voltammetry with realistic sweep rate
rvolt = 1 mV s−1 is fixed in further demonstration of the
basic features of the investigated system with the reaction.

Free energy parameters

Gibbs energy of reaction �GR is treated as an additional
free energy parameter entering the model with the
surface chemical reaction. The different �GR values (see
Fig. 10left) do not alter the charging of the double layer
but lead to the shift of the onset of the reaction current.
Gibbs energy of adsorption �GA (see Fig. 10right) shifts,
consistently with the blocking electrode case (cf. Fig. 4),
charging of bulk a surface layer. The shift of the reaction
onset occurs because �GA shifts the chemical potential of
the surface oxide ions (cf. (5.21)). The reaction current is for
either non-zero �GA or �GR in the depicted range much
greater then the bulk and surface contributions.
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Fig. 6 Voltammetry of blocking
electrode varying adsorption
coefficient A

s
0. The current is

scaled by the respective rate of
voltage change. Left: total
current. Right: surface
contribution to the current. The
additional parameters are
�GA = 0.2 eV,
D = 1 × 10−11 m2/s

Fig. 7 Voltammetry of blocking
electrode varying bulk diffusion
coefficient D. The current is
scaled by the respective rate of
voltage change. Left: total
current. Right: bulk contribution
to the current. The additional
parameters are �GA = 0.2 eV,
A
s

0 = 1 × 1017/m2/s

Fig. 8 Voltammetry of blocking
electrode varying sweep rates.
The current is scaled by the
respective rate of voltage
change. Left: increasing sweep
rates distinguish the charging of
surface and bulk double layers.
Right: the surface charging
contribution to the current. The
additional parameters are
�GA = 0.2 eV, D =
1 × 10−11 m2/s,
A
s

0 = 1 × 1017 m2/s

Fig. 9 Linear-sweep
voltammetry of blocking
electrode. Left: increasing
sweep rates for thick electrolyte
xB = 5 × 10−3 m. Right: fixed
fast sweep rate, varying
electrolyte thickness
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Fig. 10 Linear-sweep
voltammetry different values of
�GR (left) and �GA (right).
With reaction rate R

s
0 =

1 × 108/m2/s and adsorption
rate A

s
0 = 1 × 1017/m2/s

Reaction rate

According to (5.6) surface reaction rate R
s

0 changes the

relative magnitude of the reaction current; hence, it also
changes the relative onset of the reaction current w.r.t bulk
and surface contributions as it shown in Fig. 11. The limiting
case of a small R

s
0 is the blocking electrode.

The effects of D and A
s

0 are for the open system similar

as for the blocking electrode case. Small values would
lead to surface charging and consequently to bulk charging
limitations thus hindering the reaction.

Discussion

The representation of the interface was chosen as uncompli-
cated as possible so that the behavior of oxide ions double
layer dynamics remains unobscured. This was achieved,
however, let us discuss the drawbacks of the treatment. First,
in a real electrode two distinguished surfaces (YSZ, metal)
are present and the electron-transfer reaction occurs near
their intersection. Hence, tangential diffusion of the sur-
face species comes into play together with the particular

Fig. 11 Linear-sweep voltammetry for different values of reaction
coefficient R0. For �GR = 0.2 eV, �GA = 0.2 eV and A

s
0 =

1 × 1017/m2/s

geometrical realization. To this end a two or three dimen-
sional model would be required including the in-plane
transport of the species. A question that naturally follows is:
where exactly does the electron-transfer reaction occur, at
the contact line or on one of the surfaces? Second, behav-
ior of the metal electrons may in the close vicinity of the
contact line start to display quantum effects that may result
in richer behavior of the electron-transfer reaction. Third,
the adsorption of gaseous species may under some circum-
stances limit the supply of gaseous species to the surface.
Fourth, the appearing surface species depend on the partic-
ular electrode material. In particular, the nature and amount
of the surface species will be different for Pt, Au or LSM
electrodes. Also an additional phase of surface oxide ions
with different adsorption energy might be present. Finally,
one might consider production of surface oxygen O(s) for
the blocking electrode (although no desorption to the gas
phase is possible) and investigate the mechanical strain to
the interfaces due to this.

Summary and Conclusions

A generalized Poisson-Nernst-Planck system describing
YSZ|gas|metal-interface has been derived from first prin-
ciples of nonequilibrium thermodynamics and numerically
solved for simulating double layer capacitance and cyclic
voltammetry measurements.

The core of the gPNP system is due to carefully derived free
energy densities for the bulk YSZ and the YSZ|metal|gas
surface capturing the main features of the YSZ crystalline
nature. It is assumed that the described species, except
for mobile oxide ions, are bound to the crystalline lattice.
These assumptions result, using the entropy principle, in
a novel form of the mobile oxide ion flux, which is a
certain combination of the electrochemical potentials of all
species. The charged layer in the metal is assumed to be in
a diffusional equilibrium, since no transport limitations of
the electrons is assumed. Finally, the formula for the electric
current measured in the apparatus is derived.
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A numerical model for the system has been derived and
implemented in one spatial dimension using a finite volume
method, specifically a variant of the Scharfetter-Gummel
scheme, in the Julia programming language [25] for the
details see Appendix C.

Although the model is strictly developed as isothermal,
most of its parameters may depend on the temperature.
Therefore, the parametric study is also aimed to demonstrate
the scenarios where some of the parameters become limiting
to the charge transfer of the system. Finally, the capacitance
of blocking YSZ electrode taken from literature [22] is
fitted with the model, the quality of the fit relies heavily
on the newly introduced ratios of immobile oxide ions ν#

and ν
s

#. For each temperature these can be fitted alongside

with �GA to the measured data. While the derivation of the
model assumed a single crystal, the measurements had been
obtained for polycrystalline YSZ. Therefore, the presented
fitting results can be seen only as a first step towards a model
for polycrystalline YSZ which ideally should be derived
from the presented model using homogenization techniques.
Moreover, the presented model can serve as a starting point
for further extensions containing more sophisticated surface
chemistry capable of describing the anodic and cathodic
within one kinetic model.
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Science Foundation, GAČR project no. 19-14244J. VM received
funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under
grant agreement no. 671481. This Joint Undertaking receives support
from the European Union’s Horizon 2020 research and innovation
programme, Hydrogen Europe and Hydrogen Europe research. PV and
VM received partial support by grant SVV-2017-260455.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecommons.
org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to
the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

Appendix A: Electric current

Let I be the electric current flowing through an electric
wire to the gas-YSZ surface, which can be measured by an
amperemeter. The current is related to the temporal change
of the surface electron density and electron production on
the gas-YSZ surface. For spatially homogeneous fields on a
gas-YSZ surface with the area A, we have

I

A
= ze−e0

(
d

dt
n
s

e− −
M∑

k=1

γ k
e−R

s

k

)
. (A.1)

The derivation is based on surface and bulk balance
equations (see [11]), the metal model proposed in [6]
and the assumption that the atomic mass of electrons are
much smaller than the atomic mass of metal atoms, i.e.,
me−/mM ≈ 0.

To express the electron number density n
s

e− in (A.1), we

use the identity

d

dt
n
s

F = d

dt

(
e0ze−n

s
e− + e0zOmn

s
Om

)
, (A.2)

which follows from equation (4.17) and that the surface
number density of metal ions is constant. The Gauss law on
the boundary reads

n
s

F = ((1 + χ)ε0∇ϕν)

∣∣∣YSZ
S . (A.3)

Introducing (A.2) and (A.3) into (A.1) yields the identity
(5.6).

Appendix B: Summary of themodel

For easy reference, we summarize the model equations
which have been implemented.

− ε0(1 + χ)∂zzϕ = nF, (B.1a)

mOm∂t

(1 − ν#)m

V # y + ∂z

((
1 + mOm

(1 − ν#)m

m# y

)
J Om

)
= 0, (B.1b)

with

J Om = −D mOm
(1 − ν#)m

V #

(
1 + mOm

(1 − ν#)m

m# y

)

×
[

∂zy

(1 − y)
+ y

zOme0

kBT
∂zϕ

]
, (B.1c)

nF = e0

V #

(
zOm(1 − ν#)m y + z#

)
, (B.1d)

for bulk with the choice of mobility coefficient

M = D
mOm

kB
ρOm = D m2

Om
(1 − ν#)m

V # kB
y, (B.2)

where [D] = m2 s−1 is a diffusion coefficient.
On the surface, the electrochemical reaction is supposed

to be

(B.3)

and we define

�GA = mOmμ
s

ref
Om − mOmμref

Om

∣∣∣
S

, (B.4a)

�GR = mOmμ
s

ref
Om − mO2

μref
O2

2
− 2me−μref

e− . (B.4b)

This leads to the surface equations in the form

mOm∂t

(1−ν#
s
)m

s

a# y
s

= mOmA
s

0

(
−�GA

kBT
+ ln

y|S (1−y
s
)

(1−y|S ) y
s

)
+ mOmR

s
, (B.5a)

with for β = 1/2.
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R
s

= R
s

0

⎡

⎢⎣exp

(
−β

�GR

kBT

)⎛

⎝
y
s

1 − y
s

⎞

⎠
−β (

pO2

pref

) β
2 − exp

(
(1 − β)

�GR

kBT
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⎝
y
s
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⎞

⎠
(1−β) (
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pref
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⎤

⎥⎦ , (B.5b)

= −2R0 sinh

⎛

⎝1

2

�GR

kBT
+ 1

2
ln

⎛

⎝
y
s

1 − y
s

⎞

⎠ − 1

4
ln(

pO2

pref
)

⎞

⎠

⎤

⎦ (B.5c)

with the choice of adsorption coefficient

D
s

= A
s

0
m2

Om

kB
, (B.6)

where [A
s

0] = m−2 s−1 denotes the rate of adsorption.

The two systems are coupled by the adsorption boundary
condition

Table 4 Summary of
parameters for the bulk-surface
model

Temperature T 800 ◦C

YSZ dielectric susceptibility χ 27

Zr cation charge number zZr +4

Y cation charge number zY +3

Oxide ion charge number zOm, zOi −2

Zr molar mass MZr 91.22 g mol−1

Zr atomic mass mZr 15.15 × 10−26 kg

Y molar mass MY 88.91 g mol−1

Y atomic mass mY 14.76 × 10−26 kg

O molar mass MOm 16 g mol−1

Om atomic mass mOm, mOi 2.66 × 10−26 kg

Ratio of C/A lattices m 2

YSZ molar fraction x# 0.08

Ratio of immobiles ν# [0, 1
m

2+x#

1+x# ]
Specific lattice volume of YSZ V # 3.35 × 10−29 m3

Lattice cation number density n#
C (V #)−1

————- ——— ———

Reaction kin. coef. R
s

0 1 × 1010 /m2/s

Oxide ion adsorption coef. A
s

0 1 × 1017 /m2/s

Surface density of cations a
s

#
3
2
√

V # ≈ 1.04 × 10−19 m2

Surface ratio of imm. ox. ions ν
s

# 0.9

Surface ratio of C/A latt. m
s

[0,4]

Gibbs energy of adsorption �GA 0.2 eV

Gibbs energy of reaction �GR 0.2 eV

Partial pressure of O2 pO2 21 kPa

Standard pressure pref 100 kPa

Diffusion coefficient D 1×10−11 m2/s

jOmν|S =
(

1 + mOm
(1 − ν#)m

m# y

)
J Omν|S (B.7)

= A
s

0mOm

⎛

⎝−�GA

kBT
+ ln

y|S (1 − y
s
)

(1 − y|S) y
s

⎞

⎠ , (B.8)

where ν denotes an outer normal of YSZ domain at S.
If not stated otherwise, the simulation parameters used

are given in Table 4.
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Appendix C: The finite volumemethod

In order to perform the spatial discretization, we introduce
collocation points x1 = xS, x2, . . . , xn−1, xn= xB in the
simulation domain � = (xS, xB). The density of these
points is increased in a geometric fashion towards the
electrode surface at xS . Around the collocation points,
we define the control volumes ω1 = [x1,

x2+x1
2 ], ωi =

[ xi+xi−1
2 ,

xi+xi+1
2 ] (i = 2 . . . n − 1), ωn = [ xn+xn−1

2 , xn].
The finite volume discretization method used to per-

form the numerical simulation is based on the classical
Scharfetter-Gummel scheme from semiconductor device
simulation [26] which assumes constant species fluxes
between neighboring control volumes, The fluxes are
expressed via the unknowns in the corresponding colloca-
tion points based on an analytical solution of the flux equa-
tion. This approach automatically introduces an upwind
stabilization of the discretization scheme which is necessary
to handle the possibly steep electric potential gradients in
the polarization boundary layer.

In order to handle the non-idealities occurring in generalized
PNP models, the scheme needs to be adapted in a thermody-
namically consistent manner. For an introductory discussion
of the general ideas in the context of semiconductors (see
27), in the context of electrolyte simulation, a reformula-

tion based on species activities as primary variables can be
a starting point for a corresponding modification [28].

Here, we use an approach which starts from the
reformulation of the species flux based on the introduction
of a drift potential g(y, ϕ) combined of the excess chemical
potential describing the non-ideality and the electrostatic
potential, an idea which goes back at least to [29],

jOm = −D̃ ∂xy + y ∂xg(y, ϕ). (C.1a)

On [xk, xl], we set ȳkl = 1
2 (yk + yl) and

jOm =
(

1 + mOm
(1 − ν#)m

m# ȳkl

)
J Om = −D̃ ∂xy + y D̃∂xf (y, ϕ)︸ ︷︷ ︸

∂xg(y,ϕ)

,

(C.2a)

where

D̃ = D mOm
(1 − ν#)m

V #

(
1+ mOm

(1 − ν#)m

m# ȳkl

)
, (C.3a)

∂xf =
(

1 + mOm
(1 − ν#)m

m#

)
∂x (ln(1 − y))

−zOm
e0

kBT

(
1 + mOm

(1 − ν#)m

m# ȳkl

)
∂xϕ. (C.3b)

The numerical flux between neighboring control volumes
ωk and ωl is then computed as

jNUM
Om,kl = D̃

|xk − xl |
[
ykB

(
−g(yk, ϕk) − g(yl, ϕl)

D̃

)
− ylB

(
g(yk, ϕk) − g(yl, ϕl)

D̃

)]
, (C.4a)

where yk, yl, ϕk and ϕl are values in computational nodes
and B(x) := x

exp(x)−1 is Bernoulli function. Under the
assumption of jOm and ∂xg(y, ϕ) = g′ being constant, as
in [26], the direct calculation of the numerical flux can be
done using the integration factor exp(− g′

D̃
) and integrating

over [xk, xl].
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