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Anisotropic solid-liquid interface kinetics in silicon:
An atomistically informed phase-field model

Sibylle Bergmann, Daniel A. Barragan-Yani, Elke Flegel,
Karsten Albe, Barbara Wagner

Abstract

We present an atomistically informed parametrization of a phase-field model for describing the
anisotropic mobility of liquid-solid interfaces in silicon. The model is derived from a consistent set
of atomistic data and thus allows to directly link molecular dynamics and phase field simulations.
Expressions for the free energy density, the interfacial energy and the temperature and orientation
dependent interface mobility are systematically fitted to data from molecular dynamics simulations
based on the Stillinger-Weber interatomic potential. The temperature-dependent interface velocity
follows a Vogel-Fulcher type behavior and allows to properly account for the dynamics in the
undercooled melt.

1 Introduction

The growth of silicon is relevant for a wide range of technological processes in semiconductor in-
dustry, including the production of polycrystalline silicon for photovoltaics by electromagnetic casting
(EMC), edge−defined film feed (EFG) methods, ingot directional solidification techniques, and also
liquid phase crystallization. Currently, over 90% of the commercial solar cells are made from single- or
multi-crystalline silicon. The production volume of solar cells using the multi-crystalline silicon is higher
than that of single-crystalline silicon. In order to obtain a detailed understanding of the interplay of
process parameters and the resulting microstructure, computer simulations have become an increas-
ingly important tool. However, modeling of nucleation processes and growth morphologies requires
a quantitatively correct description of anisotropic interface energies and mobilities of the crystal-melt
interface.

Simulations of the solidification of multi-crystalline Si including the evolution of grains can be divided
in macroscopic, microscopic and atomistic methods. On the macroscopic scale, cellular automata and
geometric models were proposed, which are most efficient, but lack some physical details. Atomistic
molecular dynamics simulations have been successfully applied to simulate solidification of silicon
and thus offer a route for revealing details of the growth kinetics [7, 8, 35]. Because of the enormous
computational effort, however, these models are restricted to relatively small system sizes of typically
not more than a couple of million atoms. This is why for modeling phenomena on the microscopic
scale, phase field models (PFM) have emerged as a promising and powerful tool for simulating free
boundary problems with complex morphological evolution Since the transport equations for heat and
mass and the phase field are solved simultaneously, the effects of surface tension, nonequilibrium,
and anisotropy can be directly included. PF models are based on physical parameters and can take
into account anisotropies of interface energies and mobilities.

In the context of silicon grain growth phase field models face, however, several challenges. The large
anisotropy of interface energies and directional dependent mobilities determine in a delicate way the
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combination of occurring facets. Moreover, the solidification process is in general much slower than
for metallic systems and thus there is smaller thermal gradients. A technical drawback of PFM lies in
the fact that the minimum mesh size has to be smaller than the interface thickness, while a realistic
interface thickness is only on the order of the capillary length approximately several Ångstrom. The
large body of literature on phase-field models for transitions between liquid and solid phases has been
reviewed, for example in Boettinger et al. [4], Wheeler et al. [44] and more recently in Moelans et al.
[31] and in the context of solidification and dendritic growth by Steinbach [39]. Especially, for the
problem of excimer laser annealing of a Si layer on an amorphous substrate Magna et al. [29] and Shih
et al. [38] developed specific phase-field models based on coupled equations describing the thermal,
phase and impurity redistribution during the annealing process. A recent review on liquid thermal
annealing was published by Fisicaro et al. [14]. However, in the PFM existing studies dealing with
silicon mostly qualitative assumptions on free energy densities, anisotropic interface energies and
mobilities were used. On the other hand, detailed information on melting points, interface velocity
and formation of defects during crystal growth are in principle available from molecular dynamics
simulations and can directly be used. Therefore, it seems natural to ask if both modeling approaches
can be combined to yield quantitative accurate models, that are amenable to large scale simulations.
This has been the concern of a number of studies in recent years, where it has been shown how
atomistic molecular dynamics computations can be used to obtain quantitative information for kinetic
and thermodynamic properties to correctly predict the dynamics of the corresponding multi-phase
systems using phase-field models. In the context of dendritic solidification, for example, Hoyt et
al. [20] developed a method for extracting anisotropic interface energies from atomistic molecular
dynamics simulations and used them in in a phase-field description with weak anisotropy of the
solid-liquid interface. Similarly, Bragard et al. [5], derived PF-parameters for predicting the dendrite
growth velocity as a function of undercooling in pure Ni. A more detailed overview on these problems
can be found in Hoyt et al. [21]. For the solidification of the alloy systems of NiZr, Danilov et
al. [9] and Guerdane et al. [19] addressed the more fundamental question if molecular dynamics
simulations and the phase-field approach can give quantitative equivalent results. At least for these
specific alloy systems they found good agreement in quantities such as the melting rates by comparing
their numerical results.

Interestingly, there is no published study in which the thermodynamic parameters of a phase-field
model for solidification of silicon are extracted from atomistic simulations, although some relevant
data are available [6, 12, 3, 18]. Thus, the focus of this study is to establish a phase-field model, where
the complete set of necessary parameters is derived from molecular dynamics simulations based on
the Stillinger-Weber interatomic potential for Si. In particular, we incorporate a consistent description
of the Vogel-Fulcher-type temperature dependence of the interface velocity of Si. In order to establish
the necessary phase-field parameters we investigate three distinct planar interface orientations.

2 From an atomistic to a phase-field description

In the diffuse interface description the transition between a liquid and crystalline phase is introduced
by a phase-field variable p(x, t). It is a function in space and time that varies from p(x, t) = 0 in
the liquid state to p(x, t) = 1 in the crystalline state. In the simplest setting for a pure melt in the
isothermal case a free energy functional

Φ(p, T ) =

∫
V

F (p, T ) +
σ2

2
|∇ p|2 dV, (1)
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can be derived from thermodynamic considerations [4]. The bulk free energy density F (p, T ) is a
function of the phase-field variable and temperature. The gradient energy coefficient σ is related to
the steepness or width of the transition from the liquid to the solid phase. For anisotropic interfacial
energies, this also depends on the orientation angle normal to the contours of constant p as shown
in Refs. [25, 30]. Since we consider a one-dimensional model, different σ parameters are chosen
depending on the given interface orientation {hkl}, denoted by σ{hkl}. Upon minimization of the
decreasing free energy functional Φ(p, T ) the evolution equation for p(x, t) is obtained as

∂p

∂t
= −MPF

{hkl}

(
∂F

∂p
(p, T )− σ2

{hkl}∆ p

)
, (2)

where MPF
{hkl} denotes the interfacial mobility parameter of the phase field describing the relaxation

dynamics of the interface. The mobility parameter MPF
{hkl} depends on temperature and also on inter-

face orientation.

As schematically sketched in Figure 1, the free energy density F is convenientally chosen as double-
well potential with minima at p = 0 for the liquid and p = 1 for the crystalline phase and with a
maximum in between. We choose a fourth order polynomial in p with temperature dependent coef-
ficients. The temperature dependent minima correspond to the free energies of the liquid and solid
phase and can be calculated from atomistic simulations by thermodynamic integration (see Section
3.2).

By measuring the normal velocity
v = MF (3)

of a moving flat interface in a molecular dynamics simulation (see Section 3.4) one can directly
determine the orientation dependent mobility M of a solid-liquid interface. The driving force F is
determined by the free energy difference of the liquid and solid phase at a given temperature and can
be independently calculated. However, the thermodynamic mobility M obtained in such a manner,
cannot be used as parameter in a phase-field model. The reason is that in a phase-field simulation the
system has to overcome the barrierBkin dividing the two potential wells as sketched in Figure 1. This
contributes to the mobility and, thus, the mobility parameter MPF cannot be identical to M . This is
a fact, which is often disregarded in parametrizations for recrystallization phenomena.

Figure 1: Example of the bulk free energy density F and its kinetic barrier Bkin at temperature 400K
(less than Tm). Bkin is the kinetic barrier, that has to be overcomed to pass from one phase into the
other.
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The second term of the integrand in equation (1) describes the crystal-melt interfacial energy, which
scales with the coefficient σ{hkl}. For a given interfacial energy γ{hkl}, which can again be obtained
from molecular dynamics simulations, and a fixed interface width ε{hkl}, one can adjust Bkin and σ.
The relations between Bkin, σ{hkl}, γ{hkl} and ε{hkl} are

Bkin(Tm) =
γ{hkl}
ε{hkl}

, σ{hkl} =
√

2γ{hkl} ε{hkl}, (4)

as given in Ref. [1].

Again, it should be noted that the parameter σ is often considered as freely adjustable. Thus, for
a given interface energy, rescaling the σ parameter for numerical reasons is equivalent to rescaling
of the interface width, which in turn means that the parameter Bkin needs to be readjusted, if the
interface energy shall remain unaffected.

In this paper, we choose ε{111} = 1nm as a physical parameter describing the width of the interface
for the {111} growth plane and use interface velocities, interfacial energies and free energy densities
obtained from molecular dynamics simulations.

The velocity versus temperature relationship is fitted to an equation describing the competition be-
tween kinetics and thermodynamics of the crystallization process. In Section 4.3, the remaining pa-
rameter of the phase-field model, the mobility MPF , is then obtained by a shooting method applied
to (2) in one dimension, such that the crystallization velocity of the phase-field simulation agrees
with the growth velocity calculated by means of molecular dynamics, which we prove numerically in
Section 4.4.

3 Atomistic model and parameter calculation

3.1 Method

Molecular dynamic calculations are performed using the Stillinger-Weber (SW) interatomic potential
for silicon [41], which describes the structure of the molten phase realistically, and reproduces the
experimental melting point [27, 28, 24, 37]. We calculate thermal properties and interfacial velocities
with the widely used LAMMPS code [34] and obtain free energy densities via using the MD++ code
[36]. In Table 1 we present a summary of the thermal properties obtained using the SW potential
along with results form previous simulations and experiments.

We initialize a simulation box containing 4096 atoms in the diamond structure and heat it up. For
doing so, we apply a Nosé-Hoover thermostat with a rate of 1013 K s−1. After melting occurs, we
cool it down with the same rate and calculated the specific heat and latent heat from the average
total energy. Clearly, the specific heat and melting point are in good agreement with the experimental
finding. The latent heat, in contrast, is low compared to experimental measurements. The reason
is that we describe the solid phase and the liquid phase by a single empirical model despite their
different bonding mechanisms [36]. The melting point TMD

m calculated from a simulation cell with
solid-liquid phases co-existence is almost exact compared to the experimental value of 1683K and in
good agreement with earlier simulations [13, 16]. If the intersect of free energies calculated by the
adiabatic switching method at constant volume is used (see Section 3.2) the calculated melting point
T Vm = 1697.12K is slightly higher. In order to be consistent with the free energy data, we use T Vm as
melting temperature for the phase-field model.
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cp,solid cp,liquid ∆Hm[kJ mol−1] TMD
m [K] T Vm [K]

[J mol−1 K−1] [J mol−1 K−1]

SW-pot. 26.9 28.7 31.7 1683 1697.12
other sim. 30.9 [6] 1682 [16]

exp. 26-29 [11] 27.2± 1.5 [11] 50.25± 0.6[11] 1683[41]
data (900-1687K)

Table 1: Heat capacity, latent heat, and melting point of silicon. TMD
m is the melting point obtained from

moving interface simulations, T Vm is the melting point obtained at constant volume from the adiabatic
switching method (see Section 3.2)

3.2 Free Energy Densities

For calculating the free energy density, we use a supercell with 512 atoms and periodic boundary
conditions in all three directions. The actual calculation of the free energy is performed using both
adiabatic switching and reverse scaling [43, 10] as implemented in the MD++ software package by
Ryu and Cai [36]. In order to be consistent with our phase-field model, we modify the code such
that an NVT ensemble is used, the initial volume for both phases - solid and liquid - is equal to the
equilibrium volume of the crystalline silicon supercell at 0K. The free energy density is calculated
then by dividing the obtained free energies by that same volume. Furthermore, in our approach we

Figure 2: Minimum values for the free energy density for liquid/amorphous (f0(T )) and crystalline
(f1(T )) equilibrium to the SW potential for a temperature range of 200−2000K. The free energy
equilibrium values are calculated with the codes provided by Ruy and Cai [36]. For the liquid branch,
Tg points out the glass transition. The free energies for the amorphous phase were calculated by
Broughton and Li [6].

include the free energies of the amorphous state calculated by Broughton and Li [6]. The results are
presented in Figure 2. The melting point used in the phase-field model is the one obtained from this
free energy calculation, T Vm = 1697.12K, which is the temperature at which the amorphous/liquid
and solid free energies intersect. We point out that this value does not correspond to the experimental
value or to the values obtained from direct interface calculations (see Table 1). The reasons for this
discrepancy are the NVT ensemble we used for the free energy calculation and a numerical error in
the adiabatic switching and reverse scaling methods, used for a large temperature intervals like the
one we analyze.
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3.3 Interfacial free energies

Orientation {100} {110} {111}

γ(Tm) in eV/Å2 0.026 0.0218 0.0212

Table 2: The crystal-melt interface free energies γ at the melting point Tm for the orientations {100},
{110} and {111} calculated by Apte and Zeng in [2].

Interfacial free energies calculated with the SW potential are available in literature from Apte and
Zeng [2], who used molecular dynamics to determine γ{100}, γ{110} and γ{111} at the melting point.
Their mean values are given in Table 2. The most densily packed (111) orientation has the lowest
interface energy, while the (110) direction exhibits nearly the same excess energy. This is obviously
at odds with the equilibrium shape of Si grains embedded in a melt, which show a Wulff shape with
(111) and (100) facets only. Thus, γ{110} is obviously underestimated by the SW-potential. Since the
purpose of this study is to devise model parameter, which allow to directly combine phase-field and
molecular dynamics simulations with consistent model parameters corresponding to the SW potential,
we adopt these values for our parametrization.

3.4 Interface velocities

We calculate interface velocities from molecular dynamics simulations of moving planar liquid-solid
interfaces with different crystallographic orientations at constant temperature T ∈ [800K, 2000K].
For this, we initialize a simulation box of about 43 x 43 x 130Å which contains 12,000 - 13,000
atoms, depending on the crystal orientation, with periodic boundary conditions in all three directions.
The box sizes in x- and y-direction are adjusted in order to obtain a single crystal without lattice
defects near the boundaries of the box.

We start our simulation with an equilibration phase using a Nosé-Hoover thermo- and barostat for
10 ps at the desired temperature in order to consider thermal expansion of the box. One timestep
corresponds to 1 fs. The box dimensions are left free to vary independently of each other. For the case
of temperatures below the melting point, the crystalline part of the box (about 1/12) is equilibrated
at the desired temperature. The remaining atoms are melted at 1000K above the melting point and
then cooled to a temperature near TMD

m . While melting, the box dimensions in x- and y-direction
are fixed, but in z-direction the box is allowed to shrink or expand. Finally, we run the crystallization
for some nanoseconds with a global thermostat at the desired temperature. The x- and y-dimensions
are fixed again, but not in the growth direction. For the case of temperatures above the melting point
the procedure is analogous. In this case, the lower part of the box (about 1/12) is heated up to the
desired temperature and, therefore, is melted, while the upper part of the box is kept crystalline with
a temperature near TMD

m . Then, for some nanoseconds, the complete simulation box is connected to
global thermostat at the desired temperature above TMD

m .

To extract the velocity of the interface, one first has to determine its position at each timestep. There
are numerous ways to do so (see Ref. [27]), for instance, by monitoring the particle density or the
atomic potential energy. The observed parameter only has to fulfill the condition that it is sufficiently
different in the solid and liquid phase. In this study, we choose the centrosymmetry parameter [23],
which can be calculated for each atom within LAMMPS. It is zero for an atom in a perfect lattice,
and gives a positive value for disturbed atomic environments. The average of the centrosymmetry
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parameter over one atomic layer perpendicular to the growth direction (corresponding to some hun-
dreds atoms) results in a centrosymmetry of 8.5-11 for a liquid layer and 12-13.5 for a crystalline
layer. We find that the centrosymmetry of melt and crystal is dependent on temperature, as shown in
Figure 3. Therefore, we take the mean value of the centrosymmetry of crystal and liquid the critical

Figure 3: Dependence of the average centrosymmetry parameter of melt and solid on temperature.
The mean value CScrit(T ) is used to determine the position of the crystallization front.

value CScrit in order to distinguish liquid and solid atoms. Using the centrosymmetry method, the
isothermal interface velocities are finally determined for certain temperatures in the range 800K to
2000K for the Stillinger-Weber potential.

The latent heat and the heat capacity determine (together with heat conductivity) how much heat is
generated in a crystallizing sample at the moving interface and how fast it is conducted away. It was
shown by Monk et al. [32] that due to the release of latent heat, the actual interface temperature can
differ from the one which is set by the thermostat. Thus, Monk et al. proposed to use multiple ther-
mostats, from which each one only sets the temperature for a volume element smaller than 20Å in
thickness. They simulated the scenario for pure Ni. Our temperature calculations during crystalliza-
tion show a flat temperature profile over the whole simulation box. This indicates that heat is taken
away fast enough by one global thermostat and did not influence the crystallization velocity.

Another important feature of silicon is the presence of an amorphous phase, if there is a significant
undercooling. This is captured by our isothermal conditions for the moving interface and results in a
Vogel-Fulcher type dependence of the interface velocity on temperature [40, 17, 42].

However, in order to feed the phase field model with these information, we need an analytical expres-
sion for the growth velocity. The growth velocity is described by the product of driving force P and
mobility M , which is formulated for an atomically flat solid-liquid interface by Jackson [22] as

v = M · P = f · A · ν · P, (5)

where f represents the percentage of favorable growth sites (i. e. steps) on the crystal surface, A =
3
√

Ω the cube root of the atomic volume, ν the attempt frequency of atom jumps over the interface
and P the driving force for crystallization. Within transition state theory [22] the interface velocity is
given by the difference between the velocities of crystallization and melting:

v = v0 · exp

(
− Q

kT

)
·
[
1− exp

(
−∆G

kT

)]
, (6)
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where Q is activation energy associated with atomic mobility and ∆G is the Gibbs free energy dif-
ference between the two phases. The last term in brackets is the thermodynamic driving force for
crystallization F , and can be approximated by a series expansion, which we develop upto second
order to obtain

F =

(
1− exp

(
−∆G

kT

))
≈ ∆G

kT
(7)

In [45], Wilson derives the term d · ν in equation (5) as 6D/d with the diffusion coefficient D.
Frenkel [15] refines this expression further by replacing the diffusion coefficient with the Stokes-
Einstein relation

D =
kT

3πηr
, (8)

wich describes the diffusion of a spherical particle with radius r in a liquid with viscosity η. As a
first approximation, the mobility of a particle in the liquid follows an Arrhenius function. However,
from the enthalpy as a function of temperature from the Section 3.1, we noted the occurrence of a
glass transition. Specifically, when approaching and crossing Tg the mobility of the atoms in the melt
is reduced and diffusion is slowed down drastically. The Arrhenius description does not describe this
behavior of glass-forming melts. To overcome this problem, Vogel [42] and Fulcher [17] introduced
an empirical relation allowing the increase in viscosity when approaching the glass transition

η = η0 · exp

(
A

T − TV F

)
, (9)

where η0 and A are constants and the Vogel temperature, TV F , lies about 50K below the glass tran-
sition temperature. By replacing the Arrhenius- with the Vogel-Fulcher-expression, we finally obtain

v = f · ∆G

kT
· 6D

d
=

2f ·∆Hm

3πη0rd · Tm
· (Tm − T ) · exp

(
− A

T − TV F

)
. (10)

The resulting velocity-temperature relationships are depicted in Figure 4, where we fit our measure-
ments with the Vogel-Fulcher expression (10).

Figure 4: Crystallization velocity over temperature for silicon with the Stillinger-Weber potential, fitted
by a Vogel-Fulcher equation(10).

The small velocity of the {111} interface is related to its dense packed structure and low energy,
which does not provide favorable sites for the attachment of atoms. Therefore, a nucleation step has
to take place before a new {111} layer can grow.
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The growth of {110} and {100} interfaces is not nucleation limited, since there are always favorable
growth sites present. The {100} surface exhibits the fastest growth. As a rule of thumb, the relation
between the maximum velocities v{100} : v{110} : v{111} of the fitted curves is about 1:0.8:0.4 for this
potential. The difference in growth velocity of {100} and {110} is related to the factor f in equation
(5) since all other terms are bulk properties and not orientation dependent. To approach the factor f
theoretically, we calculated the density of favorable sites by the density of {111} planes ending at a
{100} surface. This is given by

ρ{100} =
sinα{100}

d
,

where d is the distance of {111} planes and α{100} the angle between the {111} and {100} plane. If
one compares ρ{100} and ρ{110} a relation of 1:1/

√
2 or 1:0.7 is found, which is in rough agreement

with the relation derived from the simulation. Alternatively one can count the number of broken bonds
per area at the surface, which gives an identical result.

Compared to literature values for MD simulations, we find values of 18m s−1 to 20m s−1 for Still-
inger {100} and 9m s−1 to 14m s−1 for {111} [27, 28, 24], which is in good agreement with the
above measured values. From experiments, velocities of 1.6m s−1 are reported by Kuo [26] and
14m s−1 by Ohdaira [33], so that we conclude that the results for the Stillinger-Weber potential are a
good representation of the anisotropic growth velocity of silicon crystals.

4 Atomistically informed phase field parameters

In this Section, we derive the parameters for the phase-field model

∂p

∂t
= MPF

{hkl}(T )

(
σ{hkl}

∂2p

∂x2
− ∂F

∂p
(p, T )

)
, (11)

where the one dimensional phase-field variable p : R × (0, τ) → [0, 1] varies between 0 and 1 to
describe the two bulk states: liquid (p = 0) and solid (p = 1) and the interface region between the
bulk states (0 < p < 1), as already mentioned in Section 2.

Our main focus is that (11) reproduces the interface velocities calculated in Section 3.4, while all
parameters are carefully chosen, such that they are consistent with molecular dynamics with the
Stillinger-Weber potential. Since we have from molecular dynamics information about the three crys-
tallographic orientations {100}, {110} and {111}, we also derive the model parameters for this ori-
entations, which are indicated with the indices hkl in (11).

At first step we derive the bulk free energy density F with the help of our molecular dynamical results
described in Section 3.2. In Section 4.2, we incorporate interface energies from literature, which are
also calculated via molecular dynamics with the Stillinger-Weber potential. Finally, in Section 4.3, we
adapt the mobility parameter MPF , such that the model reproduces interface velocities from Section
3.4, which we prove numerically in Section 4.4.

4.1 Polynomial describing the bulk free energy density

A free energy density F (p, T ), which has the form of a double-well potential in p, can be established
as a polynomial of fourth degree, which is one of the common forms for F . Here, the coefficients
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Figure 5: The double-well potential at different temperatures. At the melting point Tm, the two minima
of the bulk free energy density have the same value.

may depend on the temperature and we assume the expression

F (p, T ) = a0(T ) + a1(T )p+ a2(T )p2 + a3(T )p3 + a4(T )p4.

Since the equilibrium states for the bulk free energy density are represented by the two minima
of the double-well polynomial, we choose the coefficients a0, . . . , a4, such that (0, F (0, T )) and
(1, F (1, T )) are the minima points of F . Then, we equip the free energy density F of the phase-field
model with the equilibrium values of the atomistic free energy and via polynomial interpolation, such
that we obtain two polynomials, f1(T ) for the crystalline values in Figure 2 at p = 1 and f0(T )
for the amorphous/liquid values at p = 0. With respect to the condition, that f1 and f0 represent the
minima of F , the free energy density has the form

F (p, T ) = f0(T ) + a(T )p2 − 2(a(T ) + 2H(T ))p3

+(a(T ) + 3H(T ))p4,
(12)

where H(T ) = f0(T ) − f1(T ). Note here, that H(T < Tm) > 0. For the remaining degree of
freedom a(T ) in (12) yields:

a(T ) >

{
0 T ∈ [0, Tm]
−6H(T ) T > Tm.

(13)

This expression for F fulfills F (0, T ) = f0(T ) and F (1, T ) = f1(T ) for the minima. Details of the
derivation of (12) and (13) are given in the A.1.

Furthermore, the maximum point of F is (µ(T ), F (µ(T ), T )) with

µ(T ) =
a(T )

2a(T ) + 6H(T )
∈ (0, 1). (14)

The calculation of (14) is described in A.2. Hence, as we indicated in Section 2, for the line g(p)
which is tangent to both of the minima of F , the energy barrier Bkin, that has to be exceeded to get
from one equilibrium phase to the other, is the difference of the function values of the maximum
F (µ) and g(µ). At the melting point Tm, the two minima of F have the same function value and thus
Bkin(Tm) is the difference of the function value of the maximum of F and the function value of the
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minima. Since the function values of the minima are then f0(Tm) = f1(Tm), with equation (14) the
maximum point at Tm has the simple expression

(µ(Tm), F (µ(Tm))) = (1/2, f0(Tm) + a(Tm)/16).

Hence, the kinetic barrier at the melting point has the form

Bkin(Tm) =
a(Tm)

16
. (15)

The kinetic barrier closely relates to the interface energy γ, which we discuss in Section 4.2, where
we also determine Bkin and hence with (15) the remaining degree of freedom for the bulk energy.

4.2 Interfacial free energy and width

We derive the gradient energy coefficient σ and the degree of freedom a in the free energy density (12)
consistent with the interfacial energies obtained in Apte and Zeng [2], who used molecular dynamic
simulations. We note that for the calculation of σ and a, we presently use only the values for the
equilibrium state and hence make a independent on the temperature, since there is no literature with
values of temperature dependent interface free energy calculated by means of molecular dynamics
with Stillinger-Weber potential for Si. But after all, the mobility parameter MPF will compensate
the missing temperature dependence at this point.

Since Allen and Cahn [1], we know the relations between the interfacial energy coefficient σ in the
phase field model, the modeled interface thickness ε, the interfacial free energy γ and the modeled
kinetic barrier Bkin.

At the melting point T = Tm the relations are

γ{hkl}(Tm) ≈ σ{hkl}

√
1

2
Bkin(Tm), l{hkl} ≈

σ{hkl}√
2Bkin(Tm)

.

For convenience we set

a

16
= Bkin(Tm) =

γ{111}(Tm)

l{111}
, σ{hkl} =

√
2γ{hkl}(Tm) l{hkl}. (16)

For the crystal orientations {100}, {110} and {111}, Apte and Zeng [2] obtained as the crystal-melt
interfacial free energy γ, see Table 3. We assume for orientation {111} an interface thickness of
ε{111} = 1 nm and find a kinetic barrier of Bkin ≈ 0.002 eV/Å3. Hence, the interface thickness
of orientation {100} results in ε{100} ≈ 12.35Å and of {110} in ε{110} ≈ 10.29Å. In Table 3, the
values γ, ε, and the resulting model parameters σ and a are given for all three considered orientations.
Figure 5 shows the resulting double-well potential at different temperatures.

4.3 Realization of interface velocity in the phase-field model via the mobility
parameter

In the previous subsections, we derived the bulk energy and the gradient energy of the phase-field
model (11) by explicit use of the results from molecular dynamics. In this Section, we calculate the
mobility parameter MPF

{hkl}(T ) of the phase-field model (11), such that the model reproduces the
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Orientation {100} {110} {111}

γ{hkl}(Tm) in eV/Å2 0.0262 0.0218 0.0212

ε{hkl} in Å 12.35 10.29 10

σ2
{hkl} in eV/Å 0.8042 0.6702 0.6512

a in eV/Å3 0.0339

Table 3: The crystal-melt interface free energies γ at the melting point Tm for the orientations {100},
{110} and {111} calculated by Apte and Zeng in [2]. With the help of γ and (16), we calculate the model
constants a and σ for the three orientations. For that we choose an interface thickness of ε = 1 nm
for orientation {111}.

atomistic velocities vMD
{hkl}(T ) from Section 3.4. But in the phase field, the interface velocity is not

a parameter which can be directly incorporated as the interface energy γ{hkl} in σ{hkl} or the free
energy minima in F . Hence, we implement a shooting method, where we vary MPF

{hkl}(T ) until all
required conditions are fulfilled for a fixed temperature and orientation. This procedure is repeated
for all three considered directions (100), (110) and (111), where we make measurements for the
temperatures T = 800K, 850K, 900K, ..., 1950K, 2000K.

For the shooting method, we first define boundary values for (11), such that we simulate crystal
material on the left boundary, and liquid material on the right:

0 = MPF
{hkl}(T ) σ2

{hkl}
∂2p
∂x2
−MPF

{hkl}(T ) ∂F
∂p
− ∂p

∂t

p(−∞, t) = 1,
p(+∞, t) = 0,

(17)

We now fix the temperature and the orientation arbitrarily. Hence, MPF , σ and also the velocity v
are constants. That means, the phase-field variable p in x varies proportional to the time, such that

p(x, t) = φ(x− vt) =: φ(ξ).

Substitution of φ in (17) leads to the ordinary differential equation with boundary conditions:

0 = MPFσ2φ′′ −MPFF ′ + vφ′,
φ(−∞) = 1,
φ(∞) = 0,

(18)

where φ′ = dφ
dξ

and F ′ = ∂F
∂φ

.

To receive an initial-value problem, we integrate the ordinary differential equation in (18) with the
left boundary φ(−∞) = 1, which holds as our first initial condition, and the right boundary s,
which represents the new space-dependence variable for the shooting method. Furthermore, we de-
fine F̃ ′(ξ) := F ′(φ(ξ)), thereby we are able to integrate the derivative of the potential F in ξ. For the
calculation of the integral we use the second initial conditions φ′(−∞) = 0. The both initial condi-
tions guarantee, that we have crystal material at the left boundary. Applying all described conditions,
we receive

c = MPFσ2

∫ s

−∞
φ′′ dξ −MPF

∫ s

−∞
F̃ ′(ξ) dξ + v

∫ s

−∞
φ′ dξ (19)

c = MPFσ2(φ′(s)− 0)−MPF (F̃ (s)− F̃ (−∞)) + v(φ(s)− 1). (20)
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By choosing c = MPF F̃ (−∞), our initial value problem has the form:(
F̃ ′(s)
φ′(s)

)
=

(
F ′(φ(s))

v
MPF σ2 (1− φ(s)) + 1

σ2 F̃ (s)

)
, (21)

φ(−∞) = 1, (22)

φ′(−∞) = 0. (23)

We calculate the mobility MPF via a bisection method. Therefore we vary MPF until the right
boundary condition φ(∞) = 0 is fulfilled. We apply this method for each of the three orientations
{100}, {110} and {111} and use the respective value of σ{hkl} listed in Table 3. Thereby we calculate
v for the respective temperature and orientation with the fits shown in Figure 4. Our results are shown
in Figure 6 and listed in A.3.

Figure 6: The extracted mobilities of the phase-field model as a function of temperature and orientation.
The concrete values are listed in Section A.3 in Table 4.

4.4 Numerical solution of the phase-field model and velocity reproduction
tests

We solve model (11) numerically at fixed temperatures T = 1050K, 1100K, ..., 1950K, 2000K for the
three crystallographic orientations. During the simulation, we measure the velocity of the interface
region by interpolating the position of p = 0.5. In fact, the model reproduces the velocities vMD

{hkl}(T )
from molecular dynamics, see Figure 7.

As for the molecular dynamical simulations, we also have periodic boundary conditions for the phase-
field model for p(x, t), which we solve numerically using a Fourier spectral method. Our equidistant
grid guarantees that enough grid points are located on the interface to secure an accurate solution. For
velocities close to zero, we lower the time step for a better result.

As initial condition we simply define a jump function J(x): For T < Tm we set J(x) equal to one
close to the boundaries and zero in between. For T > Tm we define J(x) the other way around.
In both cases, one has to take care, that the intervals where J(x) = 1 or J(x) = 0 are wider than
the interface thickness, else the system evolves to an equilibrium state before the traveling wave is
established.
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Our results of the numerical velocity measurement match accurately with the results from molecular
dynamics. On the left-hand side of Figure 7, the velocities from the phase-field simulation of model
(11) are located directly on the line of the Vogel-Fulcher fit of the molecular dynamical data. For a
better comparison, we calculate the relative error, which is

R{hkl}(T ) =

∣∣∣∣∣v
MD
{hkl}(T )− vPF{hkl}(T )

vMD
{hkl}(T )

∣∣∣∣∣ . (24)

The relative error is shown on the right-hand side of Figure 7. We observe, that the maximal relative
error is 0.0013, which is at T = 1650K for orientation {110}. 95% of the errors are even lower than
10−3.

Figure 7: The points in the left figure are the mesured velocities from the numerical solution of equation
(11). The solid lines are the fitted velocities from molecular dynamics. Clearly, model (11) with the
atomistic informed parameters reproduces exactly the kinetic inteface-behavoir. As shown in the right
figure, only 5% of the relative errors of the velocities are greater than 10−3. The highest error is about
0.0013 for the {110} orientatin at T = 1650K.

5 Conclusion and outlook

In this study we have extracted the necessary parameters to obtain a phase-field model that can accu-
rately describe the solid-liquid interface kinetics. In particular, using molecular dynamics simulations
with the interatomic potential by Stillinger-Weber, we derived an expression for the bulk free energy,
the interfacial width of the liquid-crystal interface and the crystallization velocity and hence the cor-
responding anisotropic mobility parameter for three different orientations in silicon as a function of
temperature. To properly capture the behavior of the temperature-dependent viscosity near the glass
transition a Vogel-Fulcher fit is used for the Stillinger-Weber potential. We show that these results are
essential to obtain an accurate temperature dependence of the mobility parameter in the correspond-
ing phase-field model for liquid-phase crystallization.

Our approach is presently being extended to two- and three-dimensional setting. Further extensions
include the amorphous and poly-crystalline structure as well as defects such as stacking faults, in the
free energy density and are expected to prove useful for validation against experimental results of Si
recrystallization in the future.
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Appendix

A.1 Determination of the bulk free energy density F

Our approach for the free energy density is a polynomial of fourth degree in p

F (p, T ) = a0(T ) + a1(T )p+ a2(T )p2 + a3(T )p3 + a4(T )p4, (25)

which attains the values in Figure 2 at the equilibrium states p = 0 (liquid phase) and p = 1
(crystalline phase). So we need to consider the derivatives of F with respect to p:

∂F

∂p
(p, T ) = a1(T ) + 2a2(T )p+ 3a3(T )p2 + 4a4(T )p3,

∂2F

∂p2
(p, T ) = 2a2(T ) + 6a3(T )p+ 12a4(T )p2.

From the conditions for the existence of minima at p = 0 and p = 1 follows

a1(T ) ≡ 0 (26)

a2(T ) > 0 (27)

a3(T ) = −2
3
a2(T )− 4

3
a4(T ) (28)

a2(T ) < 2a4(T ). (29)

The polynomials f0(T ) and f1(T ) pass the equilibrium values in Figure 2 for liquid and crystalline
Si, respectively. For the minima, we need for (25) the equalities F (0, T ) = f0(T ) and F (1, T ) =
f1(T ) and hence

f0(T ) = F (0, T ) = a0(T ), (30)

f1(T ) = F (1, T )
(26,28,30)

= f0(T ) +
1

3
a2(T )− 1

3
a4(T ). (31)

With (28) and (31) the two coefficients a3 and a4 have the form

a3(T ) = −2 a2(T )− 4(f0(T )− f1(T )) = −2 a2(T )− 4H(T ), (32)

a4(T ) = a2(T ) + 3(f0(T )− f1(T )) = a2(T ) + 3H(T ). (33)

Together with (33) we can verify the inequality (29):

a2(T ) > −6H(T ), (34)

where the right-hand side of (34) is negative if and only if T < Tm, as one can observe in Figure
2. Hence, for temperatures below the melting point, a2 has to fulfill (27). Finally, together with (32),
(33), the double-well potential (25) has the form

F (p, T ) = f0(T ) + a2(T )p2 − 2(a2(T ) + 2H(T ))p3

+(a2(T ) + 3H(T ))p4,
(35)
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where

a2(T ) >

{
0 T ≤ Tm
−6H(T ) T > Tm.

(36)

The formulations (35) and (36) are equivalent to (12) and (13), respectively, by renaming a2(T ) to
a(T ).

A.2 Derivation of the maximum argument µ

In the following, the calculation of µ is described, where the notation of (12) and (13) is used. We
first note that with (13) we have

a(T ) + 3H(T ) > 0, (37)

which can be seen easily by using the restrictions on a in (13):

First of all we note that for T > Tm

a(T ) + 3H(T )
(13)
> −6H(T ) + 3H(T ) = −3H(T )

T>Tm
> 0,

and for T ≤ Tm,
a(T ) + 3H(T ) > 0 + 3H(T ) ≥ 0.

Besides that p = 0 and p = 1, the first derivative of F

∂F

∂p
(p, T ) = 2p(1− p)[a(T )− (2a(T ) + 6H(T ))p]

has a third root µ(T )

µ(T ) =
a(T )

2a(T ) + 6H(T )
.

Since (37) holds, the denominator of µ(T ) can not become zero. Hence, with (13) we have µ(T ) > 0.
Further, the condition

µ(T ) =
a(T )

2a(T ) + 6H(T )
< 1 (38)

is equivalent to
a(T ) > −6H(T ), (39)

and together with (13) we have µ(T ) ∈ (0, 1) for all T ≥ 0. In addition, for a maximum in µ(T ),
the second derivative of F in µ(T ) has to be less than zero, i.e.

∂2F

∂p2
(µ(T ), T ) =

a(T )(a(T ) + 6H(T ))

−a(T )− 3H(T )

!
< 0 (40)

Since (37) holds, the denominator of (40) is negative and we get, since a(T ) > 0

a(T ) > −6H(T ). (41)

With (13), the last condition is a always true. Hence, the second derivative of F in µ(T ) is less than
zero, so (µ(T ), F (µ(T ), T )) is a maximum point of F .
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Temperature Mobility MPF
{100} Mobility MPF

{110} Mobility MPF
{111}

T in K in Å3/(eV ns) in Å3/(eV ns) in Å3/(eV ns)
< 800 0 0 0
800 8.8818e-14 8.8818e-14 2.93e-01
850 9.7105e-08 1.7795e-09 5.6933e-01
900 5.8741e-03 8.4051e-04 1.0082
950 2.2923e-01 6.8938e-02 1.658
1000 1.425 6.2816e-01 2.5636
1050 3.3476 1.8627 3.761
1100 6.8805 4.4784 5.2861
1150 11.4558 8.3461 7.1611
1200 16.737 13.2755 9.4112
1250 22.4071 18.9898 12.0447
1300 28.2093 25.213 15.06
1350 33.9597 31.7057 18.4506
1400 39.5291 38.274 22.2025
1450 44.8397 44.7766 26.3002
1500 49.7514 51.0148 30.6662
1550 54.1681 56.8348 35.2213
1600 58.1903 62.2964 39.9958
1650 61.8892 67.4445 45.0044
1700 63.6398 70.4575 48.9622
1750 66.429 74.5941 54.0443
1800 68.8907 78.3509 59.2121
1850 70.7543 81.4046 64.1717
1900 71.9325 83.6335 68.749
1950 72.9413 85.6235 73.3545
2000 73.6987 87.2768 77.8687

Table 4: The calculated mobilities via a shooting method for orientations {100} {110} and {111}. They
are shown in Figure 6.

A.3 Listed mobility values

In Section 4.3 we describe the calculation of the mobility parameters for the phase-field model (11).
The mobility values are shown in Figure 6 and listed in Table 4.
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