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A B S T R A C T

The spiking neural network (SNN), closely inspired by the human brain, is one of the most
powerful platforms to enable highly efficient, low cost, and robust neuromorphic computations in
hardware using traditional or emerging electron devices within an integrated system. In the
hardware implementation, the building of artificial spiking neurons is fundamental for con-
structing the whole system. However, with the slowing down of Moore's Law, the traditional
complementary metal-oxide-semiconductor (CMOS) technology is gradually fading and is unable
to meet the growing needs of neuromorphic computing. Besides, the existing artificial neuron
circuits are complex owing to the limited bio-plausibility of CMOS devices. Memristors with
volatile threshold switching (TS) behaviors and rich dynamics are promising candidates to
emulate the biological spiking neurons beyond the CMOS technology and build high-efficient
neuromorphic systems. Herein, the state-of-the-art about the fundamental knowledge of SNNs is
reviewed. Moreover, we review the implementation of TS memristor-based neurons, and their
systems, and point out the challenges that should be further considered from devices to circuits in
the system demonstrations. We hope that this review could provide clues and be helpful for the
future development of neuromorphic computing with memristors.
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1. Introduction

In recent years, with the continuous development of neuroscience, big data, and deep learning algorithms, conventional electronic
computing systems have shown superior capabilities in image classification, speech recognition, natural language processing, task
decision-making, intelligent driving, and other fields [1–5]. However, there are challenges associated with the energy inefficiency and
latency due to the von Neumann bottleneck andmemorywall [6–8]. To further improve computing efficiency, neuromorphic computing
inspired by the human brain is a promising candidate. Neuromorphic computing aims to study themost efficient computing and learning
processes belonging to the structure and mechanism of the brain, including neurons and the connecting synapses between them, and
reproduce them in hardware. Neuromorphic computing has the characteristics of event-driven, parallel computing, analog computing,
and in-memory computing [9], all features are of paramount importance to achieve low-power and high-density computing systems. In
particular, these characteristics are inherent in spiking neural networks (SNNs), considered as the third generation of neural networks,
which process the information encoded in the form of spikes only when necessary, i.e., when an event occurs.

In the hardware implementation, memristors have been recognized as a new platform for neuromorphic computing beyond the
CMOS technology. Memristors rely on ion dynamics processes which are similar to biological neurons and synapses, and thus can
faithfully emulate the related functions of neurons and synapses [6]. Besides, according to Ohm's law and Kirchhoff's law, the arrays of
memristors can realize the dot product operation (OUTj ¼

P
iINi �Wi;j, where INi is the element of an input vector,Wi;j is the element of

the weight matrix, andOUTj is the element of the output vector) in the neural networks naturally [10,11], and have the characteristics of
analog computing, parallel computing, and in-memory computing, simultaneously.
Fig. 1. Neural network structures and the comparison between ANN and SNN: (a) typical two-layer neural network schematic, including the input,
hidden, and output nodes; (b) working schematic of ANNs; (c) working schematic of SNNs.
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Memristors are 2-terminal devices consisting of two metal electrodes sandwiching a typically thin switching layer [12,13]. Different
types of switching dielectrics utilize different mechanisms of the memory state transition [14]. According to the different transformation
mechanisms, such as the redox [15], phase change [16], ferroelectric tunnel junction (FTJ) effect [17], magnetoresistive effect [18],
memristors have a variety of applications. In particular, redox memristors have received great attention due to their fast switching
speed, excellent endurance, and scalability [15,19,20]. Redox memristors can be divided into two categories, non-volatile and volatile.
Non-volatile memristors have been extensively reviewed in previous work for storage or to emulate synapses, and thus will not be
described in this review.

There are three types of volatile memristors with threshold switching (TS) characteristics: TS memristors based on insulator-metal
transition (IMT) [21,22], TS memristors based on conductive metal filaments [23–25], and TS memristors based on defect assisted
tunneling [26]. These TS memristors are originally used as selectors and have shown remarkable performance in the field of neuro-
morphic computing.

In this review, recent progress on the applications of TS memristors in the field of neuromorphic computing is reviewed. SNN is
introduced by classifying its working mechanism and advantages. Neuron models of SNNs are discussed for different emulation prin-
ciples. Moreover, applications of TS memristors in artificial neurons, SNNs implementation, and artificial spiking afferent nerves are
presented in detail.

2. Neural networks

2.1. Algorithmic models of neural network

The high efficiency of the brain can be attributed to three factors: Integration of data storage and calculation, highly interconnected
functional topology, and time-dependent neurons and synapses. The basic components of biological neural networks are neurons and
synapses [27]. The term “neuromorphic engineering” was first proposed in the 1990s, specifically referring to the use of analog circuits
to emulate the functions of biological neurons and synapses to build a computing system similar to the brain [28]. In recent years,
neuromorphic computing also refers to implementing a neural network through analog, digital, or mixed digital-analog circuits and
software algorithms, achieving a similar effect as the biological neural network. Fig. 1 (a) is the schematic diagram of a typical two-layer
neural network, including the first layer between the input nodes and hidden nodes, and the second layer between hidden nodes and
output nodes. The initial input is received by the input nodes and then used as the input for the hidden nodes after being weighted and
summed. Furthermore, the input for the hidden node is nonlinearly transformed by the neuron and then presented at the output. The key
to implementing neural computing in the neural network is the dot product of the vector and the matrix [1].

According to the different neuron models used, neural networks can be roughly divided into artificial neural networks (ANNs) and
SNNs. ANNs are the main models currently used in deep learning, which mainly simulate the topological interconnection structure in
biological neural networks and use a nonlinear function to represent neurons to achieve the cognitive function of biological neural
networks to a certain extent. Fig. 1 (b) shows how ANNs work. In ANNs, the nonlinear function serves as the basic computing unit
transforming the input x to the corresponding analog output.

In SNNs, spiking neurons are used as basic computing units [29]. SNNs process information using spikes, or action potentials, which
are unique neuron outputs with a fixed shape and amplitude, and sometimes are referred to as binary events that can be 0 or 1. Similar to
biological neurons, neurons in SNNs are activated only when they receive or emit spikes, thus SNNs are more energy-efficient. The
schematic diagram of SNNs is shown in Fig. 1 (c). Compared with ANNs, SNNs, introducing timing parameters into the calculation
process, have the advantages of asynchronous communications, sparse coding, and event-driven processing of information [30]. Be-
sides, SNNs are the fundamental platforms for performing neuromorphic computing.

2.2. Neuron models

Different neuron models have been proposed to describe the process of how the neurons generate action potentials on the circuit or
mathematically. One is the biophysical model, whose goal is to emulate the electrophysiological state of the neuron membrane (for
example, the Hodgkin-Huxley (H-H) model [31]). The other is the phenomenological model, whose goal is to use simple mathematical
abstractions (for example, the leaky integrate-and-fire (LIF) model [32]) to capture the input-output behavior of neurons. The H-H
neuron and LIF models are the most widely used and studied in circuit implementations and algorithm applications. Fig. 2 (a) shows the
schematic of the H-H neuron circuit model. In this model, two variable resistors with different turn-on voltages (RNa and RK) represent
the Naþ and Kþ channels of biological neurons, respectively. Meanwhile, a capacitor represents the membrane, and a fixed resistance RL
Fig. 2. Schematic diagrams of (a) H-H neuron circuit model and (b) LIF neuron circuit model.
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represents the leakage path of the membrane. After receiving the input stimuli, the membrane potential lifts up and activates the two
voltage-gated ion channels to the open state in sequence when the membrane potential surpasses a threshold value, resulting in an
action potential. Compared with the H-H model, the LIF neuron model is relatively simple, as shown in Fig. 2 (b). In this model, a
capacitor is used as a membrane to integrate the input signal, RL is used as the resistance of the leakage loop, and the threshold switch (or
the variable resistance) serves as the ion channel.
2.3. Hardware implementation of neuromorphic computing

At present, the hardware implementation of neuromorphic computing mainly involves physical neural networks, which could be
divided into two types: CMOS-based and non-CMOS-based. The neuromorphic computing technology based on emerging devices is in its
infancy, and one of the most attractive directions is using memristors to build neuromorphic chips. In a narrow sense, neuromorphic
chips also specifically refer to the hardware implementation of SNNs.

In the conventional CMOS process, neuron circuits and synaptic circuits are the bases for hardware implementation. For achieving
complex brain-inspired interconnection, neuromorphic chips are usually implemented through a multi-level scheme of a horizontal and
vertical cross matrix (X-bar), network on chip (NoC), and multi-core interconnections [33,34]. Many chips have been successfully
developed based on this architecture, showing great application potential in areas, such as smart cities, real-time information processing
for autonomous driving, and deep facial recognition: IBM's TrueNorth [35], the representative digital chip with global asynchronous and
local synchronous, Intel's Loihi [33], realizing online learning based on fin field-effect transistor (FinFET) technology, Stanford Uni-
versity's Neurogrid [36], a digital-analog hybrid programmable neuromorphic chip.

Compared with existing CMOS transistors, memristors have the advantages of simple structures, low power consumption, good
scalability, rich dynamics, and easy three-dimensional integration, also in the Back-End-Of-Line (BEOL) of the standard CMOS fabri-
cation process [37–39]. In view of the potential advantages of memristors in building neuromorphic chips, memristors have been
considered to be ideal hardware units for building low-power, high-density neuromorphic chips, attracting widespread attention from
academia and industry.

3. Application of threshold switching redox memristors

3.1. Different mechanisms in TS devices

Threshold switching memristors (TSMs) feature the ability to spontaneously switch from a low-impedance state to a high-impedance
state without any additional voltage, which can greatly simplify the design and fabrication of neuron circuits. As mentioned above, TSM
can be divided into three types according to their working mechanisms: IMT, metal ion threshold transition, or ovonic threshold
switching (OTS) [40].

TSM based on IMT is commonly observed in NbOx or VOx material systems, a NbO2 or VO2 conductive channel with the charac-
teristics of IMT is formed after the forming voltage is applied. IMT is closely related to the energy in the channel. An external voltage can
cause the channel to change from a high-resistance insulating state at rest to a low-resistance metallic state. When the external voltage
excitation is insufficient, the conductive channel will be broken and the device will spontaneously change from a low-resistance state
Fig. 3. Schematic presentation of three types of TSM operating in a less conductive or more conductive state: (a) TSM based on IMT, (b) TSM based
on metal ion threshold transition, (c) TSM based on OTS.
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(LRS) to a high-resistance state (HRS), showing a volatile characteristic (see Fig. 3 (a)).
TSM based on the metal ion threshold transition is characterized by the metal conductive channel formed due to redox and elec-

tromigration of metal cations. Taking the diffusion memristor of Ag filaments as an example, when the metal channel is formed,
minimization of interfacial energy between the metal conductive path and the surrounding medium or the Thomson-Gibbs effect tends
to break the conduction path spontaneously if no sufficient electrical excitation is applied (see Fig. 3 (b)).
Fig. 4. Artificial neurons based on TSM with IMT characteristic: (a) H-H neuron circuit based on double Pt/Nb2O5/Pt memristors; (b) I-V charac-
teristic of the proposed IMT-based neuristor; (c) schematic illustration of the all-or-nothing threshold discharge characteristics of the H-H neuron
[46], Copyright 2013, Springer Nature; (d) three prototype neuron circuits and their demonstrated neuromorphic behaviors based on the VO2

memristor: a) tonic excitatory neurons; b) phasic excitatory neurons; c) mixed-mode neurons [45], Copyright 2018, Springer Nature. Third-order
nanocircuit elements based on the NbOx memristor: (e) the integrated circuit element; (f) schematic diagram of the structure of the memristor;
(g) temporal dynamics of the artificial neuron at different external voltage biases [47], Copyright 2020, Springer Nature.
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TSM based on OTS realizes the switching operation by field-assisted tunneling. The S-based Ge alloy is an appealing OTS material. In
this work, TSM based on OTS is not in our main discussion considering that OTS is based on the concept of phase change memristors, not
redox memristors (see Fig. 3 (c)).
3.2. Application in artificial neurons

Nowadays, CMOS devices have been widely reported to realize spiking neuron circuits [41,42]. However, due to the lack of dynamic
characteristics similar to neurons, CMOS neuron circuits need dozens of transistors to realize neuron functions, resulting in great
challenges in energy efficiency and scalability. LIF neuron circuits with relatively simple structures also need to be composed of a
capacitor, reset circuits, and comparators. As an example, when SNNs have to interact with the external environment in real time, the
time constants of the network have to match the ones of the real world. This typically results in the use of huge capacitors that can take
up to 60% of the chip area [43].

Recently, artificial neurons based on threshold switching redox memristors have received wide attention due to their simple circuit
designs. The NbOx-based memristor, one of the redox memristors, featuring the negative differential resistance (NDR) behavior and
abundant device physical dynamics, can serve as the basis of dynamic threshold switching with voltage sweeps [44], and be used to
emulate biological neurons. In 2013, Pickett et al. reported a neuristor built using two nanoscale Pt/Nb2O5/Pt memristors according to
the H-H neuron circuit model [45]. Fig. 4 (a) presents the schematic of this neuristor. In this circuit, two NbO2memristors act as Na þ ion
channels and Kþ ion channels, respectively. Both channels consist of a memristor and a capacitance in parallel and are coupled by a load
resistor. Fig. 4 (b) shows the I-V curve of this IMT memristor, the existence of the hysteresis loop is owing to the Mott transition. The
IMT-based neuristor can realize the neuronal behaviors of threshold firing, the all-or-nothing action potential, lossless spike propa-
gation, the refractory period, tonic firing, and rapid burst firing. As shown in Fig. 4 (c) [46], no complete action potentials generate when
the input stimulus is relatively small (0.2 V), but a complete action potential is out to complete a discharge when the input stimulus is
large enough (0.3 V). As far as we know, this work is pioneering work in the realization of spiking neuron circuits using memristors,
laying the foundation for scalable and CMOS compatible neuromorphic circuits.

To further realize more neuron firing modes, Yi et al. optimized the H-H neuron circuit model and implemented 23 biological neuron
firing modes based on volatile neuron devices [45], which more fully reflected the advanced nature of memristor-based neuron circuits.
Fig. 4 (d) [45] shows the three prototype neuron circuits, and their experimental demonstrated neuromorphic behaviors based on this
VO2 active memristor. Different neuron firing modes are implemented by customizing the passive R and C elements with no need for
varying VO2 device parameters. This work greatly simplifies the design and fabrication of an integrated circuit.

Neuron circuits based on the H-H model have high requirements for device uniformity and parameter matching between circuits,
increasing the difficulty of large-scale integration and applications. In the meantime, the LIF model has received extensive attention in
system integration owing to its simple structure and low computational complexity. In the LIF neuron circuit, only one capacitor coupled
with an IMT memristor is essential. The capacitor is responsible for integration, while the IMT memristor performs threshold judgment
and generates a spike signal. Based on this, Gao et al. demonstrated a LIF neuron based on NbOx memristors which are connected with a
synapse (a load resistor) [48]. In this work, the oscillation frequency of the spiking neuron was proportional to the synaptic conductance,
thus supporting the feasibility of integrating the weighted sum.

Considering the unique dynamics of TSM associated with Mott transitions, it is of great significance to fully exploit the dynamics of
the device in neuronal circuits. In 2020, Kumar et al. further used the third-order dynamics of the NbOx memristor, the parasitic
Fig. 5. Artificial neuron based on TSM with the metal ion threshold transition characteristic: (a) schematic diagram of the spiking neuron circuit with
a TS memristor as the dynamic threshold switch; (b) schematic illustration of the proposed neuron circuit; (c) discharge characteristics of the neuron
under different input pulse amplitudes [50], Copyright 2017, IEEE; (d) schematic of the memristor with the catalyst inserted in the insulator; (e)
illustration of the decreased reduction overpotential caused by the catalyst; (f) schematic of the diffusive memristor structure; (g) typical IV curve
measured from the memristor [52], Copyright 2020, Springer Nature.
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capacitance of the device, and stacked integrated external resistors to achieve multiple neuron discharge modes in a single integrated
device, and verified the on-chip integration for the first time [47]. Fig. 4 (e) shows the integrated nanocircuit element, consisting of a
NbO2 volatile Mott memristor coupled with an internal parallel capacitor and an internal series resistor. Fig. 4 (f) illustrates the structure
of the NbO2 memristor. As shown in Fig. 4 (g) [47], self-sustained sinusoidal oscillation occurs when the bias below the hysteresis (vext
¼ 1.8 V), and periodic two-spike bursting occurs when the bias within the hysteresis (vext ¼ 1.95 V). This results in distinct dynamics
appearing in the memristor under different voltages. This work provides a feasible solution for realizing high-density neuron circuits to
construct an efficient brain-like system.

Except for the IMT-based TS memristors that can be used to build neuron circuits, the TS memristors with metal filaments are also
promising candidates. Wang et al. created a LIF neuronwith stochastic dynamics based on a diffusive Pt/SiOxNy:Ag/Pt memristor, where
the migration of Ag is similar to actual neuron ion channels [49]. In addition, Zhang et al. demonstrated a novel LIF neuron based on
Ag/SiO2/Au TSM [50]. Fig. 5 (a) presents the schematic of the spiking neuron circuit. A memristor and an output resistance are con-
nected together to complete the neuron, paralleled by a capacitor, as shown in Fig. 5 (b). Fig. 5 (c) shows the firing characteristic of this
artificial neuron; with the increase of the input pulse amplitude, the discharge frequency increases obviously. This circuit achieved four
fundamental neuron functions: The all-or-nothing spiking of an action potential, threshold-driven spiking, a refractory period, and
strength-modulated frequency response. Furthermore, the feasibility of the neural network based on this TSM neuron in digital
recognition was verified by system simulation. In addition, based on their Ag/SiO2/Au TS memristors, Zhang et al. further constructed a
hybrid memristor-CMOS neuron, which has the basic LIF neuron function and enables the in-situ tuning of the connected synapses [51].
This work proposed a novel way to realize the in-situ learning for future neuromorphic computing systems.

However, the switching voltages of the devices we mentioned above are still much higher than the amplitude in biological coun-
terparts. To further decrease the switching voltages to the level of biological neurons (~100mV), Fu et al. then constructed a new type of
diffusive Ag memristor utilizing the protein nanowires as the catalyst [52]. The introduced catalyst facilitates metal ion reduction, as
shown in Fig. 5 (d). The lower reduction overpotential leads to a decreased switching voltage (Fig. 5 (e)). Fig. 5 (f) shows the structure of
the memristor, an insulating substrate (Si/SiO2) coupled with a pair of silver electrodes. As shown in Fig. 5 (g), in the positive bias, the
switching voltage turning the device from HRS to LRS is 60 � 4 mV. A symmetric behavior happens in the negative bias. The protein
nanowires distributed in the insulating substrate not only serve as catalysts to promote cathodic Ag þ reduction, but also provide this
memristor with excellent biocompatibility.

In summary, neuron circuits realized by memristors are mainly based on the H-H neuron circuit model and the LIF neuron circuit
model. Using TS memristors to realize neurons facilitates the construction of compact neuromorphic machines. TS memristors based on
IMT and TS memristors based on conductive metal filaments have been reported to construct the neuron circuits. Besides, the hybrid
memristor-CMOS neuron shows possibilities for implementing neuromorphic computing systems with the ability of in-situ learning. To
clearly present the current research state of the TS-based neurons, we summarize representative works on artificial neurons with
emerging volatile memristors in terms of the device type, working mechanism, device structure, threshold voltage, and neuron model
(see Table 1).

3.3. Application in SNNs

The construction of neuron circuits is the foundation of the implementation of neural networks, while the verification of neurons in
neural networks is necessary to promote the application of novel neurons. For the past few years, various works have been performed on
building SNN-based hardware platforms with memristors. Ref. [53] constructed passive memristor-based SNN consisting of 20 � 20
integrated memristive synapses connected with a spiking neuron composed of CMOS circuits and an external waveform generator.
Coincidence detection, one representative task for SNN, was realized in their work.

Due to the complex structure of CMOS neuron circuits, which is not conducive to large-scale integration, the use of memristor
neurons to build neuromorphic systems has gradually become a research hotspot. Fig. 6 shows some hardware implementations of SNNs
[24,47,49,54–58].

In 2018, Wang et al. used memristor neurons and synapses to build 8� 8 full memristive SNN for the first time in the world [49]. The
schematic diagram of its hardware structure is shown in Fig. 6 (a). Based on this system, convolutional inference operations are vali-
dated and unsupervised learning of input patterns is realized. Considering the advantages of lower static power and better emulation of
neural functionalities of capacitive neural networks, Wang et al. implemented 4 � 4 capacitive ANN with passive synapses, and verified
the Hebbian learning rule and the inference results of the network [54], as shown in Fig. 6 (b). To give full play to the advantages of SNN
in power consumption, Zhang et al. demonstrated fully memristive temporal coding (TC) SNN, composed of a NbOx memristor-based
Table 1
Brief summary of some representative artificial neurons based on volatile memristors.

Type Mechanism Device structure Threshold voltage (V) Neuron model Ref.

TSM IMT Pt/Nb2O5/Pt 1.75 H-H [45]
TSM IMT Pt/VO2/Pt 1.22 H-H [45]
TSM IMT Pt/NbOx/Pt 1.9 LIF [47]
TSM IMT Pt/TiN/NbO2/TiN/W 0.5 LIF [48]
TSM Metal ion Pt/SiOxNy:Ag/Pt 1.4 LIF [49]
TSM Metal ion Ag/SiO2/Au 1.0 LIF [50]
TSM Metal ion Ag/SiO2/Ag (nanowires) 0.5 LIF [52]
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Fig. 6. Hardware implementations of SNNs: (a) hardware diagram of full memristive SNN [49], Copyright 2018, Springer Nature; (b) hardware
diagram of capacitive ANNs [54], Copyright 2018, Springer Nature; (c) schematic of constructed fully memristive TC SNNs and the hardware
implementation [55], Copyright 2020, IEEE; (d) hardware diagram of the neural network and the synapse array [56], Copyright 2020, Springer
Nature; (e) schematic illustration of the experimental system with the neuromorphic oscillators and the connection matrix formed by a crossbar array
of pseudo-memcapacitors [47], Copyright 2020, Springer Nature; (f) schematic illustration of the fully memristive neural network [24], Copyright
2020, Advanced Electronic Materials; (g) schematic of ANN-SNN conversion [57], Copyright 2019, Wiley; (h) hardware schematic diagram of the
conversion-based SNN [58], Copyright 2019, IEEE.
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neuron circuit and a 64� 64 1T1R TaOx/HfOx memristor-based RRAM array, which was served as the synapses [55], as shown in Fig. 6
(c). Compared with the general rate coding (RC) SNN, this TC SNN shows a significant advantage in latency, power, and lifetime.

Most of current ANNs simplify neurons to simple point models and simplify their calculation function to integrate-and-fire, ignoring
the information processing function of dendrites. As a result, ANNs still lag far behind biological neural networks in the flexibility,
robustness, and power consumption of complex tasks. Based on this, Li et al. demonstrated a two-terminal memristor-based neural
network composed of a HfOx-based non-volatile memristor as the artificial synapse, a TaOx/AlOδ-based dynamic memristor as the
artificial dendrite, and a NbOx-based Mott memristor as the artificial soma [56]. The optical images of the neural network and the
synapse array are shown in Fig. 6 (d). This work represents an important step towards more complete, energy-efficient, and accurate
neural networks. Generating neuromorphic action potentials in a circuit element theoretically requires at least third-order complexity,
whereas most neurons are constructed of first-order or second-order neuromorphic elements. Considering that, Kumar et al. constructed
a NbOx memristor with third-order dynamics and further demonstrated neural networks of third-order elements with no transistors
[47]. Fig. 6 (e) shows the experimental system with the neuromorphic oscillators and the connection matrix formed by a crossbar array
of pseudo-memcapacitors. This work guides compact and highly functional neural networks.

Compared with traditional neurons based on oxide memristors, artificial neurons based on 2D materials possess lower energy
consumption, similar to biological neurons. Hao et al. constructed a 2-dimensional (2D) LIF neuron whose mechanism is attributed to
the rapid diffusion and migration of Ag in the MoS2 lattice under the external field, and further fabricated full memristive ANN by
integrating 2D neurons and Cu/GeTe based synapses [24]. Fig. 6 (f) illustrates the fully 2D neural network consisting of a nonvolatile
synapse array and 2D MoS2-based neurons. This work fills in the gap of neural networks fabricated with 2D materials.

Since most of the commonly used data sets are for ANNs, the analog quantity in the data set needs to be converted into pulse trains of
corresponding frequencies, when used for SNNs [59], resulting in the loss of accuracy. To alleviate the predicament of applying SNNs to
process data, converting ANNs to SNNs by adjusting the weights and neuron parameters is an effective method [60–62]. Conversion
Fig. 7. Schematics of the sensing application based on memristor-based artificial neurons: (a) biological sensing system controlled by pressures,
composed of biological mechanoreceptors, a nerve fiber, and a biological synapse; (b) artificial ORO-based bio-inspired afferent nerve, consisting of
pressure sensors, an organic ring oscillator, and a synaptic transistor [69], Copyright 2018, Science China Press; (c) schematic of the artificial spiking
somatosensory system composed of the NbOx memristor-based artificial spiking afferent nerve [71], Copyright 2020, Springer Nature.
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method-based SNNs can have both the high energy efficiency of SNNs and the high precision of ANNs [63]. Based on this, Midya et al.
illustrated an ANN-SNN converter using a diffusive memristor and a parallel capacitor [57]. Fig. 6 (g) is the schematic of ANN-SNN
conversion. Layer 1 (the input layer) and Layer 2 (the hidden layer) operate like traditional ANN, while Layer 3 (the output layer)
transforms the weight activation products into the spiking frequency. Moreover, Zhang et al. experimentally demonstrated
conversion-based SNN composed of memristive synaptic weight elements and 1T1RMott neurons [58]. The Mott neuron was formed by
connecting the NbOx device in series to a transistor, serving as the rectified linear unit (ReLU) in the network. The schematic of the 1T1R
neuron circuit and its equivalent circuit is shown in Fig. 6 (h). Practically, the neuron circuit had no external capacitors, which greatly
improved the integration density of the neuron circuit. Furthermore, a single-layer fully connected forward neural network (320 � 10)
was implemented for the recognition of the handwritten digits in the modified National Institute of Standard and Technology (MNIST)
dataset, obtaining recognition accuracy of up to 85.7%, close to the recognition rate of ReLU software neurons. Moreover, due to the
gating effect of the transistor, the X-bar integrated structure of the neuron was proposed for higher system integration.

To summarize this section, implementing SNNs with emerging electronic devices is promising, but more efforts are still needed to
improve the efficiency of SNNs and realize large-scale integrated applications. Introducing dendrite functions into neural networks
reduces the dynamic power consumption and improves the accuracy of complex information processing. In order to solve the problem of
the immaturity of the SNNs training algorithm, the concept of conversion-based SNNs is proposed, showing a new technical approach for
the construction of efficient neuromorphic chips in the future.

3.4. Application in artificial afferent nerves

As mentioned above, memristor-based artificial neurons have been actively studied and explored to build efficient SNNs. However,
the signals collected from surroundings are usually in analog forms, which cannot be processed directly in SNNs [64–66]. In biological
nervous systems, the afferent nerve converts the signals received from sensors into spikes and transmits them to central nervous systems
for further processing [67]. Therefore, to realize an intelligent processing system that integrates sensing, storage, and calculation, it is
necessary to construct a special unit to mimic the afferent nerve in biological systems.

So far, significant progress has been made in realizing artificial afferent nerves using phase-locked loop circuits. Kim et al. reported a
flexible artificial afferent nerve, consisting of resistive pressure sensors, organic ring oscillators (OROs), and a synaptic transistor [68].
The frequency and amplitude of the spikes output by oscillators were positively correlated with the pressure intensity from
pyramid-structured pressure sensors. The synaptic transistor, using ion gel as the gate dielectric, can integrate signals from multiple
oscillators. Furthermore, this artificial afferent nerve was designed to fabricate a hybrid monosynaptic reflex arc by connecting with
biological efferent nerves to control the movement of the cockroach's legs. Fig. 7 (a) illustrates the biological sensing system, composed
of the biological mechanoreceptors, a nerve fiber, and a biological synapse. Fig. 7 (b) shows the artificial afferent nerve, consisting of the
resistive pressure sensors, an organic ring oscillator, and a synaptic transistor [69].

However, similar to the CMOS neuron circuit, the development of the afferent nerve circuit based on CMOS devices is limited by the
complexity of the circuit and the physical bottleneck of CMOS devices. To alleviate this limitation, Zhang et al. constructed a highly
compact artificial spiking afferent nerve (ASAN) based on a specially designed NbOx memristor for the first time [70]. The most
important component in ASAN is the NbOx oscillator composed of the NbOxmemristor and a resistor, whose output frequency presented
a quasi-linear relationship with the input voltage under normal stimuli and decreased under the excessively strong stimuli. The
frequency-voltage curve of ASAN is shown in Fig. 7 (c) [71], similar to the action potential characteristic of the afferent nerve in the
biological somatosensory system shown in Fig. 7 (a). Various types of input spikes, such as rectangular, triangular, and sinusoidal pulses,
were applied to ASAN to study the dynamic spiking behavior systematically. Furthermore, an artificial spiking mechanoreceptor system
(ASMS) based on ASAN connected with a piezoelectric device was constructed, featuring no need of an external power source. In
addition, ASAN can be readily extended to process sensory signals from other sensors, such as smell, taste, sight, hearing, temperature,
magnetic field, and humidity.

Considering the limit in emulation and implementation of learning and memorizing capabilities of the non-plastic artificial nerve,
Tan et al. designed an optoelectronic spiking afferent nerve, featuring neural coding, perceptual learning, and memorizing capabilities
[65]. MXene-based sensors and light-emitting diodes coupled with analog-to-digital circuits were responsible for converting the
pressure information to optical signals. This afferent nerve could recognize the Morse code, braille, and object movement, providing a
novel approach towards e-skin, neurorobotics, and so on.

In conclusion, to build a complete intelligent processing system, an artificial afferent nerve is an indispensable component. Owing to
the inherent dynamic characteristics of the TS memristors, the constructed artificial afferent nerves have the advantages of a simple
circuit and high integration and can be further used to construct a variety of sensory systems.

4. Conclusion and outlook

In this review, recent progress in the application of volatile redox memristors in SNNs has been reviewed. We started this review by
introducing the categories of TS memristors and stating the neural network that is divided into ANNs and SNNs. Among them, event-
driven SNNs had received our focus due to their higher biological rationality and higher energy efficiency. Therefore, we introduced the
application of non-CMOS-based devices represented by memristors in SNNs, including the construction of spiking neurons, the hard-
ware implementation of SNNs, and the innovation of artificial spiking afferent nerves. Due to the simple structure, low energy con-
sumption, and rich inherent dynamics of TS memristors, the neuromorphic chips based on memristors can perfectly solve the problems
of complicated circuit design and limited integration density on the traditional CMOS technology. However, as the research on
10
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neuromorphic chips based on memristors is just in its infancy, there are still many challenges that need to be resolved:

a) For memristor-based neuron circuits, the functions that neurons can achieve are relatively simple. More systematic and in-depth
research is needed, from the device function verification to the optimization design of peripheral auxiliary circuits using mem-
ristor neurons for demonstrations on a certain scale. In addition, reliability, large array integration, and variability of memristors
limit their extensive use (up to now) [69,71]. The uniformity of device-level neurons due to the randomness of filament formation in
redox memristors and the integration of crossover arrays and neuron circuits remain the main challenges for current
memristor-based neuromorphic computing chips.

b) Efficient SNN algorithms are the inner soul of neuromorphic chips to realize intelligence, but the existing algorithms are not mature
enough and are not proposed for the memristor-based hardware platform.

c) The memristor-based sensing system needs to be combined with the deep neuromorphic information processing system to build an
artificial intelligence system that integrates consciousness, memory, and computation, which truly resembles the human brain.

d) Utilizing the advantages of easy three-dimensional integration of memristor devices in BEOL of the standard CMOS fabrication
process to achieve high-density 3D neuromorphic chips is the goal to be pursued in the future.

Although most current memristor-based neuromorphic computing research is still in the laboratory stage and has much room for
improvement, its development has been unstoppable. We believe that with the emergence of various new memristors and the
improvement of the integration of memristors, neuromorphic computing based on memristors can feature dominant applications in
certain fields over the traditional von Neumann computing system in the future.
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