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Analysis of improved Nernst–Planck–Poisson models of
compressible isothermal electrolytes.

Part I: Derivation of the model and survey of the results

Wolfgang Dreyer, Pierre-Étienne Druet, Paul Gajewski, Clemens Guhlke

Abstract

We consider an improved Nernst–Planck–Poisson model first proposed by Dreyer et al. in
2013 for compressible isothermal electrolytes in non equilibrium. The model takes into account
the elastic deformation of the medium that induces an inherent coupling of mass and momentum
transport. The model consists of convection–diffusion–reaction equations for the constituents of
the mixture, of the Navier-Stokes equation for the barycentric velocity, and of the Poisson equation
for the electrical potential. Due to the principle of mass conservation, cross–diffusion phenomena
must occur and the mobility matrix (Onsager matrix) has a kernel. In this paper we establish the
existence of a global–in–time weak solution for the full model, allowing for a general structure of
the mobility tensor and for chemical reactions with highly non linear rates in the bulk and on the
active boundary. We characterise the singular states of the system, showing that the chemical
species can vanish only globally in space, and that this phenomenon must be concentrated in
a compact set of measure zero in time. With respect to our former study [DDGG16], we also
essentially improve the a priori estimates, in particular concerning the relative chemical potentials.

1 Introduction

Increasing the efficiency of actual high-performance energy storage systems requires an exact under-
standing of their fundamental physical principles. Of particular interest is ion transport in electrolytes,
for instance in lithium-ion batteries. Classically this transport is modelled by the Nernst-Planck theory,
but it has an important drawback. In the neighbourhood of interfaces it is failing for various reasons
(see [DGM13, DGL14]): First of all, the classical Nernst-Planck model neglects the high pressures in-
duced by the Lorentz force that affect the charge transport. Secondly, it does not take into account the
interaction between the solvent and the charged constituents. A third drawback of the Nernst-Planck
theory is the widely used assumption of local charge neutrality. This assumption completely fails in the
vicinity of the boundaries where electric charges accumulate.

An improved model able to remedy these deficiencies was proposed in the paper [DGM13]. In [DGL14,
DGM15] this model was further extended to include (i) finite volume effects of the constituents, (ii) the
viscosity of the mixture and (iii) chemical reactions in the bulk and on electrochemical interfaces. In
the isothermal case, the new model consists of universal balance equations for mass and momentum
and general material–dependent constitutive equations for the mass fluxes, the stress tensor and the
reaction rates. These general constitutive equations rely on the driving forces of the system, that are
derived from a single free energy function %ψ. In this paper we focus on a free energy function ac-
cording to a special constitutive model for electrolytes proposed in [DGM15, LGD16]. For the reaction
rates, we make use of a generalisation of the constitutive equations proposed in [DGM15].
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W. Dreyer, P.-É. Druet, P. Gajewski, C. Guhlke 2

In the new model, the dissipative diffusion fluxes are not proportional to the concentration gradients like
in the Nernst-Planck theory. The reaction rates do not exhibit the structure of products of monomials in
the concentrations. The natural estimates available for the model are thus completely different than the
ones known for standard diffusion–reaction systems. In this paper, we show that the original modelling
yields new PDE structures and progresses in the analysis of models of mathematical electro chemistry.
We establish the existence of a global–in–time weak solution for the model, allowing for

1 A general structure of the mobility tensor, with cross–diffusion effects and a nontrivial kernel;

2 Chemical reactions of arbitrary growth rate in the bulk and on an active boundary that represents
a one–sided electrochemical interface;

3 A mechanical contribution (pressure) to the diffusion flux;

4 Different reference specific volumes of the constituents (possible solvatisation).

Each of these points represents an absolute breakthrough in the analysis of models in mathematical
electro chemistry. In particular, the original thermodynamic modelling for the reaction rates yields a
control in Orlicz classes so that global–in–time weak solutions can be defined without the help of the
advanced re–normalisation techniques (see [Fis15]) necessary to handle models traditionally called ’of
mass action type’ (see a. o. [CDF14, HK16a, HK16b, Fis15, HMPW16, BFPR16, MHM15, HHMM16,
Mie16]).

In addition to the existence statements, we are able to characterise the singularities of the system as-
sociated with the vanishing of species. We show that except for the occurrence of a complete vacuum
– which is entirely non physical in the range of validity of the model – the mass density of the species
can vanish only globally in the spatial domain and that this phenomenon is concentrated in a compact
set of measure zero in time. To the best of our knowledge, this important property is not yet known in
the context of Nernst-Planck type models.

Our method relies on the one hand on a priori estimates that result from the thermodynamically con-
sistent modelling, and from the conservation of total mass. The estimates are partly a consequence
of known results for the Poisson equation or the Navier-Stokes equations, but we can regard the esti-
mates on the chemical potentials of the mixture constituents, in particular in the presence of chemical
reactions, as original. The idea is to make use of the diffusion gradients and the entropy production of
the chemical reactions to reveal a relationship between the blow up of differences of chemical poten-
tials and the entire vanishing of certain groups of species. In order to exclude the latter phenonemon,
a restriction on the total initial masses of the involved constituents turns out sufficient.

The second supporting pillar of our method is compactness. Note that the Aubin–Lions compactness
Lemma and its generalisations, which are typically invoked in similar investigations (see [CJL14]),
attain their limit in the context of our model due to the complexity of the relationship between time
derivatives (transport) and diffusion gradients. We exploit the original ideas of [Hop51] based on struc-
tural PDE arguments as an adequate substitute. Moreover, we invoke the compactness properties of
the Navier-Stokes operator established first in [Lio98] and extended in [FNP01] to achieve the com-
pactness of the total mass density.

Since large parts of the modelling work in [DGM13] are original and not yet well known in the mathe-
matical literature devoted to the analysis of mixture models, we are not able to quote a direct precur-
sor for our analysis. In order to put the investigation into some context, let us mention [MPZ15] and
[Zat15] where models of compressible mixtures, with energy balance, but without the electric field,
were studied. These models are not derived from the same thermodynamic principles that are used
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Improved Nernst-Planck-Poisson models. Part I 3

in our study: Particularly the constitutive equations for the pressure, for the diffusion fluxes and for the
reaction terms, are different in [MPZ15] and in [DGM13]. The compactness question occurs like in our
analysis but is solved assuming a special structure of the viscosity tensor, called Bresch–Desjardins
condition. This allows to obtain estimates on the density gradient, a device which is not at our dis-
posal here. A further difference between the two mixture models concerns cross–diffusion, which is
described in [MPZ15] and [Zat15] by a special non symmetric choice of the mobility matrix, whereas
we allow for general symmetric positive semi definite matrices. Note that the mobility matrix must be
symmetric at least in a binary mixture. Among recent less directly related investigations let us mention:
In the context of general diffusion, [Bot11], [JS13]; for models with simplified diffusion and pressure
laws [FPT08], [BFPR16]; for the analysis of incompressible models of Nernst–Planck–Poisson type
[BFS16], [CJ15], [HMPW16].

Due to the length of the investigation, we shall split its presentation into three contributions. In this
paper, we derive the model, motivate its reformulation, and propose a survey of the main mathemat-
ical results with the fundamental steps of the proofs. The complete proofs of these results follows
in [DDGG17a] devoted to the construction of approximate solutions with a priori estimates, and in
[DDGG17b] devoted to the investigation of the compactness and the proof of convergence of the ap-
proximation scheme. The papers [DDGG17a, DDGG17b] are naturally more technical than the present
one, but in our eyes they possess independent interest.

In this paper, in the Section 2, the model will be introduced following [DGM15]. The model is formulated
for the normal regime of the system, i.e. it is assumed that the mass densities of the constituents do
not vanish. For the mathematical analysis we will derive an equivalent formulation which exhibits more
stability against extreme behaviour. The equivalent formulation of the model is the object of Section 6.
We then formulate our main results and sketch the proofs.

2 Improved Nernst–Planck–Poisson model

Throughout the paper, the bounded domain Ω ⊂ R3 is representing an electrolytic mixture. The
boundary of Ω possesses a disjoint decomposition ∂Ω = Γ ∪ Σ: The surface Γ represents an active
interface between an electrode and the electrolyte, where chemical reactions and adsorption may
occur. The other surface Σ represents an inert outer wall with no reactions and no adsorption.

The compressible mixture consists of N ∈ N species denoted by A1, . . . ,AN. A species Ai is a
carrier of electric charge, zi ∈ Z, and of molecular mass, mi ∈ R+.

We assume that the system is isothermal, so that the absolute temperature denoted by θ is a positive
constant. Under the isothermal assumption the thermodynamic state of the mixture at time t ∈ [0, T ]
is described by the mass densities ρ1, . . . , ρN of the species, the barycentric velocity v of the mixture
and the electric field E. As usual in electro chemistry, a quasi-static approximation of the electric field
is considered, i.e. the magnetic field is constant and the electric field satisfies E = −∇φ. The scalar
function φ is called electrical potential.

The active boundary Γ can be viewed as a mixture of NΓ = N + N ext constituents denoted by
A1, . . . ,ANΓ , where the additional N ext constituents take into account the species of the adjacent
exterior matter, i.e. electrode species. Thus we only consider surface chemical reactions with partici-
pating species that also exist in the adjacent bulk domains. The surface constituents have the surface
mass densities ρΓ

1 , . . . , ρ
Γ
NΓ .

We consider s ∈ N chemical reactions in the bulk and sΓ ∈ N surface reactions on the boundary
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Γ, respectively. The kth chemical reaction in the bulk (k ∈ {1, · · · , s}) and on the boundary (k ∈
{1, · · · , sΓ}) possesses the general structure

ak
1A1 + · · ·+ ak

NAN

Rfk−−⇀↽−−
Rbk

bk
1A1 + · · ·+ bk

NAN

ak
Γ,1A1 + · · ·+ ak

Γ,NΓA
NΓ

RΓ,f
k−−−⇀↽−−−

RΓ,b
k

bk
Γ,1A1 + · · ·+ bk

Γ,NΓA
NΓ .

The constants aki , bki and akΓ,i, bkΓ,i are positive integers called stoichiometric coefficients. For k =
1, . . . , s, we define a vectorial coefficient associated with the kth bulk reaction via

γk ∈ RN , γki := (ak
i − bk

i )mi for i = 1, . . . , N . (1)

Due to the inclusion of the molecular mass, γ1, . . . , γs are not as commonly the stoichiometric vectors,
but this will simplify the notation. The forward reaction rate of the kth reaction is Rf

k > 0, and the
backward reaction rate is rate Rb

k > 0. The net reaction rate of the kth reaction is defined as

Rk = Rf
k −R

b
k for k = 1, . . . , s .

The same definitions hold for the surface reactions on Γ. Here the vectorial coefficients are defined
via

γkΓ ∈ RNΓ

, γkΓ,i := (ak
Γ,i − bk

Γ,i)mi for i = 1, . . . , NΓ (2)

and the surface reaction rates are RΓ
k = RΓ,f

k −R
Γ,b
k for k = 1, . . . , sΓ. Since charge and mass are

conserved in every single reaction

N∑
i=1

γki = 0 and
N∑
i=1

zi
mi
γki = 0 for all k = 1, . . . , s ,

NΓ∑
i=1

γkΓ,i = 0 and
NΓ∑
i=1

zi
mi
γkΓ,i = 0 for all k = 1, . . . , sΓ .

(3)

2.1 Balance equations in the bulk

In the isothermal case the evolution of the thermodynamic state is described by the equations of partial
mass balances, of momentum balance, and by the Poisson equation.

In ]0, T [×Ω the mixture obeys for i = 1, . . . , N the partial mass balances

∂ρi
∂t

+ div(ρi v + J i) = ri . (4)

In (4), v denotes the barycentric velocity of the mixture. The quantities J1, . . . , JN are called the
diffusion fluxes. We use upper indices in their case because they are vector fields of R3 and not
scalars. The mass production ri of constituent Ai is related to the reaction rates via

ri =
s∑

k=1

γki Rk for i = 1, . . . , N . (5)
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The total mass is defined as % =
∑N

i=1 ρi. Together with v it has to satisfy the continuity equation

∂%

∂t
+ div(% v) = 0 . (6)

Thus the conservation of total mass yields additional constraints on the diffusion fluxes and the mass
productions:

N∑
i=1

J i = 0 and
N∑
i=1

ri = 0 . (7)

While the constraint (7)2 is a consequence of (5) and the conservation of mass in every chemical reac-
tion (3), the side-condition on the diffusion fluxes has to be guaranteed by an appropriate constitutive
modelling.

The principle momentum balance possesses the expression

∂% v

∂t
+ div(% v ⊗ v − σ) = % b+ nFE . (8)

Herein σ denotes the Cauchy stress tensor, % b is the force density due to gravitation, and the symbol
nF E stands for the Lorentz force due to the electric field. The quantity nF represents the free charge
density that is defined via

nF =
N∑
i=1

zi
mi

ρi . (9)

Throughout the paper, we are going to neglect the gravitational force that plays no role in the analysis.

In the electrostatic setting the balance equation for the electric field reduces to the Poisson equation
for the electrical potential,

−ε0 (1 + χ)4φ = nF . (10)

Here χ > 0 is the constant susceptibility of the electrolyte.

2.2 Constitutive equations

The constitutive equations for the mass fluxes, the reaction rates and the stress tensor can be derived
from a single free energy density %ψ of a general form

%ψ = h(θ, ρ1, . . . , ρN) . (11)

The derivatives of the free energy function with respect to the mass densities are called chemical
potentials,

µi :=
∂h

∂ρi
(θ, ρ1, . . . , ρN) . (12)

In the isothermal setting, the balance equations and the free energy density yield a local entropy pro-
duction ξ = ξD+ξR+ξV ≥ 0 with three contributions due to diffusion, ξD, reaction, ξR, and viscosity,
ξV (see [MR59, BD15, DGM15]). A constitutive model that relies on the free energy function (11) im-
plies explicit expressions for the three entropy productions as binary products. From these expressions
we may derive constitutive equations that yield three separate non-negative entropy productions. For
more details regarding the derivation of the entropy production we refer to [MR59, dM63, BD15]. In
[BD15] its is shown how cross–effects revealing the Onsager symmetry can be introduced.
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Diffusion fluxes The entropy production due to diffusion reads

ξD = −
N∑
i=1

J i ·Di ,

where D1, . . . , DN are the thermodynamic driving forces for diffusion,

Di := ∇
(µi
θ

)
− 1

θ

zi
mi

E for i = 1, . . . , N .

The simplest constitutive ansatz for the diffusion fluxes J1, . . . , JN that implies ξD ≥ 0 is given by

J i = −
N∑
j=1

Mi,j D
j for i = 1, . . . , N . (13)

The proportionality factorM ∈ RN×N
sym is called the mobility matrix. It is positive semi definite and may

depend on ρ. Moreover, the side-condition
∑N

i=1 J
i = 0 is complied if the mobility matrix satisfies

N∑
i=1

Mi,j = 0 for j = 1, . . . , N . (14)

For instance, following the paper [DGM13], one can construct M from an empirical mobility matrix
Memp(ρ) and a linear operator P : RN → RN−1 × {0} via

M := PT MempP , Memp := diag(d1 ρ1, . . . , dN−1 ρN−1, 1) , (15)

where d1, . . . , dN−1 > 0 are diffusion constants, and the lines of the matrix P are given by the
differences ei − eN of standard basis vectors for i = 1, . . . , N . In fact, any operator P that satisfies
for i = 1, . . . , N the condition

∑N
j=1Pi,j = 0 can be chosen in (15) in order that (14) is valid.

However our analytical results do not rely on the particular structure (15) of the matrix M .

Reaction rates The entropy production due to chemical reactions assumes the form

ξR = −
s∑

k=1

RkD
R
k . (16)

The driving forces DR
1 , . . . , D

R
s are defined via

DR
k =

N∑
i=1

γki µi for k = 1, . . . , s .

To achieve ξR ≥ 0, we assume that the vector of production rates are derived from a convex, non-
negative potential

R = −∇DRΨ(DR), with Ψ : Rs → R convex and ∇DRΨ(0) = 0 . (17)

This choice is in fact more general than in [DGM15], where the following potential is employed,

Ψ = −
s∑

k=1

1
βkαk

e−βkαkD
R
k

(
1 + βk

1−βk
eαkD

R
k

)
+ C ,

with positive constants α1, . . . , αs and constants β1, . . . βs ∈]0, 1[, C ∈ R arbitrary. By this choice
Dreyer et al. achieve for the rates an ansatz of Arrhenius type, which is widely used in chemistry,

Rk = e−βk AkD
R
k (1− eAkDR

k) . (18)
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Improved Nernst-Planck-Poisson models. Part I 7

Stress tensor The entropy production due to viscosity is represented via

ξV = 1
2
(σ + p Id) : D(v) ,

where the driving forceD(v) is defined asD(v) = (∂ivj +∂jvi)i,j=1,...,3, and Id denotes the identity
matrix. We split the Cauchy stress tensor into a viscous part Svisc and the pressure p via σ = −p Id +
Svisc. Then the material pressure can be calculated from the free energy function (11). The resulting
representation is called Gibbs-Duhem equation and reads

p := −h+
N∑
i=1

ρi µi . (19)

The simplest constitutive choice for the viscous stress tensor Svisc satisfying ξV ≥ 0 describes a
Newtonian fluid. It reads

Svisc = η D(v) + λ div v Id, (20)

where η > 0 is the coefficient of shear viscosity, and the coefficient λ of bulk viscosity satisfies
λ+ 2

3
η ≥ 0.

2.3 Choice of the free energy function

The constitutive model is derived from a free energy density of the general form (11). However, for the
analysis of the model, we need in some extent to specify the choice of the free energy function. To this
end the free energy density %ψ is additively split into three contributions,

h =
N∑
i=1

ρi µ
ref
i + hmech + hmix . (21)

The constants µref
i (i = 1, . . . , N ) are related to the reference states of the pure constituents. The

contribution hmech is the mechanical part of the free energy that is neglected in the classical Nernst-
Planck theory. The function hmix represents the mixing entropy.

In the presentation of [DGM13, DGL14], the contributions hmech and hmix are naturally given as func-
tions of the number densities (molar concentrations) n1, . . . , nN of the constituents. These are de-
fined via ni := ρi/mi (i = 1, . . . , N ). The number fractions (concentration fractions) are defined via
yi := ni∑N

j=1 nj
for i = 1, . . . , N .

The mechanical free energy is associated with the isotropic elastic deformation of the mixture. It takes
into account different reference specific volumes V1, . . . , VN ∈ R+ of the constituents. Assuming a
constant bulk compression modulus K > 0 the mechanical free energy according to [DGL14] is a
function of the mixture volume

∑N
i=1 ni Vi:

hmech = (K − pref)

(
1−

N∑
i=1

ni Vi

)
+K

N∑
i=1

ni Vi ln
N∑
i=1

ni Vi .

Here pref is a constant reference value of the pressure. Another typical choice in fluid mechanics is the
Tait equation

hmech = (K − pref)

(
1−

N∑
i=1

ni Vi

)
+
K

α

((
N∑
i=1

ni Vi

)α

−
N∑
i=1

ni Vi

)
, α > 1 .
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For the sake of generality, we express hmech in the form

hmech = K F (
N∑
i=1

ni Vi) + C

N∑
i=1

ni Vi with F : R+ → R convex . (22)

Dreyer et al. use F (x) := x lnx+ C1 for an simple mixture, whereas the Tait equation corresponds
to F (x) = cα x

α + C2.

The contribution hmix results from the entropy of mixing and is given by

hmix :=
N∑
i=1

ni kB θ

N∑
i=1

yi ln yi , (23)

where kB is the Boltzmann constant.

2.4 The model for the boundary Γ

The active boundary Γ represents an interface between the electrolyte and an external material. In
the most important application the external material is an electrode which is likewise a mixture of
N ext ∈ N constituents. Here we have analogous quantities to those that occur in the electrolyte,
namely the barycentric velocity, and diffusion fluxes and so on. To distinguish between the electrolyte
and the external material we provide the external quantities the suffix ext.

In this paper we assume for simplicity that the constituents occurring on Γ also exist in the bulk, either
in the electrolyte or in the external material. Thus the interface Γ is a mixture of NΓ = N + N ext

constituents.

The equations of an interface representing a surface mixture are derivable in the context of surface
thermodynamics, and we refer the interested reader to [ABM75, DGM15, Guh14]. As in the bulk there
are universal surface balance equation and material depending surface constitutive equations.

To simplify the surface equations we assume on ]0, T [×Γ:

(a) Time variations of the surface mass densities and tangential transport are negligible in comparison
to mass transfer across the surface and to chemical surface reactions. Then the surface balance
equations become stationary.

(b) The interface is fixed in space, i.e. the interfacial normal speed is zero.

(c) There is no velocity slip and the normal barycentric velocity is equal to the interfacial normal speed,
i.e. we have v = 0 on ]0, T [×Γ.

Surface mass balances and surface reaction rates. In what follows the interfacial unit normal ν
points into the external material. Under the assumptions above, the surface mass balance equations
on ]0, T [×Γ reduce to

0 =

{
rΓ
i + J i · ν , for i = 1, . . . , N

rΓ
N+i − Jext,i · ν for i = 1, . . . , N ext

(24)

Here we make use of the convention that the N first species on Γ are the electrolyte constituents,
while the constituents with indices N + 1, . . . , N +N ext are the external ones.
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Improved Nernst-Planck-Poisson models. Part I 9

It remains to specify the surface mass production rΓ due to surface reactions. As in the bulk, the
production rΓ is related to the surface reaction rates RΓ by

rΓ
i =

sΓ∑
k=1

γkΓ,iR
Γ
k for i = 1, . . . , NΓ . (25)

The interfacial entropy production ξΓ
R due to chemical reaction is (see [DGM15])

ξΓ
R = −

sΓ∑
k=1

RΓ
k D

Γ,R
k ≥ 0, DΓ,R

k :=
NΓ∑
i=1

γkΓ,i µ
Γ
i for k = 1, . . . , sΓ .

The entropy production of the surface has the same structure as the corresponding entropy production
in the bulk (16). Thus in order to satisfy the entropy inequality an ansatz similar to (17), (18) may be
used. We assume the existence of a potential ΨΓ so that

RΓ = −∇DΓ,RΨΓ(DΓ,R), ΨΓ : RsΓ → R convex ,∇DΓ,RΨΓ(0) = 0 . (26)

Diffusion fluxes. Under the assumptions (a), (b) and (c), the constitutive equations for the diffusion
fluxes at ]0, T [×Γ simplify to

J i · ν = +
N∑
j=1

MΓ
i,j (µj − µΓ

j ) for i = 1, . . . , N , (27)

Jext,i · ν = −
N ext∑
j=1

MΓ,ext
i,j (µext

j − µ
Γ,ext
N+j) for i = 1, . . . , N ext . (28)

Here, µΓ
1 , . . . , µ

Γ
N are the surface chemical potentials of the electrolytic species, whereas the quanti-

ties µΓ
N+1, . . . , µ

Γ
N+N ext are associated with the external species.

These equations describe the adsorption of a constituent from the bulk to the surface. The kinetics of
this process is controlled by positive semi definite matrices

MΓ ∈ RN×N
sym and MΓ,ext ∈ RN ext×N ext

sym .

Simpler form of the transmission conditions. In the general thermodynamic setting, the surface
chemical potentials are derivatives of a surface free energy. Due to the assumption of stationary sur-
face equations, and that the boundary is fixed, we are able to formulate all surface equations in terms
of the bulk chemical potentials. From a mathematical viewpoint the equation system (24), (27), (28)
only serves to eliminate the surface chemical potentials µΓ in order to calculate the external fluxes of
the electrolytic species.

Following the Appendix of the paper [DDGG16], we can introduce linear spaces via (ImageMΓ ×
{0}N ext

) ⊂ RNΓ and ({0}N × ImageMΓ,ext) ⊂ RNΓ , and it turns out that the interactions on the
boundary Γ take place tangentially to the linear subspace

U =
(

span{γ1
Γ, . . . , γ

sΓ

Γ } ⊕ ({0}N × ImageMΓ,ext)
)
∩ (ImageMΓ × {0}N ext

) . (29)
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We define ŝΓ := dimU and we choose basis vectors γ̂1, . . . , γ̂ ŝ
Γ

for U . In the paper [DDGG16], it is
proved that the conditions (24), (27), (28) allow to represent the flux of the electrolytic species via

J i · ν = −r̂i − J0
i for i = 1, . . . , N . (30)

Moreover, the external response J0 is a mapping from [0, T ]× Γ into U . The modified reaction term
r̂ is a mapping from [0, T ]× Γ× RŝΓ into U and possesses the structure

r̂i =
ŝΓ∑
k=1

R̂Γ(t, x, γ̂1 · µ, . . . , γ̂ ŝΓ · µ) γ̂ki for i = 1, . . . , N . (31)

Moreover, there is a convex nonegative potential Ψ̂Γ : [0, T ]×Γ×RŝΓ → R such that R̂Γ(t, x, D) =
−∇DΨ̂Γ(t, x, D) for all (t, x,D) ∈ [0, T ] × Γ × RŝΓ , and ∇DΨ̂Γ(t, x, 0) = 0 text for all
(t, x) ∈ [0, T ]× Γ.

The data µext, MΓ and MΓ,ext are absorbed in the position dependence of J0 and Ψ̂Γ. In the analysis
we can for simplicity assume that J0 and Ψ̂Γ are the boundary data, even if in applications the solution
of a few additional nonlinear algebraic equations are necessary to compute them.

Electrical potential. The boundary condition for the electrical potential can be derived from Maxwell’s
equations for surfaces, which are satisfied in the quasi-static stetting by a continuous electrical poten-
tial (see [DGM15]). On ]0, T [×Γ we impose the condition

φ = φ0 ,

where φ0 is the given electric potential at ]0, T [×Γ.

3 Summary model equations

Domain Ω. Summarising, the evolution of the state (ρ, v, ϕ) in ]0, T [×Ω is described by the PDE–
system

∂ρi
∂t

+ div(ρi v + J i) =
s∑

k=1

γki Rk for i = 1, . . . , N (32)

∂% v

∂t
+ div(% v ⊗ v − Svisc(∇v)) +∇p = −nF ∇φ (33)

−ε0 (1 + χ)4φ = nF . (34)

Here nF is given by the formula (9) while the fluxes J1, . . . , JN obey (13). The reaction rates
R1, . . . , Rs obey (17), p is subject (19) and Svisc to (20).

Boundary Γ. We have on ]0, T [×Γ the boundary conditions

0 = rΓ +
(
J − Jext

)
· ν , (35)

J · ν = +MΓ (µ− µΓ) for electrolyte constituents, (36)

Jext · ν = −MΓ,ext (µext − µΓ,ext) for external constituents, (37)

v = 0 , (38)

φ = φ0 , (39)
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where the external chemical potentials µext, the external potential φ0 and the kinetic matricesMΓ and
MΓ,ext are given. The reaction rates rΓ obey(25) with RΓ satisfying (26). Recall that the conditions
(35) represent NΓ equations and are a shorter form for (24). Alternatively to (35), (36) and (37)

J · ν = −r̂ − J0 for electrolyte constituents, (40)

together with (38) and (39), with r̂ of the structure (31) and J0 a given mapping into U .

Boundary Σ. We choose as simple as possible model on the surface ]0, T [×Σ where basically all
effects can be neglected: No mass flux (ρi v+ J i) · ν = 0 for i = 1, . . . , N ; Complete adherence of
the fluid v = 0; No surface charge∇φ · ν = 0.

Initial conditions. Initial conditions are prescribed for the variables ρ1, . . . , ρN . We denote them
ρ0
i , i = 1, . . . , N . Moreover, an initial state v0 is also given for the velocity vector.

4 Notation

To get rid of overstressed indexing, we simplify the notation by making use of vectors. For instance we
denote ρ the vector of mass densities, n the vector of number densities i.e.

ρ := (ρ1, ρ2, . . . , ρN) ∈ RN , n := (n1, n2, . . . , nN) ∈ RN .

Moreover we define the vector 1 := 1N := (1, 1, . . . , 1) ∈ RN , and the vectors of quotients of
charge and mass, and of volume and mass

z

m
:= ( z1

m1
, z2
m2
, . . . , zN

mN
) ∈ RN ,

V

m
:= ( V1

m1
, V2

m2
, . . . , VN

mN
) ∈ RN .

Using these conventions, we have a. o. the identities

% = 1 · ρ, nF =
z

m
· ρ, n · V = ρ · V

m
etc.

The diffusion fluxes J1, . . . , JN span a rectangular matrix J = {J ij} ∈ RN × R3. The upper index
corresponds to the lines of this matrix. Vectors of RN are multiplicated from the left, as for instance in
1 · J =

∑N
i=1 J

i which is an identity in R3.

The vectors γ1, . . . , γs span a rectangular matrix γ = {γki } ∈ Rs × RN . The upper index corre-
sponds to the line of the matrix. Vectors of Rs are multiplicated from the left, as for instance in the
identity r = R · γ =

∑s
k=1Rk γ

k in RN . Analogously the vectors γ1
Γ, . . . , γ

sΓ

Γ span a rectangular
matrix γΓ = {γkΓ,i} ∈ RsΓ × RNΓ

. In order to describe the reactions, we shall further make use of

the abbreviations R̄ : Rs → Rs, R̄ := −∇Ψ and R̄Γ : RsΓ → RsΓ , R̄Γ := −∇ΨΓ.

Functional classes. We denoteQt =]0, t[×Ω and St :=]0, t[×Γ. We setQ := QT and S := ST .
For 1 ≤ p, q < +∞, we employ the notations Lp,q(Q) ≈ Lp(0, T ; Lq(Ω)).

We make use of standard Sobolev spaces for spatial domains and space–time domains. In particular,
recall that W 1,0

p (Q) ≈ Lp(0, T ; W 1,p(Ω)). We define W 1,0
p,S(Q) := {u ∈ W 1,0

p (Q) : trace(u) =
0 in Lp(S)}.
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For a convex, nonnegative potential Ψ ∈ C(Rs), s ≥ 1 (and for its conjugate Ψ∗), the vectorial Orlicz
classes LΨ(Q; Rs) and LΨ∗(Q; Rs) are well known. We make use of the notation

[DR]LΨ(Q;Rs) :=

∫
QT

Ψ(DR(t, x)) dx dt .

For Ψ̂Γ ∈ L∞(S; C2(RŝΓ)), we define a vectorial Orlicz class LΨ̂Γ(S; RŝΓ) as the set of all mea-

surable D̂Γ,R : S → RŝΓ such that

[D̂Γ,R]L
Ψ̂Γ (S;RŝΓ ) :=

∫
S

Ψ̂Γ(t, x, D̂Γ,R(t, x)) dS(x) dt < +∞ .

5 Mathematical assumptions on the data

From the thermodynamic viewpoint, the free energy function h, the mobility matrix M and the poten-
tials Ψ, ΨΓ are the essential objects determining the properties of the constitutive equations. Math-
ematical results can be obtained under suitable restrictions to these objects. In addition, restrictions
are as usual necessary concerning the geometry and the quality of boundary and initial states. In this
investigation we are not concerned with pointing at intrisic classes for the second type of data.

Assumptions on the free energy function. Our estimates on the (relative) chemical potentials
moreover require the special form (21), where the mixing entropy obeys the precise representation
(23). We allow for a certain generality only at the level of the function hmech which we assume of the
form (22). Recall that K is a positive constant, of which we will keep track due to its importance.

We assume that F belongs to C2(R+) ∩ C(R0,+) and is a convex function. We assume that there
are 3

2
< α < +∞ and constants 0 < c0, c1 such that

F (s) ≥ c0 s
α − c1 for all s > 0 . (41)

In the neighbourhood of zero, we assume that F (s) behaves like s ln s: There are constants positive
constants k0 < k1 and s0 > 0 such that

k0

s
≤ F ′′(s) ≤ k1

s
for all s ∈]0, s0] . (42)

In fact, in order to obtain an unconstrained PDE system, we crucially need that F ′ : R+ → R is
surjective. This not satisfied for instance by the pure polynomial ansatz according to Tait (proof in the
paper [DDGG17a]), but it always follows from (42).

Assumptions on the mobility matrix. The mobility matrix M is symmetric and positive semi defi-
nite. Throughout the paper, we assume that M is mass conservative, that is

M1 = 0 . (43)

Moreover we assume that the entries of M are linear–growth, continuous functions of the vector ρ of
the partial mass densities.

Except for these few points, the exact structure of the mobility matrix is a delicate topic (in particular
there are connections to the Maxwell–Stefan theory, see [BD15]). In this paper we restrict ourselves to
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the assumption that M has rank N − 1 independently on ρ. In other words, denoting 0 = λ1(M) ≤
λ2(M) ≤ . . . ≤ λN(M) the eigenvalues of the matrix M , we assume that there are positive
constants 0 < λ ≤ λ such that

λ ≤ λi(M(ρ)) ≤ λ (1 + |ρ|) for all i = 2, 3, . . . , N, ρ ∈ RN
+ . (44)

Let us remark that due to this assumption, only regularisations of the original ansatz of the paper
[DGM13] are included in the analysis: In the formula (15) we must, for example, apply a cut-off from
below to the entries of the empirical matrix Memp.

Assumptions on the reaction rates. We assume that the reaction rates are derived from a strictly
convex, non-negative potential1 Ψ ∈ C2(Rs). Moreover, Ψ satisfies

Ψ(0) = 0,
Ψ(DR)

|DR|
→ +∞ for |DR| → ∞ . (45)

Similarly, we require that the boundary reaction rates are derived from a strictly convex, non-negative
potential ΨΓ ∈ C2(RsΓ) such that

ΨΓ(0) = 0,
ΨΓ(DΓ,R)

|DΓ,R|
→ +∞ for |DΓ,R| → ∞ . (46)

For simplicity we explicitly require at least linear growth of the reaction rates via

inf
DR∈Rs

λmin(D2Ψ(DR)) > 0, inf
DΓ,R∈RsΓ

λmin(D2ΨΓ(DΓ,R)) > 0 . (47)

As to the adsorption coefficients MΓ and MΓ,ext occurring in the boundary conditions (27), (28) they
play in the analysis a role similar to the reactions. We assume them to be symmetric and positive semi
definite matrices. Moreover, in connection to the no slip condition (38), it is no restriction to require
that MΓ 1N = 0 and MΓ,ext 1N

ext
= 0. Under these conditions the modified reaction potential Ψ̂Γ on

the boundary satisfies (see [DDGG16], Appendix for a proof)

inf
D̂Γ,R∈RŝΓ , (t,x)∈[0,T ]×Γ

λmin(D2Ψ̂Γ(t, x, DΓ,R)) > 0 . (48)

Assumptions on the domain Ω and the boundary Γ. The domain Ω ⊂ R3 possesses a boundary
of class C0,1. In connection with the optimal regularity of the solution to the Poisson equation with
mixed-boundary conditions, we need to introduce a further exponent r(Ω, Γ) as the largest number
in the range [2,+∞[ such that

−4u = f in [W 1,β′

Γ (Ω)]∗ implies u ∈ W 1,β
Γ (Ω)

for all f ∈ [W 1,β′

Γ (Ω)]∗ and all β ∈]r′, r[ with r′ :=
r

r − 1
. (49)

It is well known that r(Ω, Γ) > 2 in general (see [Grö89] a. o.), but there are numerous situations
where, depending on the boundary of the domain and the structure of the surface Γ, the optimal
exponent satisfies r(Ω, Γ) > 3 (see [DKR15] for results and discussions on this topic). We require
that

α′ :=
α

α− 1
< r , (50)

with α from (41). This of course might be a restriction only if α < 2.

1It is always possible to achieve the non negativity because the modelling only requires that Ψ has a global minimum
at zero
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Assumptions on the remaining boundary data. We consider only non degenerate initial and
boundary data. This means that

ρ0 ∈ L∞(Ω; (R+)N)

v0 ∈ L∞(Ω; R3)

φ0 ∈ L∞(0, T ; W 1,r(Ω)) ∩ L∞(]0, T [×Ω)

∂tφ0 ∈ W 1,0
2 (]0, T [×Ω) ∩ Lα′(]0, T [×Ω)

µext ∈ L∞(]0, T [×Γ; RN ext
)

(51)

Moreover we assume as a compatibility condition the validity in the weak sense of

−ε0 (1 + χ)4φ0(0) = z
m
· ρ0.

Note that the last assumption in (51) garanties that J0 ∈ L∞(]0, T [×Γ; U) (see [DDGG16], Ap-
pendix for the elementary proof).

The reaction vectors: critical manifold. Denote W ⊆ 1⊥ ⊂ RN the linear subspace given by

W := span
{
γ1, . . . , γs, γ̂1, . . . , γ̂ ŝ

Γ
}
. (52)

Recall that the reduced reaction vectors γ̂1, . . . , γ̂ ŝ
Γ

are associated with the matrix MΓ and can be
identified with elements from 1⊥. Call selection S of cardinality |S| ≤ N a subset {i1, . . . , i|S|} of
{1, . . . , N} such that i1 ≤ . . . ≤ i|S|. For every selection, we introduce the corresponding projector
PS : RN → RN via PS(ξ)i = ξi for i ∈ S, and PS(ξ)i = 0 otherwise. We define a linear subspace
WS ⊂ RN via

WS := span
{
PS(γ1), . . . , PS(γs), PS(γ̂1), . . . , PS(γ̂ ŝ

Γ

)
}
.

The selection S will be called uncritical if dim(WS) = |S| and critical otherwise.

For every selection S, we denote Sc the complementary selection {1, . . . , N} \ S. It can easily be
shown that the manifold

Mcrit := RN
+ ∩

⋃
S⊂{1,...,N}, S critical

WS × PS⊥(RN) (53)

is the finite union of sub manifolds of dimension at most N − 1. We say that the initial compatibility
condition is satisfied if the initial vector of the total masses ρ̄0 :=

∫
Ω
ρ0 dx ∈ RN

+ satisfies ρ̄0 6∈ Mcrit.

6 Identification of natural variables in the equations of mass trans-
fer

In this section we formulate three essential remarks that affect the solution concept and the mathe-
matical analysis of the equations (32) of mass transfer taken independently:

� There are state-constraints (ρ ≥ 0) on the solution vector;

� The mobility matrix has a kernel (M 1 = 0) so that the structure of the system is not entirely
parabolic;

� In the context of weak solutions, the continuity equation ∂t% + div(% v) = 0 might generate a
local vacuum that affects the regularity of the solution.
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6.1 State–constraints

The pair of vector fields (ρ, µ) : [0, T ] × Ω → RN
+ × RN is subject to the algebraic relation

µ = ∇ρh(ρ) (cf. (12)). Obviously: The vector of mass densities ρ must belong to the domain of the
gradient of the free energy function, while the vector of chemical potentials belongs to its image.

Meaningful choices of the function h must in general guaranty that the domain of∇h is RN
+ . Indeed,

the algebraic constraint on ρ must be equivalent with the physical non negativity restriction on the
mass densities. The vector of chemical potentials µ must belong to the image of ∇h. There are
models, for instance the special constitutive assumption (21) in the case of the Tait equation, in which
this image is a true subset of RN .

These algebraic state-constraints are a fundamental obstacle to the application of a functional analytic
method to prove the resolvability of the model.

In order to overcome this difficulty we are going to exploit a particular observation: For the special
constitutive assumption (21), we can show that ∇h : RN

+ → RN is a bijection if the first derivative
of the function F is surjective onto R. At least for a relevant particular choice of h, the PDE system is
unconstrained in µ, and the chemical potentials are a favourable set of variables to perform existence
theory or numerical approximation. This was already noted in the context of less complex models, for
instance in [JS13].

6.2 An ’hyperbolic’ component

Diffusion and chemical reactions are the dissipative structure that provide a control on the vector µ. But
the fluxes J1, . . . , JN and the functions r1, . . . , rN occurring in the system (32) in fact only depend
on the projection of the vector µ on the subspace 1⊥ := {ξ ∈ RN : ξ · 1 = 0} (see the side
conditions (14) for the diffusion flux, and to the restriction (3) on the vectors γ1, . . . , γs).

Thus, natural estimate can be obtained only for a (N − 1)−dimensional projection of the vector µ.
Due to this observation, it was noted in [DGM13] that a change of variables is necessary in order to
define the solution. We keep as main variables:

(a) On the one hand, one coordinate of the vector field ρ, namely the total mass density ρ · 1 that we
shall denote % throughout the paper. This is the ’hyperbolic’ component subject to the continuity
equation (6);

(b) On the other hand,N−1 coordinates of the vector of chemical potentials µ defined via a projection
onto the linear space 1⊥ ⊂ RN .

The possibility of these choices relies on an algebraic result that we want to afore mention here.

Proposition 6.1. Assume that the free energy function h satisfies the ansatz (21), (22), (23), and that
the function F occurring in (22) belongs toC2(R+)∩C(R0,+), is convex, and possesses a surjective
first derivative F ′.

Let ξ1, . . . , ξN ∈ RN be a basis of RN such that ξN := 1 and let η1, . . . , ηN ∈ RN be the vectors
such that ξi · ηj = δji for i, j = 1, . . . , N . We define a ’projector’2 Π : RN → RN−1 and an

2We should in fact speak stricto sensu of a reduction operator.
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extension operator E : RN−1 → RN associated with the basis {ξi}i=1...,N via

ΠX := (X · η1, . . . , X · ηN−1) for X ∈ RN

E q :=
N−1∑
k=1

qk ξ
k for q ∈ RN−1 .

Then, there are mappings R ∈ C1(R+ × RN−1; RN
+ ) and M ∈ C1(R+ × RN−1; R) such that

the non-linear algebraic equations µ = ∇ρh(ρ) are valid for µ ∈ RN and ρ ∈ RN
+ if and only if there

are % ∈ R+ and q ∈ RN−1 such that

ρ = R(%, q), ρ · 1 = % and Πµ = q, µ · ηN = M (%, q) . (54)

In view of Proposition 6.1, we can equivalently define a solution to the system of equations (32) as a
pair (%, q), with a function % : ]0, T [×Ω→ R+ and a vector field q : ]0, T [×Ω→ RN−1 such that

∂tRi(%, q) + div(Ri(%, q) v + J i) = ri

J i = ei ·M(R(%, q)) (∇(E q
θ

) + z
m

1
θ
∇φ)

ri =
∑s

k=1 γ
k
i R̄k(γ

1 · Eq, . . . , γs · Eq)

for i = 1, . . . , N . (55)

For instance one chooses ξi = ei (i = 1, . . . , N−1). In this case, ηk = ek−eN for k = 1, . . . , N−1
and ηN = eN . Thus, Πµ is the vector (µ1 − µN , . . . , µN−1 − µN). For this reason, we propose to
call relative chemical potentials the components of the new variable q. For the other occurrences in
(33) and (34) of the original variables ρ, µ, we use the following equivalences relying on (54)

p = −h(ρ) +
N∑
i=1

ρi µi = K (−F + idF ′)
(
V
m
·R(%, q)

)
=: P (%, q)

nF = z
m
· ρ = z

m
·R(%, q) .

A proof of the elementary result of Proposition 6.1 is given in the second part of the article [DDGG17a].
We here note two additional remarks concerning the choice of the projector Π.

Remark 6.2. � It might be of importance to allow for a general Π, as its choice can be suited to
the structure of the mobility matrix (e. g. (15)) in order to simplify the structure of the diffusion.

� In [Dru16], we relaxed the lower bound in the condition (44) and used another strategy to intro-
duce relative chemical potentials: define q̂ ∈ ∂RN

− via q̂ := µ−maxi=1,...,N µi 1
N .

6.3 Vacuum oscillations

Although the presuppositions of the free energy model (21) in fact completely fail if the total mass
density is below a lower critical value, the mathematical analysis cannot exclude the occurrence of a
complete vacuum.

From the viewpoint of our analytical treatment, a vacuum is characterised by the fact that the variables
ρ and q are ’decoupled’, in the sense that the mapping q 7→ R(% = 0, q) is trivial on the entire RN−1.
A concrete technical difficulty is raised concerning the compactness. Time-derivative estimates are
available only for the ρ−variables and do not transfer one to one to the q variables, since a sequence
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of mass densities ρn = R(%n, q
n) (n ∈ N) such that %n → 0 would converge strongly even if the

corresponding qn exhibit oscillatory behaviour.

Since the reaction densities are non-linear expressions of q1, . . . , qN−1, the vacuum-oscillations affect
the concept of the solution at this level: The representation or the production rates R = −∇Ψ(γ1 ·
Eq, . . . , γs · Eq) is restricted to the set where % is strictly positive. An analogous situation occurs at
the boundary ]0, T [×Γ whenever it is in contact with a vacuum.

In order to include the possibility of this extreme behaviour, we relax the concept of a solution to (32),
(35), (36), (37). It now contains four entries: the scalar % : ]0, T [×Ω → R+ (total mass density) and
of the vector field q : ]0, T [×Ω → RN−1 (relative chemical potentials) like in the natural definition,
but also the production factors in the bulkR : ]0, T [×Ω→ Rs and on the interfaceRΓ : ]0, T [×Γ→
RŝΓ . We define the vacuum–free set via

Q+(%) := {(t, x) ∈]0, T [×Ω : %(t, x) > 0} .

For the representation of the bulk reactions, we require r =
∑s

k=1 γ
k Rk with the following weaker

condition:

R = R̄(γ1 · Eq, . . . , γs · Eq) in Q+(%) . (56)

We introduce a set S+(%) ⊆]0, T [×Γ as the subset of all (t, x) ∈]0, T [×Γ such that there is an
open neighbourhood Ut,x with the property

λ4

(
Ut,x ∩ {(s, y) ∈]0, T [×Ω : %(s, y) = 0}

)
= 0 .

For the concept of the solution, we ask for the representation r̂ =
∑ŝΓ

k=1 γ̂
k RΓ

k together with

RΓ = R̂Γ(t, x, γ̂1 · Eq, . . . , γ̂ ŝΓ · Eq) in S+(%) . (57)

7 The mathematical results

For t > 0, we denote Qt :=]0, t[×Ω the space–time cylinder, and if T > 0 is the final time of the
process, we abbreviate Q := QT . We denote St :=]0, t[×Γ and S = ST .

7.1 The solution class

Exploiting the preliminary considerations of the Section 6, a solution vector to the entire system (32),
(33), (34) with boundary conditions (35), (36), (37), (38), (39) and initial conditions (=: Problem (P ))
is composed of the scalars % : Q → R+ (total mass density) and φ : Q → R (electrical potential)
and of the vector fields q : Q→ RN−1 (relative chemical potentials), and v : Q→ R3 (barycentric
velocity field). If we want to account for the possibility of vacuum, the productions factors are not
everywhere functions of these components only. Thus we also introduce R : Q → Rs, RΓ : S →
RŝΓ as variables. For a given vector (%, q, v, φ, R, RΓ) we introduce on the base of the Proposition
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6.1 the auxiliary variables

ρ = R(%, q) (58a)

J = −M(ρ)D, D :=
∇E q
θ

+
1

θ

z

m
∇φ (58b)

r =
s∑

k=1

γk Rk, DR
k := γk · Eq for k = 1, . . . , s (58c)

r̂ =
ŝΓ∑
k=1

γ̂k RΓ
k , D̂Γ,R

k := γ̂k · Eq for k = 1, . . . , ŝΓ (58d)

p = P (%, q) (58e)

nF = ρ · z
m
. (58f)

An essential property of solutions is the mass and energy conservation.

Definition 7.1. We say that (%, q, v, φ, R, RΓ) satisfies the (global) energy (in)equality with free
energy function h and mobility matrix M if and only if the associated fields and variables (58) satisfy
for almost all t ∈]0, T [∫

Ω

{
1

2
% v2 +

1

2
ε0 (1 + χ) |∇φ|2 + h(ρ)

}
(t)

+

∫
Qt

{
S(∇v) : ∇v +M D ·D + (Ψ(DR) + Ψ∗(−R))

}
+

∫
St

{Ψ̂Γ(·, D̂Γ,R) + (Ψ̂Γ)∗(·, −RΓ)}

(<)
=

∫
Ω

{
1

2
%0 |v0|2 +

1

2
ε0 (1 + χ) |∇φ0(0)|2 + h(ρ0)

}
∫
Qt

{
nF φ0,t − ε0 (1 + χ)∇φ · ∇φ0,t

}
−
∫

Ω

{
nF φ0 − ε0 (1 + χ)∇φ · ∇φ0

}∣∣∣∣t
0

+

∫
St

((r̂ + J0) · z
m
φ0 + J0 · Eq) .

We say that (%, q, v, φ, R, RΓ) satisfies the balance of total partial masses if the vector field

ρ̄ :=

∫
Ω

ρ dx =

∫
Ω

R(%, q) dx , (59)

is subject to

ρ̄(t) = ρ̄0 +

∫ t

0

{∫
Ω

r +

∫
Γ

(r̂ + J0)

}
(s) ds for all t ∈ [0, T ] . (60)

The conservation of energy provides the natural bounds that will allow to define the weak solution. We
introduce what one could call a natural class B, because this class naturally arises from the global
energy and mass conservation identities associated with the model. The class B reflects the regularity
of the weak solution and essentially depends on several parameters

� The final time T > 0, the domain Ω and the partition Γ ∪ Σ of its boundary (see the condition
(49));
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� The choice of the free energy function h and in particular the growth exponent of (41);

� The mobility matrix M , in particular the number rkM ;

� The choice of the potentials Ψ and ΨΓ for the reaction densities.

The variables %, φ and v will satisfy the conditions

% ∈ L∞,α(QT ; R0,+) (61)

v ∈ W 1,0
2,S(QT ; R3) (62)

√
% v ∈ L∞,2(QT ; R3) (63)

φ ∈ L∞(QT ), ∇φ ∈ L∞,β(QT ; R3) , (64)

with the exponents α > 3/2 and r(Ω,Γ) > 2 of the conditions (41) and (49), and with

β := min

{
r(Ω, Γ),

3α

(3− α)+

}
. (65)

For the variables R and RΓ we consider the conditions

−R ∈ LΨ∗(Q; Rs), −RΓ ∈ L(Ψ̂Γ)∗(S; RŝΓ) . (66)

For the variable q, a control is achieved on the spatial gradient thanks to the assumption (44). However
in the context of flux boundary conditions, the bound on the L1 norm is a non trivial problem. We shall
nevertheless obtain the integrability in time via complex estimates involving the diffusion gradient,
the reactions and the conservation of total mass. Under the assumption (47) of at least quadratic
potentials, a natural class for the variable q is then

q ∈ L2(Q; RN−1) ,∇q ∈ L2(Q; R(N−1)×3) . (67)

The variable q obviously satisfies the additional conditions

(γ1 · Eq, . . . , γs · Eq) ∈ LΨ(QT ; Rs) ,

(γ̂1 · Eq, . . . , γ̂ ŝΓ · Eq) ∈ LΨ̂Γ(ST ; RŝΓ) .
(68)

The natural class B also encodes an information concerning the conservation of global mass (in-
tegration of (4), (32) over Ω). We additionally introduce a non-negative function Φ∗ ∈ C([0, T ]2),
Φ∗(t, t) = 0 constructed from the functions Ψ, ΨΓ (and thus from R and RΓ) via

Φ∗(t1, t2) := sup
i=1,...,N ; [−R]LΨ∗ (Q)≤C0

∣∣∣∣∫ t2

t1

∫
Ω

R · γi
∣∣∣∣

+ sup
i=1,...,N ; [−R̂]L

(Ψ̂Γ)∗ (S)≤C0

∣∣∣∣∫ t2

t1

∫
Γ

R̂ · γ̂i
∣∣∣∣+ (t2 − t1) , (69)

for all 0 ≤ t1 ≤ t2 ≤ T . Here C0 is an appropriate constant that we will choose later. For a function
u ∈ C1([0, T ]), we define a weighted modulus of uniform continuity via

[u]CΦ∗ ([0,T ]) := sup
t1, t2∈[0,T ]

|u(t1)− u(t2)|
Φ∗(t1, t2)

.

We are finally in the position to introduce the solution class.
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Definition 7.2. If (%, q, v, φ, R, RΓ) such that % satisfies (61), v satisfies (62) and (63), φ satisfies
(64), and q satisfies (67) and (68) and R, RΓ satisfy (66), we define

[(%, q, v, φ, R, RΓ)]B(T,Ω, α, rkM,Ψ,ΨΓ) :=

‖%‖L∞,α(Q) + ‖v‖W 1,0
2 (Q;R3) + ‖√% v‖L∞,2(Q;R3) + ‖φ‖L∞(Q) + ‖∇φ‖L∞,β(Q;R3)

+ ‖q‖W 1,0
2 (Q;RN−1) + [DR]LΨ(Q;Rs) + [D̂Γ,R]L

Ψ̂Γ (S;RŝΓ )

+ ‖J‖
L

2, 2α
1+α (Q;RN×3)

+ [−R]LΨ∗ (Q;Rs) + [−RΓ]L
(Ψ̂Γ)∗ (S;RŝΓ ) + ‖p‖

Lmin{1+ 1
α ,

5
3−

1
α }(Q)

+ [ρ̄]CΦ∗ ([0,T ];RN ) . .

We say that (%, q, v, φ, R, RΓ) belongs to the class B(T, Ω, α, rkM, Ψ, ΨΓ) if and only if the
number [(%, q, v, φ, R, RΓ)]B(T,Ω, α, rkM,Ψ,ΨΓ) is finite.

We now give the definition of a weak solution.

Definition 7.3. We call a vector (%, q, v, φ, R, RΓ) ∈ B(T, Ω, α, N − 1, Ψ, ΨΓ) weak solution
to the Problem (P ) if the energy inequality and the balance of total partial masses of Definition 7.1
are valid, and if the quantities ρ, J , r and r̂, p and nF obeying the definitions (58) satisfy the relations

−
∫
Q

ρ · ψt −
∫
Q

(ρi v + J i) · ∇ψi (70)

=

∫
Ω

ρ0 · ψ(0) +

∫
Q

r · ψ +

∫
ST

(r̂ + J0) · ψ ∀ ψ ∈ C1
c ([0, T [; C1(Ω; RN))

−
∫
Q

% v · ηt −
∫
Q

% v ⊗ v : ∇η −
∫
Q

p div η +

∫
Q

S(∇v) : ∇η (71)

=

∫
Ω

%0 v
0 · η(0)−

∫
Q

nF ∇φ · η ∀ η ∈ C1
c ([0, T [; C1

c (Ω; R3))

ε0 (1 + χ)

∫
Q

∇φ · ∇ζ =

∫
Q

nF ζ ∀ ζ ∈ L1(0, T ; W 1,2
Γ (Ω))

φ = φ0 as traces on ]0, T [×Γ (72)

and if the identities (56) and (57) are valid.

The concept of weak solution is well defined owing to standard estimates.

7.2 Main theorems

Theorem 7.4. [Global-in-time existence] Let Ω ∈ C0,1. Assume that the free energy function h sat-
isfies (41) and (42) and that the mobility matrix M satisfies (43) and (44). Let Ψ ∈ C2(Rs) and
ΨΓ ∈ C2(RsΓ) be strictly convex and satisfy (45), (46), (47). Assume that the initial data ρ0 and v0,
and the boundary data µext, φ0 are non degenerate in the sense of (51), and that one of the following
conditions is valid:

(1) α ≥ 2;

(2) 9
5
≤ α < 2 and r(Ω, Γ) > α′;

(3) 3
2
< α < 9

5
, r(Ω, Γ) > α′ and the vectors m ∈ RN

+ and V ∈ RN
+ are parallel.
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Assume moreover that the vector ρ̄0 of the total initial masses has positive distance to the manifold
Mcrit of (53).

Then, for T > 0 arbitrary, the problem (P ) possesses a weak solution in the class B(T, Ω, α, N −
1, Ψ, ΨΓ) (sense of Definition 7.3).

We can characterise the singular states of the system associated with species vanishing.

Theorem 7.5. Same assumptions as in Theorem 7.4. For every weak solution to (P ), the compact
set K0 := {t ∈ [0, T ] : mini=1,...,N ρ̄i(t) = 0} satisfies λ1(K0) = 0. For all t ∈ [0, T ] \K0, the
domain Ω possesses the disjoint decomposition Ω = Pt ∪ Vt ∪Nt where

(1) Pt = {x ∈ Ω : mini=1,...,N ρi(t, x) > 0} is a set where all components of the mixture are
available;

(2) Vt = {x ∈ Ω : %(t, x) = 0} is a set occupied by a complete vacuum;

(3) λ3(Nt) = 0.

If one starts with total initial masses on the critical manifold, then it is possible that certain groups of
species are completely consumed after finite time, and the solution then exists only up to this time.
Afterwards, it might be necessary to restart the system with a smaller number of species.

Theorem 7.6. [Local-in-time existence] Same assumptions as in Theorem 7.4, with ρ̄0 ∈Mcrit.

Then, there are a time 0 < T0 depending only on the data and a time T0 ≤ T ∗ ≤ +∞ such that
there is a weak solution (%, q, v, φ, R, RΓ) ∈ B(t, Ω, α, N−1, Ψ, ΨΓ) in the sense of Definition
7.3 to (Pt) for all t < T ∗. Moreover the following alternative concerning T ∗ is valid:

(1) Either T ∗ = +∞;

(2) Or there is (%, q, v, φ, R, RΓ) ∈ B(T ∗, Ω, α, N − 1, Ψ, ΨΓ) that weakly solves (Pt) for all
t < T ∗, such that mini=1,...,N ρ̄i(t) > 0 for all t ∈ [0, T ∗[, and such that

lim
t→T ∗

min
i=1,...,N

ρ̄i(t) = 0, lim inf
t→T ∗

‖q(t)‖L1(Ω;RN−1) = +∞ .

8 Main steps of the proof

For the existence proof, we first regularise the problem in order to obtain equations that are easier
to solve. It is important that the regularisation is thermodynamically consistent: it must preserve the
fundamental dissipation mechanisms and the natural estimates. For the larger class of (regularised)
problems, we are then able to derive the energy identity and the global balance of partial masses in a
rigorous way. This entails a priori estimates in the natural class. The a priori estimates for the variable
q is one of the most original part of the analysis. In order to pass to the limit with the numerous non-
linearities of the system, it is at last necessary to derive compactness statements: This is the second
supporting pillar of the analysis.
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8.1 The approximation scheme

The regularisation strategy, though not mass conservative, will be chosen thermodynamically consis-
tent, since it consists in two essential steps:

(1) A positive definite regularisation of the mobility matrix M ;

(2) A convex regularisation of the free energy function h.

The method involves three levels associated with positive parameters, say σ, δ and τ . We first modify
the mobility matrix M in order to ensure ellipticity/parabolicity and allow a control on ∇µ. We set
Mσ(ρ) = M(ρ) + σ Id. The δ−regularisation consists in increasing the growth of the (mechanical)
free energy modifying the function F that occurs in the definition of hmech via F (n ·V ) F (n ·V )+
δ (n · V )αδ with αδ > 3. The τ−regularisation is a stabilisation for the vector of chemical potentials.
It consists in modifying the function h∗ (or (hδ)

∗) – convex conjugate of h (or hδ) – via

h∗δ,τ (X) := (hδ)
∗(X) + τ

N∑
i=1

ω(Xi) , (73)

Here ω ∈ C2(R) is an appropriate increasing convex function, with sublinear blow up at −∞. In-
terpreting (73) as Legendre transform, we introduce a regularised free energy function via hτ,δ :=
convex conjugate of the function h∗τ,δ = (h∗τ,δ)

∗. If the original free energy function h satisfies

c0 |ρ|α − c1 ≤ h(ρ) ≤ C0 |ρ|α + C1, for all ρ ∈ RN
+ .

with constants 3/2 < α < +∞ and 0 < c0, c1, C0, C1 < +∞, then there are c̃0, c̃1 > 0, and
τ0(αδ, α) > 0 such that if τ ≤ τ0

hτ,δ(ρ) ≥ c̃0 (|ρ|α + δ |ρ|αδ + τ Φω(µ))− c̃1

for all ρ ∈ RN
+ and µ ∈ RN connected by the identity ρ = ∇h∗τ,δ(µ). Here, the function Φω =∑N

i=1 ω
′(µi)µi−ω(µi) growth sublinearily (say like square-root) at infinity. The stabilised free energy

thus allows a control on ρ and on µ.

For δ, σ, τ > 0, we call weak solution to the problem (Pτ, σ, δ) a vector (µ, v, φ) subject to the
energy inequality and such that the quantities

ρ = ∇h∗τ,δ(µ)

J = −Mσ(ρ)D, D :=
∇µ
θ

+
1

θ

z

m
∇φ

r =
s∑

k=1

γ̂k R̄k(D
R), DR = (γ1 · µ, . . . , γs · µ)

r̂ =
ŝΓ∑
k=1

γ̂k R̂Γ
k (t, x, D̂Γ,R), D̂Γ,R = (γ̂1 · µ, . . . , γ̂ ŝΓ · µ)

p = h∗τ,δ(µ)

nF = ρ · z
m

(74)
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satisfy the identities (70), (72), and instead of (71)

−
∫
Q

% v · ηt −
∫
Q

% v ⊗ v : ∇η −
∫
Q

p div η +

∫
Q

S(∇v) : ∇η

=

∫
Ω

%0 v
0 · η(0)−

∫
Q

nF ∇φ · η −
∫
Q

(
N∑
i=1

J i · ∇)η · v ∀ η ∈ C1
c ([0, T [; C1

c (Ω;R3)) .

(75)

Since the second definition in (74) in general implies that
∑N

i=1 J
i 6= 0, it is necessary to add this

term in the momentum equation (75) in order to preserve the energy identity.

The existence of approximate solutions for the regularised scheme is not a trivial problem, be-
cause there is no monotone or pseudo-monotone structure inherent to the diffusion. We carry over
this technical step in the paper [DDGG17b] by means of a time-continuous Galerkin method. It turns
out that for parameters δ, σ, τ > 0, weak solutions to (Pτ,σ,δ) exist and develop no vacuum.

8.2 The a priori bounds

Via standard techniques (mainly the Gronwall Lemma), we obtain from the energy identity natural
uniform bounds, in particular

‖ρ‖L∞,α(Q;RN ) + ‖√% v‖L∞,2(Q;R3) + ‖∇φ‖L∞,2(Q;R3) ≤ C0

‖v‖W 1,0
2 (Q;R3) + ‖∇q‖L2(Q;R(N−1)×3) ≤ C0

[DR]LΨ(Q;Rs) + [D̂Γ,R]L
Ψ̂Γ (S;RŝΓ ) ≤ C0

N∑
i=1

‖J i‖
L

2, 2α
1+α (Q;RN×3)

+ [−R]LΨ∗ (Q;Rs) + [−RΓ]L
(Ψ̂Γ)∗ (S;RŝΓ ) ≤ C0 .

From the equation (72), we obtain via standard elliptic theory

‖φ‖L∞(Q) ≤ ‖φ0‖L∞(Q) + c ‖ρ‖L∞,α(Q)

‖φ‖L∞(0,T ;W 1,β(Ω)) ≤ c (‖φ0‖L∞(0,T ;W 1,β(Ω)) + ‖ρ‖L∞,α(Q))

with β = min{r(Ω, Γ), 3α
(3−α)+}. Moreover, if β ≥ α′ a control on the Lorentz force is achieved:

‖nF ∇φ‖
L
∞, βα

β+α (Q)
≤ ‖nF‖L∞,α(Q) ‖∇φ‖L∞,β(Q) .

From the Navier-Stokes theory (for (71), (75) we obtain improved bound on the pressure:

� If α > 3, then ‖p‖L1+1/α(Q) ≤ C0;

� If 3/2 < α ≤ 3, r(Ω, Γ) > α′ and 1 · J ≡ 0, then ‖p‖
L1+ 2

3−
1
α (Q)
≤ C0.

A major challenge is the proof of the following estimate (to find in [DDGG17a]). We give here the formal
argument.
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Proposition 8.1. Recall the definition (52) of the linear space W ⊂ RN . Let s̃ = dimW and
b1, . . . , bs̃ be a basis of W . Assume (60), and in particular that ρ̄(t) ∈ {ρ̄0} ⊕W for all t ∈ [0, T ].
Then, if the initial compatibility condition dist(ρ̄0,Mcrit) > 0 is satisfied, the estimate

‖q‖L2(Q;RN−1) ≤ c (k0 T
1
2 + ‖(b1 · µ, . . . , bs̃ · µ)‖L2(Q;Rs̃) + c∗0 ‖∇q‖L2(Q;R(N−1)×3)) ,

is valid, where c∗0 and k0 depend on dist(ρ̄0,Mcrit).

Proof. For t ∈]0, T [, we define r0(t) :=
∑s̃

k=1 ‖bk · µ(t)‖L1(Ω), and d0(t) := ‖∇q(t)‖L1(Ω).

Preliminary: Consider for i = 1, . . . , N the function q̂i := µi − maxj=1,...,N µj . Then q̂ ≤ 0
componentwise.

Moreover q̂i possesses the generalised gradient∇q̂i =
∑N

i0=1∇(µi − µi0)χBi0 where the set Bi0

obeys the definition Bi0 := {x ∈ Ω : µi0 = maxj=1,...,N µj}. Recall that for all i 6= i0, the vector
ei − ei0 belongs to span{ξ1, . . . , ξN−1}. Therefore, we can show that∫

Ω

|∇q̂i(t)| =
N∑
i0=1

∫
Bi0

|∇(µi − µi0)(t)| ≤ c

N∑
i0=1

∫
Bi0

|∇q(t)|

= c d0(t) .

First step: Now, exploiting the auxiliary Lemma 8.2 here below with u = q̂i (recall that q̂+
i = 0 for

i = 1, . . . , N ), we obtain for δ, ε > 0 and t ∈]0, T [ the alternative
‖q̂i(t)‖L1(Ω) ≤ C∗(δ) (d0(t) + ε−1 λ3(Ω))

or

λ3({x : q̂i(t, x) ≥ −1
ε
}) < δ .

(76)

Due to the definitions of q̂, i0, there holds in Bi0 ⊆ Ω

q̂i = ci − ci0 + ( Vi
mi
− Vi0

mi0
)F ′( V

m
· ρ) + kB θ ( 1

mi
ln yi − 1

mi0
ln yi0) .

Thus

ln yi ≤ mi
mi0

ln yi0 + mi
kB θ

(q̂i + 2 |c|∞ + sup
j,k=1,...N

| Vj
mj
− Vk

mk
|F ′( V

m
· ρ)) . (77)

We define ε0 := 1
8 |c|∞ , a0 := supj,k=1,...N |

Vj
mj
− Vk

mk
|, and for ε > 0 and t ∈]0, T [

Aε(t) := {x : |F ′( V
m
· ρ(t, x))| ≤ 1

4a0ε
} .

Due to the inequality (77), the set inclusion

{x : q̂i(t, x) < −1
ε
} ∩ Aε(t) ⊆ {x : yi(t, x) ≤ e

− mi
2 kB θ ε} (78)

is valid. We next observe that the set Ω \ Aε(t) can be decomposed via

Ω \ Aε(t) = C+
ε (t) ∪ C−ε (t)

C−ε (t) := {x : F ′( V
m
· ρ(t, x)) ≤ − 1

4a0ε
}

C+
ε (t) := {x : F ′( V

m
· ρ(t, x)) ≥ 1

4a0ε
}
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Due to the asymptotic behaviour of the function F ′ (see (42)), there are ε1 > 0 and k̄1, k̄2 > 0
depending only on F and a0 such that

x ∈ C−ε (t)⇒ ln( V
m
· ρ(t, x)) ≤ − k̄1

ε

x ∈ C+
ε (t)⇒ ( V

m
· ρ(t, x))α−1 ≥ k̄2

ε
.

In particular, it follows that

C−ε ⊆ {x : max
i=1,...,N

ρi(t, x) ≤ 1

mini=1,...,N
Vi
mi

e−
k̄1

ε } , (79)

Thus, invoking (78) and (79) we obtain that

{x : q̂i(t, x) < −1
ε
} ∩ (Ω \ C+

ε (t))

⊆ {x : yi(t, x) ≤ e
− mi

2 kB θ ε} ∪ {x : max
i=1,...,N

ρi(t, x) ≤ m
V
e−

k̄1

ε } . (80)

Here m := maxi=1,...,N mi and V := mini=1,...,N Vi. On the other hand we readily see that

λ3(C+
ε (t)) ≤ ‖%‖αL∞,α(Q) sup

i=1,...,N
( Vi
mi

)α
(
ε

k̄2

)α′
. (81)

Thus, if λ3({x : q̂i(t, x) ≥ −1
ε
}) ≤ δ, we can invoke (80) and (81) to see that

λ3({x : yi(t, x) ≤ e
− mi

2 kB θ, ε} ∪ {x : max
i=1,...,N

ρi(t, x) ≤ m
V
e−

k̄1

ε })

≥ λ3(Ω)− δ − ‖%‖αL∞,α(Q) ( V
m

)α
(
ε

k̄2

)α′
.

For all 0 < ε < min{ε0, ε1} and 0 < δ, we therefore obtain from the latter and (76) that

‖q̂i(t)‖L1(Ω) > C∗(δ) (d0(t) + ε−1 λ3(Ω))

implies

λ3({x : yi(t, x) ≤ e
− mi

2 kB θ ε} ∪ {x : max
i=1,...,N

ρi(t, x) ≤ m
V
e−

k̄1

ε }) ≥ λ3(Ω)− δ − C0 ε
α′ .

We further note that∫
Ω

ρi(t) ≤
∫
{x : yi(t,x)≤e

−
mi

2 kB θ ε }
ρi +

∫
{x : maxi=1,...,N ρi(t,x)≤m

V
e
−
k1

ε }
ρi

+ ‖ρi‖L∞,α(Q) (δ + C0 ε
α′)

1
α′

≤mi e
− mi

2 kB θ ε ‖n‖L∞,1(Ω) + m
V
e−

k̄1

ε λ3(Ω) + ‖ρi‖L∞,α(Q) (δ + C0 ε
α′)

1
α′ .

For all 0 < ε < min{ε0, ε1} and 0 < δ, we therefore obtain that

‖q̂i(t)‖L1(Ω) > C∗(δ) (d0(t) + ε−1λ3(Ω))

implies (82)

ρ̄i(t) ≤ C0 (δ
1
α′ + max{ε, e−

C1

ε }) ,
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where C0, C1 are certain constants depending on the data.

Second step: Let t ∈]0, T [. Consider i1 ∈ {1, . . . , N}. Then, we claim that there are constants
c0, c1 > 0 depending only on the vectors b1, . . . , bs̃ and a critical index set J ⊃ {i1} such that

inf
j∈J
‖q̂j(t)‖L1(Ω) ≥ c0 (‖q̂i1(t)‖L1(Ω) − c1 r0(t)) . (83)

We prove this inductively. Suppose that K ⊂ {1, . . . , N} is any non-critical index set. Then, by
definition, there are for all k ∈ K coefficients λk1, . . . , λ

k
s̃ such that

PK(ek) =
s̃∑
`=1

λk` PK(b`) =
s̃∑
`=1

λk` b
` −

s̃∑
`=1

λk` PKc(b`) .

Thus, elemetarily

‖q̂k‖L1(Ω) ≤ sup
`=1,...,s̃

|λk` | (r0(t) + s̃ sup
`=1,...,s̃

|b`|∞ max
j∈Kc
‖q̂j‖L1(Ω)) .

Choosing k ∈ K such that ‖q̂k‖L1(Ω) = maxj∈K ‖q̂j‖L1(Ω) and ` ∈ Kc such that maxj∈Kc ‖q̂j‖L1(Ω) =
‖q̂`‖L1(Ω) it follows that

max
j∈K∪{`}

‖q̂j‖L1(Ω) ≥ 1
s̃ |b|∞ |λ|∞ (max

j∈K
‖q̂j‖L1(Ω) − |λ|∞ r0(t)) .

Applying this iteratively, we prove the subclaim (83). Now, assume that for parameters 0 < ε < ε0
and 0 < δ, the inequality

‖q̂i1(t)‖L1(Ω) >
1
c0

(C∗(δ) (d0(t) + ε−1 λ3(Ω)) + c1 r0(t))

is valid. Then, there is a critical selection J ⊇ {i1} such that

inf
j∈J
‖q̂j(t)‖L1(Ω) > C∗(δ) (d0(t) + ε−1 λ3(Ω)) .

Employing now the first step, (82),

max
j∈J

ρ̄j(t) ≤ C0 (δ
1
α′ + max{ε, e−

C1

ε }) .

Thus, we have proved the new alternative

‖q̂i1(t)‖L1(Ω) >
1
c0

(C∗(δ) (d0(t) + ε−1 λ3(Ω)) + c1 r0(t))

implies that there is J ⊃ {i1} critical such that (84)

max
j∈J

ρ̄j(t) ≤ C0 (δ
1
α′ + max{ε, e−

C1

ε })

Third step: By assumption dist(ρ̄0,Mcrit) > 0. Thus, for every critical selection J , the definition (53)
implies that |PJ(ρ̄(t))| ≥ dist(ρ̄0, Mcrit) > 0. This in turn implies that

max
j∈J

ρ̄j(t) ≥ N−1 dist(ρ̄0, Mcrit) .

Thus, there are δ0 > 0 and ε̄0 > 0 depending only on dist(ρ̄0, Mcrit) such that the hypothesis in (84)
yields a contradiction for all δ ≤ δ0 and 0 < ε ≤ min{ε0, ε1, ε̄0}. For d0 := dist(ρ̄0, Mcrit) one
may choose

δ0 = min{1, ( d0

4NC0
)α
′}, ε̄0 := min{ d0

4NC0
, C1

| ln d0

4NC0
|
} .
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Conclusion: We resize k := C∗( δ0
2

) ε−1 λ3(Ω). For k ≥ k0 = C∗( δ0
2

)λ3(Ω) [min{ε0, ε1, ε̄0}]−1,
the set of times such that

{t : c0 ‖q̂i1(t)‖L1(Ω) − C∗( δ02 ) d0(t)− c1 r0(t) ≥ k}

has measure zero. Thus, standard arguments show that

c0 ‖q̂i1‖L2,1(Q) − C∗( δ02 ) ‖d0‖L2(0,T ) − c1 ‖r0‖L2(0,T ) ≤ k0 T
1
2 .

The claim follows easily.

Lemma 8.2. Let ε > 0. For u ∈ L1(Ω), define

Aε(u) := {x ∈ Ω : u(x) < ε−1}, Bε(u) := {x ∈ Ω : u(x) > −ε−1} .

For δ > 0, there is C∗ = C∗(δ) depending only on Ω such that for all u ∈ W 1,1(Ω)

min{λ3(Aε(u)), λ3(Bε(u))} ≥ δ

implies that

‖u‖L1(Ω) ≤ C∗(δ) (‖∇u‖L1(Ω) + 1
ε

max{λ3(Aε(u)), λ3(Bε(u))}) .

8.3 Compactness

Exploiting the a priori estimates and the structure of the pressure p = P (%, q) with P nondecreasing
in % and q controlled in the classW 1,0

2 (Q; RN−1), we employ the Lions method for the Navier-Stokes
operator and we obtain the compactness of the total mass density % in the class C([0, T ]; L1(Ω)). In
the range 3

2
< α < 9

5
, the statement remains valid due to the method of [FNP01], under the additional

condition that % 7→ P (%, q) is convex for all q ∈ RN−1.

However, the proof of compactness of the entire vector ρ turns out a non trivial technical point: The non
linear relation between ρ (time derivatives) and q (diffusion gradient) is too complex to allow known
generalisations of the Aubin-Lions Lemma to apply. We show in [DDGG17b] in details how structural
PDE arguments allow to combine the estimates on time derivatives and the spatial gradients.

The compactness of the entire vector ρ is derived from several informations. At first it is rather obvious
that the structure of the system implies a bound for ‖∂tρ‖L1(0,T ; [C1

c (Ω;RN )]∗). Due to the uniform bound
for ‖ρ‖L∞,α(Q;RN ) this implies the weak sequential compactness of ρ(t) in Lα(Ω; RN) uniformly in
time. We then exploit the structure ρ = R(%, q) and state our main compactness Lemma.

Lemma 8.3. For n ∈ N, assume that {%n}n∈N is compact in C([0, T ]; L1(Ω)). Moreover assume
that supn∈N ‖qn‖W 1,0

1 (Q;RN−1) < +∞. Suppose further that supn∈N ‖R(%n, q
n)‖L∞,α(Q;RN−1) <

+∞, and that the sequence {R(%n(t), qn(t))}n∈N converges as distributions in Ω for almost all t.

Then, there is a subsequence (no new labels) for which there exists the pointwise limit ρ(t, x) :=
limn→∞R(%n(t, x), qn(t, x)) for almost all (t, x) ∈ Q, and R(%n, q

n)→ ρ strongly inL1(Q; RN).
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