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Abstract

We report the cancellation of the soliton self-frequency shift in nonlinear optical fibers.
A soliton which interacts with a group velocity matched low intensity dispersive pump
pulse, experiences a continuous blue-shift in frequency, which counteracts the soliton self-
frequency shift due to Raman scattering. The soliton self-frequency shift can be fully com-
pensated by a suitably prepared dispersive wave. We quantify this kind of soliton-dispersive
wave interaction by an adiabatic approach and demonstrate that the compensation is sta-
ble in agreement with numerical simulations.

1 Introduction

A soliton propagating along a nonlinear optical fiber is subject to Raman scattering, the “red end”
of the soliton spectrum is amplified at the expense of the “blue end” [1]. This results in what is
called the soliton self-frequency shift (SSFS), a noticeable decrease of the carrier frequency
of subpicosecond solitons [2]. The Raman scattering plays an important role, e.g., in optical
supercontinuum [3, 4], but in soliton communications systems it is desirable to cancel its effect.
The SSFS depends strongly on pulse-width [5], so solitons with initially equal carrier frequency
but slightly different durations will gradually get different carrier frequencies (velocities) under
Raman scattering, which results in jitter [6].

SSFS compensation may be mediated by cross-phase modulation (XPM) between the soliton
and an accompanying dispersive wave (DW) [7]. The latter appears naturally if a pulse whose
initial power exceeds that of a soliton with the same duration, brakes down into just that soliton
and a DW [2]. Initially both, soliton and DW, have the same carrier frequency. Other possibilities
for SSFS compensation include, e.g., bandwidth-limited amplification [8], pump by an additional
soliton [9], interplay between Raman effect and Cherenkov radiation [10, 11]. In this Letter we
demonstrate how the SSFS can be counteracted by XPM interaction with a prearranged pump
DW, which (i) is much weaker than the soliton and (ii) has a distinctly different carrier frequency.
Soliton collision with chirped DWs for SSFS compensation has been suggested in [12] based
on numerical results.

A typical interaction of this kind is seen in Fig. 1. The electromagnetic power density [Fig. 1(a)]
is plotted in space-time domain in a frame that co-moves with the unperturbed soliton. The
DW approaches the initially stationary soliton (zero delay) and, being almost perfectly reflected
[13, 14], yields an interference picture seen to the left of the soliton. The latter is deflected [red
line in Fig. 1(a)] and compressed [red line in Fig. 1(b)]. The reflected part of the DW is frequency
shifted, as seen in the frequency domain [Fig. 1(d)]. The soliton frequency is also shifted dur-
ing reflection [Fig. 1(c)]. Our numerical simulations use a generalized nonlinear Schrödinger
equation (GNLSE) with Raman term [4]. Without the DW, both the soliton’s frequency and am-
plitude degrade, whereas its trajectory is deflected towards larger delays (sole Raman effect,
not shown). This degradation is completely compensated by the DW after an initial transient
phase, moreover, we will see below that the compensation is stable.
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Figure 1: GNLSE calculation of a DW at 3.67 PHz interacting with a soliton at 0.67 PHz.
(a) Power in space-time domain. The white dashed line is the soliton trajectory in the adiabatic
approximation. (b) Soliton peak power from GNLSE (red line) and adiabatic theory (dashed line).
(c,d) spectral power for soliton and DW respectively. Dashed lines are from adiabatic equations
(7–9).

Dispersion properties of bulk silica meet all requirements for the interaction. Fig. 2 shows fre-
quency dependencies of group velocity β′ and group velocity dispersion (GVD) β′′. The initial
soliton carrier frequency ωa and DW frequency ωb + Ω are chosen from opposite sides of the
zero dispersion frequency (β′′(ωZDF) = 0) such that they provide almost equal group velocities.
The reference frequency ωb corresponds to the equal group velocities, β′(ωa) = β′(ωb). In the
moving frame we deal with the common delay τ = t− β′(ωa)z = t− β′(ωb)z. The propaga-
tion distance z is measured along the fiber, t is the physical time variable. The frequency offset
Ω should lie in a small interval around ωb (shaded gray in Fig. 2) in order for the two pulses to
interact [14]. A nearly perfect DW reflection (Fig. 1a) can be understood as a fiber-optical analog
of the event horizon [15] or with quantum mechanical scattering theory [16].

In what follows, we quantify XPM interactions, like the one shown in Fig. 1. The standard soliton
perturbation theory [17] was adapted to the problem at hand in [16]. It yields an adiabatic de-
scription of how a soliton evolves when colliding with a DW. Here we extend the theory to include
the influence of Raman scattering, as outlined in the next section. Further we demonstrate how
this description suggests that a stable compensation of the SSFS can occur. We describe a
simple procedure to specify DW parameters that will produce cancellation of the SSFS. The last
section deals with the stability analysis, numerical tests, and discussion.
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Figure 2: A typical profile (bulk silica) of (a) the group delay β′(ω) and (b) GVD β′′(ω) that
leads to the collision phenomenon shown in Fig. 1. Collision can only be realized for initial DW
frequency offsets in a small interval (shaded gray) around the reference frequency of matching
group velocity. Initial frequencies of soliton and DW are indicated by bullets, frequency shifts are
indicated by arrows.

2 Model equations

An adiabatic description of interactions, like in Fig. 1, is derived from two XPM-coupled GNLSEs,
one centered at ωa for the soliton envelopeψ(z, τ), and one centered at ωb for the DW envelope
ψb(z, τ). The DW equation is simplified such that it can be solved as a problem of plane wave
scattering at a moving “solitonic” potential barrier. The soliton equation is reformulated so that
all higher-order terms in the GNLSE are treated as perturbations

i∂zψ + i [β′(ωa + ν)− β′(ωa)] ∂τψ

− β′′(ωa + ν)

2
∂2
τψ + n2a

ωa + ν

c
|ψ|2 ψ = R (ψ, ψb) . (1)

The most interesting point about this perturbation equation is that it explicitly takes into account
a varying soliton carrier frequency ωa + ν, where ν = ν(z), ν(0) = 0 is the yet unknown
detuning from the initial carrier frequency ωa. Especially the GVD β′′(ω) and the nonlinear term
on the left-hand side of (1) follow the soliton frequency shift. Therefore also the deviation from
the initial group delay β′(ωa) appears in the equation. All higher-order terms are contained in
the perturbation R (ψ, ψb)

R(ψ, ψb) = −
M∑
m=3

β(m)(ωa + ν)

m!
[i∂τ ]

m ψ − τ dν
dz
ψ

− 2n2a

c
[ωa + ν + i∂τ ]

[
|ψb|2 ψ

]
− n2a

c
i∂τ
[
|ψ|2 ψ

]
− fRn2a

c
[ωa + ν + i∂τ ] [I(ψ)ψ] , (2)

I(ψ) =

∫ τ

−∞
h(τ − τ ′) |ψ(z, τ ′)|2 dτ ′ − |ψ(z, τ)|2 .

3



The terms with derivatives of the wave vector β(ω) account for higher-order dispersion, the first
term in the second line describes XPM, the second is the self-steepening term. The perturbation
term containing dν/dz results from the necessary reformulations [16] of the standard soliton
perturbation equation (as found for example in [17]) in order to include ν in the GVD. The term
in the third line describes Raman scattering. The included Raman response function for fused
silica reads

h(τ) =
ν2

1 + ν2
2

ν1

e−ν2τ sin ν1τ, (3)

and we used parameters fR = 0.18, 1/ν1 = 12.2 fs, and 1/ν2 = 32 fs [18].

The fundamental soliton solution of the unperturbed (1) reads in a general formulation

ψ =
1

σ

√
|β(2)(ωa + ν)|c

[ωa + ν]na

eΘ

cosh 1
σ
[τ − T ]

, (4)

with frequency offset ν = ν(z) from the initial carrier frequency ωa, duration σ = σ(z), tem-
poral delay T = T (z), and a phase Θ = Θ(z). It is assumed that all soliton parameters are
z-dependent and slowly evolve under the influence of the DW. The soliton perturbation theory
provides ODEs for these parameters after |ψb|2 is specified. The initial parameter values are
denoted by σ(0) = σa, etc.

The DW equation was derived by a series of simplifications applied to a full GNLSE. It was lin-
earized with respect to the DW envelopeψb, also higher-order effects (dispersion, self-steepening,
and Raman scattering) have no strong influences on a plane DW, and are neglected accordingly.
The resulting equation reads

i∂zψb −
β′′(ωb)

2
∂2
τψb + n2b

2ωb
c
|ψ|2ψb = 0. (5)

It is mathematically equivalent to the quantum mechanical Schrödinger equation for a scattering
problem: a plane wave with the power Pb is reflected at a moving barrier with a hyperbolic secant
shape. It can be solved analytically [19]:

|ψb|2 = PbT

∣∣∣∣∣F
(
a, b, c,

1− tanh τ−T
σ

2

)∣∣∣∣∣
2

, (6)

where F is a Gaussian hypergeometric function, the quantity

T =
sinh2(πΩ̄σ)

cosh2(πs) + sinh2(πΩ̄σ)
,

is the transmission coefficient of the scattering problem, both using parameters

a, b =
1

2
− iΩ̄σ ± is, c =

1

2
− iΩ̄σ, Ω̄ = Ω− B

β′′(ωb)
,

B = β′(ωa + ν)− β′(ωa)−
β′′(ωa + ν)

[ωa + ν]σ2
+
β′′′(ωa + ν)

6σ2
+ · · · ,

s =
1

2

√
16
|β′′(ωa + ν)|

β′′b

ωb
ωa + ν

n2b

n2a

− 1.
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Now, |ψb|2 from (6) is inserted into (2) and then (1) is used to derive ODEs for the soliton
parameters σ(z), ν(z), and T (z). The phase Θ(z) can safely be ignored. The soliton duration
σ(z) happens to be explicitly expressed in terms of ν(z)

σ(ν) =
β′′(ωa + ν)

β′′(ωa)

σa[
1 + ν

ωa

]2 . (7)

The ODE for the soliton frequency offset reads

dν

dz
= −πfR

4
σβ′′(ωa + ν)R1(ν) (8)

+
4µT

σLa

[
1 +

ν

ωa

] ∫ 1

0

dζ |F (a, b, c, ζ)|2 [2ζ − 1] ,

and for the soliton delay we get

dT
dz

= B − 3πfR
8

σβ(2)(ωa + ν)

ωa + ν
R2(ν) (9)

+
4µT

ωaLa

∫ 1

0

dζ |F (a, b, c, ζ)|2 [1− [2ζ − 1] arctanh (2ζ − 1)] ,

with

R1(ν) =

∫ ∞
−∞

dω iω3 ĥ(ω)− 1

sinh2 π
2
σ(ν)ω

,

R2(ν) =

∫ ∞
−∞

dω ω2 ĥ(ω)− 1 + 1
3
ω∂ωĥ(ω)

sinh2 π
2
σ(ν)ω

.

Here, ĥ(ω) is the Fourier transform of Raman response function from (3) with h(τ < 0) ≡
0. Note that only the real parts of both integrands contribute to R1,2(ν). The dimensionless
parameter µ is the input DW power Pb divided by the initial peak power of the soliton Pa

µ =
Pb
Pa

with n2aPa =
|β(2)(ωa)|c
ωaσ2

a

=
c

ωaLa
,

where La = σ2
a/|β′′(ωa)| is the dispersion length of the initial soliton. An adiabatic (slow)

evolution of the soliton parameters requires µ� 1.

Equations (7–9) provide self-consistent quantitative description of optical solitons controlled by
collisions with DWs. They might look complicated, but are more easily accessible than the orig-
inal full GNLSE. One can, e.g., easily quantify a DW that succeeds in cancellation of the SSFS,
and the stability of the cancelation can be investigated, as we will see in the next section.

3 Controlled SSFS cancellation

To begin with, we switch off the DW and consider a single soliton (ωa = 0.67 PHz, σa = 40 fs)
traveling along an optical fiber subject to Raman scattering, higher-order dispersion (Fig. 2), and
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Figure 3: Space-time (a) and spectral (c) representation of a single soliton propagating along the
fiber under influence of Raman effect from numerical simulation using full GNLSE. Additional
dashed lines result from the adiabatic equations (7–9). (b) Soliton’s peak power from the GNLSE
(red) and from the adiabatic equations (dashed). See Sec. 3 for parameters.

self-steepening. We compare numerical solution of the full GNLSE (Fig. 3) to the predictions of
the adiabatic equations (7–9) (dashed lines in Fig. 3). Note especially that the evolution of soliton
power is accurately described, in contrast to predictions by standard soliton perturbation theory
which state that the soliton amplitude is not affected by the Raman effect [1, 17].

Now we return to the scattering of the DW, as shown in Fig. 1(a) for the full GNLSE solution.
Despite of the complex interaction character and approximations made when deriving (5), solu-
tions of the above adiabatic equations (dashed lines in Fig. 1) provide reasonable quantitative
estimates of the soliton trajectory and power, and an impressivly accurate prediction for the
soliton carrier frequency. We can now derive initial parameter ranges such that a stable SSFS
compensation arises.

For this we inspect the ODE (8) for soliton frequency shift, which is self-consistent due to (7).
Its first summand describes the influence of Raman scattering, the second describes the influ-
ence of the imposed DW. We consider an exemplary initial soliton with ωa = 0.67 PHz and
σa = 40 fs and look for pairs of DW frequency offset Ω and normalized intensity µ, such that
soliton frequency evolves stable with ν(z) = ν(0) = 0 for all z. Fig. 4(a) shows DW parame-
ters (Ω, µ) such that ν(z) ≡ 0 is a stationary solution of (8), i.e., (dν/dz)ν=0 vanishes. The
SSFS cancellation might be expected for 0.1 ≤ Ω/(PHz) ≤ 0.3, otherwise the required DW
power quickly increases with µ and soliton evolution is no longer adiabatic. Furthermore, we
can identify a parameter range for which the compensation is asymptotically stable. To this end
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√
µ for which solitons frequency does not

change. Amplitude is plotted instead of power to facilitate readability. (b) Stability analysis. The
region of stable SSFS compensation is shaded gray.

the derivative with respect to ν of the right-hand side of (8) should be negative for ν = 0. The
relevant quantity

κ = ∂ν

(
dν

dz

)∣∣∣∣
ν=0

is shown in Fig. 4(b). For κ > 0 the SSFS reappears if fiber length exceeds 1/κ. Within
the small region of asymptotically stable (κ < 0) compensation, we must choose an initial
parameter pair (Ω, µ) such that the relative DW power µ� 1, in order for the adiabatic theory
to be a good approximation. As threshold we generously choose µ < 0.0225. The according
parameter region is shaded gray in Fig. 4.

Fig. 5 shows the results of a simulation with parameters produced by the above procedure
(Ω = 0.286 PHz, µ = 0.0081). The transient phase is very short. The soliton stabilizes at about
0.666 PHz (cf. with the initial ωa = 0.67 PHz). Fig. 5 (b) depicts soliton power evolution. We see
that the soliton lost only 4% of its peak power after propagating a distance of 40 cm. Traveling
alone, the soliton lost about 30% of its peak power due to the effects of Raman scattering, see
Fig. 3(b).

In conclusion, we explained how the SSFS can be cancelled in an asymptotically stable manner
by XPM interaction with a properly prepared small-amplitude wave, and provided a simple way
to calculate the required wave parameters. U.B. and Sh.A. acknowledge support of Einstein
Foundation Berlin and Research Center MATHEON under Project D-OT2.
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