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Chirality selection in the vortex state of magnetic nanodisks with a screw

dislocation
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Abstract. Structural defects in magnetic crystalline materials may locally change magnetic properties and can
significantly influence the behavior of magnetic nanostructures. E.g., surface-induced Dzyaloshinskii-Moriya in-
teractions can strongly affect vortex structures in magnetic nanodisks causing a chirality selection. Near lattice
defects, the spin-orbit interactions induce local antisymmetric Dzyaloshinskii-Moriya exchange and cause effec-
tive anisotropies, which can result in spin canting. Broken inversion symmetry near a defect leads to locally chiral
exchange. We present a phenomenological approach for dislocation-induced Dzyaloshinskii-Moriya couplings.
As an example we investigate effects of a screw dislocation at the center of a magnetic nanodisk with a vortex
state. By numerical calculations on vortex profiles we analyze equilibrium parameters of the vortex as functions
of applied magnetic field and the material and geometrical parameters. It is proposed that magnetic nanodisks
with defects provide a suitable experimental setting to study induced chirality by spin-orbit effects.

1 Introduction

Defects break the local symmetry of the crystal structure
and induce inhomogeneous magnetic couplings. Thus de-
fects can act as a source of additional local interactions.
Depending on remaining symmetries, the induced mag-
netic couplings may consist of (i) local anisotropies and (ii)
chiral magnetic Dzyaloshinskii-Moriya (DM) couplings
that can favour non-collinear magnetization structures [1]
similar to the chiral modulated states in magnetic crystals
from noncentrosymmetric crystal classes [2]. Because of
the variety of different types and arrangements of defects
and their interactions with one another and with magnetic
textures, the effects of defects on magnetic behavior then
are very complex [3] [4]. While planar defects have been
frequently studied, the experimental investigations of indi-
vidual line or point defects were hindered for a long time
by spatial resolution limitations. Nowadays experimental
technologies may enable investigation of magnetic struc-
tures near such defects with nanometer resolution.

Experimental observations show that in magnetic films
dislocations result in the formation of noncollinear spin
structures near dislocation cores: domain walls [5], vortex-
like and lobe-shaped magnetic structures [6] that can be
referred to chiral couplings induced by elastic torsion.

We develop a micromagnetic model for dislocation-
induced DM couplings. As an application, vortex states in
thin magnetic film elements are studied under influence of
a screw dislocation in their center. This model is relevant
for the general problem of chirality selection in magnetic
nanostructures [7], [8]. Weak chiral DM couplings reveal
themselves only by subtle differences in the magnetiza-
tion distribution and energetics of non-collinear magnetic
states. In magnetic nanodisks the competition between de-
magnetization energy and exchange couplings causes the
formation of vortex states [9], [10]. Such vortices consist
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of a narrow core with perpendicular magnetization sur-
rounded by an extended area with in-plane magnetization
curling around the center (Fig. 1 a) [11], [12]. It has been
proposed to use both the up and down polarities, i.e., the
perpendicular magnetization of the vortex, or the rotation
sense of the curling in-plane magnetization as switchable
bit elements in memory devices [13], [14]. In previous work
[15,16], we have shown that the homogeneous surface-
induced DM interactions lift the degeneracy between the
four possible vortex states and leads to a chirality selection
between the states connected by a global parity change,
owing to the broken inversion symmetry at surfaces. This
effect will be strongest in ultrathin and clean single-crysta-
lline film elements.

However, a similar chirality selection could be observed
also in thicker film elements or even in bulk single crys-
tals under influence of screw dislocation lines. One growth
mode of epitaxial films relies on screw dislocations and,
alongside the surface-induced symmetry breaking, these
defects can change magnetic behavior of such films. In
principle, the theoretically anticipated effects could be in-
vestigated in experiments on patterned epitaxial film ele-
ments.

2 Equations and methods

The energy density of a ferromagnet with chiral interac-
tions can be written in the following form:

w=A@m;)* ~M-H-M-H,/2+w, +wp, (1)

where 0; = 0/0x;; m is the unit vector along the magneti-
zation M = M;m and M; is the saturation magnetization.
The exchange couplings are given by the stiffness A. H is
the applied magnetic field, and H,, is a self-magnetostatic
field. Terms w, and wp represent the anisotropy energy and
DM interactions energy correspondingly.
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Fig. 1. (a) Vortex state in a circular magnetic nanodisk with ax-
isymmetric magnetization structure. (b) Schematic presentation
of a screw dislocation

The anisotropy energy term for the uniaxial ferromag-
netis w, = K,(m-a)? ,where a is an anisotropy axis and K,
is the anisotropy constant which must be positive in easy-
plane materials. Within the framework of linear elastic-
ity, considering only lowest-order terms for magnetoelastic
(me) interaction, in case of elastic torsions the anisotropy
energy density consists of additional term

Wie = Ciju€ijen/2 + Bijue jmmy, 2

where C;j; are elastic modules, B;j; are magnetoelastic
coupling constants, ¢;; are elastic strains. Strain energy terms
caused by magnetization distribution m and magnetic forces
can be neglected for most of the magnetostrictive mate-
rials [17]. The strains caused by a dislocation exist inde-
pendently of the magnetic subsystem and external to it.
They are inhomogeneous and lead, particularly, to the lo-
cal changes in magnetic anisotropy. Outside the core of the
defect (the diameter of the dislocation core is about few lat-
tice constants) the strains can be defined in terms of linear
elasticity, so the contributions of strains to the total energy
density are given by the magnetoelastic energy [17]. In a
strained materials this yields an additional contribution for
the magnetic anisotropy:

Wie = Bijkleijmkml~ 3)

It may be concluded that defect-initiated strains induce the
magnetic anisotropy of the second order of magnetization.
In case of a single screw dislocation the only non-zero
components of the strain tensor ¢;; for an isotropic medium
is €, = b/(4mp) (in presentation of cylindrical coordinates,
b is the amplitude of Burgers vector) [18]. Thus, for a uni-
axial ferromagnet with anisotropy axis along the disloca-
tion line, defect-induced anisotropy takes the form

m2

Dy = K,?Z “)

where K; = B,..b/4n. From (4) it results that the inho-
mogeneity region near the dislocation may reach several
hundred lattice constants and may exceed the domain wall
thickness in the defect-free crystal. Such a drastic change
in the local anisotropy may obviously modify the magne-
tization distribution near a defect.

Broken inversion symmetry can cause local chiral DM
interactions, as is the case at surfaces or interfaces of mag-
netic layers [7], [8]. These antisymmetric DM exchange
couplings arise due to spin-orbit effects on the electronic
structure due to inversion-asymmetric crystal fields. Within
the micromagnetic approach, the DM energy wp induced
by the surfaces is described by so-called Lifshitz invari-
ants [2]. In a ferromagnetic system the Lifshitz invariants

are antisymmetric forms linear in first spatial derivatives of
the magnetization:

Ll(.f) = m;0pm;j — m;Oxmy, o)

where i, j, k are certain combination of Cartesian coordi-
nates x,y,z. Here, we use an energy density combining
Lifshitz invariants (5) for the two in-plane spatial direc-
tions,

wp = D, (LY - LY) | 6)

which describes the chiral DM exchange that is allowed
in symmetries from Laue classes 32, 42, and 62. This wp
term favours the curling mode of the magnetization, where
the favoured rotation sense is determined by the sign of the
material dependent Dzyaloshinskii constant Dj.

The elastic torsion in the vicinity of a dislocation also
breaks inversion symmetry and induces DM couplings. The
simplest phenomenological expression for this interaction
between torsions and magnetism is given by [19]:

Ep = Z g(Ry2) [SR1 X SRZ] . (rot uR —rot “Rz) (7
R/ R,

where upR is the displacement of the atom at a lattice point
R from its equilibrium position and the energy g(R;,) de-
termines the strength of the interaction. The induced mag-
netoelastic coupling vanishes at large distances from the
defect core. The defect-induced DM interactions then can
be written in a continuum representation for magnetization
M and elastic displacement u as

wp=DMXDM) - rot Du, (8)

with D = J/0x + d/0y + 0/0z and D a Dzyaloshinskii
constant for the torsional magnetoelastic couplings.

In case of straight screw dislocation there is only one
non-zero displacement u, = b/2x - ¢ with axis z along the
dislocation line [18]. Then Eq. (8) takes the form:

Db 1
wp= -2 ;[ (—cos 2¢ — sin2¢) (M, DM, - M.DM,)

+ (—cos 2¢ + sin2¢) (M, DM, — M, DM,) ] , 9

where p = \/x% + 2.

The equilibrium configurations of m are derived by
minimization of the energy (1) together with the equations
of magnetostatics. To describe the vortex states in the cir-
cular disk of radius R; and with zero or perpendicular ap-
plied field, we consider axisymmetric distributions of the
magnetization and express the magnetization vector m in
terms of spherical coordinates and the spatial variables in
cylindrical coordinates: m = (sin 8 cos i; sin 8 sin {; cos 6),
r = (pcos ¢; p sin g; 7).

Due to the non-local character of stray-field interac-
tions the micromagnetic problem Eq. (1) constitutes a set
of integro-differential equations [10]. In order to simplify
this problem we consider the limit of a thin film where the
magnetodipole energy has a local character and reduces
to a “shape” anisotropy K,, = 2xM?>. This can be added
to the uniaxial anisotropy K, yielding a redefinition of the
anisotropy energy in Eq. (1) by an effective anisotropy con-
stant K = K, + 2rM? > 0. We also introduce the charac-
teristic (exchange) length /, = VA/K, the anisotropy field
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H, = 2K/Mj, and a critical value of the Dzyaloshinskii
constant Dy = VAK as proper material parameters of the
problem. The field H, determines the equilibrium magne-
tization of homogeneously magnetized defect-free layers
in an applied perpendicular field H, cos8, = H/H,. For
|D|/Dy > 4/ = 1.273 the magnetization of a layer trans-
forms into a modulated state [2,20]. The exchange length
I, gives a characteristic radius of the vortex core. Most ex-
perimentally investigated nanodisks have radii much larger
than the exchange length, R; > [,. In this case vortices
consist of a strongly localized core encircled by a wide
ring with a constant polar angle 6 = 6, (Fig. 1 a).

The variational problem for functional (1) has the ro-
tationally symmetric solution ¢ = ¢ + /2, 8 = 6(p). By
substituting the solutions for ¢ into Eq. (1) and integrating
with respect to ¢ the vortex energy can be reduced to the

following form E = 2 fORd w'D(p)pdp with

+ K cos? 6 — HM;cos 6

2 .2
WD) = A (ﬁ) L sin 6

dp p?
_Ds(ﬁ . cos@sin@)
dp P

D42 (d9  sinfcosb\ Kl
e (——sm o’ )+—d cos? 6, (10)
p> \dp P P

where the dislocation coincides with the disk center and
the magnetic field H is assumed to be perpendicular to the
disk plane. For the dislocation-induced couplings, we in-
troduce corresponding coefficients D; = DM§ /1, for the
chiral interactions and K; = K;/I, for the magnetic aniso-
tropy.

The variational problem for functional (10) reduces to
an Euler equation for 6(p):

¢ 146 1 . ) sin@
—2+————sm900s9 + Ksinfcosd — HM,——
dp*  pdp p? 2
D 2Kyl 2

—Zsin?0 - 229 Ginfcos 6 — d; c0s26=0. (11)
P P P

With the boundary conditions

6(6) =0, (db/dp),_g, = 9(6,Ra) (12)
the solutions of Eq. (11) yield the equilibrium vortex pro-
files. Here, ¢ is a dislocation core size where the linear
elasticity theory is not applicable and where the magneto-
elastic couplings must be considered separately. The size
of this core region is of the order of the Burgers vector
modulus b. Reasonable values for ¢ are in the range b to
4b, i.e. 6 < 1 nm in most cases. In this area induced lo-
cal magnetic anisotropy likely predominates other interac-
tions and we assume a homogeneously magnetized solu-
tion 6(p < 6) = 0. In the limit of p — R, with R; > [, the
energy of the vortex in a nanodisk with a dislocation w'®
(10) converges towards the value of energy for vortices in
a defect-free nanodisk [15], [16]. Correspondingly, for the
finite disk, free boundary conditions g(6, R;) = 0 can be
used. The procedure for deriving the solutions of boundary
problem (11) and (12) is the same as for dislocation-free
nanodisks described in Refs. [15], [16].
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Fig. 2. Typical dependence of solutions 6(p) on dislocation-
induced DM interactions in zero applied field in absence of in-
trinsic and surface-induced DM couplings with K;/Ky = 0.1. The
vortices slightly widen with D, < 0 and shrink for D, > 0. Inset
magnifies the region marked by a box.
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Fig. 3. Typical dependence of solutions 8(p) on dislocation-
induced easy axis anisotropy in zero applied field without in-
trinsic and surface-induced DM couplings with D,/Dy = —0.5.
The corresponding values of K;/K (from top to bottom): 0, 0.8,
1.6, 2.0. Anisotropy extends the region with near-perpendicular
magnetization. Inset shows the magnetization profiles m.(p) for
different values of D, in zero applied field in absence of intrinsic
and surface-induced DM couplings with K;/K, = 0.1. Positive
D, decreases the central spot with positive m, and widens the
ring with negative.

3 Vortex solutions and Magnetization
profiles

Here, representative results on the effect of a dislocation on
the vortex structure in a magnetic nanodisk are reported for
systems with fixed disk radius R; = 30/, and a dislocation
core size ¢ = I,. These solutions well represent the vortex-
core properties for any R; > [,. As shown previously,
homogeneous surface-induced DM couplings favour vor-
tices with the same chirality [15], [16] extending their core
sizes for positive D,. For negative Dy, the vortex structure
changes its character: the vortex core consists of a narrower
internal and an adjacent ring with a reverse magnetization
rotation. The effects of the inhomogeneous dislocation-

induced DM couplings are similar, Fig. 2. In case of neg-
ative D, the angles 6(p) vary monotonically from zero at
the dislocation core to 6. In this case the local chirality of
magnetization is everywhere favoured by the induced DM
interactions and the core size widens with increasing |D,|.
When D, becomes positive the magnetization in the core
has unfavourable chirality and after a maximal value 6 the
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Fig. 4. Energy difference for vortices with opposite chirality as
a function of dislocation-induced DM interactions for different
values of induced anisotropy (Ey = DyA/K). Inset present critical
value of unfavourable D, that destroys the static vortex states.

slope 6, becomes negative, and the magnetization struc-
ture changes its local chirality. After that the polar angle
6(p) monotonically approaches the limiting value 8j,.

Induced uniaxial anisotropy predictably also widens the
vortex core and extends the region with perpendicular mag-
netization (Fig. 3), thereby increasing total magnetization
of the disk. Strong enough induced anisotropy destroys the
vortex structure and the homogeneously magnetized state
with perpendicular magnetization occurs.

The character of the vortex profiles for different signs
of D, are reflected in their magnetization distribution (Fig. 3
Inset). Negative D, increases the width of the central spot
with m, > 0. As a result the total perpendicular magneti-
zation of the disk <m,> is larger in vortices of the right
positive chirality. Positive D, squeezes the central magne-
tization core with m, > 0 and widens the adjacent ring with
negative perpendicular magnetization (m, < 0).

In Fig. 4 the energy difference 4E = E, — E, between
vortices with different chirality is shown for the models
combining dislocation-induced DM couplings and uniaxial
anisotropy. The results show that the dislocation-induced
DM couplings violate chiral symmetry and select vortices
with one sign of the global chirality as energetic ground-
state, as in the case of surface-induced chirality selection.
If the dislocation-induced DM interactions become very
strong, they also restrict the existence range of the vortex
state: for some critical value of negative D,, the chiral en-
ergy contributions outweighs others energies and stabilizes
twisted magnetization structures (e.g. vortices with oscil-
lations on the outskirt). These states are not solutions of
the geometrically restricted variational problem with free
boundary conditions (11)-(12). The dependence of the crit-
ical induced DM-couplings on induced anisotropy and ap-
plied fields are depicted in Fig. 4. Because the induced
anisotropy also destroys the vortex states, the magnitude
of D, is reduced with increasing K; (Inset Fig. 4).

4 Conclusions

We have introduced a continuum description of chiral in-
homogeneous Dzyaloshinskii-Moriya interactions, that are
induced by torsional strains (Eq.(8)). This is a general for-
mulation that is applicable in micromagnetic models of fer-
romagnets with such symmetry-lowering effects. Possible

effects of these couplings will be particularly strong ow-
ing to the large strains near defects. This has been illus-
trated by a micromagnetic model for a disklike film ele-
ment with a screw dislocation at its center, where the effect
leads to a chirality selection on the vortex state. Similar ef-
fects related to the strong DM-couplings near dislocations
also could be responsible for the chirality selection on non-
collinear magnetization structures in distorted bulk crys-
tals, as observed for the handed helix domain populations
in Ho-single crystals under torsion [19].
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