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Supplementary Note 

The observed coarsening of the nanosphere dispersion near a shear band is analyzed as Ostwald 

ripening, with the intention that the kinetic analysis can yield a value for the effective solute 

diffusion coefficient D in the metallic-glass matrix.  The kinetics of Ostwald ripening in the case 

where the dispersed phase occupies a significant volume fraction has been treated by Marqusee 

and RossS3. In the limiting case of zero volume fraction of dispersed phase, the average particle 

radius r  of the dispersed phase increases with time t according to: 

3131

31

eqm

9

8
tD

RT

XV
r 













           (S1)                                

where   is the energy per unit area of the interface between the dispersed spheres and the matrix, 

mV  is the molar volume of the dispersed phase, 
eqX  is the mole fraction of solute that would be 

in equilibrium in the matrix at a planar interface with the dispersed phase, R is the gas constant 

and T is the temperature. Marqusee and Ross show that coarsening is accelerated for finite 

volume fractionsS3, but the effect is well within one order of magnitude and we ignore it in the 

present work. The parameters in Equation S1 are largely unknown for the metallic-glass systems 

in the present work, and are estimated as follows. 

Phase separation has been studied for the Cu-Fe systemS4, where   was taken to be 

2m J 16.0   for spheres in a liquid matrix and 2m J 43.0   for spheres in a solid matrix.  In the 

present case of a metallic glass, we take 2m J 3.0  .  From the range of values for similar 

compositionsS5, we take 136
m mol m 104.11 V .  As noted in the main text, Cu and Fe are 

the elements principally involved in the phase separation and Fe is concentrated in the 
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nanospheres. We take Fe to be the solute for the kinetic analysis and take its measured level in 

the matrix, ~13%, as an estimate of 
eqX . 

We assume that the coarsening of nanospheres takes place at room temperature (298 K) 

throughout the time of plastic deformation, which is 280 s for 7.0% strain at the imposed strain 

rate of of 14 s 105.2  . The profile in Figure 3b shows that nanospheres with an average 

diameter of 3.3 nm coarsen to an average of ~10 nm adjacent to the shear band.  Using the 

corresponding values of r  in Equation S1, we solve for D and obtain a value of ~

1218 s m 103  . 

To estimate the associated viscosity η, we use the Stokes-Einstein relationS6: 

aD

kT

π3
            (S2)                                

where a is an effective atomic diameter or jump distance, and k is Boltzmann’s constant.  From 

the Goldschmidt atomic radii for Cu and Fe, we take nm 256.0a . Then the estimated 

viscosity for the coarsening regime is ~ s Pa 106 5 . The Stokes-Einstein relation is valid for 

high temperature liquid melt, and there is evidence showing it is still applicable for the relatively 

low temperature glassy solidS7, S8. 

Increased mobility might arise from a local increase in temperature rise.  The Z2 sample 

was annealed at 573 K (i.e. at 86% of Tg) for 30 minutes; this did not result in any detectable 

coarsening of the nanospheres, but there may be some crystallization (Figure S5).  As noted in 

the main text, it is not considered likely in any case that there is any significant temperature 

increase. Rather, the increased mobility is interpreted as an effect of homogeneous plastic 
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deformation at room temperature.  It is known that such deformation of metallic glasses can have 

a significant rejuvenation effect, increasing free volume and mobility. 
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