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Abstract
Modulation instability, following the classical Lighthill criterion, appears if nonlinearity anddispersion
makeopposite contributions to thewave frequency, e.g. in the frameworkof theone-dimensionalnonlinear
Schrödinger equation (NLSE). Several studies of thewave instabilities inopticalfibers revealed fourwave
mixing instabilities that arenot coveredby theLighthill criterion and requireuseof the generalizedNLSE.
Wederive an extended criterion,which applies to all fourwave interactions, covers arbitrarydispersion, and
dependsneither on thepropagation equationnoron the slowly varying envelope approximation.

1. Introduction

Monochromatic waves are important special solutions of linear andweakly nonlinear dispersive systems. They
may be destroyed by the growing self-modulations, appearance of suchmodulation instability (MI) is covered by
the classical Lighthill criterion [1, 2].MI discovery (for history see [3]) is related to the discovery of the nonlinear
Schrödinger equation (NLSE) [4–10], which describes self-modulationsmaking use of the slowly varying
envelope approximation (SVEA).

Consider amodulatedwave y b w-( ) ( )z t, e z ti 0 0 in a one-dimensional setting, e.g. in an opticalfiber. Its
complex envelopeψ(z, t) is described by theNLSE

y b y
b

y g y y¶ + ¶ - ¶ + =( ) ∣ ∣ ( )i
2

0, 1z t t1
2 2 2

whichmaps y =∣z 0 to y >∣z 0. The dispersion coefficientsβj refer to the derivatives of the linear dispersion relation
k=β(ω) at the carrier wave frequency

b b w= = ¼( ) ( )( ) j j, 0, 1, , . 2j
j

0 max

β1 is the inverse group velocity,β2 and γ quantify the group velocity dispersion (GVD) and theKerr effect
respectively [11].

A seed pumpwave is given by y = gP e P z
0

i 0 , where P0 is proportional to the pumppower. The pump is
destroyed byMI if

b g < ( )0, 32

which is the Lighthill criterion for theNLSE(1).MImanifests itself in the appearance of Stokes and anti-Stokes
sidebandwavesfirst observed inwater channels [6]. The sidebandwaves grow at the expense of the pump,
generate a cascade, and are in turn destroyed bymodulations [12–15].

MI in opticalfibers wasfirst observed in [16]. Single-mode fibers [17], which are in the focus of this work,
offer important advantages for studies of nonlinear wave interactions. To derive theNLSE(1) forfibers, one
rigorously eliminates two radial space coordinates [11]. Linear losses are small in the fiber transparencywindow
such thatβ(ω) is actually real-valued.One can generatemillions of pulses per second and collect their statistics to
studyMI andMI induced supercontinuum [18], wave turbulence [19], and rare extreme events [20, 21].

Dispersion of opticalfibers, as opposed bywater waves, is easy tomanipulate [22].Microstructured fibers
may have several zero-dispersion frequencies (ZDFs) at whichβ″(ω)=0, whichmakes the criterion(3)
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degenerate. The spectral regionswithminimumchromatic dispersion are of interest for optical communication.
This triggered studies ofMI for small or zeroGVDby virtue of the generalizedNLSE (GNLSE)

åy
b

y g y y¶ + ¶ + =t
= !

( ) ∣ ∣ ( )
j

i i 0, 4z
j

j
j j

2

2
max

see equation (1), inwhichψ(z, t) is promoted toψ(z,τ)with t b= -t z1 . GNLSE(4) involves, e.g. 10 dispersion
parameters [18] and goes beyond the SVEA [23, 24].

Without loss of generality we consider a focusing γ>0fiber. Parameterβ3 affects neitherMI domain nor
increment [25, 26].MI at ZDF [27–29]whereβ2=0 occurs ifβ4<0. The competition of a small b ¹ 02 andβ4
may result in a new instability [30], the so-called fourwavemixing (FWM) instability. It was observed in
experiments [31–36] and further discussed in [37–41]. To summarize, a pumpmay be subject to

(i) classicalMI if (Lighthill)β2<0,

(ii) degenerateMI ifβ2=0 andβ4<0,

(iii) FWM instability ifβ20 andβ4<0.

The FWM instability is not covered by the classical criterion(3). Inwhat followswe formulate an extended
criterion. The new criterion avoids expansion ofβ(ω) and covers all three regimes.

2. Criterion

BothMI and FWM instability result from the resonant interaction of four waves. Two ‘input’ and two ‘output’
waves are involved in such interaction if [2, 42]

w w w w+ = + ( ), 51 2 3 4

b w b w b w b w+ = +( ) ( ) ( ) ( ) ( ). 61 2 3 4

We setω1,2=ω0 for the pump,ω3,4=ω0±Ω for the anti-Stokes and Stokes daughter waves, and introduce
[11] thewave vectormismatch versus offsetΩ


b w b w b w

W =
+ W - + - W( ) ( ) ( ) ( ) ( )2

2
. 70 0 0

The SVEAΩ=ω0 is not imposed. Equations (5)–(6) reduce to the phasematching condition

 W =( ) ( )0, 8

which is independent on SVEA andNLSE. The phasematching conditionwas used to studyMI at ZDF [27, 28]
and FWM instability [36–38].

Equation (8) is insufficient for the instability, e.g. the solutionΩ=0may, but does not have to, yieldMI.
The classicalMI condition(i) implies a localmaximumof W( ) atΩ=0. Themismatch is then locally
negative. This is a key addition to equation (8), unstable sidebands result from small negativemismatches. The
extended Lighthill criterion (ELC), which is themain result of this work, claims:

ELC The pump is unstable if for some frequency offsetΩs both themismatch vanishes, W =( ) 0s , and
 W <( ) 0 for an interval of frequencies close toΩs.

The classicalMI occurs ifΩs=0, the FWM instability occurs if W ¹ 0s . The ELC requires neitherΩs=ω0 nor
the polynomial expansion ofβ(ω). It is consistent with all results reported in [27–40].

For instance, themismatch shown in figure 1(a) should not lead toMI, yet considering larger offsets
(figure 1(b))we see that the pump is unstable. Themismatch infigure 1(c) leads to the classicalMI, yet
considering larger offsets (figure 1(d))we see that two additional unstable bands appear. If both instabilities are
present,MI dominates over the FWM instability. The latter can however appear withoutMI. Recall, that we
consider a focusingfiber, for a defocusing one equation (8) should be combinedwith the locally positive
mismatch.

3.Derivation

In this sectionwe derive the ELC. To enjoy direct access to thewave vectormismatch, we use theGNLSE(4) in
the expansion-independent form

2
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y y g y y¶ + + =ˆ ∣ ∣ ( )i 0, 9z
2

where the dispersion operator ̂ is defined in the frequency domain via  = Wt t- W - Wˆ ( )e ei i with

 b w b bW = + W - - W( ) ( ) .0 0 1

Linear losses are neglected,β(ω) is then real. If the SVEA applies,  W( ) is approximated by a truncated
polynomial but this is not obligatory. Non-polynomial approximations were discussed in [43–46].

The pump solution of equation (9)will be used in the form

y g= = ( )P k Pe , , 10k z
0

i
nl 0

nl

where knl is a nonlinear correction to the pumpwave vector. A perturbation, being imposed by two sideband
waveswith the frequenciesω0±Ω, reads

*y t = + +t t- W W( ) [ ( ) ( ) ] ( )z P u z v z, e e e , 11k z
0

i i i nl

behavior of u(z) and v(z) for  ¥z is of interest.With both u(z) and v(z) proportional to ke zi , a standard
calculation leads to the characteristic equation

  k - W = W W +[ ( )] ( )[ ( ) ] ( )k2 , 122
nl

the pump is unstable if a realΩ yields a complexκ. Herewe split  W( ) into even and odd components [47]


 


 

W =
W + -W

W =
W - -W( ) ( ) ( ) ( ) ( ) ( )

2
,

2
.

The key observation is that the even component is identical to themismatch(7).
A typicalmismatch ismuch larger than knl. A genericΩ in equation (12) provides then k Î . Frequency

bands of the unstable perturbations are linked to the resonant offsetsΩswith W =( ) 0s . The sidebands are
determined by the inequality

- < W <( ) ( )k2 0. 13nl

They appear if themismatch approaches zero from the negative side, which explains the ELC. This is illustrated
infigure 2 for an exemplary Sellmeier dispersion law.

4.GNLSEwith nonlinear dispersion

TheGNLSE(9) utilizes a complicated operator ̂ to account for the linear dispersion, but uses one dispersion-
free nonlinearity for all involvedmodulations.What happens, if nonlinearity depends on frequency?Note, that
the sideband frequenciesmay considerably differ fromω0 for the FWM instability. Thereforewe generalize
equation (9) to the form

*  y y g y y y y y y¶ + + + + =ˆ [ (∣ ∣ ) ∣ ∣ ˆ ˆ ] ( )fi 0, 14z
2 2 2

Figure 1.Different shapes of W( ) and frequency bands of the unstable offsets (red). (a), (c)Classical applications of the Lighthill
criterion. (b), (d)NewunstableΩ-bands appear for amore involvedmismatch function.

3
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where the linear operators ̂ and ̂ quantify dispersion of the dominant nonlinearity. Higher-order nonlinear
effects are included in y(∣ ∣ )f 2 , their dispersion is neglected. The leading order approximation of y(∣ ∣ )f 2 is y∣ ∣2.

The application-dependent operators ̂ and ̂, being similar to ̂, will be represented by W( ) and  W( )
in the frequency domain. ̂ and ̂ can, but do not have to, be approximated by differential operators. It is safe to
set = =( ) ( )0 0 0. In the SVEA limit we have » ¢ ¶tˆ ( )i 0 and  » ¢ ¶tˆ ( )i 0 .

The pump solution to equation (14), see equation (10), is

y g= = ( ) ( )P k f Pe , , 15k z
0

i
nl 0

nl

itsmodulation is given by equation (11)with the new knl. TheGNLSE(14) ignores terms like *y y¶t( )2 or
y y¶t∣ ∣2 , as they appear in, e.g. the Lakshmanan–Porsezian–Daniel equation [48]. Such terms are quadratic in

u(z) and v(z), they have no effect on pumpmodulations.
Equation (14) comprises the following special cases.
(A)The self-steepening [11] is reproduced by

 



y y w w

y y g w y y

= W = W W = W

¶ + + + ¶ =t
-

(∣ ∣ ) ∣ ∣ ( ) ( )
ˆ ( )∣ ∣

f , 2 , ,

i 1 i 0.z

2 2
0 0

0
1 2

In a similar way one can obtain the derivativeNLSE [49].
(B) For theHirota equation [50] one should use

 y y= W = W W =(∣ ∣ ) ∣ ∣ ( ) ( )f T, , 0,H
2 2

and set b b=TH 3 2 with b = 0j 4 to derive

åy
b

y g y y
b
b

y¶ + ¶ + + ¶ =t t
=

⎛
⎝⎜

⎞
⎠⎟!

( ) ∣ ∣
j

i i i 0.z
j

j j

2,3

2 3

2

One can also obtain a Sasa–Satsuma equation [51].
(C) Saturation of y(∣ ∣ )f 2 was considered in [52]. Quadratic W( ) and  W( )were discussed in [53, 54].

Complex-valued  W( ),  W( ) yield non-Hermitian ̂, ̂, an evidence of the nonlinear losses (or gain).
(D)The interpulse Raman scattering [11] results in nonlinear losses, it is approximated by

 



y y

y y g y y y

= W = W = W

¶ + + - ¶ =t

(∣ ∣ ) ∣ ∣ ( ) ( )
ˆ (∣ ∣ ∣ ∣ )

f T

T

, i ,

i 0.

R

z R

2 2

2 2

The value ofTR depends onmaterial.
(E)To give amore involved example, consider GNLSE that fully accounts for the Raman scattering [47]

 òy y g y y y¶ + + + =
¥⎡

⎣⎢
⎤
⎦⎥ˆ ∣ ∣ ( )∣ ∣f f h s si d 0,z K R s

2

0

2

whereψ=ψ(z, τ) andψs=ψ(z, τ− s). Here fK and fR rankKerr andRaman contributions, fK+fR=1, and

ò =
¥

( )h s sd 1
0

. An equivalent representation is

 y y g y y y¶ + + + =ˆ [∣ ∣ ˆ ∣ ∣ ]i 0,z
2 2

Figure 2.Mismatch is plotted versus offsetΩ to obtain unstableΩ-bands (red) from equation (13) for bulk silica dispersion,
g = - -50 W km1 1, and =P 40 W0 . (a)Pumpwavelengthλ=1.4 μmyieldsβ2<0 and two classicalMI bands. (b)λ=1.265 μm
yieldsβ2>0 and two FWMbands.
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with

*   ò t tW = - = W = -Wt
¥

W⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) ( ) ( )f h e d 1 , 0 0, .R

0

i

We then deal with a non-polynomial complex-valued W( ). The SVEA limit of ̂ is- ¶tTR , in general

* *  y y y y y= + +ˆ ∣ ∣ ˆ ˆ h.o.t .,2

where, as explained after equation (15), the higher-order terms have no influence on the small pump
modulations. One can then set  = =ˆ ˆ ˆ and employ theGNLSE(14).

5.MI for nonlinear dispersion

To summarize the previous section, equation (14) coversmany if not all relevantmodifications of equation (9).
To address stability of the pump(15), we now insert themodulated pump(11) into equation (14), ignore all
terms that are quadratic in u(z) and v(z), and obtain

* *
d

d
¶ + D W W

-W - ¶ + D -W
=

⎡
⎣⎢

⎤
⎦⎥

⎡⎣ ⎤⎦( ) ( )
( ) ( )

( )u
v

i

i
0, 16z

z

with

  g d gD W = ¢ + W + W W = ¢ + W( ) [ ( )] ( ) ( ) [ ( )]P f P f, ,0 0 0 0

where ¢ = ¢( )f f P
0 0 . Finally we insert µ ku v, e zi into equation (16) and derive the characteristic equation forκ

    

  

k g g

g

- - = + ¢ +

+ ¢ + - ¢ + +

( ) [ ( )]

[( ) ( ) ] ( )

P P f

P f f

2

, 17

a s

s s a

0
2

0 0

2
0
2

0
2

0
2 2

wherewe introduced a symmetric W( )s and asymmetric  W( )a components of W( ), namely

* *
 

 W =
W  -W

-W =  W( ) ( ) ( ) ( ) ( )
2

, ,s a s a s a, , ,

and the same for  W( ).
Equation (17), extending equation (12), yields the unstable frequency bands for a given linear dispersion

 W( ), nonlinearity y(∣ ∣ )f 2 , pumppowerP0, and nonlinear dispersion  W( ),  W( ). Let us nowdiscuss how the
nonlinear dispersion affects the ELC.

For real-valued  W( ) and  W( ), the unstable bunds predicted by equation (17) are still located close to the
resonant frequencies at which W( ) vanishes. The bands are slightly squeezed and shifted, as compared to
those in figure 1, but never disappear completely. The ELC is perfectly applicable.

For complex-valued  W( ) and  W( ), the pump is formally unstable for all possiblemodulations. Consider,
e.g. theGNLSE in the example (E), where ¢ =f 1

0
and  W = W = W( ) ( ) ( ). Equation (17) yields [39, 40]

   k g- = + +( ) [ ( )] ( )P2 1 , 182
0

andκ(Ω)with k W <( )Im 0 is yielded by anyΩ if only  W ¹( )Im 0. This is known as Raman gain [47]. The
pump is destroyed because the nonlinear dissipation drains its energy, the new instability peaks appear where the
drain ismost efficient. These peaks, being still described by equation (17), are independent onwavemixing and
ELC. They impose over the ‘true’MI and FWMbands (figure 3) and vanish, if one ignores Im .

To summarize, ELC covers the instabilities that result fromnonlinear interactions of four waves, be it linear
or nonlinear dispersion.However, it does not cover the effect of the nonlinear gain or dissipation.

6.Discussion

MI is traditionally described by theNLSE, which depends on theGVDparameter. The classical Lighthill
criterion predictsMI for a negativeGVD in a focusingfiber. Fibers withminimumchromatic dispersion are not
covered: a pumpwavemay go unstable for a positiveGVD.Moreover, the growing daughter wavesmay be
separated from the pump in the frequency domain (figure 2), whichmakes use of theNLSE questionable.

It is well known that both the spectrally-wide wave packets and all FWM instabilities infibers are properly
described by theGNLE. A natural question is whether it is possible to generalize the classical Lighthill criterion.
We have found that it is convenient to promote theGVD to themismatch of the FWM

5
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b w
b w b w b w


+ W - + - W( ) ( ) ( ) ( )2

2
,0

0 0 0

where themodulation frequencyΩmay, but does not have to, bemuch smaller than the carrier frequencyω0.
Pump stability is linked to a simple geometric property of themismatch (ELC,figure 1), which generalizes the
classical Lighthill criterion.

Last but no least, ifΩω0, one has to address the nonlinear dispersion.We phenomenologically
introduced equation (14), and demonstrated that it properly accounts for the nonlinear dispersion in all cases
relevant for optical fibers, ranging from the integrable Schrödinger-type equations to dissipativemodels
accounting for the Raman scattering. The resulting characteristic equation (17) provides themost generalMI
description in one spatial dimension. For instance, equation (17) is symmetric under the replacement

*k kW -W -( ) ( ), , , which preserves kIm . Therefore Stokes and anti-Stokes waves always growwith the
same rate. The reported results, being primarily applicable to opticalfibers, are of interest formany other
nonlinear wave systems, e.g. for gravity waterwaves [55–57].
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