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Abstract

Modulation instability, following the classical Lighthill criterion, appears if nonlinearity and dispersion
make opposite contributions to the wave frequency, e.g. in the framework of the one-dimensional nonlinear
Schrodinger equation (NLSE). Several studies of the wave instabilities in optical fibers revealed four wave
mixing instabilities that are not covered by the Lighthill criterion and require use of the generalized NLSE.
We derive an extended criterion, which applies to all four wave interactions, covers arbitrary dispersion, and
depends neither on the propagation equation nor on the slowly varying envelope approximation.

1. Introduction

Monochromatic waves are important special solutions of linear and weakly nonlinear dispersive systems. They
may be destroyed by the growing self-modulations, appearance of such modulation instability (MI) is covered by
the classical Lighthill criterion [1, 2]. MI discovery (for history see [3]) is related to the discovery of the nonlinear
Schrédinger equation (NLSE) [4-10], which describes self-modulations making use of the slowly varying
envelope approximation (SVEA).

Consider a modulated wave 9 (z, t)e!(%?~%0") in a one-dimensional setting, e.g. in an optical fiber. Its
complex envelope 9/(z, t) is described by the NLSE

(0.4 + BiOW) — %aﬁw Al = 0, 1)

which maps 1[,—¢ to 9|, . The dispersion coefficients 3; refer to the derivatives of the linear dispersion relation
k = [(w) at the carrier wave frequency

/6] = 5(")(“}0)) ] == O) 1""’jmax' (2)

B is the inverse group velocity, 3, and y quantify the group velocity dispersion (GVD) and the Kerr effect
respectively [11].

A seed pump wave is given by ¢» = /P, e"""»?, where P, is proportional to the pump power. The pump is
destroyed by MI if

ﬂZ’Y < 0’ (3)

which is the Lighthill criterion for the NLSE (1). MI manifests itself in the appearance of Stokes and anti-Stokes
sideband waves first observed in water channels [6]. The sideband waves grow at the expense of the pump,
generate a cascade, and are in turn destroyed by modulations [12—15].

Ml in optical fibers was first observed in [16]. Single-mode fibers [17], which are in the focus of this work,
offer important advantages for studies of nonlinear wave interactions. To derive the NLSE (1) for fibers, one
rigorously eliminates two radial space coordinates [11]. Linear losses are small in the fiber transparency window
such that B(w) is actually real-valued. One can generate millions of pulses per second and collect their statistics to
study MI and MI induced supercontinuum [18], wave turbulence [19], and rare extreme events [20, 21].

Dispersion of optical fibers, as opposed by water waves, is easy to manipulate [22]. Microstructured fibers
may have several zero-dispersion frequencies (ZDFs) at which 3”(w) = 0, which makes the criterion (3)
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degenerate. The spectral regions with minimum chromatic dispersion are of interest for optical communication.
This triggered studies of MI for small or zero GVD by virtue of the generalized NLSE (GNLSE)

0.9 + 3 %(ia»fw +alvPy =0, @
=2 J

see equation (1), in which i(z, f) is promoted to ¢(z,7) with 7 = t — (3,z. GNLSE (4) involves, e.g. 10 dispersion
parameters [18] and goes beyond the SVEA [23, 24].

Without loss of generality we consider a focusing v > 0 fiber. Parameter (3; affects neither MI domain nor
increment [25, 26]. MI at ZDF [27-29] where 3, = 0 occursif 3, < 0. The competition of asmall 3, = 0 and /3,
may result in a new instability [30], the so-called four wave mixing (FWM) instability. It was observed in
experiments [31-36] and further discussed in [37—41]. To summarize, a pump may be subject to

(i) classical MIif (Lighthill) 3, < 0,
(i) degenerate MIif3, = 0and 38, < 0,
(iii) FWM instabilityif 3, 2 0and 5, < 0.

The FWM instability is not covered by the classical criterion (3). In what follows we formulate an extended
criterion. The new criterion avoids expansion of 3(w) and covers all three regimes.

2. Criterion

Both MI and FWM instability result from the resonant interaction of four waves. Two ‘input’ and two ‘output’
waves are involved in such interaction if [2, 42]

w1 + Wy = W3 + Wy, (5)
Bw) + B(w2) = B(ws3) + B(ws). (6)

Wessetw, , = wy for the pump, w; 4 = wy = §2 for the anti-Stokes and Stokes daughter waves, and introduce
[11] the wave vector mismatch M versus offset €2

Bwo + Q) — 28(wo) + Blwo — Q)'

M) = 5 (7)
The SVEA ) < wyis notimposed. Equations (5)—(6) reduce to the phase matching condition
M) =0, (®

which is independent on SVEA and NLSE. The phase matching condition was used to study MI at ZDF [27, 28]
and FWM instability [36—38].

Equation (8) is insufficient for the instability, e.g. the solution {2 = 0 may, but does not have to, yield MI.
The classical MI condition (i) implies alocal maximum of M (£2) at2 = 0. The mismatch is then locally
negative. This is a key addition to equation (8), unstable sidebands result from small negative mismatches. The
extended Lighthill criterion (ELC), which is the main result of this work, claims:

ELC The pump is unstable if for some frequency offset {2, both the mismatch vanishes, M(€)) = 0,and
M(2) < 0 for an interval of frequencies close to €.

The classical MI occurs if 2, = 0, the FWM instability occurs if 3y = 0. The ELC requires neither {2, < wy nor
the polynomial expansion of 3(w). It is consistent with all results reported in [27-40].

For instance, the mismatch shown in figure 1(a) should not lead to MI, yet considering larger offsets
(figure 1(b)) we see that the pump is unstable. The mismatch in figure 1(c) leads to the classical MI, yet
considering larger offsets (figure 1(d)) we see that two additional unstable bands appear. If both instabilities are
present, MI dominates over the FWM instability. The latter can however appear without MI. Recall, that we
consider a focusing fiber, for a defocusing one equation (8) should be combined with the locally positive
mismatch.

3. Derivation

In this section we derive the ELC. To enjoy direct access to the wave vector mismatch, we use the GNLSE (4) in
the expansion-independent form
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Figure 1. Different shapes of M () and frequency bands of the unstable offsets (red). (a), (c) Classical applications of the Lighthill
criterion. (b), (d) New unstable (2-bands appear for a more involved mismatch function.

i0:) + D + AylPy = 0, ©
where the dispersion operator D is defined in the frequency domain via De ¥ = D(Q)e " with
D() = Bwo + D) — Bo — Bif2

Linear losses are neglected, S(w) is then real. If the SVEA applies, D(2) is approximated by a truncated
polynomial but this is not obligatory. Non-polynomial approximations were discussed in [43—46].
The pump solution of equation (9) will be used in the form

w = PO eiknlz> knl - ’YPO) (10)

where k; is a nonlinear correction to the pump wave vector. A perturbation, being imposed by two sideband
waves with the frequencies wy + €2, reads

(e, 7) = [Py + u(@)e ™ + vi(z)e ek, (11

behavior of u(z) and v(z) for z — o0 is of interest. With both u(z) and v(z) proportional to e!*?, a standard
calculation leads to the characteristic equation

[k — NP = MQ)[M(Q) + 2kal, (12)
the pump is unstable if a real (2 yields a complex «. Here we split D(£2) into even and odd components [47]
MQ) = D) +2D(—Q)’ NQ) = D) —Z’D(—Q).

The key observation is that the even component is identical to the mismatch (7).

A typical mismatch M is much larger than k;,;. A generic €2 in equation (12) provides then x € R. Frequency
bands of the unstable perturbations are linked to the resonant offsets {2, with M (€);) = 0. The sidebands are
determined by the inequality

—2ky < M() < 0. (13)

They appear if the mismatch approaches zero from the negative side, which explains the ELC. This is illustrated
in figure 2 for an exemplary Sellmeier dispersion law.

4. GNLSE with nonlinear dispersion

The GNLSE (9) utilizes a complicated operator D to account for the linear dispersion, but uses one dispersion-
free nonlinearity for all involved modulations. What happens, if nonlinearity depends on frequency? Note, that
the sideband frequencies may considerably differ from w, for the FWM instability. Therefore we generalize
equation (9) to the form

10,0 + Dy + Y[ f (WP + [PRAY + »2By*] = 0, (14)
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Figure 2. Mismatch M is plotted versus offset {2 to obtain unstable (2-bands (red) from equation (13) for bulk silica dispersion,
~v =50 W 'km~!,and Py = 40 W. (a) Pump wavelength A = 1.4 ymyields 3, < 0and two classical MI bands. (b) A = 1.265 um
yields 3, > 0and two FWM bands.

where the linear operators Aand B quantify dispersion of the dominant nonlinearity. Higher-order nonlinear
effects are included in f (|1?), their dispersion is neglected. The leading order approximation of f (|1?) is |1[?.

The application-dependent operators Aand B, being similar to D, will be represented by A (€2) and B(£2)
in the frequency domain. A and B can, but do not have to, be approximated by differential operators. Itis safe to
set A(0) = B(0) = 0.In the SVEA limit we have A ~ i.4'(0)d, and B ~ iB'(0)9,.

The pump solution to equation (14), see equation (10), is

w = PO eiknlz> knl = 'Yf(PO)) (15)

its modulation is given by equation (11) with the new k. The GNLSE (14) ignores terms like (9,1)*)* or
|0-1)[2), as they appear in, e.g. the Lakshmanan—Porsezian—Daniel equation [48]. Such terms are quadratic in
u(z) and v(2), they have no effect on pump modulations.

Equation (14) comprises the following special cases.

(A) The self-steepening [11] is reproduced by

FAUP) = WP AQ) =2Q/we, B = Q/wy,
10,10 + Dip + (1 + iwy '8, [Y2 = 0.

In a similar way one can obtain the derivative NLSE [49].
(B) For the Hirota equation [50] one should use

FAYP) = 1P AQ) = Tu, BEQ) =0,
andset Ty = 33/, with 3;>, = 0to derive
mm+§:@mm%+ﬂw{wuﬁﬁﬂ:a
=25 1! Ba

One can also obtain a Sasa—Satsuma equation [51].
(C) Saturation of f (|)|*) was considered in [52]. Quadratic A(€2) and B((2) were discussed in [53, 54].
Complex-valued A(), B(£2) yield non-Hermitian A, B, an evidence of the nonlinear losses (or gain).
(D) The interpulse Raman scattering [ 11] results in nonlinear losses, it is approximated by

FAUP) = WP, AQ) = B&) = ik,
0.4 + D + y([UP — TrOAYP)y = 0.

The value of T depends on material.
(E) To give a more involved example, consider GNLSE that fully accounts for the Raman scattering [47]

@¢+®w+{&wv+mﬁmmmmmﬂw:m

where ¢ = 1(z, 7) and ¢; = (2, T — s). Here fyand f rank Kerr and Raman contributions, fx + fr = 1, and
fo h(s)ds = 1. Anequivalent representation is

10,4 + Dy + vV + RIYP1y = 0,
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with
R(Q) = fR[fOO h(r)edr — 1], R@O) =0, R =TRX-D).
0

We then deal with a non-polynomial complex-valued R (£2). The SVEA limit of R is —Tx0,,in general
RV = v*Re + v*Ryp + hoo.t.,

where, as explained after equation (15), the h1gher order terms have no influence on the small pump
modulations. One can thenset A = B = R and employ the GNLSE (14).

5. MI for nonlinear dispersion

To summarize the previous section, equation (14) covers many if not all relevant modifications of equation (9).
To address stability of the pump (15), we now insert the modulated pump (11) into equation (14), ignore all
terms that are quadratic in u(z) and v(z), and obtain

[ (=) —i0; + A*(Q)][V] =0 (16)

with
AQ) = APLf! + AD] + D), 5 =Pyl f] + B,

where fol = f'(P,). Finally we insert u, v o e!*? into equation (16) and derive the characteristic equation for x
(5 — N = 1Py A = MIM + 29Po(f! + A)]
+ VIS, + A)? = (fy + B)? + B, (17)
where we introduced a symmetric 4,(Q2) and asymmetric 4,(€2) components of A(£2), namely

A £ A(—Q)
2 b

As,a(Q) = As,a(_Q) = :I:Ajjg(Q)J

and the same for B({2).

Equation (17), extending equation (12), yields the unstable frequency bands for a given linear dispersion
D(Q), nonlinearity f (|4|*), pump power Py, and nonlinear dispersion A(f2), B(2). Let us now discuss how the
nonlinear dispersion affects the ELC.

For real-valued A(£2) and B(£2), the unstable bunds predicted by equation (17) are still located close to the
resonant frequencies at which M (€2) vanishes. The bands are slightly squeezed and shifted, as compared to
those in figure 1, but never disappear completely. The ELC is perfectly applicable.

For complex-valued A(2) and B(£2), the pump is formally unstable for all possible modulations. Consider,
e.g. the GNLSE in the example (E), where fo/ = land A(Q) = B(2) = R(£2). Equation (17)yields [39, 40]

(k — N)? = M[M + 29Py(1 + R)], (18)

and () with Im x (2) < Oisyielded by any Q if only Im R(€2) = 0. This is known as Raman gain [47]. The
pump is destroyed because the nonlinear dissipation drains its energy, the new instability peaks appear where the
drain is most efficient. These peaks, being still described by equation (17), are independent on wave mixing and
ELC. Theyimpose over the ‘true’ MI and FWM bands (figure 3) and vanish, if one ignores Im R.

To summarize, ELC covers the instabilities that result from nonlinear interactions of four waves, be it linear
or nonlinear dispersion. However, it does not cover the effect of the nonlinear gain or dissipation.

6. Discussion

Ml is traditionally described by the NLSE, which depends on the GVD parameter. The classical Lighthill
criterion predicts MI for a negative GVD in a focusing fiber. Fibers with minimum chromatic dispersion are not
covered: a pump wave may go unstable for a positive GVD. Moreover, the growing daughter waves may be
separated from the pump in the frequency domain (figure 2), which makes use of the NLSE questionable.

Itis well known that both the spectrally-wide wave packets and all FWM instabilities in fibers are properly
described by the GNLE. A natural question is whether it is possible to generalize the classical Lighthill criterion.
We have found that it is convenient to promote the GVD to the mismatch of the FWM

5
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Figure 3. Imaginary part of £(€2) (color lines) is calculated from (17) for (a) MI regime (parameters from figures 2(a)) and (b) FWM
regime (figure 2(b)). We use an integral representation of the Raman term. Solutions of the characteristic equation without the Raman
term are shown by gray lines.

Blwo + ) — 2B(wo) + Blwe — Q)
2 bl

where the modulation frequency {2 may, but does not have to, be much smaller than the carrier frequency wy.
Pump stability is linked to a simple geometric property of the mismatch (ELC, figure 1), which generalizes the
classical Lighthill criterion.

Lastbut no least, if 2 < wy, one has to address the nonlinear dispersion. We phenomenologically
introduced equation (14), and demonstrated that it properly accounts for the nonlinear dispersion in all cases
relevant for optical fibers, ranging from the integrable Schrodinger-type equations to dissipative models
accounting for the Raman scattering. The resulting characteristic equation (17) provides the most general MI
description in one spatial dimension. For instance, equation (17) is symmetric under the replacement
(Q, k) — (=Q, —k*), which preserves Im k. Therefore Stokes and anti-Stokes waves always grow with the
same rate. The reported results, being primarily applicable to optical fibers, are of interest for many other
nonlinear wave systems, e.g. for gravity water waves [55-57].

B" (wo)
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