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Optimization of a multiphysics problem
in semiconductor laser design

Lukáš Adam, Michael Hintermüller, Dirk Peschka, Thomas M. Surowiec

Abstract

A multimaterial topology optimization framework is suggested for the simultaneous optimiza-
tion of mechanical and optical properties to be used in the development of optoelectronic devices.
Based on the physical aspects of the underlying device, a nonlinear multiphysics model for the
elastic and optical properties is proposed. Rigorous proofs are provided for the sensitivity of the
fundamental mode of the device with respect to the changes in the underlying topology. After
proving existence and optimality results, numerical experiments leading to an optimal material
distribution for maximizing the strain in a Ge-on-Si microbridge are given. The highly favorable
electronic properties of this design are demonstrated by steady-state simulations of the corre-
sponding van Roosbroeck (drift-diffusion) system.

1 Introduction

The rapid miniaturization of microprocessors over the last four decades has been matched by a notable
increase in computational performance. In particular, these developments have more or less followed
Moore’s law, which predicts an annual doubling of components per integrated circuit. Nevertheless,
there are physical limits to this trend and further improvement requires alternative and innovative
approaches. Therefore, silicon photonics integrates optical and electronic components into a single
microchip, with the goal of using optical interconnects to provide faster data transfer between and
inside microchips and to avoid the limitations of electrical wiring, cf. e.g. [1].

This paper is inspired by the promising approach of using strained germanium (Ge) as the optically
active medium for an edge-emitting laser, which serves as the light source for silicon photonics, cf. [2,
3, 4, 5]. The base material used in the production of integrated circuits, silicon (Si), is an indirect-
bandgap semiconductor, which implies that stimulated emission is strongly suppressed. The situation
is similar for bulk Ge, which is also an indirect-bandgap semiconductor. Seemingly indicating that both
materials are disadvantageous to create an integrated light source.

However, the band structure of germanium can be strongly altered using mechanical strains, and
with a few percent tensile strain it even becomes a direct bandgap semiconductor, cf. [4]. In [6], the
authors focus on modeling the effects of strain and doping on the electronic and optical properties. It
is observed that stimulated emission and the resulting lasing threshold usually depend more on the
strain than the doping profile.

While an optimal doping profile can be determined by optimizing charge transport using nonlinear
drift-diffusion models [8, 9], an optimal material configuration, used to create tensile strain in the Ge,
can be found by using techniques from topology optimization applied to linear elastic materials. Since
the strain distribution has a larger effect on the gain, we only consider the mechanical properties in our
multiphysics forward system. However, we also provide a numerical study of the electronic properties
of the optimal device. In both settings we employ material parameter descriptions, which depend on
the phase fields encoding the material distribution.

Various engineering studies have focussed on the production of Ge devices, where the light emission is
improved by maximizing the strain. This led to a variety of device designs including suspended bridges
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Figure 1: (left) A possible prototype strained photonic-device exhibiting the microbridge geometry.
This configuration was determined in [7]. (right) Cross section of a Ge-on-Si microbridge with material
distribution and contacts. This design would exhibit significant current leakage and potentially become
damaged due to overheating.

[4, 10] or discs [11]. While the corresponding photoluminescence spectra support the improvement of
the optical properties, manufacturability with standard fabrication processes and the incorporation of
an optoelectronic loss mechanism are still active research, e.g. [12].

For instance, in general material configurations with large strain in the optically active area are desired.
However, an overlap of the optical mode with contacting layers results in losses which lead to further
undesirable heating of the device [6]. Furthermore, the improved strain only leads to an improved
modal gain when the optical mode and large strain regions coincide, a goal we previously phrased as
“overlap engineering” [13]. Summarizing these facts, we arrive at the following:

Goal: Determine a device topology, which simultaneously ensures that the support of the first funda-
mental mode, i.e., the optical cavity, is confined inside the germanium and that the strain is maximized
within the optical cavity.

Since the proposed device is static, it is only possible to create a permanent or “built-in” strain field
through the shape and topology of the device, where each of the materials supplies a certain amount
of strain due to the relaxation process following the manufacturing process. In other words, we need
to find an optimal composition and placement of the various necessary materials in order to construct
a Ge-on-Si laser. Some ideas for the optimization based on existing empirical, experimental, and
analytical studies can be found, e.g., in [14, 3, 12, 13, 15]. We also mention our recent related work
[7], in which the optical cavity is assumed to be fixed. The underlying modeling assumption in all of
these studies is the usage of a so-called “microbridge” geometry, cf. Figure 1, which in principle can be
created by standard manufacturing techniques. As in [13, 7], we again focus on a cross section of an
edge-emitter as shown in Figure 1. In the longitudinal direction we assume translation invariance, as
it is indicated in Figure 1. We note here that multimaterial and multidisciplinary topology optimization
approaches that take into consideration thermoelastic or piezoelectric properties and their relation to
the underlying topologies have been considered in many works, see e.g., [16, 17]. However, as we will
see below in the modeling section, these are fundamentally different applications with distinct goals.

The rest of the paper is organized as follows. In Section 2, we motivate the usage of a phase-field
approach for the topology optimization. In Section 3, we introduce the underlying multiphysics model
that appears in the topology optimization problem. In addition, we briefly detail the time-dependent
drift-diffusion system, which models the transport of electrons and holes in the device. Afterwards, we
introduce the optimization framework in Section 4, which includes a rigorous analysis of the topology-
to-eigenmode mapping in Section 4.3. In Section 5, we discuss the numerical solution and necessary
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Optimization of a multiphysics problem in semiconductor laser design 3

structural assumptions. Based on our theoretical results, we provide numerical optimization results
in Section 6, which yield an optimal configuration of materials in the microbridge. Using the optimal
configuration, we demonstrate the electronic and optical properties of such a design in Section 7.

Finally, our notation is more or less standard for PDE-constrained and topology optimization. Nev-
ertheless, we refer the reader to the well-known monographs [18] for Lebesgue and Sobolev spaces,
[19, 20, 21] for PDE-constrained optimization, and [22, 23, 24, 25] for a thorough treatment of topology
optimization.

2 A Phase-Field Approach for the Design Parameters

Throughout the entire text, all functions are assumed to be defined on a fixed hold-all-type domain Ω,
which represents the cross section of the microbridge. It is assumed that Ω has a sufficiently smooth
boundary ∂Ω. Furthermore, {Ωi}Ni=1 denotes a “regular” material distribution, which partitions the

domain Ω. Ideally, the partition would be represented by distributed parameters {ϕi}Ni=1, where ϕi
serves as the characteristic function for Ωi. In such a case, we could take ϕ := (ϕ1, . . . , ϕN) ∈
BV (Ω; {0, 1}N) (a vector of functions of bounded variation (BV ) taking discrete values in {0, 1})
along with the condition that

∑N
i=1 ϕi = 1 for almost every (a.e.) x ∈ Ω. In order to ensure that the

sets Ωi := {ϕi = 1} have finite perimeter P (Ωi,Ω), which is needed to rule out pathological designs
and facilitate the mathematical treatment, it suffices that the total variation term

∑N
i=1 TV (ϕi,Ω) is

finite. In fact, the latter guarantees, by the Fleming-Rishel co-area formula, that
∑N

i=1 P (Ωi,Ω) =∑N
i=1 TV (ϕi,Ω) < +∞.

Finding a material distribution for optimizing the device topology, as stated in our goal in Section 1,
would lead to a combinatorial problem, which would be computationally intractable. As a remedy, one
could relax the integrality condition on each ϕi, as in [26], and attempt to regain the integrality through
other means. Such an approach typically depends on structural assumptions. In this paper, as in
[7, 27, 28, 29, 30], we use a phase-field approach in which ϕ ∈ H1(Ω;RN) ⊂ BV (Ω,RN). Here,
H1(Ω,RN) is the space of all vector-fields in RN with components in the Sobolev spaceH1(Ω), see
e.g., [18]. Enforcing approximate integrality of ϕ can then be achieved by considering the following
Ginzburg-Landau-type energy functional

fGL(ϕ, ε) :=

∫
Ω

ε

2
∇ϕ:∇ϕ+

1

2ε
ϕ·(1−ϕ) dx + iG(ϕ), (1)

in the associated topology optimization problem. Here, iG is the usual indicator functional for the well-
known Gibbs simplex (a closed convex set)

G :=
{
ϕ ∈ H1(Ω;RN) | ϕ ≥ 0, a.e. x ∈ Ω, ϕ1 + · · ·+ ϕN = 1, a.e. in Ω

}
. (2)

Note that the non-convex integrand 1
2ε
ϕ·(1−ϕ) attempts to force pure phases, whereas the first part

in (1) introduces H1-regularity of ϕ into the problem.

Finally, we note that as ε→ 0, the Ginzburg-Landau energy fGL(·, ε) Γ-converges to a set-functional
that is related to the phenomenologically derived regularization term

∑N
i=1 TV (ϕi,Ω) suggested

above, with some modifications. This can be shown by modifying and combining several arguments
from [31] and [32]. However, a detailed discussion would go beyond the scope of this paper.
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3 The Underlying Multiphysics Problem

In this section, we introduce the underlying multiphysics (forward) problem as well as the drift-diffusion
system, which describes the electronic behavior of the device. The forward problem is a nonlinearly
coupled system of linear partial-differential equations, which comprises two kinds of physics: elasticity
and optics. The elastic properties follow a standard model of linear elasticity that takes into account
eigenstrain and thermal pre-stress terms. This represents our mathematical description for the inter-
facial residual forces discussed in the introduction.

The model is dependent on the distributed material parameter ϕ, with components ϕ1, . . . , ϕN or
sometimes ϕSiN, ϕGe, ϕSiO2 , ϕair for emphasis on the actual material components and their effects on
the device. These distributed parameters will act as the design/decision variables in our optimization
framework. Since it has the largest effect on the lasing properties of the Ge-on-Si microbridge, we
focus on optimizing the first/fundamental (eigen)mode of the device. This is done by using a Helmholtz
equation, which depends on the material parametersϕ. We provide further physical and mathematical
motivations for these models in the subsections below.

3.1 Elasticity

Given ϕ ∈ G, we consider the following model of elasticity, where the solution is a displacement
mapping u : Ω→ R2:

−div [C(ϕ)e(u)− F (ϕ)] = 0 in Ω,

u = 0 on ∂Ω.
(E(ϕ))

Here, e(u) := 1
2
(∇u + ∇u>) is the symmetric strain of the displacement vector u, C(ϕ) is a

fourth-order tensor and

F (ϕ) := e0(ϕSiO2 − 1)C(ϕ)IR2×2 − σ0ϕSiNIR2×2 , (3)

incorporates the effect of the eigenstrain generated by thermal relaxation of Ge on SiO2 and the
(pre)stress generated by SiN as discussed in the introduction. This exhibits a slight change in the form
of F when compared to the operator in [7]. In fact, (E(ϕ)) corresponds to solving

−div [C(ϕ)e(u)− F (ϕ)− e0C(ϕ)IR2×2 ] = 0 in Ω,

u = g on ∂Ω,
(E′)

where g := e0x for all x ∈ Ω. Indeed, solving first (E(ϕ)) for u, one readily checks that u+ g solves
(E′). The choice of the particular F is aimed at driving the Ge lattice constant into a tensile region. For
small strains from (E(ϕ)), this lattice constant can be defined by a(x) = abulk(1 + e(u)(x) − e0),
where abulk is the lattice constant of unstrained Ge and a(x) > abulk is desired, cf. [33]. The Dirichlet
boundary condition implies that the device remains fixed and relaxes at ∂Ω.

We invoke the following smoothness and ellipticity assumptions throughout:

Assumption (A1). C is a Nemytskii/superposition operator induced by a tensor-valued mapping
Ĉ : RN → R2×2×2×2 such that for some ϕ, C(ϕ)(x) = Ĉ(ϕ(x)) a.e. on Ω. Moreover, it satisfies:
(i) There exist c2 > c1 > 0 such that for every φ ∈ RN and E1, E2 ∈ R2×2 \ {0} we have

c1‖E1‖2
R2×2 ≤ Ĉ(φ)E1 : E1, Ĉ(φ)E1 : E2 ≤ c2‖E1‖R2×2‖E2‖R2×2 ,

where the matrix product is understood as A : B =
∑

i

∑
j aijbij . (ii) Ĉ is globally Lipschitz and

continuously differentiable with globally Lipschitz derivative.
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Consequently, we have the following regularity and sensitivity result for the topology-to-displacement
map Su(ϕ). This is essential for the proof of existence of an optimal solution and derivation of op-
timality conditions for the associated topology optimization problem. In addition, it is needed for the
development of gradient-based numerical optimization methods.

Proposition 3.2 (cf. [7]). Let (A1) hold. Then there exists p > 2 such that for every ϕ ∈ H1(Ω,RN)
the unique solutionu of (E(ϕ)) lies inW 1,p

0 (Ω,R2). Finally, the solution mapping Su : H1(Ω,RN)→
W 1,p

0 (Ω,R2), which maps ϕ 7→ u, is continuously Fréchet differentiable. The directional derivative
of Su at ϕ in direction δϕ is given by S ′u(ϕ)δϕ = q, where q ∈ H1

0 (Ω,R2) is a weak solution of
the sensitivity equation:∫

Ω

C(ϕ)e(q) : e(v)dx = −
∫

Ω

[C′(ϕ)δϕ]e(u) : e(v)dx +

∫
Ω

F ′(ϕ)δϕ : e(v)dx (4)

for all v ∈ H1
0 (Ω,R2).

Here,W 1,p
0 (Ω,R2) is the Sobolev space of two-dimensional vector fields with components inW 1,p

0 (Ω).
We utilize this convention throughout the text. In addition, we note that p > 2 in Proposition 3.2 en-
sures via the Sobolev embedding theorem that u is a continuous vector field over Ω. This is useful in
the existence proof below.

3.3 Optics

As stated above, we focus our attention on finding a topology that confines the bulk of the support of
the fundamental mode within the Ge. In this sense, we assume that the governing optical behavior of
the device can be modeled by the following ϕ-dependent eigenvalue problem in (Θ, λ):

−∆Θ− g(ϕ)Θ = λΘ in Ω,

Θ = 0 on ∂Ω.
(5)

Here, we assume that the eigenfunction decays exponentially fast approaching the boundary, so that
the homogeneous Dirichlet boundary condition on the outer boundary ∂Ω does not influence (Θ, λ)
significantly. This is justified for certain g(ϕ) and the eigenmode corresponding to the smallest eigen-
value and certain, the latter often being the most relevant mode for an edge-emitting laser. This is
why we focus our discussion primarily on λ1, the smallest eigenvalue of −[∆ + g(ϕ)], and Θ1, the
corresponding eigenfunction, with (Θ1,Θ1) = 1. This leads to the following problem:

Find the first eigenvalue λ1 and corresponding eigenfunction Θ1 of (5). (H(ϕ))

We henceforth drop the subscripts, whenever it is clear in context. Note that Ω needs to be connected
to ensure that λ1 has multiplicity one, see [34, Remark 1.2.4].

For this model, we make the standing assumptions throughout:

Assumption (A2). g is a superposition operator induced by ĝ : RN → R such that ĝ(ϕ(x)) =
(g(ϕ))(x) a.e. on Ω. Moreover, |ĝ| is bounded by M , ĝ is globally Lipschitz with modulus L > 0
and continuously differentiable with globally Lipschitz derivative.

Here, we note that g(ϕ) is spatially dependent. Thus, the spectrum of −[∆ + g(ϕ)] is not merely
the shifted spectrum of the Laplacian. Nevertheless, |g(ϕ)| is uniformly bounded, independently of
ϕ. Consequently, we may take some fixed c > M and consider the equivalent problem

−∆Θ + (c− g(ϕ))Θ = (c+ λ)Θ in Ω,

Θ = 0 on ∂Ω.
(Hc)
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Indeed, the operators −[∆ + g(ϕ)] and −[∆ + (g(ϕ) − c)] have the same eigenfunctions cor-
responding to the same eigenvalues shifted by c. Therefore, we may work with the uniformly elliptic
bounded linear operator −[∆ + (g(ϕ) − c)], which allows us to apply elliptic theory. We postpone
the sensitivity analysis of the topology-to-eigenmode mapping ϕ 7→ Θ, denoted by SΘ(ϕ), until after
we state the optimization problem.

3.4 Electronics

In this section, we give a model for the electronic behavior of a given device design. Though we do
not consider this as a part of the optimization procedure itself, we provide simulations demonstrating
the performance of the optimal designs at the end of this paper and compare them to existing results
in the literature. The following drift-diffusion system forms the so-called van Roosbroeck system

−div (ε0εr∇φ) = q(Cdop + p− n), (6a)

ṅ− q−1div (−qµnn∇φ+ qDn∇n) = −Rnet, (6b)

ṗ+ q−1div (−qµnn∇φ− qDp∇p) = −Rnet, (6c)

which was introduced for semiconductors in [35] and under several assumptions derived in this form
in [36]. Here, φ is the electrostatic potential, ε0 is the vacuum permittivity and εr is the relative per-
mittivity, n and p are the concentration of electrons and holes, q is the elementary charge, Cdop the
doping profile. The expression under the divergence are the electron and hole fluxes, where Dn, Dp

denote the diffusion constant of electrons and holes and µn, µp are the corresponding mobilities. Both
quantities are related by a generalized Einstein relation, which is Dα = µαkBT/q for Boltzmann
statistics. The remaining functionRnet is the generation-recombination rate, which vanishes in thermal
equilibrium and ensures conservation of charge.

An important feature here is the assumption that the strain of the device plays a role in the model due
to its occurrence in the electronic bands and in the optical gain and in electronic recombination rates.
We discuss this in more detail along with the numerical experiments sections below.

4 The Optimization Framework

The purpose of this section is to derive an optimization problem for identifying the optimal material
distribution for the device as described in Section 1. We start by introducing the objective function.
This is followed by a sensitivity study. Finally, we prove existence of a solution and derive first-order
optimality conditions.

4.1 Objective Function

Our task is now to identify objective functions that quantify our goal of finding a material distribution,
which maximizes the tensile strain inside the optical cavity. In contrast to [7], we do not consider the
optical cavity to be fixed. Instead, we assume that the optical cavity is explicitly determined by ϕ.

Before providing the mathematical details of the objective function, we further describe the physical
motivations leading to its form. When optimizing a laser, the key quantity of interest is the optical gain
g, which itself depends on carrier concentrations and photon energy. For an indirect band-gap material
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Optimization of a multiphysics problem in semiconductor laser design 7

such as Ge, the rate of stimulated emission encoded in g is naturally very low and strongly depends
on the size of the direct band-gap. Due to the particular band-structure of Ge, tensile strains of 1-2 %
are sufficient to turn germanium into a direct band-gap material and drastically enhance stimulated
emission [37]. Nevertheless, it is believed that much lower strains are sufficient to build a functioning
laser, see e.g. [12].

Following this discussion, the main parameter influencing g is the band-gap Eg, which itself is a func-
tion of the strain e. Using the deformation potential D, see e.g. [38], results in the relation Eg(e) =
Eg,0 + D : e(u) Since we do not use information about carrier concentrations or photon energy,
we merely exploit the fact that the optical gain in the Ge increases with a decreasing gap and that
in Ge this gap decreases with increasing tensile strain. This motivates our approach to minimize the
functional

−
∫

Ω

ϕGeΘ
2D : e(u)dx = −

∫
Ω

j(ϕ,Θ)tr e(u) dx

where for the moment we assumed that the deformation potential is diagonal, i.e., D = DI2×2 and
in our case we have j(ϕ,Θ) = ϕGeΘ

2D. Note that D contains material parameters. However, since
Θ2D is scaled by ϕGe, which is a relatively smooth approximation of the indicator function for the
subset of Ω corresponding to the Ge concentration, we need only consider the values of D for Ge.

As observed in [13] and discussed in the introduction, we wish to maximize the region of overlap
corresponding to the bulk of support for Θ2 and the region of high tensile strain in Ge. Therefore, at an
optimal configuration, we expect the bilinear relationship between ϕGeΘ

2, which is non-negative, and
tr e(u) to favor large overlap of suppϕGe and supp Θ2 along with deformations for which tr e(u) is
positive on average on (suppϕGe) ∩ (supp Θ2). We henceforth denote the objective by

J(ϕ,u,Θ) := −
∫

Ω

j(ϕ,Θ)tr e(u)dx. (7)

For the sake of generality, we allow j to belong to a wide class of functions and make the following
assumption:

Assumption (A3). j is a superposition operator induced by a polynomial function ĵ : RN ×R→ R
such that ĵ(ϕ(x),Θ(x)) = (j(ϕ,Θ))(x) a.e. on Ω.

One motivation for admitting higher-order polynomials for ĵ is related to the fact that regions where Θ
is large are of particular interest and can be emphasized by allowing for exponents significantly larger
than 2 in Θ.

4.2 The Optimization Problem

Combining the objectives, constraints, and forward problems from the discussions above, we arrive at
the following “full space” formulation of the optimization problem.

min −
∫

Ω

j(ϕ,Θ)tr e(u)dx + αfGL(ϕ, ε) over (ϕ,u,Θ, λ) ∈ X ,

s.t. u solves (E(ϕ)); (Θ, λ) solves (H(ϕ)) : (Θ,Θ) = 1.

(8)

Here, α > 0 is a regularization parameter, the space X represents the Cartesian product X :=
Gad×H1

0 (Ω;R2)×H1
0 (Ω)×R, and Gad := {ϕ ∈ G| ϕi = 1 a.e. on Πi, i = 1, . . . , N} combines

the Gibbs simplex (2) and the requirement that material i must be present on Πi ⊂ Ω. We henceforth
impose the following assumptions:
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Assumption (A4). Ω ⊂ R2 and Πi ⊂ Ω are open, connected and bounded sets with Lipschitz
boundary and Πi are strictly separable, i.e., cl Πi ∩ cl Πj = ∅ (i 6= j).

In the next section, we provide a full sensitivity analysis of the parameter-to-state maps, which then
motivates our subsequent reformulation of (8) in “reduced space”.

4.3 The Topology-to-Eigenmode Mapping SΘ

In this section, we perform a sensitivity analysis for the Helmholtz equation (H(ϕ)). The Lipschitz
continuity derived in Lemma 4.4 is necessary for the existence result in Proposition 4.8, whereas the
differentiability result in Theorem 4.5 is needed for the first-order necessary optimality conditions in
Theorem 4.10. The latter are subsequently used for numerical experiments. Obviously any results
providing explicit derivative formulae are ultimately useful in adjoint-based solution algorithms.

Though it is possible that larger eigenvalues and eigenfunctions may also be of interest, the nontrivial
multiplicity of even the second eigenvalue vastly complicates any differential sensitivity analysis. For
higher eigenvalues some path selections as in [39] are necessary. Even with this choice there are still
some challenges. For example, it is not possible to write (5) or its equivalent formulation (10) (below)
as an equation (H(ϕ)) because the former allows for all eigenvalues. Later in the proof of Theorem 4.5
we show that this is possible at least locally around the principal eigenvalue.

We recall that due to |g(ϕ)(x)| ≤ M for a.e. x ∈ Ω independent of ϕ, it is possible to shift the
operators and obtain a simpler but equivalent eigenvalue problem. Choosing c > M , we make the
operator on the left-hand side of (9) below elliptic.

(−∆− g(ϕ) + cI)Θ = (λ+ c)Θ, (9)

It then readily follows from [40, Theorem 8.6.1, Remark 8.6.1] that all eigenvalues of [−∆−[g(ϕ)+c]]
are real and that λ1 may be computed as the Lagrange multiplier for the normalization constraint in
the (nonconvex) Courant-Fisher optimization problem

min
{

(∇Θ,∇Θ)− (g(ϕ)Θ,Θ) over Θ ∈ H1
0 (Ω) | (Θ,Θ) = 1

}
(10)

Here and below, (·, ·) represents the usual L2(Ω)-inner product. Moreover, the above problem admits
an optimal solution and all minimizers are the eigenfunctions corresponding to the smallest eigenvalue.

Before showing the first result, we comment on some direct consequences of assumption (A2). First,
the smallest eigenvalue in (H(ϕ)) has multiplicity one and the corresponding eigenfunction can be cho-
sen to be positive almost everywhere, see [41, Theorem 8.38] or [34, Theorem 1.2.5]. Assumption (A2)
implies that g : Lp(Ω,RN) → Lp(Ω) is globally Lipschitz with modulus L and g : L2p(Ω,RN) →
Lp(Ω) is continuously differentiable with global Lipschitz derivative for all p ∈ [1,∞], see [42]. More-
over, ‖g(ϕ)‖L∞(Ω) ≤M for all ϕ ∈ H1(Ω,RN).

For notational simplicity, we define the solution mappings Su : ϕ 7→ u, Sλ : ϕ 7→ λ and SΘ : ϕ 7→
Θ as solutions to (E(ϕ)) and (H(ϕ)), respectively. We start with derivation of the Lipschitz continuity
of Sλ.

Lemma 4.4. Assume (A2) and (A4). Then the following holds true:

(i) There exists M̃ > 0 such that for all ϕ ∈ H1(Ω,RN) and the corresponding eigenfunction we
have ‖SΘ(ϕ)‖H1

0 (Ω) ≤ M̃ .
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(ii) The mapping Sλ is globally Lipschitz from L∞(Ω,RN) → R with modulus L and globally Lips-
chitz from L2(Ω,RN)→ R.

Proof. Let Θ0 by feasible for (10). Then for any ϕ ∈ H1(Ω,RN) and Θ = SΘ(ϕ) ∈ H1
0 (Ω) we

have (∇Θ,∇Θ) − (g(ϕ)Θ,Θ) ≤ (∇Θ0,∇Θ0) − (g(ϕ)Θ0,Θ0) which due to the normalization
condition implies

‖Θ‖2
H1

0 (Ω) ≤ (2M + ‖Θ0‖2
H1

0 (Ω)) =: M̃2, (11)

This yields (i). Next, fix ϕ, ϕ̂ ∈ H1(Ω,RN) and let Θ, Θ̂ ∈ H1
0 (Ω) be the corresponding eigenfunc-

tions. Since Θ, Θ̂ are minimizers of (10), we have

(∇Θ,∇Θ)− (g(ϕ)Θ,Θ) ≤ (∇Θ̂,∇Θ̂)− (g(ϕ̂)Θ̂, Θ̂) + ((g(ϕ̂)− g(ϕ))Θ̂, Θ̂)

≤ (∇Θ̂,∇Θ̂)− (g(ϕ̂)Θ̂, Θ̂) + ‖g(ϕ̂)− g(ϕ)‖L2‖Θ̂‖2
L4

≤ (∇Θ̂,∇Θ̂)− (g(ϕ̂)Θ̂, Θ̂) + L̃‖ϕ̂−ϕ‖L2(Ω,RN ).

(12)

Here, L̃ combines the Lipschitz modulus L, the embedding constant from H1(Ω) into L4(Ω) and M̃ .
Since we may switch the roles of ϕ and ϕ̂, we obtain

|(∇Θ,∇Θ)− (g(ϕ)Θ,Θ)− (∇Θ̂,∇Θ̂) + (g(ϕ̂)Θ̂, Θ̂)| ≤ L̃‖ϕ̂−ϕ‖L2(Ω,RN ). (13)

As the eigenvalue is the Lagrange multiplier associated with the constraint in (10), we obtain from the
first-order optimality conditions for (10):

(∇Θ,∇Θ)− (g(ϕ)Θ,Θ) = λ(Θ,Θ) = λ,

(∇Θ̂,∇Θ̂)− (g(ϕ̂)Θ̂, Θ̂) = λ̂(Θ̂, Θ̂) = λ̂,

where λ and λ̂ are the corresponding eigenvalues. Plugging this into (13), we see that |λ − λ̂| ≤
L̃‖ϕ − ϕ̂‖L2(Ω,RN ), which proves the second statement in (ii). The proof of the first statement is
analogous and can be obtained from (12) using the upper bound:

((g(ϕ̂)− g(ϕ))Θ̂, Θ̂) ≤ ‖g(ϕ̂)− g(ϕ)‖L∞(Ω)‖Θ̂‖2
L2

= ‖g(ϕ̂)− g(ϕ)‖L∞(Ω) ≤ L‖ϕ̂−ϕ‖L∞(Ω,RN ).

Theorem 4.5. Under (A2) the solution mapping S := (Sλ, SΘ) is Fréchet differentiable at any
ϕ ∈ H1(Ω,RN) and, given a direction δϕ ∈ H1(Ω,RN), its directional derivative S ′(ϕ)(δϕ) =
(δλ, δΘ) can be computed as the unique solution (δλ, δΘ) ∈ R×H1

0 (Ω) of the system

−[∆ + g(ϕ) + λ]δΘ = δλΘ + [g′(ϕ)δϕ]Θ,

(Θ, δΘ) = 0.
(14)

Proof. Based on (5) and (H(ϕ)) we consider the following system of equations in strong form:

(−∆− g(ϕ))Θ− λΘ = 0 in Ω,

Θ = 0 on ∂Ω,

(Θ,Θ)− 1 = 0.

(15)
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Multiplying (−∆ − g(ϕ))Θ by ψ ∈ H1
0 (Ω) and integrating over Ω, it follows from Green’s theorem

that: ∫
Ω

(−∆− g(ϕ))Θψdx = (∇Θ,∇ψ)− (g(ϕ)Θ, ψ).

Therefore, there exists a unique coercive bounded linear operator A : H1
0 (Ω) → H−1(Ω) such that

〈AΘ, ψ〉 = (∇Θ,∇ψ). Nevertheless, we allow a slight abuse of notation and denote A by−∆. The
boundary condition in (15) is therefore “absorbed” by the operator.

Continuing, we denote the solution mapping of (15) by Ŝ : ϕ 7→ (λ,Θ). Note that Ŝ is in fact
multivalued (for every ϕ, Ŝ(ϕ) is the set of all eigenpairs). Nevertheless, since Sλ is single-valued,
the Lipschitz continuity of Sλ from Lemma 4.4 implies that there exists an open ball aroundϕ such that
Ŝ coincides locally with S. To derive differentiability of S it suffices then to apply the implicit function
theorem [43, Theorem 4.B] to (15).

Denote the function on the left-hand side of (15) by G(ϕ;λ,Θ). By formally differentiating this map-
ping in direction (δϕ, δλ, δΘ), we obtain the formula:

G′(ϕ, λ,Θ)(δϕ, δλ, δΘ) =

(
−∆δΘ− [g′(ϕ)δϕ]Θ− g(ϕ)δΘ− δλΘ− λδΘ

2(Θ, δΘ)

)
.

Furthermore, by substituting this formula into the usual difference quotient, it is not difficult to verify
that G : H1(Ω,RN) × R × H1

0 (Ω) → H−1(Ω) × R is in fact continuously Fréchet differentiable.
Clearly, G is also continuous. Finally, we show that the partial derivative G′λ,Θ(ϕ, λ,Θ) is bijective.
We have

G′λ,Θ(ϕ, λ,Θ)(δλ, δΘ) =

(
−∆δΘ− g(ϕ)δΘ− δλΘ− λδΘ

2(Θ, δΘ)

)
. (16)

To demonstrate injectivity, we need to show that

−∆δΘ− g(ϕ)δΘ− δλΘ− λδΘ = 0,

(Θ, δΘ) = 0,
(17)

admits only the trivial solution (δλ, δΘ) = (0, 0) ∈ R × H1
0 (Ω). To this aim, suppose (δλ, δΘ) is

some solution pair. Using Θ as a test function in the first equation in (17) we obtain

(∇δΘ,∇Θ)− (g(ϕ)δΘ,Θ)− δλ(Θ,Θ)− λ(δΘ,Θ) = 0. (18)

Realizing that (∇δΘ,∇Θ) − (g(ϕ)δΘ,Θ) − λ(δΘ,Θ) = 0 due to symmetry and the definition of
the eigenvalue, relation (18) reduces to 0 = δλ(Θ,Θ) = δλ. Plugging this back into (17) we see
that (λ, δΘ) is an eigenpair. But this implies δΘ = 0 because the multiplicity of λ is one and δΘ is
orthogonal to Θ. Thus, we have shown injectivity.

For surjectivity, we need to show that for any v ∈ H−1(Ω) and µ ∈ R system

−∆δΘ− g(ϕ)δΘ− δλΘ− λδΘ = v

(Θ, δΘ) = µ
(19)

has a solution (δλ, δΘ). In what follows, we will construct a solution pair (δΘ, δλ) associated with
(v, µ). We use aspects of the proof of [44, Section 6.2, Theorem 4]. Fix some γ > M +λ and define
the mappping Lγ := −∆ − g(ϕ) − λI + γI. Since γ > M + λ, the operator Lγ is H1

0 (Ω)-
coercive, bounded, and linear. In what follows, we let L := L0. Hence, L−1

γ exists. Moreover, since
the canonical embeddingE1,−1 ofH1

0 (Ω) intoH−1(Ω) is compact, the operatorK := (E1,−1◦L−1
γ )

is a compact linear operator from H−1(Ω) into itself.
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Note that for the sake of making the compact embedding of H1
0 (Ω) into H−1(Ω) explicit, we include

the embedding operatorE1,−1. However, we have left this out of the notation on many other occasions
for the sake of readability, e.g. in the definition of Lγ .

The dual operator of K , denoted by K ′, is given by K ′ = L−1
γ E1,−1. This is a mapping from H1

0 (Ω)
into itself. The latter follows from the fact that E1,−1 : H1

0 (Ω) → H−1(Ω) is defined by E1,−1ψ =
(ψ, ·)L2 , where ψ ∈ H1

0 (Ω). Therefore, for any ξ ∈ H1
0 (Ω), we have 〈E1,−1ψ, ξ〉 = (ψ, ξ)L2 =

〈ψ,E1,−1ξ〉. Hence, E1,−1 coincides with its dual operator. Similarly, for some h ∈ H−1(Ω), there
exists a unique zh := L−1

γ h ∈ H1
0 (Ω). Then given an arbitrary k ∈ H−1(Ω) we have

〈L−1
γ h, k〉 = 〈zh, k〉 = 〈zh,LγL−1

γ k〉 = 〈L′γzh,L−1
γ k〉 = 〈Lγzh,L−1

γ k〉 = 〈h,L−1
γ k〉.

The second-to-last equality follows from the specific form of Lγ . Hence, L−1
γ also coincides with its

dual operator.

Next, using R : H1
0 (Ω) → H−1(Ω) with R = −∆ as the Riesz isometry, we define the adjoint

K∗ : H−1(Ω) → H−1(Ω) of K by K∗ = RK ′R−1 = −∆L−1
γ E1,−1(−∆)−1. In addition, we

observe that K ′Θ = γ−1Θ, since z = K ′Θ = L−1
γ E1,−1Θ means

Lγz = E1,−1Θ⇔ [L+ γ]z = E1,−1Θ⇒ z = γ−1Θ. (20)

This property carries over to the adjoint as well since K∗RΘ = RK ′R−1RΘ = RK ′Θ = γ−1RΘ,
i.e., K∗RΘ = γ−1RΘ.

Continuing, we use the Fredholm alternative, see e.g., [44, Appendix D, Theorem 5], which implies

Rng(γ−1I −K) = Ker(γ−1I −K∗)⊥. (21)

Here, I is the identity on H−1(Ω) and the orthogonal complement is defined using the inner product
on H−1(Ω).

Next consider that for w ∈ Ker(γ−1I −K∗), w ∈ H−1(Ω), we have

γ−1w −K∗w = 0⇔ γ−1w −RK ′R−1w = 0

⇔ γ−1R−1w − L−1
γ E1,−1R

−1w = 0

But then LγR−1w = γE1,−1R
−1w ⇒ [L + γ]R−1w = γE1,−1R

−1w, which futhermore implies,
LR−1w = 0⇒ R−1w = Θ. Hence, w = RΘ.

Conversely, for any t ∈ R, we can show that RΘ ∈ Ker(γ−1I −K∗) using an analogous argument.
Hence, it follows from this and (21) that

span(RΘ)⊥ = Rng(γ−1I −K). (22)

In fact, for any for any h ∈ span(RΘ)⊥ it follows from (20) that

(Kh,RΘ) = (h,K∗RΘ) = γ−1(h,RΘ) = 0, (23)

where (·, ·) represents the inner product on H−1(Ω). Hence,

Kh ∈ span(RΘ)⊥, (24)

as well. Then, taking v from (19), we observe that

〈v − (v,RΘ)H−1E1,−1Θ,Θ〉H−1,H1
0

= 〈v,Θ〉H−1,H1
0
− (v,RΘ)H−1(Θ,Θ)L2

= (v,RΘ)H−1 − (v,RΘ)H−1 · 1 = 0,
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where we once again make use of the Riesz representation theorem. It follows that (v−(v,RΘ)E1,−1Θ) ∈
span(RΘ)⊥. Furthermore, by (24), we also have K(v − (v,RΘ)E1,−1Θ) ∈ span(RΘ)⊥. Then by
the Fredholm alternative theorem, in particular due to (22), there exists a h ∈ H−1(Ω) such that

γ−1h−Kh = K(v − (v,RΘ)E1,−1Θ).

In fact, as the above equality implies h = E1,−1(γL−1
γ (h + v − (v,RΘ)E1,−1Θ)) we readily infer

that h ∈ H1
0 (Ω). Furthermore, it follows that for any ψ ∈ H1

0 (Ω)

〈γ−1Lh, ψ〉 = 〈v, ψ〉 − 〈v,Θ〉(Θ, ψ). (25)

Now define δΘ := γ−1h+ (µ− (γ−1h,Θ))Θ, δλ := −〈v,Θ〉. Then we have for any ψ ∈ H1
0 (Ω)

that

〈LδΘ− δλΘ, ψ〉 = 〈γ−1Lh, ψ〉+ (µ− (γ−1h,Θ))〈LΘ, ψ〉+ 〈v,Θ〉〈Θ, ψ〉 = 〈v, ψ〉.

due to (25) and LΘ = 0 due to the definition of eigenfunction. But this means that (δΘ, δλ) solves
the first equation in (19). Since obviously (Θ, δΘ) = µ, the second equality holds true as well. Thus,
we have verified the assumptions of the implicit function theorem.

4.6 Existence of an Optimal Topology

For notational simplicity, we define here the reduced objective J by

J (ϕ) := −
∫

Ω

j(ϕ, SΘ(ϕ))tr e(Su(ϕ))dx. (26)

In order prove existence of a solution, we require the following technical lemma.

Lemma 4.7. Under assumptions (A1)-(A4), J is bounded on Gad.

Proof. From [7, Lemma 3.2] we obtain that Su is bounded in H1
0 (Ω,R2) on Gad. Since Θ := SΘ(ϕ)

solves (9), we obtain for λ := Sλ(ϕ) the estimate

‖Θ‖H1
0 (Ω) ≤ C(λ+ c)‖Θ‖L2(Ω) = C(λ+ c)

for some C > 0. Then the boundedness of SΘ in H1
0 (Ω) on Gad follows. With u := Su(ϕ) and

Θ := SΘ(ϕ) we infer

|J (ϕ)| = |J(ϕ,u,Θ)| ≤
∫

Ω

|j(ϕ,Θ)tr e(u)|dx ≤ ‖j(ϕ,Θ)‖L2(Ω)‖u‖H1
0 (Ω,R2).

By (A3)-(A4), j(ϕ,Θ) is bounded in the L2(Ω)-norm. The assertion follows.

Using the previous lemma, we now prove the existence result.

Proposition 4.8. Under assumptions (A1)-(A4), (8) has an optimal solution.
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Proof. Due to Lemma 4.7 we may consider an infimizing sequence {ϕk} of (8). Given the form of G,
this sequence is bounded inL∞(Ω,RN). From Lemma 4.7 and from the form of the Ginzburg-Landau
energy we see that ϕk is bounded in H1(Ω,RN). This allows to select subsequences, denoted by
the same indices, such that ϕk ⇀ ϕ in H1(Ω,RN),uk := Su(ϕ

k) ⇀ u in H1
0 (Ω,R2),Θk :=

SΘ(ϕk) ⇀ Θ in H1
0 (Ω)for some ϕ ∈ H1(Ω,RN), u ∈ H1

0 (Ω,R2) and Θ ∈ H1
0 (Ω). From [7,

Lemma 3.2] we obtain ϕ ∈ G and u = Su(ϕ). Moreover, for any Θ̂ ∈ H1
0 (Ω) with (Θ̂, Θ̂) = 1 we

have
(∇Θ,∇Θ)− (g(ϕ)Θ,Θ) ≤ liminfk

[
(∇Θk,∇Θk)− (g(ϕk)Θk,Θk)

]
≤ liminfk

[
(∇Θ̂,∇Θ̂)− (g(ϕk)Θ̂, Θ̂)

]
= (∇Θ̂,∇Θ̂)− (g(ϕ)Θ̂, Θ̂),

where in the second inequality we have used that Θk globally minimizes (10) for ϕk. Since the mini-
mizers of (10) are the vectors corresponding to the smallest eigenvalue, we have Θ = SΘ(ϕ). Finally,
we obtain

lim
k

∫
Ω

j(ϕk,Θk)tr e(Su(ϕ
k)) =

∫
Ω

j(ϕ,Θ)tr e(u), liminfk fGL(ϕk) ≥ fGL(ϕ).

Since {ϕk} is a minimizing sequence and ϕ is feasible, ϕ is optimal for (8).

Before concluding this section, we mention that it is possible to obtain variational convergence argu-
ments for the multiphase Ginzburg-Landau-type function fGL based on arguments in [31] and [32].
From a mathematical standpoint, this is necessary to show that accumulation points of ε-dependent
solutions converge to solution of a related sharp-interface model. However, this would go beyond the
scope of this paper and will therefore be the focus of a future study.

4.9 First-Order Optimality Conditions

We now derive first-order necessary optimality conditions. As a byproduct of this result, we obtain
useful adjoint formulae for the elasticity and eigenvalue problems.

Theorem 4.10. Assume that (A1)-(A4) are satisfied. If ϕ, with the corresponding u = Su(ϕ) and
Θ = SΘ(ϕ), is an optimal solution to (8), then the following first-order necessary optimality conditions
are satisfied:

αε(∇ϕ,∇(ϕ̂−ϕ)) +
α

2ε
(1− 2ϕ, ϕ̂−ϕ) +

∫
Ω

[C′(ϕ)(ϕ̂−ϕ)]e(u) : e(p)dx

−
∫

Ω

F ′(ϕ)(ϕ̂−ϕ) : e(p)dx−
∫

Ω

[g′(ϕ)(ϕ̂−ϕ)]Θqdx ≥ 0, ∀ϕ̂ ∈ Gad,
(27)

where p ∈ H1
0 (Ω,R2) is the adjoint state associated with the elasticity equation

−divC(ϕ)e(p) = −J ′u(ϕ,u,Θ) in Ω, (28)

and q ∈ H1
0 (Ω) is the adjoint state associated with the Helmholtz equation

−∆q − g(ϕ)q − λq = 〈J ′Θ(ϕ,u,Θ),Θ〉Θ− J ′Θ(ϕ,u,Θ) in Ω,

(q,Θ) = 0.
(29)

DOI 10.20347/WIAS.PREPRINT.2500 Berlin 2018



L. Adam, M. Hintermüller, D. Peschka, T. Surowiec 14

Proof. For the first part of the objective of (8) we have J = J2 ◦ J1, where J1 : H1(Ω,RN) →
Lq(Ω,RN)× L2(Ω)× Lq(Ω) and J2 : Lq(Ω,RN)× L2(Ω)× Lq(Ω)→ R are defined by

J1(ϕ) := (ϕ, tr e(Su(ϕ)), SΘ(ϕ)), J2(ϕ, v,Θ) := −
∫

Ω

ĵ(ϕ(·),Θ(·))v(·)dx.

Then J1 is differentiable for all q ∈ [1,∞) due to Lemma 3.2 and Theorem 4.5. Since j is a polynomial
due to (A3), by direct computation it can be shown that J2 is differentiable, as well. Consequently, the
reduced objective of (8) is differentiable.

By a standard technique, see e.g., [45, Section 1.6.2], we obtain

J ′(ϕ) = J ′ϕ(ϕ,u) + E ′ϕ(ϕ,u)∗p+G′ϕ(ϕ,u)∗(qΘ, qλ), (30)

where E denotes the operator on the left-hand side of the elasticity equation (E(ϕ)) and G is de-
fined as in the proof of Theorem 4.5. Here p ∈ H1

0 (Ω,R2) is the solution of the adjoint equation
E ′u(ϕ,u)∗p = −J ′u(ϕ,u,Θ) and similarly (qλ, qΘ) ∈ R×H1

0 (Ω) solves the second adjoint equa-
tion G′λ,Θ(ϕ,u)∗p = −J ′λ,Θ(ϕ,u,Θ). While the first adjoint equation amounts to (28), the second
adjoint equation is given by

−∆qΘ − g(ϕ)qΘ = λqΘ + qλΘ− J ′Θ(ϕ,u,Θ) in Ω,

(qΘ,Θ) = 0.
(31)

Using Θ as a test function in the first equation, the boundary condition and along with the fact that
(λ,Θ) is an eigenpair implies qλ = 〈J ′Θ(ϕ,u,Θ),Θ〉. Plugging this back to (31) and setting
q := qΘ, we obtain (29). The rest of the proof follows from standard optimality theory, see e.g.,
[46].

Remark 4.11. As in [7], we cannot guarantee the existence of Lagrange multipliers for the con-
straints defining Gad. Consequently, we only have the variational optimality conditions as opposed
to a multiplier-based system.

5 Solution Method for the Optimization Problem

5.1 Data Assumptions

As explained in the introduction, the choice of integrand j(ϕ,Θ) is crucial for forcing an overlap of the
first eigenmode with the Ge experiencing the highest levels of strain. For our numerical experiments,
we choose

j(ϕ,Θ) := ϕGeΘ
2. (32)

This is justified since, on the one hand, ϕGe ∈ [0, 1] is in effect a smoothed characteristic function for
the region ΩGe occupied by Ge. On the other hand, since we are optimizing for tensile strain, we expect
tr e(u) ≥ 0 (at least on average over the domain Ω). Therefore, a minimization procedure should
force Θ2 to be as large as possible on ΩGe. Since the eigenvalue problem includes a normalization
constraint: (Θ,Θ) = 1, this ultimately confines the bulk of supp Θ to ΩGe.

Concerning Gad, we need to fix certain regions Πi ⊂ Ω. This is due to the fact that the actual physical
values associated with SiN and Ge, see Table 1, are somewhat counterproductive to the aims of the
choice of objective function. Since the strain |e(u)(x)| is largest for x ∈ ΩSiN and |Θ(x)| is largest
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for x ∈ ΩGe (followed by ΩSiN), it is more advantageous to maximize the strain when Ge is omitted
altogether.

There are several possibilities to circumvent this issue in the model: Prescribe a part of the domain;
add a volume constraint; or add an appropriate term to the objective as in (32). Although the first
possibility restricts the freedom of the design space, the latter two options are not appropriate for
coarse meshes as they are bypassed whenever ϕGe has fractional values. As we employ a warm-
start/coarse-to-fine mesh refinement strategy in our numerical experiments, we choose the first option.

5.2 Optimization Algorithm

For the actual optimization algorithm, we use a standard projected gradient step, as in [47, 48]. De-
noting the entire reduced objective by Ĵ := J + αfGL, we thus obtain at each step

ϕk+1(t) = ProjG
(
ϕk − tR−1

Riesz(∇Ĵ (ϕk))
)
, t > 0. (33)

Since each ϕk ∈ H1(Ω;RN), the gradient ∇Ĵ (ϕk) ∈ (H1(Ω;RN)∗, which is not identified with
H1(Ω;RN). Therefore, we need to obtain the Riesz representationR−1

Riesz(∇Ĵ (ϕk)) ∈ H1(Ω;RN).
Failure to do so may result in a theoretical inconsistency on the continuous level as well as a dras-
tically reduced convergence rate or even lack of convergence in the discrete setting (asymptotically,
assuming conforming discretizations). Fortunately, the Riesz representation ξ = R−1

Riesz(∇Ĵ (ϕk))
can be easily calculated by solving a linear elliptic PDE:

−∆ξ + ξ = ∇Ĵ (ϕk) in Ω,

∂nξ = 0 on ∂Ω.
(34)

As suggested in [49], we make use of the generalized Armijo step size rule in order to select the step
size tk = t in (33) and set ϕk+1 := ϕk+1(tk). Here, for a given σ > 0 we use a simple backtracking
strategy to find the largest tk > 0 such that

Ĵ (ϕk)− Ĵ (ϕk+1) ≥ σ(tk)−1‖ϕk −ϕk+1‖2
H1(Ω,RN ) (35)

is satisfied. We then iterate until

‖ϕk − ProjG

(
ϕk −R−1

Riesz(∇Ĵ (ϕk)
)
‖H1(Ω,RN ) ≤ tolPG (36)

is satisfied for some tolerance tolPG > 0.

It may at first seem odd that we employ this first-order numerical method. In particular, as noted in [49],
the projected gradient method is best used when the set G is simple enough that ProjG is a trivial cal-
culation; in contrast to the current situation that requires the solution of an elliptic variational inequality
for each projection. Nevertheless, a direct application of second-order optimization techniques as in
[7] is not possible here. Indeed, if we were to write the Helmholtz equation in the form of optimality
conditions (5), there would be no guarantee that the steps generated by a second-order method are
related to the smallest eigenvalue.

Finally, in order to calculate∇Ĵ we need to solve both forward equations and both adjoint equations
(see (4.10)). For the solution of the Helmholtz equation (H(ϕ)), we first apply the shift as described
in Section 5.3 below, then (for the discretized problem) we solve the resulting eigenvalue problem via
MATLAB function eigs (which is built on top of the ARPACK library by [50]) and finally apply a shift
back. Since the directional derivative from (14) has a unique solution, it can be simply solved as a
system of linear equations.
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5.3 Estimating the Shift Parameter c

The choice of the shift parameter c in (9) is a delicate matter as it has a major impact on the computa-
tion of the smallest eigenvalue. Several methods such as the inverse method [51] find the eigenvalue
closest to zero and the rate of convergence equals to the ratio of the two eigenvalues closest to zero.
Thus, if the shift is too small, a different eigenvalue may be found while if the shift is too big, the
convergence will be slow.

To keep positivity of the smallest eigenvalue, it is always possibly to choose c = M , where M is
the bounding constant from (A2). However, this choice may be suboptimal. Here, we present two
possibilities for a shift which ensures positivity of the smallest eigenvalue.

Lemma 5.4. Set Ω = (0, a)× (0, b) and assume that (A2) and (A4) hold. Consider the shift

c := L(M + ‖g(0)‖L∞(Ω))− 2π2 /ab . (37)

Then the smallest eigenvalue of −∆− g(ϕ) + cI is nonnegative for all ϕ ∈ H1(Ω,RN).

Proof. Denote by λ1 the smallest eigenvalue of the operator −∆− g(ϕ) and by λ1(Ω) the smallest
eigenvalue of the operator −∆. From Lemma 4.4 we infer

|λ1 − λ1(Ω)| ≤ L‖g(ϕ)− g(0)‖L∞(Ω) ≤ L(M + ‖g(0)‖L∞(Ω)).

From [40, Proposition 8.5.2] we obtain λ1((0, a)× (0, b)) = 2π2

ab
. The assertion follows.

Let ϕ be the current iterate of a procedure for solving our optimization problem. If c is the shift and
the computed smallest eigenvalue of operator −∆ − g(ϕ) + cI equals λ1, then the optimal shift is
c− λ1. Even though we cannot use this information for determining ϕ, it is of use for determining the
next iterate. In fact, in this case we may use the shift in (38). In what follows, CP denotes the Poincaré
constant, i.e., for every Θ ∈ H1

0 (Ω) one has ‖Θ‖L2(Ω) ≤ CP‖∇Θ‖L2(Ω).

Lemma 5.5. Assume that (A2) and (A4) hold and that for ϕ ∈ H1(Ω,RN) and for some shift c we
know the eigenvalue λ1 of operator −∆ + g(ϕ) + cI . Consider δϕ ∈ H1(Ω,RN), define

ĉ := c− λ1 + 2−3/4C−2
P (C2

P + 1)(2MC2
P + 1)L‖δϕ‖L2(Ω) (38)

and denote by λ̂1 the smallest eigenvalue of operator−∆+g(ϕ+δϕ)+ ĉI . Then λ̂1 ≥ 0. Moreover,
denote the second smallest eigenvalues of the previous two operators by λ2 and λ̂2, respectively. Let
κ := 2−3/4C−2

P (C2
P + 1)(2MC2

P + 1)L. If

‖δϕ‖L2(Ω) < (λ2 − λ1)/(2κ), (39)

then
0 ≤ λ̂1λ̂

−1
2 ≤ 2κ(λ2 − λ1)−1‖δϕ‖L2(Ω). (40)

Proof. Due to [52, Chapter 3, Lemma 3.3] we for any Θ ∈ H1
0 (Ω) have

‖Θ‖2
L4(Ω) ≤ 2

1
4‖∇Θ‖L2(Ω)‖Θ‖L2(Ω) ≤ 2−

3
4

(
‖∇Θ‖2

L2(Ω) + ‖Θ‖2
L2(Ω)

)
≤ 2−

3
4 (1 + C2

P )‖∇Θ‖2
L2(Ω)
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By definition, C−1
P = inf{‖∇u‖L2(Ω)/‖u‖L2(Ω) : u ∈ H1

0 (Ω)}. The latter optimization problem
can be reformulated as inf{‖∇u‖L2(Ω) : u ∈ H1

0 (Ω), ‖u‖L2(Ω) = 1}, which has a solution

based on our analysis of (10). Therefore, there exists some Θ̂0 ∈ H1
0 (Ω) with 1 = ‖Θ̂0‖L2(Ω) =

CP‖∇Θ̂0‖L2(Ω). Now we provide an estimate for constant L̃ in (12). Fix any ϕ̂ ∈ H1(Ω,RN) and

let Θ̂ ∈ H1
0 (Ω) be the corresponding minimizer of (10). Then we have

‖g(ϕ̂)− g(ϕ)‖L2(Ω)‖Θ̂‖2
L4(Ω) ≤ L‖ϕ̂−ϕ‖L2(Ω)‖Θ̂‖2

L4(Ω)

≤ 2−
3
4L(C2

P + 1)‖ϕ̂−ϕ‖L2(Ω)‖∇Θ̂‖2
L2(Ω)

≤ 2−
3
4L(C2

P + 1)‖ϕ̂−ϕ‖L2(Ω)(2M + ‖∇Θ̂0‖2
L2(Ω))

= 2−
3
4C−2

P (C2
P + 1)(2MC2

P + 1)L‖ϕ̂−ϕ‖L2(Ω),

where the third inequality is due to (11) and L is the Lipschitz constant of ĝ. Thus, we have L̃ =
2−

3
4C−2

P (C2
P + 1)(2MC2

P + 1)L. Then the first two eigenvalues of the operator −∆ + g(ϕ) + ĉI
are equal to λ̃1 := L̃‖δϕ‖L2(Ω) and λ̃2 := L̃‖δϕ‖L2(Ω) + λ2 − λ1, respectively. From Lemma 4.4

we then obtain 0 ≤ λ̂1 ≤ 2L̃‖δϕ‖L2(Ω), λ2 − λ1 ≤ λ̂2.

Note that the shift c = M and the shift from Lemma 5.4 are independent of ϕ, where the one from
Lemma 5.5 depends on the perturbation. Observe, furthermore, that an iterative scheme for solving
the optimization problem (8) in reduced form yields δϕ → 0 in L2(Ω,RN). Hence, the shift in (38)
converges and the ratio in (40) will tend to zero.

6 Numerical Experiments

In this section, we present the results of numerical optimization experiments. The optimal solution
is then used in the final section below to demonstrate the electronic properties of the associated
microbridge design.

6.1 Structural Assumptions: Elasticity and Optics

For the elasticity equation, we primarily follow the setting in [7]. The ϕ-dependent elasticity tensor is
of the form

C(ϕ) := ĉut(ϕ1)C1 + · · ·+ ĉut(ϕN)CN ,

where Ci is a standard elasticity tensor associated with material i. Thus, for E1, E2 ∈ R2×2 we have
CiE1 :E2 = λitrE1trE2 + 2µiE1 :E2, where λi and µi are Lamé constants of individual materials
and ĉut : R→ R is the cutoff function

ĉut(x) :=


arctg(x− δ2) + δ2 if x ≥ δ2,

x if x ∈ [δ1, δ2),

x− 2δ1(x− δ1)3 − (x− δ1)4 if x ∈ [0, δ1),

a arctg(bx) + δ4
1 if x < 0

(41)

for some small δ1 > 0, large δ2 > 0, a = δ4
1/π, and b = (1− 2δ3

1)π/δ4
1 . Note that the cutoff

function is a twice continuously differentiable increasing function with the property ĉut(x) ≥ δ4
1/2 for

all x ∈ R and thus (A2) is satisfied. As in [7], where we employed second-order optimization methods,
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ĉut is chosen to ensure that C is sufficiently smooth and the resulting differentiable operator remains
elliptic. Note that as δ1 → 0 and δ2 → 1, ĉut approaches the identity on [0, 1].

Concerning the Helmholtz equation, we define g by

g(ϕ) := 2π2λ−2(ε1 cut(ϕ1) + · · ·+ εN cut(ϕN)). (42)

Here, λ > 0 is the desired wavelength and εi > 0, i = 1, . . . , N , are the relative permittivities of the
individual materials. For some small δ3 > 0, the cutoff function cut : R→ R

cut(x) :=


δ3 arctg( x

δ3
) if x < 0,

x if x ∈ [0, 1],

1 + δ3 arctg(x−1
δ3

) if x > 1

(43)

is necessary for assumption (A2) to hold true. Since the requirements on C and g are different, we
work with different cutoff functions.

6.2 Discretization and Refinement Strategies

For the numerical implementation, we discretize the underlying function spaces using P1-finite ele-
ments. All numerical experiments are carried out using MATLAB. In order to increase the computa-
tional efficiency of the scheme, we use an adaptivity heuristic to generate new meshes following the
“red” refinement strategy, cf. [53], which is implemented in the package P1-AFEM, see [54]. The mark-
ing heuristic is as follows: After solving (8) on a given mesh, every element on which the phases are
not pure or where there is a transition between two materials is refined. Otherwise, we coarsen or
leave the element unchanged if there exist pure phases and no transition.

In addition to the role of the various phases in the refinement strategy, we need to take into account
the interfacial thickness parameter ε, which appears in the Ginzburg-Landau-term fGL. Since ε corre-
sponds to the interfacial thickness, the initial ε is chosen to be twice the length of the largest element.
Subsequently, we divide ε by 2 upon every mesh refinement. We refine the mesh in our experiments
five times. For the projection onto the Gibbs simplex G, we use the potentially mesh-dependent semis-
mooth Newton method as suggested in [55], where it is shown to be equivalent to a primal-dual active
set strategy with warm start. This strategy is efficient provided the active sets are stable over mesh
refinements. Another possibility would be to use the path-following method from [56], as it is mesh-
independent.

6.3 Parameters and Starting Values

As mentioned above, we consider three possible materials: Ge, SiN, SiO2 as well as air. In Table 1
we summarize their physical properties, see [57, 58, 59] and the fixed domains Πi are given by:
ΠGe := [−0.125, 0.125] × [1, 1.49], ΠSiN := [−0.75, 0.75] × [1.5, 1.75], Π SiO2 := [−2, 2] ×
[0, 0.99], Πair := [−2, 2]× [2.5, 3] (in µm) Since the general model contains a number of parame-
ters, we list them here for convenience:

� N : Number of phases

� α: Weights in the objective for the Ginzburg-Landau energy fGL

� ε: Parameter corresponding to interfacial thickness
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λ [GPa] µ [GPa] ε [-] σ0 [GPa] ε0 [-]
Ge 44.279 27.249 17.64 · ·
SiN 110.369 57.813 4 −3.8 ·
SiO2 16.071 20.798 2.25 · 2.6·10−3

Table 1: List of material properties for elasticity.

α N hmin εmin δ1 δ2 δ3 tolPG σ
4·10−4 4 2−8 2−7 10−3 1016 10−3 10−6 10−4

Table 2: List of parameters.

� δ1, δ2, δ3: Cutoff parameters from (41) and (43)

� ε0, δ0: Constants for the eigenstrain generated by SiO2 and the thermal
(pre-)stress generated by SiN, see (3)

� λ, εi: The wavelength and the relative permittivities of materials, see (42)

� tolPG: Stopping tolerance for first-order system (36)

� hmin, εmin: Width of the smallest triangle and value of ε on the finest mesh

The parameter values are summarized in Table 2. The cutoff parameters δ1, δ2, and δ3 were chosen
so that the cutoff has a negligible effect on the interval (0, 1). Since Ω = (−2, 2) × (0, 3) (in µm),
the values hmin = 1

256
µm and εmin = 1

128
µm give rise to a rather fine mesh along the interface. For

the wavelength we choose λ = 1.64µm.

6.4 Numerical results

In Figure 2 we depict the optimal ϕ (left) and the corresponding strain field (right). To keep the dis-
crete instances small, we employ the previously described mesh refinement strategy. Furthermore, we
coarsened all elements where there was only one pure phase. The meshes after the first, third and
final fifth refinement are shown in Figure 3. Since we are able to drive ε to a rather small value, the
final design has a rather sharp interface, see Figure 2.

The number of active nodes (where no material is prescribed) is depicted in the left-hand side of Table
3. The small increase from the penultimate to the final mesh is caused by the disapprearance of an
artefact above the structure, whose presence can be inferred from the structure of the refined mesh in
Figure 3. The refined region above the structure in the final mesh is a remanent of this artefact, which
disappears in the final phase field ϕ, see Figure 2. The number of iterations is shown on the right-
hand side of Table 3. Note that on the intermediate meshes 3, 4, and 5, we accepted a suboptimal,
i.e., substationary, solution after reaching 500 iterations. Nevertheless, on Mesh 6, the algorithm only
needs 223 iterations to reach a tolerance below 10−7.

DOI 10.20347/WIAS.PREPRINT.2500 Berlin 2018



L. Adam, M. Hintermüller, D. Peschka, T. Surowiec 20

Figure 2: Optimal ϕ (left) and its corresponding strain field (right).

Figure 3: Adaptively updated mesh (both refined and coarsened) after first, third and fifth refinement.

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 Mesh 6
active 345 1043 3027 9902 25824 36273
iter 37 427 500+ 500+ 500+ 223
res 9.33·10−8 8.95·10−8 8.42·10−5 9.95·10−5 3.26·10−7 7.94·10−8

GL 9.298 8.821 8.659 9.154 8.630 8.580

Table 3: active: Number of active nodes (with no material prescribed), iter: number of iterations,
res: the best residual (36) and GL: the value of the Ginzburg-Landau energy for all meshes.
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Figure 4: (left) Original phase fields ϕi with inserted Si contacts and (right) optimized phase fields ϕi
with inserted Si contacts and mesh with shading indicating i ∈ {Ge,SiN,SiO2,air,n-Si,p-Si}.

7 Simulation of Carrier Transport for the Optimal Design

In order to highlight the improvement by the optimization procedure, we conclude the paper with a
detailed simulation of stationary solutions for the associated drift-diffusion equations for the initial and
optimized material configuration. In fact, we will see below that the strain field generated by the optimal
configuration ϕ leads to a positive net gain as compared to the initial design with negative net gain.

However, in order to make both material distributions technically feasible, we first manually add two
phase fields ϕi with i = n-Si or i = p-Si representing two thin, highly n and p-doped silicon layers
above and below the germanium, c.f. Figure 4.

Then, to solve for stationary solutions of the van Roosbroeck system (6), we transform the equation
from charge carrier densities (n, p) to the so-called quasi-Fermi potentials (φn, φp), defined by

n = NcF
(
q(φ−φn)−Ec

kBT

)
, p = NvF

(
q(φp−φ)+Ev

kBT

)
, (44)

where F (η) = exp(−η) for Boltzmann distributions or F (η) = F3/2(η) the complete Fermi-Dirac
integral with index 3/2 for Fermi-Dirac distributions. By Nc, Nv we denote the material dependent
effective density of states, Ec, Ev are the conduction and valence band-edges, and q is, as before,
the elementary charge. Rewriting the van Roosbroeck system in these terms has the advantage of
guaranteeing positivity of (n, p) and it will formally ensure continuity of (φn, φp) at heterojunctions,
where (n, p) are usually discontinuous. We may now write the stationary form of the van Roosbroeck
system (6) in its weak form, where we seek (φ, φn, φp) ∈ H1

D(Ω)3 such that the nonlinear system of
equations ∫

Ω

ε0εr∇φ · ∇v dx = q

∫
Ω

(Cdop + p− n)v dx, (45a)∫
Ω

qnµn∇φn · ∇vn dx =

∫
Ω

qRnetvn dx, (45b)∫
Ω

qpµp∇φp · ∇vp dx = −
∫

Ω

qRnetvp dx, (45c)

holds for all (v, vn, vp) ∈ H1
0 (Ω)3. The material data µn, µp, Nc, Nv, Ec, Ev, εr, Cdop depend on

space through the phase fields via interpolated material parameters as introduced in Tab. 4, e.g.,
µn(x) =

∑
i µ

i
nϕi(x).

At Ohmic contacts ΓD we enforce inhomogeneous Dirichlet boundary conditions for the potentials,
otherwise we have natural boundary conditions for (45). In order to rewrite Rnet for general distribution
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functions F one has to ensure Rnet = 0 in thermal equilibrium, where φn = φp = 0, which we can
satisfy by using

Rnet =
(

1− exp
(

q
kBT

(φn − φp)
)) np

τp(n+ ni) + τp(p+ ni)
,

for Shockley-Read-Hall recombination terms, see also [60]. In the Boltzmann situation this expression
reduces to the well-known form. We use a closed-form approximation for F3/2 from [61] and discretize
the weak form (45) using triangular P1 finite elements, where all the integration of nonlinearities is per-
formed using a standard 7-point Gauss quadrature. Boundary conditions are enforced using Lagrange
multipliers. The resulting discretized system of equations is solved by using Newton’s method. In order
ensure its convergence for large applied biases Vext we employ the following strategy:

(i) First, find pointwise φ̄ so that the right-hand-side of (45a) vanishes with φn = 0 and φp = 0, i.e.,
solve Cdop + p− n = 0.

(ii) Solve (45a) for φ with φn = φp = 0, i.e., solve the nonlinear Poisson equation

−∇ · (ε0εr∇φeq) = q(C +NvF (ηp)−NcF (ηn))

where the previously determined φ̄ serves as initial data for Newton’s method with Vext = 0. The
resulting solution (φeq = φ, φn = 0, φp = 0) represents the solution at thermodynamic equilibrium.

(iii) Employ a path-following method to solve the entire system (45) for (φ, φn, φp) with Vext > 0. This
is done by using Newton’s method with the solution with a smaller bias as initialization. The Dirichlet
conditions at the two Ohmic contacts ΓDi

for i = 1, 2, are φ = φ̄ + V i
ext, φn = V i

ext, φp = V i
ext,

where V 1
ext = 0, V 2

ext = Vext and ΓD = ΓD1 ∪ ΓD2 and ΓD1 ∩ ΓD2 = ∅.

Even though standard approaches to van Roosbroeck systems employ Scharfetter-Gummel type dis-
cretizations using finite volume methods, [62], we decided to solve the multiphysics problem using
finite elements similar to [63]. This will in general lead to boundary layers for φn, φp at Ohmic con-
tacts. We address this by using a heuristic refinement strategy near contacts. Furthermore, in order to
compute the total current j = jp + jn with jn = −qnµn∇φn and jp = −qpµp∇φp at a contact ΓD1

we use the identity

J =

∫
ΓD1

j · n da = −
∫

Ω

q(nµn∇φn · ∇u+ pµp∇φp · ∇u) dx.

Here, we exploit the fact that ∇ · j = 0, j · n = 0 on ∂Ω \ ΓD, using a constructed test function u
with u = 1 on ΓD1 and u = 0 on ΓD2 . This definition of J is useful as it redistributes the evaluation
of ∇φn, ∇φp from the boundary layer to an evaluation in the volume Ω. For simplicity we choose
u to be harmonic with the above mentioned Dirichlet data. In order to evaluate the optoelectronic
performance of the optimized design, we compute and show the currents, current densities, and the
net-gains, where the latter is defined (pointwise) by subtracting optical losses from optical gain and
scaling the result by the optical mode. The resulting gain model is the same as published in [9], and
generally higher net-gains for given current is desired.

7.1 Discussion and conclusion

As desired, the topology delivers a rather smooth material distribution, which increases the in-plane
biaxial strain in the Ge phase for the initial design from an average ēxx = 2 ·10−4 to an average strain
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of ēxx = 9 · 10−4 for the improved design, see Fig. 2. While loss mechanisms due to low confinement
or recombination are not included in the optimization, the cost functional in (8) is designed to optimize
the overlap of the optical mode and regions of large tensile strain. Therefore, the optimal designs
exhibit overall improvements for the integrated strain (on average) versus the maximal/peak in-plane
strains. For the latter, we see here that the maximal (pointwise) in-plane strain in the Ge cavity only
features an increase by a factor of ×1.2.

Another interesting feature of the optimal designs is that the Ge phase is surrounded by an SiN stres-
sor. This is very similar to the all-around stressor designs considered for germanium microdiscs in
[64].

The optimized design also features an aperture, which, as we showed previously, can be highly ben-
eficial for lowering the threshold current of an edge-emitting laser. The main idea of the aperture is
visible in the hole-currents in Fig. 6, where the currents in the optimized microbridge (right) are guided
efficiently into the optical mode to recombine without creating a shortcut pathway around the center of
the optical mode, as it is the case for the initial microbridge (left). For better interpretation we also indi-
cate the material boundaries between the phases by plotting regions where ϕiϕj>0 between material
i and j in white. However, while a doping optimization can produce such an aperture geometry from a
suitably defined cost functional, the aperture of the optimized design is more likely created artificially
due to the location of the highly doped Si contacts above the cavity.

Nevertheless, due to the improved strain the Ge phase also features much higher modal gain at the
prescribed external bias, see Fig. 8. Also, the characteristic curve in Fig. 5 features a lower current, cer-
tainly due to higher Ohmic resistance based on the implementation of the aperture. Most noticeable,
however, is that the modal gain as well as the net-gain show significant improvement of the optimized
design as compared to the initial design. For a recent study containing a thorough explanation of the
calculation of the gain curves, we refer the interested reader to [9].

This allows us to conclude that, even though not yet fully coupled, topology optimization for optoelec-
tronic devices can improve device designs significantly. The optimized designs are similar to what
is considered by engineers. The optoelectronic simulations prove the feasibility of the optimization
strategy. Nevertheless, since optoelectronic devices also suffer from loss mechanisms due to recom-
bination, future optimization studies might even consider the fully coupled optoelectronic system.
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param. phys. unit Ge SiN SiO2 air Sitop Sibottom

εr [1] 16.2 7.5 3.8 1 11.9 11.9
µn [m2V −1s−1] 0.39 10−4 10−4 10−4 0.14 0.14
µp [m2V −1s−1] 0.19 10−4 10−4 10−4 0.045 0.045
Nc [1019cm−3] 1.256 10−2 10−2 10−2 3.2 3.2
Nv [1019cm−3] 0.118 10−2 10−2 10−2 1.8 1.8
Cdop [1019cm−3] 5 0 0 0 +20 −20
Ec [eV] 0.76? 1 1 1 1.169 1.169
Ev [eV] 0.09? 0 0 0 1.169 1.169
Dc [eV] −3.5 0 0 0 0 0
Dv [eV] +1.4 0 0 0 0 0

Table 4: Spatial interpolation π(x) =
∑

i ϕi(x)πi for electronic simulation given phase fields ϕi(x)
and pure phase material parameters πi. For the topology optimization we have i = 1 . . . 4, whereas
for the electronic simulation we introduce additional Si contact layers with i = 5, 6. The global pa-
rameters τn = τp = 10 ns and ni = 106 cm−3 are used for the recombination. (?) Given a
strain distribution e(u), the bandgaps are modified by deformation potentials Dαkl = Dαδkl,xx via
Eα(x) =

∑
i(Ei + Dαexx)ϕi(x) with α ∈ {c,v} and in-plane biaxial strain exx. The electronic pa-

rameters and deformation potentials are from [13], the values for µn, µp, Nc, Nv, Ec, Ev for SiN, SiO2

and air are chosen to prevent existence and transport of carriers.
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Figure 5: (left) Current-voltage characteristic of initial (red) and optimized (blue) device (right) current-
gain (solid) and current-net gain (dashed) characteristics of initial and optimized device showing that
the optimized configuration yields considerably higher gain and net gain compared to the initial design.
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Figure 6: Hole currents for (left) initial design and (right) and for optimized design. Material boundaries
are indicated in white.

Figure 7: Optical mode |Θ|2 (shading) and material boundaries indicated in white (left) for initial design
and (right) for optimized design.

Figure 8: Modal gain g|Θ|2 [cm−1] for (left) initial design and (right) optimized design shows almost
threefold increase in gain due to optimized design. Material boundaries are indicated in white.
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