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Abstract

Conditions on the stabilization parameters are explored for different ap-
proaches in deriving error estimates for the SUPG finite element stabilization
of time-dependent convection-diffusion-reaction equations that is combined
with the backward Euler method. Standard energy arguments lead to esti-
mates for stabilization parameters that depend on the length of the time step.
The stabilization vanishes in the time-continuous limit. However, based on
numerical experiences, this seems not to be the correct behavior. For this
reason, the time-continuous case is analyzed under certain conditions on the
coefficients of the equation and the finite element method. An error estimate
with the standard order of convergence is derived for stabilization parameters
of the same form that is optimal for the steady-state problem. Numerical
studies support the analytical results.

1 Introduction

Evolutionary convection-diffusion-reaction equations model the transport and reac-
tion of species. In applications, typically the size of the diffusion is much smaller
than the size of the convective term and solutions develop sharp layers. In this
case, it is well known that standard finite element methods perform poorly and ex-
hibit non-physical oscillations. Stabilization techniques are required in order to get
physically sound numerical approximations. This paper studies one of the currently
most popular finite element stabilizations, the Streamline-Upwind Petrov–Galerkin
(SUPG) method that was introduced for steady-state equations in [8, 2]. Meanwhile,
some results on the numerical analysis of the SUPG method for time-dependent
convection-diffusion-reaction equations and a number of numerical studies can be
found in the literature.

Concerning the numerical analysis, the case of the transient convection
equation without diffusive and reactive term is considered in [3]. It is shown
that a finite element discretization in space coupled with the backward Euler, the
Crank–Nicolson or the second order backward differentiation formula in time leads
to the classical error bound for the SUPG method in the L2 norm (suboptimal
by a factor of one half) and also to an optimal error bound in the norm of the material
derivative. The results are obtained under certain regularity conditions on the data
and with stability parameters that depend only on the mesh size in the space vari-
able. However, an optimal bound for the error in the streamline derivative is not
proven. If the data are not sufficiently smooth or if the velocity field
is non-solenoidal, then the bound for the backward Euler method
is valid under the condition δ2 = O(k) and the bound for the Crank–Nicolson scheme
is valid under the condition δ = O(k), where δ is the SUPG stabili-
zation parameter and k the length of the time step. An analogous condition for
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δ was found in [13] where a Galerkin least-squares method in space coupled with a
θ-scheme in time is analyzed. The analysis of [13] excludes the case θ = 1/2. Finally,
the stability of the SUPG finite element method for transient convection-diffusion
equations is studied in [1]. However, as it is shown in [3], the coercivity result of [1]
leads to suboptimal global estimates in time.

Numerical studies of the SUPG method, together with a discussion on similarities
and differences to other stabilized finite element methods, can be found in [6]. In [10,
11], the SUPG method was compared in comprehensive studies with other stabilized
finite element methods. The approach in these studies was as follows: 1) discretize
the equation in time, 2) consider the equation in each discrete time as a steady-
state convection-diffusion-reaction equation, 3) discretize this equation in space with
a stabilized method and apply a parameter choice that is appropriate for this type
of steady-state equation. This methodology leads to parameters that are (in the
notation of formula (3.1) below) proportional to the length of the time step, see
formulae (8) and (11) in [10]. The numerical results with this approach show large
spurious oscillations compared with other methods. Such oscillations can be observed
also if the SUPG method, derived in this way, is used in coupled systems coming from
applications, as in [9].

Altogether, the numerical results obtained so far are not at all satisfactory. We
think that the reason for this is the choice of the stabilization parameters that depend
on the length of the time step. This opinion is also stated in [7]. There, another ap-
proach for deriving the fully discrete equation is considered: 1) discretize the equation
in space with a stabilized method, 2) choose standard stabilization parameters for this
equation, 3) discretize the equation in time. Because the temporal discretization is
performed after the choice of the stabilization parameters, these parameters cannot
depend on the time step. Numerical studies in [7] show that this approach leads
to much more stable results for small time steps compared with the approach from
[10, 11]. In addition, another parameter choice is proposed in [7] that, e.g., does not
depend on the length of the time step if a steady-state solution is approached, the
so-called element-vector-based parameter choice.

The goal of the present paper consists in exploring the conditions on the sta-
bilization parameters for different approaches in the numerical analysis for deriving
error estimates. In particular, error estimates that do not lead to a dependency of
the stabilization parameter on the length of the time step are of interest. To our best
knowledge, error estimates of this kind for the SUPG method applied to evolutionary
convection-diffusion-reaction equations are not yet available. The main difficulty in
the analysis of the method comes from the fact that the time derivative has to enter
the stabilization term in order to ensure consistency and this adds a non-symmetric
term that cannot be easily bounded using standard energy arguments.

This paper concentrates on the backward Euler scheme as temporal discretiza-
tion. In Sections 3 and 4, stability bounds and error estimates are derived based on
standard energy arguments. Two different ways to argue lead to error estimates under
the conditions δ = O(k) and δ = O(k1/2h), respectively. These conditions arise in
the stability bounds from the stabilization term with the discretization of the time
derivative. In both choices, the stabilization parameters tend to zero on a fixed spatial
grid as the length of the time step approaches zero. As discussed above, this seems
not to be the correct choice. This is also seen in numerical studies, e.g., in Example
6.2 below. Altogether, the limit of the time-continuous case could not be treated so
far satisfactorily by standard energy arguments.
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To obtain some insight in the time-continuous case, Section 5 studies a special
problem, where the convection field and the reaction do not depend on time, and
the convection field is solenoidal. The SUPG method is applied to P1 finite elements
on a uniform grid with width h. The stabilization parameters are chosen to be the
same on all mesh cells, depending only on the coefficients of the equation and on
h: δ = O(h). Under certain regularity assumptions on the solution and extending
the analysis of [3], an error estimate for the L2 norm and the norm of the material
derivative is derived with the standard order of convergence 3/2. In the next step,
based on this result, an estimate for the error in the norm of the streamline derivative
is proven with the same order of convergence. To our best knowledge, this is the first
result that proves standard order of convergence for the SUPG method applied to
evolutionary convection-diffusion-reaction equations with a parameter choice that is
essentially the same as in the steady-state case.

The next part of the paper, Section 6, presents some numerical studies. First,
an example with a smooth, given solution is considered. The simulations performed
at this example support the error estimates from the previous sections. Second, a
rotating body problem is studied for the P1 finite element, on a given spatial grid,
and for a very small length of the time step. The results show clearly that in this
situation a choice of the stabilization parameter independently of the length of the
time step has to be preferred.

The paper concludes in Section 7 with a summary of the results and an outlook
to open questions.

2. The SUPG Method and Preliminaries of the Analysis. Throughout
this paper, standard notations are used for Lebesgue and Sobolev spaces. Generic
constant that do not depend on the mesh width or the length of the time step are
denoted by C.

A linear time-dependent convection-diffusion-reaction equation is given by

ut − ε∆u + b · ∇u + cu = f in (0, T ]× Ω,
u = 0 on [0, T ]× ∂Ω,

u(0,x) = u0(x) in Ω,
(2.1)

where Ω is a bounded open domain in Rd, d ∈ {1, 2, 3}, with boundary ∂Ω, b(t,x)
and c(t,x) are given functions, ε > 0 is a constant diffusion coefficient, u0(x) are given
initial data and T is a given final time. For simplicity, the case that Ω is a convex
polygonal or polyhedral domain is considered. In the following, it is assumed that
there is a constant µ0 > 0 such that

0 < µ0 ≤ µ(x) =
(

c− 1
2
∇ · b

)
(x), ∀ x ∈ Ω. (2.2)

This is a standard assumption in the analysis of equations of type (2.1), [14].
Let V = H1

0 (Ω). A variational form of (2.1) reads as follows: Find u : (0, T ] → V
such that

(ut, v) + (ε∇u,∇v) + (b · ∇u + cu, v) = (f, v) ∀ v ∈ V, (2.3)

and u(0,x) = u0(x). Here, (·, ·) denotes the inner product in L2(Ω)d, d ∈ {1, 2, 3}.
In numerical simulations, V is replaced by a finite dimensional (finite element) space
Vh,r, where h indicates the fineness of the underlying triangulation Th and r ∈ N the
degree of the local finite element polynomials. This paper considers the case of a
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conforming finite element method, i.e. Vh,r ⊂ V . The time-continuous finite element
problem aims to find a function uh ∈ Vh,r that fulfills a problem of form (2.3) for
all test functions from Vh,r with an appropriate approximation of u0(x) at the initial
time.

Using now some temporal discretization, one obtains a finite element Galerkin
method for solving (2.3). It is well known that in the case of small diffusion, in
particular compared with the convection, the Galerkin method is instable and leads
to solutions that are globally polluted with huge spurious oscillations. A stabilization
of the Galerkin method becomes necessary. The probably most popular stabilized
finite element method is the SUPG method. This residual-based method adds artificial
diffusion along the streamlines of the solution. It has the form (time-continuous case):
Find uh : (0, T ] → Vh,r such that

(uh,t, vh) + aSUPG(uh, vh) +
∑

K∈Th

δK(uh,t,b · ∇vh)K

= (f, vh) +
∑

K∈Th

δK(f,b · ∇vh)K ∀ vh ∈ Vh,r,

with uh(0,x) being an appropriate approximation of u0(x) and

aSUPG(uh, vh) = ε(∇uh,∇vh) + (b · ∇uh, vh) + (cuh, vh)

+
∑

K∈Th

δK(−ε∆uh + b · ∇uh + cuh,b · ∇vh)K . (2.4)

Here, K ∈ Th denotes the mesh cells of the triangulation, (·, ·)K the inner product in
L2(K) and {δK} are local parameters which has to be chosen appropriately.

Next, preliminaries for the analysis are introduced. The elliptic projection πh :
V → Vh,r is defined by

(∇(u− πhu),∇vh) = 0 ∀ vh ∈ Vh,r.

Note that the functions of Vh,r do not depend on time. Hence, for all vh ∈ Vh,r hold

0 = (∇(ut − πh(ut)),∇vh) = ((∇u)t −∇πh(ut),∇vh),

0 =
d

dt
(∇(u− πhu),∇vh) = ((∇u)t − (∇πhu)t,∇vh),

and this inner product defines a norm in Vh,r, it follows

(πhu)t = πh(ut) = πhut. (2.5)

Assuming that the meshes are quasi-uniform, the following inverse inequality holds
for each vh ∈ Vh,r, see, e.g., [4, Theorem 3.2.6],

‖vh‖W m,q(K) ≤ cinvh
l−m−d

“
1
q′−

1
q

”
K ‖vh‖W l,q′ (K), (2.6)

where 0 ≤ l ≤ m ≤ 1, 1 ≤ q′ ≤ q ≤ ∞, hK is the size (diameter) of the mesh cell
K ∈ Th and ‖ · ‖W m,q(K) is the norm in Wm,q(K). The following interpolation error
estimate for u ∈ V ∩Hr+1(Ω) is well known, [5, 16]

‖u− πhu‖0 + h‖u− πhu‖1 ≤ Chr+1‖u‖r+1, (2.7)
4



where ‖ · ‖r denotes the norm in Hr(Ω) with H0(Ω) = L2(Ω). In particular, stability
estimates for u ∈ H1

0 (Ω) of the form

‖πhu‖0 ≤ ‖u− πhu‖0 + ‖u‖0 ≤ Ch‖u‖1 + ‖u‖0 ≤ C‖u‖1 (2.8)

can be derived.
It is assumed that the space Vh,r satisfies the following local approximation prop-

erty: for each u ∈ V ∩Hr+1(Ω) there exists ûh ∈ Vh,r such that

‖u− ûh‖0,K + hK‖∇(u− ûh)‖0,K + h2
K‖∆(u− ûh)‖0,K ≤ Chr+1

K ‖u‖r+1,K (2.9)

for all K ∈ Th. For example, this property is given for Lagrange finite elements on
mesh cells which allow an affine transform to a reference mesh cell.

Lemma 2.1. With the local approximation property (2.9) follows for all u ∈
V ∩Hr+1(Ω) ∑

K∈τh

‖∆(u− πhu)‖20,K ≤ Ch2r−2‖u‖2r+1. (2.10)

Proof. The triangle inequality, the local approximation property (2.9) and the
inverse inequality (2.6) give

‖∆(u− πhu)‖0,K ≤ ‖∆(u− ûh)‖0,K + ‖∆(ûh − πhu)‖0,K

≤ chr−1
K ‖u‖r+1,K + cinvh

−1
K ‖ûh − πhu‖1,K .

Squaring this inequality, taking the sum over all mesh cells and using the quasi-
uniformity of the mesh lead to∑

K∈Th

‖∆(u− πhu)‖20,K ≤ ch2r−2
∑

K∈Th

‖u‖2r+1,K + ch−2
∑

K∈Th

‖ûh − πhu‖21,K . (2.11)

The last term can be estimated using the interpolation error estimate (2.7) and the
local approximation property (2.9)∑

K∈Th

‖ûh − πhu‖21,K ≤ 2‖u− πhu‖21 + 2
∑

K∈Th

‖u− ûh‖21,K ≤ ch2r‖u‖2r+1.

Substituting this estimate into (2.11) gives the statement of the lemma.
The coercivity of the bilinear form aSUPG(·, ·) under the condition that the pa-

rameters {δK} are appropriately bounded from above is a well-known result.
Lemma 2.2. Coercivity of aSUPG(·, ·). Let (2.2) be satisfied. If the SUPG

parameters are chosen such that

δK ≤ µ0

2‖c‖2K,∞
, δK ≤ h2

K

2εc2
inv

, (2.12)

then the bilinear form aSUPG(·, ·) associated with the SUPG method satisfies

aSUPG(uh, uh) ≥ 1
2
‖uh‖2SUPG (2.13)

with

‖uh‖SUPG :=

(
ε‖∇uh‖20 +

∑
K∈τh

δK‖b · ∇uh‖20,K + ‖µ1/2uh‖20

)1/2

.
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Proof. See, e.g., [15, Lemma 10.3].
For linear finite elements, the condition δK ≤ h2

K/(2εc2
inv) can be omitted.

The analysis of a time-continuous problem requires a Gronwall-type estimate.
Lemma 2.3. Gronwall-type estimate. Let t > 0, a, b, c ∈ L1(0, t) nonnega-

tive functions and d, γ ∈ R ≥ 0. From the inequality

a(t) +
∫ t

0

b(τ) dτ ≤ γ

∫ t

0

a(τ) dτ +
∫ t

0

c(τ) dτ + d

follows

a(t) +
∫ t

0

b(τ) dτ ≤ exp(γt)
(∫ t

0

c(τ) dτ + d

)
Proof. Set

α(t) = γ

∫ t

0

a(τ) dτ +
∫ t

0

c(τ) dτ + d− a(t)−
∫ t

0

b(τ) dτ ≥ 0,

s(t) = a(t) +
∫ t

0

b(τ) + α(t).

Note, the last two terms in s(t) are nonnegative. Differentiating s(t) gives

st(t) = γa(t) + c(t) ≤ γs(t) + c(t).

Multiplying this inequality with the integrating factor exp(−γt), integrating in (0, t),
and using s(0) = a(0) + α(0) = d give the statement of the lemma.

3. Stability for stabilization parameters depending on the length of the
time step. This section studies a fully discrete method for solving (2.3). Besides the
finite element SUPG discretization (2.4), the temporal derivative is approximated
with the backward or implicit Euler scheme.

The approaches used in this section for deriving stability bounds apply standard
energy arguments. It turns out that this analysis proposes parameter choices in the
SUPG method that depend on the length of the time step.

Consider the case of a fixed time step k = ∆t. The fully discrete solution at time
tn = nk will be denoted by Un

h . The backward Euler/SUPG method reads as follows:
For n = 1, 2, . . . find Un

h ∈ Vh,r such that(
Un

h − Un−1
h

k
, ϕ

)
+ ε(∇Un

h ,∇ϕ) + (b · ∇Un
h , ϕ) + (cUn

h , ϕ) = (fn, ϕ)

+
∑

K∈Th

δK

(
fn −

(
Un

h − Un−1
h

k

)
+ ε∆Un

h − b · ∇Un
h − cUn

h ,b · ∇ϕ

)
K

(3.1)

for all ϕ ∈ Vh,r and U0
h(x) = uh(0,x). Method (3.1) can be written equivalently in

the form

(Un
h − Un−1

h , ϕ) + kaSUPG(Un
h , ϕ) = k(fn, ϕ) + k

∑
K∈Th

δK(fn,b · ∇ϕ)K

−
∑

K∈Th

δK(Un
h − Un−1

h ,b · ∇ϕ)K . (3.2)
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Theorem 3.1. Stability, stabilization parameters proportional to
the length of the time step. Let (2.2) and (2.12) be fulfilled. With the additional
condition

δK ≤ k

4
∀ K ∈ Th, (3.3)

the solution of (3.1) satisfies at tn = nk

‖Un
h ‖20 +

k

2

n∑
j=1

‖U j
h‖

2
SUPG ≤ ‖U0

h‖20 + k

(
2
µ0

+ k

) n∑
j=1

‖f j‖20.

Proof. The proof starts in the usual way by setting ϕ = Un
h . This gives with (3.2)

(Un
h − Un−1

h , Un
h ) + kaSUPG(Un

h , Un
h ) = k(fn, Un

h ) + k
∑

K∈Th

δK(fn,b · ∇Un
h )K

−
∑

K∈Th

δK(Un
h − Un−1

h ,b · ∇Un
h )K .

A straightforward calculation shows

(Un
h − Un−1

h , Un
h ) =

1
2
(
‖Un

h ‖20 − ‖Un−1
h ‖20 + ‖Un

h − Un−1
h ‖20

)
,

such that, with (2.13),

1
2
(
‖Un

h ‖20 − ‖Un−1
h ‖20 + ‖Un

h − Un−1
h ‖20

)
+

k

2
‖Un

h ‖SUPG (3.4)

≤ |k(fn, Un
h )|+

∣∣∣∣∣k ∑
K∈Th

δK(fn,b · ∇Un
h )K

∣∣∣∣∣+
∣∣∣∣∣ ∑
K∈Th

δK(Un
h − Un−1

h ,b · ∇Un
h )K

∣∣∣∣∣ .
The first two terms on the right hand side are estimated using the Cauchy–Schwarz
inequality and Young’s inequality

|k(fn, Un
h )| = k

(
fn

µ1/2
, µ1/2Un

h

)
≤ k

∥∥∥∥ fn

µ1/2

∥∥∥∥2

0

+
k

4
‖µ1/2Un

h ‖20

≤ k

µ0
‖fn‖20 +

k

4
‖µ1/2Un

h ‖20,

and ∣∣∣∣∣k ∑
K∈Th

δK(fn,b · ∇ϕ)

∣∣∣∣∣ ≤ 2k
∑

K∈Th

δK‖fn‖20,K +
k

8

∑
K∈Th

δK‖b · ∇Un
h ‖20,K .

The estimate of the last term on the right hand side of (3.4) uses condition (3.3) on
the stabilization parameters∣∣∣∣∣ ∑

K∈Th

δK(Un
h − Un−1

h ,b · ∇Un
h )K

∣∣∣∣∣
≤ 2

k

∑
K∈Th

δK‖Un
h − Un−1

h ‖20,K +
k

8

∑
K∈Th

δK‖b · ∇Un
h ‖20,K

≤ 1
2
‖Un

h − Un−1
h ‖20 +

k

8

∑
K∈Th

δK‖b · ∇Un
h ‖20,K .
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Inserting all estimates leads to

‖Un
h ‖20 +

k

2
‖Un

h ‖2SUPG ≤ ‖Un−1
h ‖20 +

2k

µ0
‖fn‖20 + 4k

∑
K∈Th

δK‖fn‖20,K . (3.5)

Summation of the time steps j = 1, . . . , n, and using once more condition (3.3) gives
the statement of the theorem.

Note that k
∑n

j=1 ‖U
j
h‖2SUPG is an approximation of ‖U j

h‖2L2(0,T ;SUPG) by a Rie-
mann sum using as node in the quadrature rule always the right end of the time
intervals.

Theorem 3.1 covers the case that the stabilization parameter is proportional to
the length of the time step. On a fixed spatial grid, the stabilization becomes small
for small time steps and it vanishes in the time-continuous limit. This behavior does
not seem to be correct, see the discussion in the introduction. The desired situation
in the convection-dominated regime, δK ∼ hK , is obtained if spatial and temporal
mesh width are proportional h ∼ k. Note that for the mesh width and the time step
being of the same order, the parameter choice of [10, 11] leads also to δ ∼ k ∼ h.

Theorem 3.2. Stability, stabilization parameters proportional to
some function of the length of the time step. Let (2.2) and (2.12) be fulfilled.
With the choice

δK =
σ(k)hK

‖b‖∞,Kcinv
with 0 < σ(k) ≤ 1

4
∀ K ∈ Th, (3.6)

where σ(k) is a function to be specified later, the solution of (3.1) satisfies at tn = nk

‖Un
h ‖20 +

k

2

n∑
j=1

‖U j
h‖

2
SUPG

≤ (1 + 2σ2(k))n

‖U0
h‖20 + 2k

n∑
j=1

(
1
µ0
‖f j‖20 +

∑
K∈Th

δK‖f j‖20,K

) . (3.7)

Proof. The proof starts exactly as the proof of Theorem 3.1 until estimate (3.4)
is reached. The first two terms on the right hand side of (3.4) are estimated also in
the same way as in the proof of Theorem 3.1

|k(fn, Un
h )| ≤ k

µ0
‖fn‖20 +

k

4
‖µ1/2Un

h ‖20,∣∣∣∣∣k ∑
K∈Th

δK(fn,b · ∇ϕ)

∣∣∣∣∣ ≤ k
∑

K∈Th

δK‖fn‖20,K +
k

4

∑
K∈Th

δK‖b · ∇Un
h ‖20,K .

The last term on the right hand side of (3.4) will now not be absorbed into k
2‖U

n
h ‖SUPG.
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It is estimated by using the inverse inequality (2.6) and Young’s inequality∣∣∣∣∣ ∑
K∈Th

δK(Un
h − Un−1

h ,b · ∇Un
h )K

∣∣∣∣∣
=

∣∣∣∣∣ ∑
K∈Th

δK(Un
h − Un−1

h ,b · ∇(Un
h − Un−1

h ))K +
∑

K∈Th

δK(Un
h − Un−1

h ,b · ∇Un−1
h )K

∣∣∣∣∣
≤
∑

K∈Th

δK
‖b‖∞,Kcinv

hK
‖Un

h − Un−1
h ‖20,K

+
∑

K∈Th

δK‖b‖∞,K‖Un
h − Un−1

h ‖0,K‖∇Un−1
h ‖0,K

≤
∑

K∈Th

δK
‖b‖∞,Kcinv

hK
‖Un

h − Un−1
h ‖20,K +

∑
K∈Th

1
4
‖Un

h − Un−1
h ‖20,K

+
∑

K∈Th

δ2
K‖b‖2∞,K‖∇Un−1

h ‖20,K

≤
∑

K∈Th

(
δK
‖b‖∞,Kcinv

hK
+

1
4

)
‖Un

h − Un−1
h ‖20,K +

∑
K∈Th

δ2
K

‖b‖2∞,Kc2
inv

h2
K

‖Un−1
h ‖20,K .

The first term can be absorbed into the left hand side of (3.4) if

δK
‖b‖∞,Kcinv

hK
+

1
4
≤ 1

2
=⇒ δK ≤ hK

4‖b‖∞,Kcinv
.

Set the stabilization parameter as in (3.6), then it follows∣∣∣∣∣ ∑
K∈Th

δK(Un
h − Un−1

h ,b · ∇Un
h )K

∣∣∣∣∣ ≤ 1
2
‖Un

h − Un−1
h ‖20 + σ2(k)‖Un−1

h ‖20.

Collecting all estimates leads to the recursion

‖Un
h ‖20 +

k

2
‖Un

h ‖2SUPG ≤ (1+2σ2(k))‖Un−1
h ‖20 +

2k

µ0
‖fn‖20 +2k

∑
K∈Th

δK‖fn‖20,K . (3.8)

Now, one obtains by induction

‖Un
h ‖20 +

k

2
‖Un

h ‖2SUPG

≤ (1 + 2σ2(k))n‖U0
h‖20 + 2k

n∑
j=1

(
1 + 2σ2(k)

)n−j

(
‖f j‖20

µ0
+
∑

K∈Th

δK‖f j‖20,K

)

≤ (1 + 2σ2(k))n

‖U0
h‖20 + 2k

n∑
j=1

(
‖f j‖20

µ0
+
∑

K∈Th

δK‖f j‖20,K

) . (3.9)

Summation of (3.8) gives

‖Un
h ‖20 +

k

2

n∑
j=1

‖U j
h‖

2
SUPG ≤ 2σ2(k)

n−1∑
j=1

‖U j
h‖

2
0 + (1 + 2σ2(k))‖U0

h‖20

+2k

n∑
j=1

(
‖f j‖20

µ0
+
∑

K∈Th

δK‖f j‖20,K

)
.
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Inserting (3.9) and applying some estimates for the sake of simplifying the represen-
tation lead to

‖Un
h ‖20 +

k

2

n∑
j=1

‖U j
h‖

2
SUPG

≤ 2σ2(k)
n−1∑
j=1

(1 + 2σ2(k))j‖U0
h‖20 + (1 + 2σ2(k))‖U0

h‖20

+2σ2(k)
n−1∑
j=1

(1 + 2σ2(k))j2k

j∑
l=1

(
‖f l‖20
µ0

+
∑

K∈Th

δK‖f l‖20,K

)

+2k

n∑
j=1

(
‖f j‖20

µ0
+
∑

K∈Th

δK‖f j‖20,K

)

≤
(

2σ2(k)
(1 + 2σ2(k))n − (1 + 2σ2(k))

1 + 2σ2(k)− 1
+ 1 + 2σ2(k)

)
‖U0

h‖20

+2k

1 + 2σ2(k)
n−1∑
j=1

(1 + 2σ2(k))j

 n∑
j=1

(
‖f j‖20

µ0
+
∑

K∈Th

δK‖f j‖20,K

)
≤ (1 + 2σ2(k))n

‖U0
h‖20 + 2k

n∑
j=1

(
‖f j‖20

µ0
+
∑

K∈Th

δK‖f j‖20,K

) .

Consider a finite time interval [0, T ] and a fixed length of the time step. Then,
Theorem 3.2 gives stability with the desired stability parameter (in the convection-
dominated regime) δK = O(hK) without a coupling of the mesh width to the time
step by choosing σ(k) = const ≤ 1/4. However, the stability bound blows up for
σ(k) = const in the time-continuous limit k → 0. Given a length of the time step
k, the number of time steps to solve the equation in [0, T ] is n = T/k. The stability
estimate will not blow up for k → 0 if (1+σ2(k))1/k is bounded uniformly. A possible
choice is σ(k) = δ0

√
k leading to the stabilization parameter

δK = δ0

√
khK

‖b‖∞,Kcinv
, (3.10)

where δ0 has to be chosen such that δ0

√
k ≤ 1/4. For fixed h and sufficiently small

k, the parameter from (3.10) is larger than the parameter from (3.3).

4. Error estimates for stabilization parameters depending on the length
of the time step. For the following error analysis, it is assumed that all functions
are sufficiently regular. Summaries of these assumptions are given below in theorems.
The error analysis for (3.1) starts by decomposing the error into an interpolation error
and the difference of the interpolation and the solution

Un
h − u(tn) = (Un

h − πhu(tn)) + (πhu(tn)− u(tn)) .

The interpolation error can be estimated with (2.7). For brevity, denote

πn
hu := πhu(tn), en

h = Un
h − πhu(tn).

10



Straightforward calculations yield the following error equation

(en
h − en−1

h , ϕ) + kaSUPG(en
h, ϕ)

= k(T̃n
zero, ϕ) + k(Tn

conv, ϕ) + k
∑

K∈Th

δK(T̃n
stab,K ,b · ∇ϕ)K

−
∑

K∈Th

δK(en
h − en−1

h ,b · ∇ϕ)K ,

with

T̃n
zero = (ut(tn)− πn

hut) + c (u(tn)− πn
hu) +

(
πhut(tn)−

πn
hu− πn−1

h u

k

)
,

Tn
conv = b · ∇(u(tn)− πn

hu),
T̃n

stab,K =
(
T̃n

zero + Tn
conv + ε∆(πn

hu− u(tn))
)∣∣

K
.

Using integration by parts and assuming δK > 0, the convective term can be dis-
tributed to the term with the zeroth order derivatives (with respect to space) and the
stabilization term

(Tn
conv, ϕ) = −((∇ · b)(πn

hu− u(tn)), ϕ)− (πn
hu− u(tn),b · ∇ϕ)

= −((∇ · b)(πn
hu− u(tn)), ϕ)−

∑
K∈Th

δK

(
πn

hu− u(tn)
δK

,b · ∇ϕ

)
K

.

Redefining the zeroth order and the stabilization term

Tn
zero = T̃n

zero − (∇ · b)(πn
hu− u(tn)), Tn

stab,K = T̃n
stab,K − πn

hu− u(tn)
δK

,

leads to the error equation

(en
h − en−1

h , ϕ) + kaSUPG(en
h, ϕ) = k(Tn

zero, ϕ) + k
∑

K∈Th

δK(Tn
stab,K ,b · ∇ϕ)K

−
∑

K∈Th

δK(en
h − en−1

h ,b · ∇ϕ)K . (4.1)

This error equation is similar to equation (3.1), only the arguments on the first two
terms on the right hand side are not the same.

Deriving error estimates from (4.1) starts essentially in the same way as the deriva-
tion of the stability bounds. After this, the arising terms have to be bounded by norms
of the solution of the continuous equation (2.3). Since the stability bounds derived
in Theorems 3.1 and 3.2 are similar, the detailed analysis for the error estimates is
presented here only for the case that was considered in Theorem 3.1.

For proving stability of (4.1), only the last two terms cannot be combined in the
summation of the analog to (3.5). One gets

‖en
h‖20 +

k

2

n∑
j=1

‖ej
h‖

2
SUPG ≤ ‖e0

h‖20 +
2k

µ0

n∑
j=1

‖T j
zero‖20 + 4k

n∑
j=1

∑
K∈Th

δK‖T j
stab,K‖

2
0,K .

(4.2)
11



Using the triangle inequality and (2.7), one obtains

‖T j
zero‖20 ≤ Ch2r+2

(
‖ut(tj)‖2r+1 + ‖c‖2L∞(0,T ;L∞)‖u(tj)‖2r+1

+‖∇ · b‖2L∞(0,T ;L∞)‖u(tj)‖2r+1

)
+ C

∥∥∥∥∥πhut(tj)−
πj

hu− πj−1
h u

k

∥∥∥∥∥
2

0

.

The last term is in essence the approximation error of ut(tj) by a backward finite
difference, hence an estimate of O(k) can be expected. The derivation of this estimate
uses Taylor’s formula with remainder in integral form, the application of (2.5), the
Cauchy–Schwarz inequality, and the stability estimate (2.8)∥∥∥∥∥πhut(tj)−

πj
hu− πj−1

h u

k

∥∥∥∥∥
2

0

=
1
k2

∥∥∥∥∥
∫ tj

tj−1

(t− tj−1)πhutt dt

∥∥∥∥∥
2

0

≤ 1
k2

(∫ tj

tj−1

(t− tj−1)2 dt

)1/2(∫ tj

tj−1

‖πhutt‖20 dt

)1/2
2

≤ Ck

∫ tj

tj−1

‖utt‖21 dt = Ck‖utt‖2L2(tj−1,tj ;H1).

Summation over the time steps, taking into account that the number of time steps n
is inverse proportional to the length of the time step, and assuming that all norms
are uniformly (in time) bounded gives

k

n∑
j=1

‖T j
zero‖20 ≤ Cknh2r+2 + Ck2‖utt‖2L2(0,tn;H1) ≤ C

(
h2r+2 + k2

)
.

The estimate of the first term can be applied, in combination with (2.10), to
obtain an estimate for the second term on the right hand side of (4.2)∑

K∈Th

δK‖T j
stab,K‖

2
0,K

≤ C

(
max
K∈Th

δK

)(
h2r+2

(
‖ut(tj)‖2r+1 + ‖u(tj)‖2r+1

)
+k‖utt‖2L2(tj−1,tj ;H1) + ‖b‖2L∞(0,T ;L∞)h

2r‖u(tj)‖2r+1

+ε2h2r−2‖u(tj)‖2r+1

)
+ C

(
min

K∈Th

δK

)−1

h2r+2‖u(tj)‖2r+1.

Hence,

k

n∑
j=1

∑
K∈Th

δK‖T j
stab,K‖

2
0,K ≤ C

((
max
K∈Th

δK

)(
h2r+2 + k2 + h2r + ε2h2r−2

)
+
(

min
K∈Th

δK

)−1

h2r+2

)
.

Inserting all estimates into (4.2) and applying the triangle inequality leads to the
following error estimates.
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Theorem 4.1. Error estimates for the stabilization parameter obey-
ing (3.3). Suppose b ∈ L∞(0, T ; (L∞)d), ∇ · b, c ∈ L∞(0, T ; L∞) for the coefficients
in (2.3) and u, ut ∈ L∞(0, T ; Hr+1), utt ∈ L2(0, T ; H1) for the solution of (2.3). Let
the stabilization parameters {δK} fulfill (2.12), (3.3) and δK > 0 for all K ∈ Th.
Denote δ = max∈Th

δK . Then, the error Un
h − u(tn) satisfies

‖Un
h − u(tn)‖0 ≤ C

[
hr+1 + k + hr−1δ1/2

(
h2 + h + ε

)
+

hr+1

(minK∈Th
δK)1/2

+ ‖πhu0 − U0
h‖0

]
, (4.3)

andk

n∑
j=1

‖U j
h − u(tj)‖2SUPG

1/2

≤ C

[
hr(ε1/2 + δ1/2 + h) + k + hr−1δ1/2

(
h2 + h + ε

)

+
hr+1

(minK∈Th
δK)1/2

+ ‖πhu0 − U0
h‖0

]
, (4.4)

where the constants C depend on u, ut, utt,b,∇ · b and c.
Applying the analysis of Theorem 3.2 to estimate (4.1) and using (3.7) leads

essentially to (4.2), only with an additional factor of (1 + 2σ2(k))n on the right hand
side. The same analysis as in the proof of Theorem 4.1 gives the following error
estimates.

Theorem 4.2. Error estimates for the stabilization parameter pro-
portional to some function of the length of the time step. Let the as-
sumptions on the coefficients and solution of (2.3) be the same as in Theorem 4.1.
Let the stabilization parameters {δK} defined in (3.6) such that (2.12) is fulfilled, too,
and δK > 0 for all K ∈ Th. Denote δ = max∈Th

δK . Then, the error Un
h − u(tn)

satisfies

‖Un
h − u(tn)‖0 ≤ C(1 + 2σ2(k))n

[
hr+1 + k + hr−1δ1/2

(
h2 + h + ε

)
+

hr+1

(minK∈Th
δK)1/2

+ ‖πhu0 − U0
h‖0

]
, (4.5)

and k

n∑
j=1

‖U j
h − u(tj)‖2SUPG

1/2

≤ C(1 + 2σ2(k))n

[
hr(ε1/2 + δ1/2 + h) + k

+hr−1δ1/2
(
h2 + h + ε

)
+

hr+1

(minK∈Th
δK)1/2

+ ‖πhu0 − U0
h‖0

]
, (4.6)

where the constants C depend on u, ut, utt,b,∇ · b and c.
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5. Error analysis of a special time-continuous problem with stabiliza-
tion parameters depending not on the length of the time step. The numerical
analysis presented so far is only valid if, for a constant mesh and a small time step,
the stabilization parameters are sufficiently small. In the time-continuous limit, the
SUPG stabilization even vanishes. As discussed in the introduction and as demon-
strated in the numerical studies, Example 6.2, we think that this is not the correct
asymptotic of the stabilization parameters. This section shows that error estimates
with stabilization parameters proportional to the mesh width can be derived for a
special time-continuous problem.

In the first step, an error estimate for the material derivative is derived, Theorem
5.1. The analysis of this step uses some ideas from [3], like the application of a special
test function to obtain (5.9). Extensions of the analysis from [3] were necessary to
include diffusion and reaction. Based on the estimate for the material derivative, an
error estimate for the streamline derivative is proven in a second step.

Lets consider problem (2.1) with bt(t,x) = 0, ct(t,x) = 0, i.e., b = b(x), c = c(x)
and ∇ · b = 0 for all x ∈ Ω. Condition (2.2) reads in this case

0 < µ0 = inf
x∈Ω

µ(x) = inf
x∈Ω

c(x).

From the divergence-free condition on b follows

(v,b · ∇v) = 0 ∀ v ∈ H1
0 (Ω). (5.1)

It is assumed that all functions are sufficiently smooth such that all norms appearing
below are well defined. Further, it is assumed that a uniform mesh with width h and
P1 finite elements are used. It follows that the stabilization term with the Laplacian
does not appear. In addition, only the convection-dominated regime is considered,
i.e. it is assumed that ε ≤ h. Then, the stabilization parameters are set to be

δK = δ = min

{
h

4cinv‖b‖∞
min

{
1, µ

1/2
0 ,

1

‖c‖1/2
∞

,
µ

1/2
0

‖c‖1/2
∞

,
µ

1/2
0

‖c‖∞

}
,

µ
1/2
0

4‖b‖∞‖∇c‖∞
, 2

}
.

(5.2)
Hence, the stabilization parameters are proportional to the mesh width and they are
bounded from above by data of the problem.

Consider a finite time interval [0, T ] and let t ∈ [0, T ]. In the analysis of this
section, a formally steady-state problem derived from (2.1) is used. Let Πhu(t) ∈
Vh = Vh,1 be the solution of

aSUPG(Πhu(t), vh) = (f(t)− ut(t), vh) + δ(f(t)− ut(t),b · ∇vh) ∀ vh ∈ Vh. (5.3)

The corresponding continuous equation is solved by u(t). Hence, firstly the Galerkin
orthogonality of the SUPG method gives

aSUPG(Πhu(t), vh) = aSUPG(u(t), vh) ∀ vh ∈ Vh.

Secondly, error estimates of the form

‖u(t)−Πhu(t)‖SUPG ≤ Ch3/2‖u(t)‖2 t ∈ [0, T ], (5.4)

can be proven, see [14]. A straightforward calculation, using the linearity of the
equation and the time-independency of convection, reaction and the test functions,
shows

(Πhu(t))t = Πh(ut(t)) = Πhut. (5.5)
14



For brevity, the dependency on time will be omitted from now in the notations.
Let uh : (0, T ] → Vh be the finite element solution of the continuous-in-time

SUPG method

(uh,t, vh) + aSUPG(uh, vh) = (f, vh) + δ(f − uh,t,b · ∇vh) ∀ vh ∈ Vh (5.6)

with uh(0) given.
For the error analysis, the following norms in Vh are introduced

‖vh‖b :=
(
‖vh‖20 + δ2‖b · ∇vh‖20

)1/2
, ‖vh‖mat := δ1/2‖vh,t + b · ∇vh‖0.

The expression in the second norm is the material derivative. Note, ‖·‖b is equivalent
to the L2 norm, since by using the inverse inequality and the definition (5.2) of the
stabilization parameter, one obtains

‖vh‖0 ≤ ‖vh‖b ≤
(
‖vh‖20 + δ2‖b‖2∞c2

invh
−2‖vh‖20

)1/2 ≤
√

17
4
‖vh‖0.

Denote the error between the continuous-in-time finite element solution and the
solution of the steady-state problem by eh = uh − Πhu and let Ttrunc = ut − Πhut.
An error equation is obtain by subtracting (5.3) from (5.6)

(eh,t, vh)+aSUPG(eh, vh) = (Ttrunc, vh)+δ(Ttrunc,b ·∇vh)−δ(eh,t,b ·∇vh) ∀ vh ∈ Vh.
(5.7)

Setting in (5.7) vh = eh and using (5.1) give

1
2

d

dt
‖eh‖20 + ε‖∇eh‖20 + δ‖b · ∇eh‖20 + ‖c1/2eh‖20 + δ(eh,t,b · ∇eh)

= (Ttrunc, eh + δb · ∇eh)− δ(ceh,b · ∇eh). (5.8)

Analogously, one obtains for vh = eh,t in (5.7)

‖eh,t‖20 +
ε

2
d

dt
‖∇eh‖20 + (b · ∇eh, eh,t) +

δ

2
d

dt
‖b · ∇eh‖20 +

1
2

d

dt
‖c1/2eh‖20

= (Ttrunc, (eh + δb · ∇eh)t)− δ(ceh,b · ∇eh,t). (5.9)

The addition of δ times (5.9) to (5.8) leads to

1
2

d

dt
‖eh‖2b + ε‖∇eh‖20 + ‖c1/2eh‖20 + ‖eh‖2mat +

εδ

2
d

dt
‖∇eh‖20 +

δ

2
d

dt
‖c1/2eh‖20

= (Ttrunc, eh + δb · ∇eh) + δ(Ttrunc, (eh + δb · ∇eh)t) (5.10)
−δ(ceh,b · ∇eh)− δ2(ceh,b · ∇eh,t),

where the definition of ‖ · ‖b and

δ
(
‖eh,t‖20 + 2(eh,t,b · ∇eh) + ‖b · ∇eh‖20

)
= ‖eh‖2mat

have been used. Using the inverse inequality and the definition (5.2) of the stabiliza-
tion parameter yields

δ(ceh,b · ∇eh) = δ(c1/2eh, c1/2b · ∇eh) ≤ δ‖c1/2eh‖0‖c1/2‖∞‖b‖∞cinvh
−1‖eh‖0

≤ δ
‖c‖1/2

∞ ‖b‖∞cinv

hµ
1/2
0

‖c1/2eh‖20 ≤
1
4
‖c1/2eh‖20.
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Considering the last term of (5.10), eh,t has to be absorbed by the material derivative
on the left hand side of (5.10). To this end, integration by parts and ∇ · b(x) = 0 for
all x ∈ Ω give

δ2(ceh,b · ∇eh,t) = −δ2(b · ∇(ceh), eh,t + b · ∇eh) + δ2(b · ∇(ceh),b · ∇eh).

The estimate of the left hand term on the right hand side is obtained with the Cauchy–
Schwarz inequality, Young’s inequality, the product rule, and the definition of δ from
(5.2)

δ2(b · ∇(ceh), eh,t + b · ∇eh)

≤ δ3

2
‖b · ∇(ceh)‖20 +

1
2
‖eh‖2mat

≤ δ3 ‖b‖2∞
µ0

(
‖∇c‖2∞ +

‖c‖2∞c2
inv

h2

)
‖c1/2eh‖20 +

1
2
‖eh‖2mat

≤
(

δ

16
+

δ

16

)
‖c1/2eh‖20 +

1
2
‖eh‖2mat ≤

1
4
‖c1/2eh‖20 +

1
2
‖eh‖2mat.

With the previous estimate, one obtains

δ2(b · ∇(ceh),b · ∇eh) ≤ δ2

2
‖b · ∇(ceh)‖20 +

δ2

2
‖b · ∇eh‖20

≤ 1
8
‖c1/2eh‖20 +

δ2

2
‖b‖2∞c2

inv

µ0h2
‖c1/2eh‖20

≤
(

1
8

+
1
32

)
‖c1/2eh‖20 ≤

1
4
‖c1/2eh‖20.

For the special case of c being a constant, an inspection of the estimates shows that
some conditions in the definition of the stabilization parameter (5.2) can be omitted.
Inserting all estimated into (5.10) gives

1
2

d

dt
‖eh‖2b + ε‖∇eh‖20 +

1
4
‖c1/2eh‖20 +

1
2
‖eh‖2mat +

εδ

2
d

dt
‖∇eh‖20 +

δ

2
d

dt
‖c1/2eh‖20

≤ (Ttrunc, eh + δb · ∇eh) + δ(Ttrunc, (eh + δb · ∇eh)t).

Integration in (0, t) leads to

1
2
‖eh(t)‖2b + ε‖∇eh‖2L2(0,t;L2) +

1
4
‖c1/2eh‖2L2(0,t;L2) +

1
2
‖eh‖2L2(0,t;mat)

+
εδ

2
‖∇eh(t)‖20 +

δ

2
‖(c1/2eh)(t)‖20

≤ 1
2
‖eh(0)‖2b +

εδ

2
‖∇eh(0)‖20 +

δ

2
‖(c1/2eh)(0)‖20 +

∫ t

0

(Ttrunc, eh + δb · ∇eh) dτ

+δ

∫ t

0

(Ttrunc, (eh + δb · ∇eh)t) dτ. (5.11)

Now, the terms on the right hand side of (5.11) have to be bounded. It is

1
2
‖eh(0)‖2b +

εδ

2
‖∇eh(0)‖20 +

δ

2
‖(c1/2eh)(0)‖20

≤
(

17
32

+
εδc2

inv

2h2
+

δ‖c‖∞
2

)
‖eh(0)‖20 ≤ C‖eh(0)‖20
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since ε ≤ h is assumed. For the next term, one obtains with the Cauchy–Schwarz
inequality, Young’s inequality and the definition of ‖ · ‖b∫ t

0

(Ttrunc, eh + δb · ∇eh) ≤ 2T

∫ t

0

‖Ttrunc‖20 dτ +
1

8T

∫ t

0

‖eh + δb · ∇eh‖20 dτ

≤ 2T

∫ t

0

‖Ttrunc‖20 dτ +
1

4T

∫ t

0

‖eh‖2b dτ.

The last term in (5.11) is integrated by parts in time and then a similar estimate is
applied

δ

∫ t

0

(Ttrunc, (eh + δb · ∇eh)t) dτ

= δ
(
(Ttrunc(t), (eh + δb · ∇eh)(t))− (Ttrunc(0), (eh + δb · ∇eh)(0))

)
−δ

∫ t

0

(Ttrunc,t, eh + δb · ∇eh) dτ

≤ 2δ2‖Ttrunc(t)‖20 +
1
4
‖eh(t)‖2b + 2δ2‖Ttrunc(0)‖20 +

1
4
‖eh(0)‖2b

+2δ2T

∫ t

0

‖Ttrunc,t‖20 dτ +
1

4T

∫ t

0

‖eh‖2b dτ.

Inserting these estimates into (5.11) and using ‖eh(0)‖2b ≤ C‖eh(0)‖20 yield

‖eh(t)‖2b + 4ε‖∇eh‖2L2(0,t;L2) + ‖c1/2eh‖2L2(0,t;L2) + 2‖eh‖2L2(0,t;mat)

+2εδ‖∇eh(t)‖20 + 2δ‖(c1/2eh)(t)‖20

≤ C‖eh(0)‖20 + 8T

∫ t

0

‖Ttrunc‖20 dτ + 8δ2T

∫ t

0

‖Ttrunc,t‖20 dτ

+16δ2‖Ttrunc‖2L∞(0,T ;L2) +
2
T

∫ t

0

‖eh‖2b dτ.

The Gronwall inequality from Lemma 2.3 leads to

‖eh(t)‖2b + 4ε‖∇eh‖2L2(0,t;L2) + ‖c1/2eh‖2L2(0,t;L2) + 2‖eh‖2L2(0,t;mat)

+2εδ‖∇eh(t)‖20 + 2δ‖(c1/2eh)(t)‖20

≤ exp
(

2t

T

)(
C‖eh(0)‖20 + 8T

∫ t

0

‖Ttrunc‖20 dτ + 8δ2T

∫ t

0

‖Ttrunc,t‖20 dτ

+16δ2‖Ttrunc‖2L∞(0,T ;L2)

)
.

The next step of the error analysis uses that the convection and reaction do not
depend on time. Hence (5.3) can be differentiated with respect to time. Using (5.5),
one obtains steady-state SUPG problems for Πhut(t) and Πhutt(t) with corresponding
error estimates of type (5.4)

‖Ttrunc(t)‖SUPG ≤ Ch3/2‖ut(t)‖2, ‖Ttrunc,t(t)‖SUPG ≤ Ch3/2‖utt(t)‖2.

It follows

‖Ttrunc(t)‖0 ≤ C
h3/2

µ
1/2
0

‖ut(t)‖2, ‖Ttrunc,t(t)‖0 ≤ C
h3/2

µ
1/2
0

‖utt(t)‖2. (5.12)
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Noting t ≤ T and summarizing all constant into a generic constant, the following
theorem is proven.

Theorem 5.1. Error estimate for norm involving the material deriva-
tive. Let t ≤ T < ∞ and let ut ∈ L∞(0; T ; H2(Ω)), utt ∈ L2(0, T ; H2(Ω)). Then,
the error eh = uh −Πhu satisfies

‖eh(t)‖b +
(
ε‖∇eh‖2L2(0,t;L2) + ‖eh‖2L2(0,t;mat) + ‖c1/2eh‖2L2(0,t;L2)

)1/2

+δ1/2
(
ε1/2‖∇eh(t)‖0 + ‖(c1/2eh)(t)‖0

)
≤ C

[
‖eh(0)‖0 + h3/2

(
T 1/2‖ut‖L2(0,t;H2) + δT 1/2‖utt‖L2(0,t;H2) (5.13)

+δ‖ut‖L∞(0,T ;H2)

)]
,

where C depends on ‖b‖∞, µ0, ‖c‖∞ and ‖∇c‖∞.
An estimate for u − uh is now obtained by applying the triangle inequality and

using (5.4) for estimating the terms with u−Πhu.
In the second step, an estimate with the stronger SUPG norm δ‖b ·∇eh‖L2(0,t;L2)

instead of ‖eh‖L2(0,t;mat) is derived. To this end, insert once more vh = eh into the
error equation (5.7) and apply a standard analysis by using the coercivity (2.13)

1
2

d

dt
‖eh‖20 +

1
2
‖eh‖2SUPG ≤ ‖Ttrunc‖20

µ0
+
‖c1/2eh‖20

4
+ 2δ‖Ttrunc‖20

+2δ‖eh,t‖20 + δ
‖b · ∇eh‖20

4
. (5.14)

The second and the last term can be absorbed into the left hand side. The first and the
third are estimated by (5.12). The estimate for the fourth term uses once more that
convection and reaction are functions independent of time. Hence, (5.3) and (5.6) can
be differentiated with respect to time, leading to the same type of equations. Now,
the error analysis for eh leading to (5.13) can be carried out in the same way for eh,t.
Using the equivalence of the L2 norm and ‖ · ‖b gives

‖eh,t(t)‖L∞(0,t;L2) ≤ C
[
‖eh,t(0)‖0 + h3/2

(
T 1/2‖utt‖L2(0,t;H2)

+δT 1/2‖uttt‖L2(0,t;H2) + δ‖utt‖L∞(0,T ;H2)

)]
, (5.15)

since the norms are monotonically increasing. Now, ‖eh,t(0)‖0 has to be bounded
in terms of eh(0) and Ttrunc(0) since it is not clear how to control eh,t(0) by an
appropriate choice of uh(0). To this end, eh,t(t) is inserted into the error equation
(5.7) leading to

‖eh,t‖20 = −aSUPG(eh, eh,t) + (Ttrunc, eh,t + δb · ∇eh,t). (5.16)

Applying the Cauchy–Schwarz inequality and the inverse inequality, using ε ≤ h and
(5.2) yields

aSUPG(uh, vh) ≤
(εcinv

h
‖∇uh‖0 + ‖b · ∇uh‖0 + ‖c‖1/2

∞ ‖c1/2uh‖0

+
δcinv‖b‖∞

h
‖b · ∇uh‖0 +

δcinv‖b‖∞‖c‖1/2
∞

h
‖c1/2uh‖0

)
‖vh‖0

≤ C
(
‖∇uh‖0 + ‖b · ∇uh‖0 + ‖c1/2uh‖0

)
‖vh‖0,
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where C depends on cinv and ‖c‖∞. Applying this estimate to (5.16), using (5.2) and
(5.12) give

‖eh,t‖20 ≤ C
(
‖∇eh‖0 + ‖b · ∇eh‖0 + ‖c1/2eh‖0 + ‖Ttrunc‖0

)
‖eh,t‖0

≤ C
(
‖∇eh‖0 + ‖b · ∇eh‖0 + ‖c1/2eh‖0 + h3/2‖ut(t)‖2

)
‖eh,t‖0.

Using this estimate for t = 0 in (5.15), inserting then (5.15) into (5.14), integrating
in (0, t), estimating ∫ t

0

‖eh,t(τ)‖20 dτ ≤ T‖eh,t(τ)‖2L∞(0,t;L2),

and applying the triangle inequality leads to the following error estimate.
Theorem 5.2. Error estimate for norm involving the SUPG norm. Let

T < ∞ be the final time and let ut(t) ∈ H2(Ω) for all t ∈ [0, T ], utt ∈ L∞(0; T ; H2(Ω)),
u, ut, uttt ∈ L2(0, T ; H2(Ω)). Then, the error estimate

‖(u− uh)(t)‖0 + ‖u− uh‖L2(0,t;SUPG)

≤ C
[
‖eh(0)‖0 + δ1/2T 1/2

(
‖∇eh(0)‖0 + ‖(b · ∇)eh(0)‖0 + ‖(c1/2eh)(0)‖0

)]
+Ch3/2

(
‖u(t)‖2 + δ1/2T 1/2‖ut(0)‖2 + ‖u‖L2(0,t;H2) + ‖ut‖L2(0,t;H2) (5.17)

+δ1/2T‖utt‖L2(0,t;H2) + δ1/2T‖uttt‖L2(0,t;H2) + δ1/2T 1/2‖utt‖L∞(0,t;H2)

)
holds. The constants depend on ‖b‖∞, µ0, ‖c‖∞, ‖∇c‖∞, and cinv.

Choosing the initial finite element solution uh(0) such that uh(0) solves

aSUPG(uh(0), vh) = (f(0)− ut(0), vh) + δ(f(0)− ut(0),b · ∇vh)
= (−ε∆u0 + b · ∇u0 + cu0, vh + δb · ∇vh) ∀ vh ∈ Vh

leads to eh(0) = 0 such that all terms with eh(0) vanish in (5.17).

6. Numerical studies. Two examples will be presented in the numerical stud-
ies. The first one, possessing a given smooth solution, serves as support for the orders
of convergence that are proven in the previous sections. The second example is the
well-known rotating body problem from [12]. It demonstrates the superiority of the
parameter choice from Section 5 compared with the choices from Sections 3 and 4 for
small time steps on a fixed, rather coarse, spatial mesh.

Example 6.1. Smooth solution. This example serves for supporting the error
estimates (4.3) – (4.6) and (5.17). Consider (2.3) with Ω = (0, 1)2, T = 1, different
values of ε, b = (1,−1), c = 1, and the right-hand side is chosen such that

u(t, x, y) = esin(2πt) sin(2πx) sin(2πy)

is the solution of (2.3). The simulations were performed with ε = 10−8 in the
convection-dominated regime and with ε = 1 in the diffusion-dominated regime. Uni-
form triangular grids were used with the coarsest grid (level 0) obtained by dividing
the unit square with a diagonal from (0, 0) to (1, 1). To prevent superconvergence,
the convection field is chosen such that it is not parallel to any grid line.

Consider at the beginning the error estimates (4.3) – (4.6). First, optimal scalings
of the mesh width h and the length of the time step k are derived from these estimates.
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Then, the error estimates lead to only one asymptotic order of convergence that serves
as criterion. The mesh width h was defined by dividing the diameters of the mesh
cells by

√
2.

The stabilization parameter for the estimates under the assumptions of Theorem
4.1 is set to be δK = δ = k/4, according to condition (3.3). In the convection-
dominated regime, ε ¿ h, the terms O(k) and O(hr+1δ−1/2) = O(hr+1k−1/2) have
to be balanced to obtain an optimal L2-error estimate (4.3). This leads to the scaling
k = O(h2(r+1)/3). The same reasoning applies for the SUPG error (4.4). If the final
time T = 1 is not obtained exactly with the chosen time steps, the simulations were
stopped at the first discrete time larger than T .

In the diffusion-dominated regime, h ≤ ε, the terms O(k),O(k1/2hr−1ε), and
O(hr+1k−1/2) need to be balanced. This leads to k = O(h2(r+1)/3) or k = (h2/ε).
If h ¿ ε, the second scaling gives a better order of convergence for r = 1 (piecewise
linear elements). Note, in this case, δ = k = O(h2/ε) is a standard choice of the
stabilization parameter in the diffusion-dominated regime for steady-state problems.
For r = 2, both scalings are essentially the same and for r ≥ 3, the first scaling leads
to a higher order of convergence. For the SUPG estimate, the same terms have to be
balanced. In addition, the order of convergence is bounded by the term O(ε1/2hr),
such that for h ¿ ε only first order convergence can be expected for r = 1.

Figure 6.1 presents the orders of convergence for the P1, P2, and P3 finite element.
It can be seen that all orders match the predictions from the analysis.

Fig. 6.1. Example 6.1, orders of convergence for the estimates (4.3) and (4.4); left: convection-
dominated regime; right: diffusion-dominated regime.

Concerning the estimates of Theorem 4.2, the stabilization parameters were cho-
sen to be δK =

√
khK/(4‖b‖2), with ‖b‖2 being the (constant) Euclidean norm

of the convection vector. In the convection-dominated regime, the terms O(k) and
O(hr+1/2k−1/4) have to be balanced. Thus, the optimal scaling is k = O(h4(r+1/2)/5).
This turns out to be the optimal scaling also in the diffusion-dominated regime. For
piecewise linear elements, r = 1, the stabilization parameter with this scaling is
δ = O(h8/5). Note that in this case, the condition δK ≤ h2

K/(2εc2
inv) does not apply,

see the remark after Lemma 2.2. Again, for the SUPG error only first order con-
vergence can be expected for r = 1 since the term O(ε1/2hr) occurs in (4.6). The
numerical results for the estimates (4.5) and (4.6) are presented in Figure 6.2. They
match well the predictions from the analysis.

In further numerical studies at this example, we could observe that also the
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Fig. 6.2. Example 6.1, orders of convergence for the estimates (4.5) and (4.6); left: convection-
dominated regime; right: diffusion-dominated regime.

Galerkin finite element method gives reasonable results. In particular, the simulations
with this method do not blow up. Consequently, we could not observe a blow-up for
the case δK → 0 and the term O(hr+1δ−1/2) is not visible in the computational re-
sults. We could not construct an example for that the Galerkin finite element method
blows up and for that, consequently, a blow-up of the SUPG method for δ → 0 can
be expected.

Next, estimate (5.17) for the time-continuous case is considered. From this esti-
mate, one can expect convergence for the L2 norm and the SUPG norm of order 3/2
for P1 finite elements and sufficiently small time steps. The length of the time step
was set to be k = 10−6. As initial condition, the Lagrange interpolant of u(0, x, y)
was used. The results are presented in Figure 6.3. The observed order of convergence
in the L2 norm is even higher than the prediction by the analysis.

Fig. 6.3. Example 6.1, orders of convergence for the estimate (5.17), convection-dominated
regime.

Example 6.2. Rotating body problem. This problem was studied numeri-
cally for finite element discretizations of convection-diffusion equations already in [10].
Here, exactly the same setting is used. The aim of this example is to illustrate that
the choice of the stabilization parameter δK = O(hK) from Section 5 is much better
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than the choices δK = O(k), δK = O(k1/2hK) from Sections 3 and 4 in the presence
of very small time steps.

Let Ω = (0, 1)2, ε = 10−20, b = (0.5 − y, x − 0.5)T , and c = f = 0. The initial
condition, consisting of three disjoint bodies, is presented in Figure 6.4. Each body
lies within a circle with center (x0, y0) and of radius r0 = 0.15. The initial condition
is zero outside the three bodies.

Fig. 6.4. Example 6.2, initial condition and ideal solution after one rotation.

Let r(x, y) =
√

(x− x0)2 + (y − y0)2/r0. The center of the slotted cylinder is in
(x0, y0) = (0.5, 0.75) and its shape is given by

u(0; x, y) =
{

1 if r(x, y) ≤ 1, |x− x0| ≥ 0.0225 or y ≥ 0.85,
0 else.

The hump at the left hand side is defined by (x0, y0) = (0.25, 0.5) and

u(0; x, y) =
1
4

(
1 + cos(π min{r(x, y), 1})

)
.

On the bottom, a conical body is given by (x0, y0) = (0.5, 0.25) and

u(0; x, y) = 1− r(x, y).

The rotation of the bodies occurs counter-clockwise. A full revolution takes t = 6.28 ≈
2π. With the extremely small diffusion, the solution after one revolution is essentially
the same as the initial condition. Homogeneous Dirichlet boundary conditions were
imposed.

In the simulations, a uniform grid consisting of 128×128 triangles was used. This
leads to 16 641 degrees of freedom for the P1 finite element method, including Dirichlet
nodes. The length of the time step was chosen to be k = 10−6. Computational studies
were performed for the Galerkin finite element method (δK = 0 for all mesh cells),
the choice of the stabilization parameter from [10, formulae (8) and (11)], that results
in δK = k, the choice δK =

√
khK/4 and δK = hK/4.

Analogously to [10], a measure for the spurious oscillations is given by

var(t) := max
(x,y)∈Ω

uh(t; x, y)− min
(x,y)∈Ω

uh(t; x, y),

with the optimal value var(t) = 1 for all t.
The spurious oscillations of the computed solutions are illustrated in Figure 6.5

and the solutions at the final time in Figure 6.6. It can be observed that by far the
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best result was obtained with δK = hK/4. However, the computed solution with these
parameters possesses still non-negligible spurious oscillations. Using the stabilization
parameters from the analysis of Sections 3 and 4 leads for very small time steps on
a fixed spatial grid to similar results as for the Galerkin finite element method. A
slight damping of the spurious oscillations can be observed, see the ranges of the finite
element solutions in Figure 6.6.

Fig. 6.5. Example 6.2, spurious oscillations measured by var(t).

Fig. 6.6. Example 6.2, computed solutions after one revolution: Galerkin finite element method,
SUPG with δK = O(k), SUPG with δK = O(

√
khK), SUPG with δK = O(hK); left to right, top to

bottom.
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7. Summary and Outlook. This paper studied different ways to obtain error
estimates for the SUPG finite element method applied to evolutionary convection-
diffusion-reaction equations. For the definition of the fully discrete problem, the
backward Euler temporal discretization was considered.

Standard energy arguments for the fully discrete problem yield error estimates
under conditions that couple the choice of the stabilization parameters to the length of
the time step. In particular, the SUPG stabilization vanishes in the time-continuous
limit. Numerical evidence shows that this is not the correct behavior.

For this reason, the time-continuous case was considered for a problem with cer-
tain conditions on the coefficients and the P1 finite element on a uniform grid. Error
estimates with the expected order of convergence could be proven with the standard
choice of the stabilization parameters in the convection-dominated regime δ = O(h).

The analysis of the general time-continuous problem, with time-dependent coef-
ficients, is open. An extension of the analysis from Section 5 seems to be hard, since
this analysis uses several times that the original equation can be differentiated with
respect to time yielding essentially the same equation. Also the cases of higher order
finite elements and non-uniform grids in the time-continuous equation have still to be
treated.

Concerning the fully discrete case, the deeper reasons for the coupling of the
stabilization parameters with the length of the time step are not yet understood. Are
these only technical difficulties which might be overcome? Or is there a worst case
for that the stability or error analysis with stabilization parameters depending not on
the time step is not valid?

With respect to the usage of the SUPG finite element method in time-dependent
convection-diffusion-reaction equations, the results of Section 5, Example 6.2 and
other numerical studies from the literature strongly suggest to define the stabilization
parameters in the convection-dominated regime in the classical way by δK = O(hK).
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