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Abstract

This report summarizes our scientific activities within the project MANUMIEL (BMBF
Program “Förderung der Wissenschaftlich-Technologischen Zusammenarbeit (WTZ) mit
der Republik Moldau”, FKZ 01DK13020A). Namely, we discuss modeling of external cav-
ity diode lasers, numerical simulations and analysis of these devices using the software
package LDSL-tool, as well as the development of this software.

1 Introduction

This is the final report of the project MANUMIEL (01.10.13-30.09.15) in the frame of the BMBF
Program "Förderung der Wissenschaftlich-Technologischen Zusammenarbeit (WTZ) mit der
Republik Moldau", FKZ 01DK13020A.

The goal of the project was to establish a German - Moldavian cooperation for the theoreti-
cal investigation of the dynamics of micro-integrated external-cavity diode lasers (ECDLs). The
micro-integrated ECDL schematically shown in Fig. 1 consists of an active section (Sa), an ex-
tended external volume holographic Bragg grating (BG, Sb), and a glass lens (Sl) closely located
at the inner facet of the active section. Two air gaps Sg′ and Sg′′ separate the active section from
the lens and the lens from the BG, respectively. All parts are micro-integrated on an AlN ceramic
base plate (micro-optical bench) with a footprint of only 25× 80 mm2. The resonator is formed
between the outer facet of the active section and the BG. The ECDL devices are designed for
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Figure 1: Schematic representation of the ECDL device.

quantum optical experiments in space. These lasers demonstrate a complex non-linear electro-
optic behavior which is not completely understood yet. The MANUMIEL project has stimulated
the development of the mathematical modeling and numerical simulations of ECDLs at the Tech-
nical University of Moldova (TUM).

The theoretical investigations and measurements of the ECDLs done by the colleagues from
the TUM and the Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH), re-
spectively, have contributed to a better understanding of the observed phenomena and help
to improve the design of ECDLs. The simulations and analysis of ECDLs were relying on the
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software package LDSL-tool [1] developed at the Weierstrass Institute. During this project, a fur-
ther development of this software was performed. Namely, at the Weierstrass Institute we have
implemented a MATLAB-based user interface (parallel to an existing RLaB-based interface),
which can make our software a more attractive tool for a wider range of potential users. We
have also developed a new multi-mode delay differential equation model suited for simulations
and analysis of diode lasers with external cavities such as ECDL devices.

2 Traveling wave modeling of the ECDLs

During recent years the control and stabilization of laser emission of semiconductor lasers (SLs)
by an external cavity has received considerable attention. In particular, the integration of a Bragg
grating into the laser cavity allows a stabilization of the emission wavelength as required by many
applications such as frequency conversion, quantum-optical experiments and coherent optical
communication. Recently, a novel micro-integration approach was used to build a compact,
narrow linewidth External Cavity Diode Laser (ECDL) with a volume holographic Bragg grating
[2] ideally suited for quantum-optical experiments in space.

Semiconductor lasers subject to the delayed optical feedback from a distant mirror have been
investigated extensively during the past two decades. Different dynamic regimes, including
continuous-wave (cw) states, periodic and quasi-periodic pulsations, low frequency fluctuations,
and a coherent collapse were examined (see Ref. [3] and references therein). The simplest
method for modeling a semiconductor laser with a weak optical feedback is given by the Lang-
Kobayashi (LK) model [4], which is a rate equation based system of delayed differential equa-
tions. Although it is relatively simple, the LK model admits a reasonable qualitative agreement
with experiments and, therefore, provides a good understanding of nonlinear dynamics in the
considered device [5]. The LK modeling approach was also successfully used to get a deep
understanding of the stabilization or destabilization of the cw state by different configurations of
the external cavity [6, 7].

On the other hand, the LK model is mostly suited for the study of laser systems with small optical
feedback and large ratio between the lengths of the external cavity and the laser, such that the
length of the emitter itself can be neglected. A more appropriate way to describe the dynamics
of semiconductor lasers with a short external cavity is given by the Traveling Wave (TW) model,
which is a partial differential equation model that includes the spatial (longitudinal) distribution of
the fields [8, 9]. This model is well suited not only for simulations of ECDL devices, but also for a
detailed study of coexisting stationary states [7] determined by longitudinal modes [10], and for
numerical continuation and bifurcation analysis [11]. In this section of our report we apply the
TW model for the investigation of the dynamics of the ECDL device.

2.1 Model equations

It is assumed, that the TW equations

ng
c0

∂tE
± = [∓∂z − iβ(N, I)]E± − iκE∓ + F±sp (1)
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govern the dynamics of the slowly varying complex amplitudes E+(z, t) and E−(z, t) of the
counter-propagating optical fields within each part of the laser. Here, c0 is the speed of light in
vacuum, F±sp is the stochastic spontaneous emission term in the active section Sa, and ng is
the group index (different within different parts of the device).

At the output ports of the ECDL (z = 0 and z = L) as well as at the interfaces z = zk,j of the
adjacent parts Sk and Sj of the device where k, j ∈ {a, g′, l, g′′, b} (see Fig. 1), the complex
optical fields are related by the following reflection/transmission conditions [10]:

E+(0, t) = −r∗0E−(0, t), E−(L, t) = rLE
+(L, t),

E+(z+
k,j, t) = −r∗k,jE−(z+

k,j, t) + tk,jE
+(z−k,j, t),

E−(z−k,j, t) = rk,jE
+(z−k,j, t) + tk,jE

−(z+
k,j, t).

(2)

Here z−k,j and z+
k,j denote the left and the right sides of the section interface, whereas rk,j and

tk,j =
√

1− |rk,j|2 are the field amplitude reflectivity and transmission coefficients.

The relative propagation factor β is given by

β = δ − iα
2
− iD

2
+ δT (I) + i

(1 + iαH)Γg′ (N −Ntr)

2
. (3)

Outside the active section Sa the only non-vanishing terms in the expression (3) can be the
internal loss constant α and the field phase tuning δ. In the absence of the field reflections at
the edges of the lens (rg′,l = rl,g′′ = 0) as it is considered in this paper, the three sequent
parts Sg′ , Sl, and Sg′′ of the ECDL can be treated as a single gap section Sg with the averaged
group index 〈ng〉g, phase tuning 〈δ〉g, and loss 〈α〉g. Here, 〈ζ〉k = 1

|Sk|

∫
Sk
ζ(z)dz denotes a

spatial average of a function ζ over any ECDL section Sk, whereas |Sk| is the length of Sk. The
TW equations (1) in Sg can be easily resolved implying

E+(z−g′′,b, t) =
√
ηeiϕ/2E+(z+

a,g′ , t− τg), E−(z+
a,g′ , t) =

√
ηeiϕ/2E−(z−g′′,b, t− τg),

where

η = e−〈α〉g |Sg |,
ϕ

2
= −〈δ〉g|Sg|, and τk =

〈ng〉k|Sk|
c0

are the intensity attenuation, the phase shift of the forward or backward field during its propaga-
tion along Sg, and the field propagation time along each ECDL part Sk, respectively.

Within the active section Sa, the remaining terms of the propagation factor β are nontrivial. The
operator D together with the induced polarization functions P±(z, t) are used to model the
dispersion of material gain by a Lorentzian approximation [8]:

DE± = g(E±− P±), ∂tP
± = γ(E±− P±) + iωP±, (4)

where g, ω, 2γ are the amplitude, the relative central frequency, and the full width at the half
maximum of this Lorentzian. The function δT (I) = cT I represents the dependence of the re-
fractive index on the heating induced by the injected current I [12]. The thermal tuning factor
cT ≈ π/(|Sa|∆I) implies the experimentally observed mode jumps with a change of the in-
jected current [9, 12]. The value cT = 1.366 · 105 A−1m−1 used in our case corresponds to an
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average spacing between the mode jumps of ∆I ≈ 23 mA and is in a good agreement with a
similar parameter used in [12].

The factor β depends also on the carrier density dependent gain and index change functions
determined by the confinement factor Γ, differential gain g′, linewidth enhancement (Henry)
factor αH , and transparency carrier density Ntr. Due to the fact, that in the ECDL under study
the overall variation of the carrier density N is small, a linear dependence on N has been
assumed [13].
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Figure 2: Reflectivity spectra of the BG for several values of κ|Sb| (a). The dependence of the
peak reflectivity (b) and stop-band width (c) on κ|Sb|.

The field coupling coefficient factor κ in Eqs. 1 is non-vanishing only in the Bragg grating sec-
tion Sb. Fig. 2(a) shows spectra of the intensity reflection for different values of κ|Sb| and for
vanishing α and δ within Sb and vanishing reflection rL at z = L. The maximal field intensity
reflection Rmax = tanh2(κ|Sb|) (achieved for the relative frequency ωmax = −δc0/ng) and
the stop band width ωSB = 2

τb

√
κ2|Sb|2 + π2 (measured as the separation of the closest local

minima at the both sides of the stop band) are uniquely determined by the scaled coupling κ|Sb|
(see Fig. 2(b) and (c)). In the considered case, for |Sb| = 6 mm and Rmax = 0.7, the coupling
coefficient κ ≈ 2.017 cm−1 and the stopband width (measured as a separation of the adjacent
to the stop band local minima of the reflectivity spectrum) ωSB/2π ≈ 36 GHz.

The longitudinal distribution of the local photon density |E(z, t)|2 = |E+|2 + |E−|2 within the
active section Sa of the ECDL deviates only slightly from its spatial average, 〈|E|2〉a. For this
reason we neglect the spatial hole-burning of carriers and define the evolution of the spatially-
uniform carrier density N(t) in the active section Sa by the following rate equation:

∂tN =
I

qσ|Sa|
−
(
AN +BN2 + CN3

)
− c0

ng
<
∑
ν=±

〈Eν∗ [Γg′(N−Ntr)−D]Eν〉a, (5)

where A, B, C are carrier recombination parameters, I , σ, and q denote the injected current,
the cross-section area of the active zone, and the electron charge.

The ECDL operates at λ0 = 0.78µm. The amplitude reflectivities rg′,l = rl,g′′ = 0. Other
reflectivities are ra,g′ = 0.01, rg′′,b = rL = 0, and r0 =

√
0.3. The typical lengths of sections

are |Sa| = 1 mm, |Sb| = 6 mm, and |Sg| = 30 mm (where |Sg′ |, |Sl|, and |Sg′′ | are 1,
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2, and 27 mm, respectively). The group indices ng in Sa, Sb, Sl, and Sg′,g′′ are 4.1, 1.48625,
1.6005, and 1, respectively. For more details and typical values of all other parameters, see
Refs. [14, 13].

2.2 Coexistence of multiple stable steady states

It is well known that an analysis of optical modes of the model equations (1–5) can provide a
deep understanding of different dynamic effects in various multi-section semiconductor lasers
and, particularly, in ECDL devices, see Refs. [9, 10, 11, 14] for more details. Instantaneous
optical modes are sets of complex-valued objects (Θ(z),Ω), which satisfy the spectral problem
generated by the substitution of the expression E(z, t) = Θ(z)eiΩt into the field equations (1),
(2), and (4). Both Θ(z) and Ω depend on the instantaneous value of carrier densityN(t) = N̄ .
The real and imaginary parts of the complex eigenvalue Ω of the spectral problem represent the
optical frequency and the damping of the mode, respectively. The vector-eigenfunction Θ(z)
gives us the spatial profile of the longitudinal mode [10].
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Figure 3: Reflectivity spectra of the BG (a) and complex frequencies Ω of the most important
instantaneous modes (b) computed for N̄ ≈ 1.77 ·1024 m−3, which was obtained after the long
transient integration of the TW model (1–5) for I = 80 mA.

A typical example showing the most important mode frequencies Ω of the ECDL is given in
Fig. 3(b). Note, that 5 modes located within the stop-band of the BG [see Fig. 3(a)] have rather
small damping, which does not exceed 1 ns−1. Thus, a strong influence of the side modes still
can be expected, even though the ECDL operates at a cw state determined by one of these
modes.

All stationary (continuous wave) states of the TW model (1–5) can be written as

(E(z, t), N(t)) =
(
Θ(z)eiωt, N̄

)
, (6)

where (Θ(z), ω) is an instantaneous optical mode computed at the mode threshold carrier
density N̄ , which provides the real-valued mode frequency ω, i.e., determines the mode with
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Figure 4: Representation of cw states in mode frequency ω - mode threshold N̄ domain. Solid:
cw states for fixed η = 0.8. Dashed: cw states for fixed ϕ = 0. Bullets: cw states for fixed ϕ
and η.

no damping or amplification. Thus, in order to find all possible cw states we need to find all
real pairs (N̄ , ω) solving the spectral problem [10]. Some of such pairs with smallest threshold
densities N̄ are indicated by black bullets in Fig. 4. These bullets are at the intersection of the
solid and dashed curves, which represent all possible steady states for fixed η but arbitrary ϕ
and fixed ϕ but arbitrary η, respectively. For more details, see Ref. [14].

The phase factor ϕ can be used for parameterization of the solid fixed-attenuation curves in
Fig. 4, what allows a standard representation of the steady state branches. Thin solid curves
in panels (a) and (b) of Fig. 5 show these parametric representations of ω = ω(ϕ) and N̄ =
N̄(ϕ), respectively. Due to the periodicity of factor ϕ, all these curves can be re-obtained after
a 2π-shift along the abscissa axis. This periodicity implies the coexistence of multiple cw states
for each fixed phase. For example, there are four states with N̄ < 1.81 · 1024 m−3 for ϕ = 0
(see number of solid lines at this phase in Fig. 5(b) and number of bullets for those threshold
densities in Fig. 4).

The mode analysis and the semi-analytic location of the steady states, however, do not provide
any information about the stability of these states. In general, a detailed investigation of the
stability of the states can be performed by means of numerical bifurcation analysis [11]. In
our case, however, the stability of each cw state is identified by its ability to attract trajectories
during numerical integration of the model equations. For this reason, we perform large transient
simulations of the TW model (1–5) and determine the side-mode suppression ratio µ1 in the
optical spectra (Fourier-transformed complex optical fieldE−(0, t) at the left facet of the ECDL)
and the relative deviation µ2 = maxt Po−mint Po

maxt Po+mint Po
of the emitted field intensity Po(t). The states

characterized by µ1 > 20 dB and µ2 < 0.02 obtained during numerical integration of the TW
model with step-wise increasing or decreasing ϕ are represented by large red and small blue
bullets in Fig. 5. One can see, that the location of these numerically observed states coincide
with some of our semi-analytically obtained steady state branches.

It is noteworthy, that except for the tiny regions close to the observed transitions between the
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Figure 5: Frequencies ω (a) and thresholds N̄ (b) of steady states as functions of ϕ for
I = 60 mA. Thin solid curves: semi-analytically located states for fixed η = 0.8. Large red
(small blue) bullets: stable states obtained by model integration with increased (decreased) ϕ.
Parameters as in Fig. 4.

different states, the simulations show a stable cw emission. For decreased ϕ, the cw state is
defined by the maximal gain (minimal threshold) mode. Once the threshold N̄ of the adjacent
mode approaches the threshold of the operating mode (close to ϕ/2π = −0.35 or 0.65), the
switching to this side mode takes place. For increasedϕ, the situation is different. In most cases,
the operating cw state is different from the maximal gain mode. Just before the state switches (at
phases ϕ/2π ≈ 0 or 1) the operating cw state is defined by the mode with the fourth smallest
threshold. Moreover, the state transitions after the loss of stability in this case lead to different
cw states. This is a manifestation of the multi-stability in the ECDL devices.

Three different stable cw states were found for ϕ/2π = −0.2. The thresholds and the frequen-
cies of these states, denoted as si, i = 1, 2, 3, are shown in Fig. 5, whereas the optical spectra
and the emitted power of the field at both sides of the ECDL are represented in Fig. 6. It is
not very surprising, that the smallest-threshold state s3 has the largest emission at the active-
section side of the ECDL (see Fig. 6(c)). Comparing to the other states, a smaller part of the
injected current in this case is used to keep the carrier density at threshold, whereas the re-
maining larger part implies the larger emission. Probably, a bit unexpected is the large emission
at the BG side shown by the largest-threshold state s1 (see Fig. 6(d)). The wavelength of the
state s1, however, is more dislocated from the middle of the stop-band. Thus, the cw state s1

gets a smaller reflection from the BG (what increases the mode threshold), but also has a larger
transmission through the grating, which results in a larger emission of the field (see Fig. 6(a,b)).
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Figure 6: Simulated reflectivity and transmission spectra of the BG (a), optical spectra (b) and
the emitted field power at the active-section (c) and BG (d) sides of the ECDL of three different
stable cw states for ϕ/2π = −0.2. Other parameters as in Fig. 5.

2.3 Experiments vs. numerical simulations

To validate the simulation results a micro-integrated ECDL was investigated experimentally at
FBH Berlin. A comparison of the measurements and simulations is performed in Fig. 7. Panels
(a) and (c) of this figure represent typical experimentally observed state-exchange behavior
in ECDL devices for increased and decreased injection currents induced by thermal detuning
[9, 12, 13, 14]. First of all, this figure confirms a theoretically predicted coexistence of the multiple
stable steady states, which can be accessed by changing the direction of the current sweep.
The wavelengths of two different lasing states for I ≈ 125 and 150 mA are separated by,
approximately, 8.63 pm, which corresponds to the separation of the neighboring optical modes
within the stop-band of the BG. The two times larger wavelength separation for I ≈ 140 and
between 155 and 186 mA indicates a possible coexistence of the third stable state, which could
be accessed by a change of the direction of the current sweep just after each jump of the states.

The similar simulated state-jumping behavior is represented in panels (b) and (d) of the same
figure. In order to obtain the good agreement between measurement and simulation, the max-
imum reflectivity of the BG has to been changed from the intended value Rmax = 0.7 to
Rmax = 0.5 by a corresponding adaptation of the coupling coefficient κ. The reasons for this
adjustment could be, for example, the divergence of the beam within the BG and an imperfect
alignment of the BG with respect to the optical axis of the ECDL.

It is noteworthy, that the states observed during the down-sweeping of the injection current have
larger intensities, as compared to the up-sweeping case. The wavelengths of these states are
located close to the center of the BG stop-band, which in our simulations is at 780 nm. Small
differences of the emitted field intensities before and after mode jumps in this case can be well
explained by the similar emission power of the states s3 and s2, see Fig. 6(c). On contrary, the
state jumps for up-swept injection correspond to detuning induced transitions between states
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Figure 7: The mean output power at the left facet of the ECDL (a,b) and the dominant lasing
wavelengths (c,d), as functions of the increased (red) or decreased (black) injected current
in experiments (left) and simulations (right). In simulations, Rmax = 0.5, whereas all other
parameters are as in the examples before.

s1 and s2 or s1 and s3 (see Figs. 5 and 6), what explains the large step-like increase of the
emission intensity at each state transition.

2.4 Parameter study

As it was mentioned above, the dynamics of the ECDL device is determined by several modes
in many cases. In order to achieve a controllable stable lasing on a single mode, one needs to
improve the mode selection, which, particularly, can be achieved by a reduction of the number
of the main modes almost equally supported by the BG.

First of all, we consider the device with the BG peak reflectivityRmax = 0.7. A detailed analysis
of this ECDL device for increased and decreased injection current over larger injection range
is presented in Fig. 8. The problem of frequently occurring multi-mode non-stationary states
is well illustrated by panels (a) and (c) of this figure. Hatched regions in panel (a) indicate the
existence of the non-stationary states with relative deviation factor µ2 > 0.02. In panel (c),
small black and red dots showing the positions of side peaks with µ1 < 20 dB in optical spec-
tra coincide with the wavelengths of the semi-analytically computed modes (thin grey-dotted
lines). Thus, the dynamic states in these regions are determined by a beating between similarly
damped longitudinal modes located within the stop-band of the BG. It is noteworthy, that for
larger injection currents, I > 150 mA, up to five different modes can significantly contribute to
the dynamic states (see multiple large and small bullets in Fig. 8(c) at these injection currents).
At the same time, for smaller injection currents, I < 100 mA, only two or three modes can be
excited, implying a more stable stationary operation of the device.

Increasing the injection current allows the achievement of stationary and non-stationary states
with an (averaged) carrier density, that is significantly exceeding the density N̄ of the minimal
threshold mode (compare red and black curves in Fig. 8(b)). For the up-sweep bias current,
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Figure 8: Mean output power at both sides of the ECDL (a), mean carrier density in Sa (b), and
lasing wavelengths (c) as functions of increased (red) or decreased (black) pumping. Horizon-
tally (vertically) hatched areas in (a): non-stationary regimes for increased (decreased) pump-
ing. Big bullets and small dots in (c): main optical mode and side modes suppressed by less
than 20 dB. Thin dashed grey lines: longitudinal mode positions.

typical transitions between the states are characterized by the jumps to the shorter lasing wave-
length located closer to the central wavelength of the BG [red bullets in panel (c)], sudden
reduction of the mean carrier density [panel (b)] and increase (decrease) of the (mean) emis-
sion intensity at the left (right) output port of the ECDL [panel (a)]. The lasing wavelength and
emission intensities before and after the transitions are similar to those of the states s1 and
s2 shown in Fig. 6. A corresponding transition from s1 to s2 was also shown in Fig. 5 at the
phase ϕ ≈ 0. The jumps of the carrier density and emission intensities for decreased injection
current are less pronounced, since the dominant mode wavelengths are closer to the middle of
the stop-band and their thresholds are rather similar.

In what follows, we have repeated simulations of Fig. 8 using smaller κ and, therefore smaller
reflectivity of the BG, Rmax = 0.4. As it can be seen from Fig. 9 (a) and (c), the reduction
of κ implies a reduction of the emission intensity at the left side of the ECDL, and, which is
rather important, stabilizes the laser operation between the mode transitions. The gratings with
large κ|Sb| ≥ 2 have a flat stop-band [see Fig. 2(a)], which can equally support multiple modes
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Figure 9: Mean left facet output power (top) and the lasing wavelengths (bottom) as functions of
the increased (red) or decreased (black) pumping. Left: peak reflectivity Rmax = 0.4, air gap
length |Sg′′ | = 27 mm. Right: Rmax = 0.7, |Sg′′| = 13 mm. All other parameters are as in
Fig. 8.

(once they are located within such a stop-band). Thus, even though the choice of a smaller
κ|Sb| ≈ 0.75 [see Fig. 2(b)] reduces the overall reflectivity of the grating and implies an un-
wanted increase of the lasing threshold as well as decrease of the emission intensity, it helps to
improve the side mode suppression.

Another way to achieve effective control of the modes is provided by a reduction of the air gap
length, i.e., an increase of the mode separation and, therefore, the reduction of the number of
modes supported by the BG. Panels (b) and (d) of Fig. 9 give an illustration of the simulated
dynamics in the shortened ECDL with |Sg′′ | = 13 mm (compare it to |Sg′′ | = 27 mm used
in the previous examples). It is noteworthy, that the stabilization of the ECDL in this case is
achieved without the reduction of the emission power.

A set of simulations of the ECDL devices with varying Rmax and |Sg| for different values of the
injected current are summarized in panels (a) and (b) of Fig. 10. Here we show the number
of stable coexisting cw states in different parameter domains in the absence of non-stationary
attractors. White areas in these diagrams show the regimes were the ECDL is below threshold
or posses at least one stable non-stationary regime. Yellow, red, and black colors indicate the
parameters where a single, two or three different stable cw states could be observed. To access
numerically each of these states, we have applied 10 ns long optical pulse injections with the
optical frequencies determined by each of the six modes located within the stop-band of the BG
(see Fig. 3). The presence of the stable cw state was decided after 100 ns transients using the
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Figure 10: Number of stable cw states in ECDL devices for different values of injection current
and tuned κ in the BG but fixed length |Sg| (a) and tuned length |Sg| but fixed κ in the BG (b).
All other parameters are as in the examples before.

spectral and temporal criteria µ1 > 20 dB, µ2 < 0.02, as discussed in Section 2.2. Note also,
that horizontal sections of diagram (a) at Rmax = 0.4 and of diagram (b) at |Sg| = 16 mm
correspond to the two situations considered in Fig. 9.

The white color regions at the upper right part of these diagrams confirm the occurrence of the
mode beating solutions for high injection current and high Rmax or long |Sg|. Thus, in order
to manufacture devices with suppressed mode-beating dynamics within a large injected current
range, one should use a moderate peak reflectivity of the BG and / or reduce the air gap length.
The reduction of the air gap also implies a broadening of the injected current regions where
the only lasing state is a continuous wave state: see yellow color regions at the lower part of
Fig. 10(b).

3 Delay differential equation model

To make the investigations of the ECDL devices easier, it is preferable to have some easier
models admitting different analytic and semi-analytic methods of their analysis. In this section
we discuss two possible modeling approaches based on delay differential equations (DDEs)
[15]. The first of these approaches is a well-known DDE model of Lang-Kobayashi (LK) type,
which was originally used for the investigation of the dynamics in single-mode lasers with long
ECs and weak optical feedback [4]. The second approach is a newly derived multi-mode (MM)
DDE model suited for simulations of the Fabry-Perot type diode laser with an optical feedback
from the external cavity (EC), see Fig. 11(a). To demonstrate advantages of this new model, we
compare it to properly normalized TW and LK models.

External cavity. In all three cases, we assume that the action of the EC, i.e., the relation between
the optical fieldFi(t) re-injected into the diode and the fieldFe(t) emitted from the diode is given
by the linear operator F . For the simple EC determined by an external mirror, F is, basically, a
simple time-delay operator:

Fi(t) = [FFe] (t) = KeiφFe(t−τ), (7)
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Figure 11: Schematic representations of the diode laser with an external cavity. (a): linear config-
uration, as considered in the TW model. (b): ring diode laser configuration (left) with a localized
filtering element (hatched box) and the filtered optical feedback from the external cavity (right),
as considered in the new MMDDE model.

where τ is the field round-trip time in the EC, whereas K and φ are the transmission factor
and the phase shift of the complex field amplitude during this round-trip. More sophisticated
ECs can contain several reflectors or different frequency filtering elements, such as passive
resonators or Bragg gratings. The action of various objects of the EC can be approximated by
linear continuous time filters described by ODEs. For example, the delay operator (7) can be
interpreted as a broad Lorentzian filter,

Fi(t)=[FFe](t) = γ̃Keiφ
∫ t−τ
−∞ e

−γ̃(t−τ−ν)Fe(ν)dν ⇒
1
γ̃
d
dt
Fi(t) = KeiφFe(t− τ)− Fi(t),

(8)

in the limit case of γ̃ → +∞. For the sake of simplicity, we consider only the simplest case of
the EC determined by Eq. (7) or Eq. (8). We note, however, that the EC typical for ECDL devices
can be easily modeled by the same Eq. (8) with a finite parameter γ̃, or by some other nonlocal
operator F admitting its replacement by a single or a few differential equations.

Traveling wave model. After a suitable normalization [16], the spatially-distributed TW model
within the laser diode can be written as

(∂t ± ∂z)E±=
(
(1+iαH)n− ξ0

L
− P

)
E±,

PE±= ḡ
2

(E±−P±) , d
dt
P±= γ̄E±+(iω̄−γ̄)P±,

ε−1 d
dt
n = J − n−<〈(E, [2n+ 1− 2P ]E)〉 ,

E+(−L, t) = −r∗fE−(−L, t),
(

Fe(t)
E−(0, t)

)
=

(
tr −r∗r
rr tr

)(
E+(0, t)
Fi(t)

)
.

(9)

Here,E = (E+, E−)T , (·, ·) and 〈·〉 are scalar product of vector functions and spatial average,
respectively. The complex factor ξ0 is determined by the relation e2ξ0 = −r∗frre−2χ(0), where
rf and rr are complex field amplitude reflection coefficients at the the front (z = −L) and rear

(z = 0) diode facets, χ(ω) = ḡL
2

i(ω−ω̄)
γ̄+i(ω−ω̄)

, tr =
√

1−|rr|2, whereas Fe and Fi are related by
Eq. (7).

Lang-Kobayashi type model. The normalized LK type model can be written as

d
dt
E = (1+iαH)nE + CFi, Fi(t) = [FE] (t),

ε−1 d
dt
n = J − n− (2n+ 1)|E|2, (10)
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where the operatorF and parameters J , ε and αH are the same as in the TW model discussed
above. The coefficientC = t2r

2rrL
relates the feedback rate (which in non-scaled LK model would

have the dimension s−1) with the dimensionless field transmission factor Keiφ from (7) [16].

Multi-mode DDE model. Following Ref. [17], we neglect the back propagating field E− in the
TW model, assume the ring configuration of the diode laser, and allow the spatial distribu-
tion of carriers. We assume that all distributed field amplitude losses, frequency detuning, and
field dispersion within the diode are concentrated within a single point source [hatched box in
Fig. 11(b)], whereas the relation of the incident and transmitted fields E ′(t) and E ′′(t) [see
notations in Fig. 11(b)] are defined by

d
dt
E ′′(t) = (γ′ − iω̄) (µE ′(t−∆)− E ′′(t)) , where

γ′ = γ̄√
2ḡL

, µ = e−(1+iαH )L

rr
, ∆ = ḡL−

√
2ḡL

γ̄
= τd − 2L.

After resolving the unidirectional TW equation, introducing forward along the characteristic line
performed sliding average of the carrier densities, ñ(t) = 1

2L

∫ z1
z0
n (ν, t+ ν − z0) dν, elimi-

nating E ′, E ′′, Fe, and introducing a new function F = 1
tr
Fi, we obtain the following MMDDE

model for lasers with an external feedback:
d
dt
E = −[γ′−iω̄]E(t) + t2r [γ′−iω̄−γ̃]F (t) + t2r

γ̃Keiφ

rr
[E(t− τ)− F (t− τ)]

+(γ′ − iω̄)e(1+iαH)ñ(t−τd)2LE(t− τd),
d
dt
F = −γ̃F (t) + γ̃Keiφ

rr
[E(t− τ)− F (t− τ)] ,

ε−1 d
dt
ñ = J − ñ− 1

2L

[
e[2ñ+1]2L − 1

]
|E|2 .

(11)
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Figure 12: Curves of CMs in the TW (thick grey), LK (thin solid) and MMDDE (thin dashed)
models for arbitrary φ and K = 0.02, K = 0.2, and K = 0.5, whereas L = 3, τ = 13.5,
αH = 1.2, rf =

√
0.3, rr = e−2.84/rf ≈ 0.1, ω̄ = 0, ḡ = 6, γ̄ = 120, γ̃ = 500. Bullets on

the corresponding curves show location of the cavity modes for fixed φ = 0. An insert shows
enlarged curves for K = 0.02 in the vicinity of origin, (ω, n̄) = (0, 0).

Comparison of models. Cavity modes (CMs), which are the steady states of the corresponding
system, can be defined by the threshold carrier density n̄ and the relative optical frequency ω.
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The choice of the scaling factor C in the LK model [16] and the parameters γ′, µ, ∆ in the
MMDDE model allow to get a best fitting of the CMs in the reduced DDE models to the CMs of
the TW model.

Different curves in Fig. 12 represent all possible locations of the CMs for fixed feedback ampli-
tude factor K and arbitrary feedback phase φ. It can be clearly seen, that for small K , the CMs
of the LK model provide a good approximation of the CMs of the TW model in the vicinity of
the origin (ω, n̄) = (0, 0), see thin blue and thick grey solid curves within the insert of Fig. 12.
We note, however, that for small K and fixed ϕ, the LK modes has a unique CM (blue diamond
in Fig. 12), whereas the TW model posses multiple CMs with similar separation (∼ π/L) of
mode frequencies ω and similar thresholds n̄ (red bullets in Fig. 12). For moderate and large
K , the agreement between LK and TW equations is drastically degraded: whereas CMs of the
LK model are located on the increasing ellipses centered around the origin (0, 0), the CMs of
the TW model are on a single, only slightly undulated nearly horizontal non-connected curve.
In contrast, the CMs of our new MMDDE model are in nearly perfect agreement with the CMs
of the TW model for all values of K : see indistinguishable thin dashed and thick grey curves in
Fig. 12.
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Figure 13: Changes of states during numerical integration of the TW and MMDDE with increased
and decreased ϕ. (a) and (b): main frequency and mean carrier density as functions of ϕ. (c):
same calculations in frequency-density plane. K = 0.2, J = 2, ε = 4 · 10−3, whereas other
parameters as in Fig. 12.

Another comparison of the MMDDE and TW models is presented in Fig. 13. Here, we have per-
formed an estimation of the states for different values of the feedback phase factor φ using direct
numerical integration of two different models. Panels (a) and (b) of this figure show the observed
multiple transitions between different CMs. All observed states are also indicated by different
bullets in the frequency-carrier density plane (panel (c) of the same figure). It is noteworthy that
all these states represent only those CMs which are located close to the multiple-minima of the
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thick solid and thin dashed curves corresponding to the caseK = 0.2 in Fig. 12. The frequency
separation of these states is, approximately, π/L, what corresponds to the separation of the FP
laser resonances.

Conclusions. In conclusion, we have shown that our new MMDDE model is able to reproduce
the basic features of the TW model for the FP-type lasers with external feedback, whereas LK-
type models are giving a satisfactory agreement only in the case of weak feedback. Due to
large feedback in the ECDL devices, one should better use our MMDDE model instead of the
LK model.

4 New user interface of the software LDSL-tool

LDSL-tool is a software for simulation and analysis of the (L)ongitudinal (D)ynamics in multi-
section (S)emiconductor (L)asers. This software is based on Traveling Wave (PDE) equations
describing the propagation of optical fields along the longitudinal direction of the laser. The field
equations are nonlinearly coupled with the ordinary differential equations for carrier densities
and polarization functions. LDSL-tool not only integrates the PDE model equations but also al-
lows to analyze the dynamics of longitudinal modes and to build reduced ODE models based on
a finite number of modes. After showing good qualitative and quantitative agreement between
Traveling Wave and Mode Approximation models, the reduced models can be analyzed with
common tools for bifurcation analysis such as AUTO. Such different possibilities together with
some data post-processing routines make our software a powerful tool suited for simulation and
analysis of various dynamical effects in semiconductor lasers.

The kernel of LDSL-tool is a C++ code which integrates model equations, calculates instanta-
neous optical modes and performs a field expansion into modal components. Before this project,
the user interface of LDSL-tool was created using RLaB, which is a free available interactive,
interpreted scientific programming environment. Some RLaB routines (∼ 15.000 lines of RLaB
code) are used for loop computations, parameter optimization, analysis, representation (plot-
ting), post-processing, and evaluation of different criteria of the computed data. These routines
allow an automatic extraction of some main features of the computed solutions (e.g., the peak
magnitudes and frequencies in radio-frequency or optical spectra, the maxima, minima or mean
values of field intensity, the width and jitter of pulsations, etc.). These few characteristics are col-
lected when running automatic computations and looking for the device performance in different
parameter domains.

An advantage of RLaB is that it is an open source programming language. Disadvantages are
i) the lack of support and ii) it is not known for the majority of possible users of LDSL-tool. It
is noteworthy that RLaB is a programming language similar to MATLAB but with some features
that remind of C++. That means that most functions and structures can be translated one to
one. The main differences lie in the naming of structures and fields, the definition of local and
global variables and the saving and reading of files. A significant difference exists as well in
the plotting of data. Seeking to make our software better available for a larger community, we
have decided to translate the RLaB-based user interface to a MATLAB-based one. This task
was mainly performed by the student research assistant Mara Oßwald, who in a rather limited
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RLaB interface
(a) (b)

MATLAB interface

Figure 14: User environment of LDSL-tool using RLaB (a) and MATLAB executed in the com-
mand line modus (b). Top: normalized optical spectra (red curve), normalized amplitudes and
wavelength of optical modes according to the mode expansion of the optical field (green sym-
bols), and Bragg grating reflectivity spectra (green curve) in the ECDL operating at I = 250 mA.
Bottom: command line user environment.

time has managed to translate most of the important RLaB routines into MATLAB. An example
of the old RLaB-based working interface and a new MATLAB-based interface executed in the
command modus are shown in Fig. 14. We note, that besides of command-modus MATLAB
interface (which is identical to the old, RLaB-based interface) shown in this figure, one can also
exploit more possibilities of the graphical user interface available in MATLAB.
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