Weierstraf3-Institut
fiir Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Preprint ISSN 0946 — 8633

On the unitary equivalence of absolutely continuous
parts of self-adjoint extensions

Dedicated to the memory of M. S. Birman

Mark M. Malamud! and Hagen Neidhardt?

submitted: July 07, 2009

1 Institute of 2 Weierstrass Institute for
Applied Mathematics and Mechanics Applied Analysis and Stochastics
Universitetskaya str. 74 Mobhrenstr. 39
83114 Donetsk, Ukraine D-10117 Berlin, Germany
E-mail: mmm@telenet.dn.ua E-mail: neidhard@wias-berlin.de
No. 1427

Berlin 2009

wl 1lals

1991 Mathematics Subject Classification. Primary: 47A57; Secondary: 47B25, 47A55.

Key words and phrases. symmetric operators, self-adjoint extensions, boundary triplets, Weyl functions, spec-
tral multiplicity, unitary equivalence, direct sums of symmetric operators, Sturm-Liouville operators with operator
potentials .



Edited by

Weierstrafi-Institut fiir Angewandte Analysis und Stochastik (WIAS)
Mohrenstrafte 39

10117 Berlin

Germany
Fax: —+ 49 30 2044975
E-Mail: preprint@wias-berlin.de

World Wide Web:  http://www.wias-berlin.de/



Abstract

The classical Weyl-von Neumann theorem states that for any self-adjoint operator A in a
separable Hilbert space $ there exists a (non-unique) Hilbert-Schmidt operator C' = C* such
that the perturbed operator A + C has purely point spectrum. We are interesting whether
this result remains valid for non-additive perturbations by considering self-adjoint extensions
of a given densely defined symmetric operator A in §) and fixing an extension Ay = Aj. We
show that for a wide class of symmetric operators the absolutely continuous parts of extensions
A = A" and A are unitarily equivalent provided that their resolvent difference is a compact
operator. Namely, we show that this is true whenever the Weyl function M(-) of a pair {A, Ao}
admits bounded limits M (¢) := w-limy—. 0 M (t + iy) for a.e. t € R. This result is applied to
direct sums of symmetric operators and Sturm-Liouville operators with operator potentials.
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1 Introduction

Let Ay be a self-adjoint operator in a separable Hilbert space $ and let C = C* be a trace
class operator in ), C € &1(9). Recall, that according to the Kato-Rosenblum theorem, cf.
[19, 29] the absolutely continuous parts A3° and A%c, in short the ac-parts, of the operators Ag
and A = Ap + C are unitarily equivalent. In other words, the absolutely continuous spectrum,
in short ac-spectrum, of Ay and its spectral multiplicity are stable under additive trace class
perturbations. At the same time, the Weyl-von Neumann-Kuroda theorem [1, Theorem 94.2], [30],
[24] shows that the condition C' € &1($)) cannot be replaced by C' € &,(9) with p € (1, c0] (where
S,($) denotes the Neumann-Schatten operator ideals).

Theorem 1.1 ([20, Theorem 10.2.1 and Theorem 10.2.3]) For any operator Ay = A in 9
and any p € (1,00] there exists an operator C = C* € &,(9) such that the perturbed operator
A = Ay + C has purely point spectrum. In particular, o,.(Ag + C) = 0.

The Kato-Rosenblum theorem was generalized by Birman [4] and Birman and Krein [6] to the
case of non-additive perturbations. Namely, it was shown that A§¢ and A%¢ still remain unitary
equivalent whenever

(A=) 1= (4g— i)~ € &1(9).

In particular, this is true if Ag = Af and A= A* are self-adjoint extensions of a symmetric operator
A (in short Ag, A € Ext 4). This rises the following Weyl-von Neumann problem for extensions:
Given p € (1, oo] and a self-adjoint extension Ay of A. Does there exist a self-adjoint extension A

of A such that A has purely point spectrum and the difference (4 —i)~* — (Ag — i)~! belongs to
S,($H)? To the best of our knowledge this problem was not investigated.

In the present paper we show that the Weyl-von Neumann theorem for extensions becomes false in
general. We show that under an additional assumption on the symmetric operator A the ac-part
of a certain extension A9 = A} is unitarily equivalent to the ac-part of any extension A=A*of A
provided that their resolvent difference is compact, that is,

Ki=A—i) = (Ag—i) ! € Gu(H). (1.1)

The additional assumption on the pair {A, Ap} is formulated in terms of the Weyl function of the
pair {A, Ag}. The latter is the main object in the boundary triplet approach to the extension
theory developed in the last three decades, see [12, 13, 17] and references therein.

The core of this approach is the following abstract version of Green’s formula

(A*fag) - (fa A*g) = (Flfa FOQ)'H - (FOfarlg)'H7 fag € dom (A*)7 (12)

where H is an auxiliary Hilbert space and I'g, 'y : dom (A*) — H are linear mappings. A triplet
IT = {H,Ty,T'1} is called a boundary triplet for the operator A* if (1.2) holds and the mapping
I':={T,T1}: dom (A*) — H @ H is surjective.

With a boundary triplet II for A* one associates in a natural way the Weyl function M(-) = Mp(-)
(see Definition 2.10), which is the key object of this approach. It is an operator-valued Nevanlinna
function with values in [H] (i.e. Ry-function) and its role in the extension theory is similar to that
of the classical Weyl function in the spectral theory of Sturm-Liouville operators. In particular,
if A is simple, then M(-) determines the pair {4, Ao}, where Ay := A* | ker 'y, uniquely, up to
unitary equivalence. Moreover, M (-) is regular (holomorphic) precisely on the resolvent set o(Ap)
of Ay and the spectral properties of Ay are described in terms of the limits M (¢ + ¢0) at the real
line (see [9]).

One of our main results (Theorem 4.3) reads now as follows.



Theorem 1.2 Let IT = {H,To,T'1} be a boundary triplet for A* such that the corresponding Weyl
function M (-) has weak limits

M(t +10) := w—li% M(t+1iy) for a.e. teR. (1.3)
y

If o self-adjoint extension A of A satisfies condition (1.1), then the ac-parts Aac and Age of A
and Ag (= A* | ker (I'g)) are unitarily equivalent.

We apply this result to direct sums A := ®52,.5,, of symmetric operators S,, with equal and finite
deficiency indices ny(S,). Let Sp, be a self-adjoint extension of S, for each n € N. We show
that the ac-part of Ag := @525, is unitarily equivalent to the ac-part of any other extension
A = A* € Ext A provided that condition (1.1) is satisfied and the symmetric operators S,, are
unitarily equivalent to Sy for any n € N.

The second part of the paper is concerned with a spectral extremal property of certain self-adjoint
extensions of A described by the following definition.

Definition 1.3 (i) Let 7 = T} € C(%);), j = 1,2. We say that 71 is a part of T if there is an
isometry V from $); into $o such that VI V* C Ts.

(ii) Let Ag = A{ be an extension of A. We say that Ay is ac-minimal if A3° is a part of any
self-adjoint, extension A of A.

(iii) Let og := 04c(Ap). We say that Ag is strictly ac-minimal if for any extension A=A*of A
the parts A§® and A*“E;(0o) are unitarily equivalent.

In particular, if Ag is ac-minimal, then aac(g) D 04c(Ap). Note that an ac-minimal extension of
A is not unique. For any two ac-minimal extensions their ac-parts are unitarily equivalent.

We show (cf. Theorem 5.12) that if ny(S,) < oo, then the ac-part A3° of any direct sum extension
Ao = B2 Son of A:= @525, is ac-minimal. In particular, aac(g) D 04c(Ap) for any A=A* ¢
Ext 4. This result looks surprising with respect to Theorem 1.1. Indeed, in this case AJ¢ is still a
part of A% for any A € Ext 4 though the resolvent difference K 7 (see (1.1)) is not even compact.
In other words, in this case the ac-spectrum of Ay (but not its spectral multiplicity) remains stable
under (non-additive) compact perturbations K 7 though both 0,.(Ag) and its multiplicity can only
increase, whenever K 3 ¢ G

Moreover, we apply our technique to minimal symmetric non-negative Sturm-Liouville operator A
with an unbounded operator potential

(Af)(@) = =f"(z) + Tf(x). (1.4)

We show that the Friedrichs extension A" is ac-minimal and under a simple additional assumption
is even strictly ac-minimal.

The paper is organized as follows. In Section 2 we give a short introduction into the theory of
ordinary and generalized boundary triplets and the corresponding Weyl functions. In Section 3 we
express the spectral multiplicity function of the ac-part A*¢ of A = A*(€ Ext 4) by means of the
corresponding Weyl function. In Section 4 we apply this technique to prove Theorem 1.2 as well
as to give a simple proof of the Kato-Rosenblum theorem.

In Section 5 direct sums of boundary triplets IT,, = {H,,Ton,T'1,} for operators S} adjoint to
symmetric operators 5,, are investigated. We show that though, in general, II = ®52,1I,, is
not a boundary triplet for the direct sum A* : = &L 150, it is always possible to modify the
triplets II,, in such a way that a new sequence Hn = {Hn,Fon,Fln} of boundary triplets for
S} satisfies the following properties: I = e 1H forms a boundary triplet for A* such that
Son = SE | ker (Ton) = S | ker (FOn) = SOn, n € N. In particular, the corresponding Weyl



function M(-) is block-diagonal (see Theorem 5.3). Our spectral applications to direct sums are
substantially based on this result. In particular, it is used in proving of Theorem 5.12 mentioned
above.

Finally, in Section 6 we apply the technique (and abstract results) to operators (1.4) with bounded
and unbounded operator potentials. In particular, we investigate the ac-spectrum of self-adjoint
realizations of Schrédinger operator

0? N

L=— =+ =
ot? jzlc'):cj

+q(@). (t,z) eRy xR", ge L*(R"),

in L%(R4 x R™), n > 1. For instance, we show that if ¢(-) > 0 and

lim lq(y)|dy = 0, (1.5)

|#]=00 Jjz—y|<1

then the Dirichlet realization L” is absolutely continuous, strictly ac-minimal and o(LP) =
Dy _
Tac(L?) = [0, 00).

Notations In the following we consider only separable Hilbert spaces which are denoted by $,
H etc.  The symbols C(H1,Hz2) and [$1, H2] stand for the set of closed densely defined linear
operators and the set of bounded linear operators from $; to $2, respectively. We set C(H) :=
C(H,H) and [$] := [9, H]. The symbols dom (-), ran (-), o(T) and o(T) stand for the domain, the
range, the resolvent set and the spectrum of an operator T' € C(H), respectively; 7% and c4.(T)
stand for the ac-part and the ac spectrum of an operator T'=T"* € C(H).

S,(9), p € [1,0], stand for the Schatten-von Neumann ideals in $. Denote by B(R) the Borel
o-algebra of the line R and by B(R) the algebra of bounded subsets in B,(R). The Lebesgue
measure of a set 0 € B(R) is denoted by |d].

2 Preliminaries

2.1 Operator measures

Definition 2.1 Let H be a separable Hilbert space. A mapping X(-) : Bp(R) — [H] is called an
operator (operator-valued) measure if

(i) 3(+) is d-additive in the strong sense and

(ii) £(8) = £(8)* > 0 for § € By(R).

The operator measure X(-) is called bounded if it extends to the Borel algebra B(R) of R, i.e.
Y(R) € [H]. Otherwise, it is called unbounded. A bounded operator measure X(-) = E(-) is called
orthogonal if, in addition the conditions

(111) E(51)E(52) = E(51 n (52) for 01,62 € B(R) and E(R) =1y

are satisfied.

Setting in (iii) 6; = d2, one gets that an orthogonal measure E(-) takes its values in the set
of orthogonal projections on H. Every orthogonal measure E(-) defines an operator T' = T"* =
fR AdE(XN) in H with E(-) being its spectral measure. Conversely, by the spectral theorem, every
operator T = T* in ‘H admits the above representation with the orthogonal spectral measure
FE =: ET.



By X%¢, 3¢, 3% and XPP we denote absolutely continuous, singular, singular continuous and
pure point parts of the measure X, respectively. The Lebesgue decomposition of 3 is given by
3= 30C 4 38 = Xac 4 35 4 3PP,

The operator measure Y is called subordinated to the operator measure Yo, in short X1 < Yo, if
¥9(0) = 0 yields 31 (5) = 0 for 6 € By(R). If the measures ¥; and 32 are mutually subordinated,
then they are called equivalent, in short ¥; ~ 35. Note, that there are always exists a scalar
measure p defined on By(R) such that X ~ p, see [27, Remark 2.2]. In particular, there is always
a scalar measure such that X < p.

Usually, with the operator-valued measure 3(-) one associates a distribution operator-valued func-
tion 3(-) defined by
3([0,t))  t>0
() =<0 t=0 (2.1)
=3([t,0)) t<0
which is called the spectral function of ¥.. Clearly, ¥(+) is strongly left continuous, X(t —0) = X(¢),
and satisfies X(t) = X(t)*, X(s) < 3(t), s < t.

Definition 2.2 (|27, Definition 4.5]) Let ¥ be an operator measure in H and let p be a scalar
measure on B(R) such that ¥ < p. Further, let e = {e;}52, be an orthonormal basis in H. Let

Eij (t) = (E(t)ei, (?j)7 ‘I’ij (t) = dZij (t)/dp,
\PZ(t) = (\Ilij(t))?,j:l’ \I/e(t) = (\Il”(t))z(;:l

We call

N (t) := rank (U¢(¢)) := suprank (¥¢ (¢)) (mod(p)) (2.2)

n>1
and
Nx:(t) := esssup Ny (t) (mod(p))
(&

the multiplicity function and the total multiplicity of X, respectively.

By [27, Proposition 4.6] N&(+) does not depend on the orthogonal basis e. Therefore one always
has Ny (t) := N&(t) and one can omit the index e in (2.2).

When applying this definition to the absolutely continuous part 3¢ of 3 the scalar measure p*¢
can be chosen to be the Lebesgue measure | - | on B(R).

The concept of the multiplicity function allows one to introduce the following definitions.
Definition 2.3 Let X1 and X5 be two operator measures.

(i) The operator measure ¥ is called spectrally subordinate to the operator measure Yo, in short
Y =< EQ, if ¥1 < Y5 and Ngl (t) < Ngz (t) (mOd(Eg))

(ii) The operator measures X1 and Y are called spectrally equivalent, in short 31 & o, if X1 ~ Xy
and Ny, (t) = Ng, (t)(mod(32)).

Crucial for us in the sequel is the following theorem.

Theorem 2.4 Let T; be self-adjoint operators acting in §); with corresponding spectral measures
Er,(-), j=1,2. Let D € B(R).

(i) TvE7, (D) is a part of ToEr,(D) if and only if Er, p << Ert, p, where Er, p(d) := Er,;(6 N
D), j=1,2.



(ii) The parts Ty Er, (D) and ToEr, (D) are unitarily equivalent if and only if Ev, p = Er, ».

The proof is immediate from [7, Theorem 7.5.1]. For D = R Theorem 2.4 gives conditions for T}
to be unitarily equivalent either to a part of 15 or to T5 itself.

2.2 R-Functions

Let H be a separable Hilbert space. We recall that an operator-valued function F(-) with values
in [H] is called to be a Herglotz, Nevanlinna or R-function [1, 3, 17, 23], if it is holomorphic in C
and its imaginary part is non-negative, i.e. Im(F(z)) := (2i)"*(F(z) — F(2)*) >0, 2 € C4. In
what follows we prefer the notion of R-function. The class of R-functions with values in [H] will
be denoted by (Ry). Any (Ry)-function F(-) admits an integral representation

> 1 t
F(z):CO+C1Z+/_OO(tZ—m)dEF7 z€Cy, (2.3)

(see, for instance, [1, 3, 23]), where Cy = C§, C; > 0 and X is an operator-valued Borel measure

on R satisfying [(1 4 t*)"'dSp € [H]. The integral is understood in the strong sense.

In contrast to spectral measures of self-adjoint operators the measure X is not necessarily orthog-
onal. However, the operator-valued measure X is uniquely determined by the R-function F'(-). It
is called the spectral measure of F'(-). The associated spectral function is denoted by Xz (1), t € R,
cf. (2.1).

Let us calculate Nyac(t), t € R. For any Hilbert-Schmidt operator D € &3(H) satisfying ker (D) =
ker (D*) = {0} let us consider the modified Ry-function

(FP)(z) := D*F(2)D, z€Cy.

For FP(.) the strong limit F'P(t) := FP(t +i0) := s-lim,_, o FP(t+iy) exists for a.e. t € R. We
set
dpp(t) := dim(ran (Im(FP)(t))), forae. teR. (2.4)

Proposition 2.5 Let F(-) € (Ry), D € 62(H) and ker (D) = ker (D*) = {0}. Then Nxac(t) =
dpo(t) for a.e. t € R.

Proof. It follows from (2.3) that

oo

Im(FO\ +iy)) = yCi + / Y 4, AeR. (2.5)

oo (E= A+ 92

By Berezanskii-Gel’fand-Kostyuchenko theorem [3, 7] the derivative Up-s,p(t) == 4L D*Sp(t)D
exists for a.e. ¢ € R and the representation

D*Y5(6)D = /\I/D*ZFD(t)dt, § € By(R)
5

holds. Applying the Fatou theorem (see [23]) to (2.5) and using (2.4) we obtain
Im((FP)(\) = 7¥pes,p(A\) forae. XER. (2.6)

By [27, Corollary 4.7] Nxae(A) = rank (¥Yp-x,p(A)) = dim(ran (Vp-s,.p(}))) for ae. A € R.
Finally, using (2.6) we get Nxac(A) = dpp()) for a.e. A € R. O

Notice that Proposition 2.5 implies that Dyp (t) does not dependent on D. Assuming the existence
of the limit F'(t) := s-limy,_ o F(t + iy) for a.e. t € R, we set

dp(t) :=rank (Im(F(t)) = dim(ran (Im(F(t))))

for a.e. t € R. In this case Proposition 2.5 can be modified as follows.



Corollary 2.6 Let F(-) € (Ry). If the limit F(t) := slim,_.o F(t +iy) ezists for a.e. t € R,
then Nxac(t) = dp(t) for a.e. t € R.

2.3 Boundary triplets and self-adjoint extensions

In this section we briefly recall the basic facts on boundary triplets and the corresponding Weyl
functions, cf. [11, 12, 13, 17].

Let A be a densely defined closed symmetric operator in the separable Hilbert space $ with equal
deficiency indices ny(A) = dim(ker (A* F1i)) < 0.

Definition 2.7 ([17]) A triplet IT = {H,T,I'1}, where H is an auxiliary Hilbert space and
Iy, Ty : dom (A*) — H are linear mappings, is called an (ordinary) boundary triplet for A* if the
“abstract Green’s identity”

(A*fag) - (fa A*g) = (Flfa FOQ)'H - (FOfarlg)'H7 fag € dom (A*)7 (27)

holds and the mapping I' := (I'g,I';) " : dom (A*) — H & H is surjective.

Definition 2.8 ([17]) A closed extension A’ of A is called a proper extension, in short A’ € Ext 4,
if AcC A C A%,

Two proper extensions A’, A” are called disjoint if dom (A") Ndom (A”) = dom (A) and transversal
if in addition dom (A”) + dom (A”) = dom (A*).

Clearly, any self-adjoint extension A= A*is proper, A€Exta. A boundary triplet IT = {H, Ty, I'1 }
for A* exists whenever ny (A) = n_(A). Moreover, the relations ni(A) = dim(H) and ker (I'g) N
ker (I'1) = dom (A) are valid. Besides, I'0,I'1 € [94,H], where ) denotes the Hilbert space
obtained by equipping dom (A*) with the graph norm of A*.

With any boundary triplet IT one associates two extensions A; := A* | ker (I';), j € {0,1}, which
are self-adjoint in view of Proposition 2.9 below. Conversely, for any extension Ay = A € Ext 4
there exists a (non-unique) boundary triplet IT = {H,T'g,I'1} for A* such that Ay := A* [ ker (I'y).

Using the concept of boundary triplets one can parameterize all proper, in particular, self-adjoint
extensions of A. For this purpose denote by C(H) the set of closed linear relations in H, that is,

the set of (closed) linear subspaces of H @ H. The adjoint relation ©* € C(H) of a linear relation

O in H is defined by
* k / , h
0 = % : (R k) = (h, k) for all b €0;.

A linear relation O is called symmetric if © C ©* and self-adjoint if © = ©*.

The multivalued part mul (©) of © € C(H) is mul(©) = {h € H : {0,h} € O}. Setting Hoo :=
mul (0) and Hep := HL we get H = Hop @ Hoo- This decomposition yields an orthogonal
decomposition © = Oy, & On where Oy := {0} @ mul(0) and O, = {{f, g} € © : [ €
dom (©),g L mul(0©)}. For the definition of the inverse and the resolvent set of a linear relation
© we refer to [14].

Proposition 2.9 Let 11 = {H,To,T'1} be a boundary triplet for A*. Then the mapping
(Ext 4 3) A — Idom (A) = {{Tof,T1f}: f € dom(A)} =0 e C(H) (2.8)

establishes a bijective correspondence between the sets Ext 4 and 5(7—{) We put Ag = A where ©
is defined by (2.8). Moreover, the following holds:



(i) Ae = A§ if and only if © = ©%;
(ii) The extensions Ao and Ay are disjoint if and only if © € C(H). In this case (2.8) becomes
Ag = A* [ ker (I'; — OTL);

(iii) The extensions Ag and Ag are transversal if and only if © = ©* € [H].

In particular, A; := A* [ ker (I';) = Ae;, j € {0,1} where ©¢ := {0} x H and ©; := H x {0}.
Hence A; = A7 since ©; = O7. In the sequel the extension Ay is usually regarded as a reference
self-adjoint extension.

2.4 Weyl functions and v-fields

It is well known that Weyl functions give an important tool in the direct and inverse spectral theory
of singular Sturm-Liouville operators. In [11, 12, 13] the concept of Weyl function was generalized
to the case of an arbitrary symmetric operator A with n4(A4) = n_(A). Following [11, 12, 13] we
recall basic facts on Weyl functions and ~-fields associated with a boundary triplet II.

Definition 2.10 ([11, 12]) Let IT = {H,T¢,I'1} be a boundary triplet for A*. The functions
v(+) s 0(Ag) — [H, H] and M(-) : p(Ag) — [H] defined by

(=)= (ToI M) and  M(2):=Tiy(2), =€ o(Ao), (2.9)

are called the ~y-field and the Weyl function, respectively, corresponding to II.

It follows from the identity dom (A*) = ker (I'o)+M., 2z € o0(Ap), where Ag = A* | ker (I'g),
and N, := ker (A* — z), that the ~-field v(-) is well defined and takes values in [H,$]. Since
Ty € [94,H], it follows from (2.9) that M (-) is well defined too and takes values in [H]. Moreover,
both v(-) and M(:) are holomorphic on o(A4y) and satisfy the following relations (see [12])

=) = I+ (z =)Ao —2) 7)), =€ o(Ao), (2.10)
and -

M(z) = M(C)" = (= = Ov(Q)™(2), 2 € e(4o) (2.11)
The last identity yields that M(-) is a Rp-function, that is, M(:) is a [H]-valued holomorphic
function on C\R satisfying

Im (M (2))
Im (z)

Moreover, it follows from (2.11) that M (-) satisfies 0 € o(Im (M(2))), z € C\R.

M(z) = M(z)* and >0, z € C\R.

If A is a simple symmetric operator, then the Weyl function M(-) determines the pair {4, Ay}
uniquely up to unitary equivalence (see [13, 22]). Therefore M (-) contains (implicitly) full infor-
mation on spectral properties of Ag. We recall that a symmetric operator is said to be simple if
there is no non-trivial subspace which reduces it to a self-adjoint operator.

For a fixed Ag = A a boundary triplet IT = {H,I'0,T"1} satisfying dom (Ag) = ker (I'g) is not
unique. Let II; = {H,;,T},I}, j € {1,2}, be two such triplets. Then the corresponding Weyl
functions M;(-) and Ms(-) are related by

MQ(Z) = R*Ml(z)R—l—Ro, (2.12)
where Ry = R} € [Hz] and R € [H2, H1] is boundedly invertible.

According to Proposition 2.9 the extensions Ag and Ay are not disjoint whenever mul (©) # {0}.
Considering Ag and A as extensions of an intermediate extension S := Ag | (dom (Ap)Ndom (Ae))
we can avoid this inconvenience.



Lemma 2.11 Let IT = {H,To,T'1} be a boundary triplet for A*, M(-) the corresponding Weyl
function, © = ©* € C(H) and © = O,, ® O its orthogonal decomposition. Further let S := Ay |
(dom (Ap) Ndom (Ag)). Then the triplet I = {H, Ty, I'1}, defined by

H = Hop = dom (©), To:=Ty [ dom (S™), T,:= Topl'1 | dom (S™),
is a boundary triplet for S*, where 7o, is the orthogonal projection from H onto Hop, Ag = S* |

ker(fo) and Ae = Se,,. The corresponding Weyl function is

o~

M (2) = mopM(z) | Hop, =z € Cuy. (2.13)

The proof can be found in [10]. Hence without loss of generality we can very often assume that
the “coordinate” © := I'A of an extension A = Ag = Ag € Ext 4 corresponds to the graph of a
self-adjoint, operator.

In what follows, without loss of generality, we always assume that the closed symmetric A is simple
and, due to Lemma 2.11, the “coordinate” © of the extension Ag = A§ € Ext 4 is the graph of a
self-adjoint, operator.

2.5 Krein type formula for resolvents and comparability

With any boundary triplet IT = {H,T5,I'1} for A* and any proper (not necessarily self-adjoint)
extension Ag € Ext 4 it is naturally associated the following (unique) Krein type formula (cf.
[11, 12, 13))

(Ao —2)7" = (Ao — 2) 7' = 7(2)(0 = M(2))"'7(2)", = € o(Ao) No(4e). (2.14)

Formula (2.14) is a generalization of the known Krein formula for resolvents. We note also, that
all objects in (2.14) are expressed in terms of the boundary triplet IT (cf. [11, 12, 13]). In other
words, (2.14) gives a relation between Krein-type formula for canonical resolvents and the theory
of abstract boundary value problems (framework of boundary triplets).

The following result is deduced from formula (2.14) (cf. [12, Theorem 2]).

Proposition 2.12 Let IT = {H,T¢,I'1} be a boundary triplet for A*, ©; = ©F € 5(7-(), i€ {1,2}.
Then for any Schatten-von Neumann ideal S,, p € (0,00], and any z € C\ R the following
equivalence holds

—1

(Ao, —2) "' — (Ao, —2) 1 €6,(H) <= (01 —2) " — (0, —2) " € &,(H)

In particular, (Ao, —2)™' — (Ag — 2) 71 € ,(9) < (01 — i)_l € 6,(H).
If in addition ©1,05 € [H], then for any p € (0,00] the equivalence holds

(Ao, —2) ' — (Ae, — 2)F € 6,(H) <= O, — O € G,(H).

2.6 Generalized boundary triplets and proper extensions

In applications the concept of boundary triplets is too restrictive. Here we recall some facts on
generalized boundary triplets following [13].

Definition 2.13 ([13, Definition 6.1]) A triplet IT = {H,T'g,I'1} is called a generalized bound-
ary triplet for A* if H is an auxiliary Hilbert space and TI'; : dom(I';) — H, j = 0,1 are



linear mappings such that dom (T") := dom (I'y) N dom (T';) is a core for A*, Ty is surjective,
Ap := A* | ker (T'g) is self-adjoint and the following Green’s formula holds

(Acf,g) = (f, Avg) = T1f, Tog)n — (Tof, T1g)w,  f,g € dom (Ay), (2.15)
where A, := A* | dom (T").

By definition, A, := A* | dom(T") and A, C A* = A, and (A.)* = A. Clearly, every ordinary
boundary triplet is a generalized boundary triplet.

Lemma 2.14 ([13, Proposition 6.1]) Let A be a densely defined closed symmetric operator and
letT1 = {H,T0,T1} be a generalized boundary triplet for A*. Then the following assertions are true:

(i) N :=dom (A.) NN, is dense in N, and dom (A,) = dom (Ag) + MN%;
(ii) Tydom (Ag) = H;
(iii) ker (") = dom (A) and ran(T') = H & H.

Lemma 2.15 Let A be a densely defined closed symmetric operator and let 11 = {71, [y, T1} be a
generalized boundary triplet for A*. Then the mapping ' = {T9,T1} T is closable andT € C($4,H).

Proof. The Green’s formula can be rewritten as (A.f,g9) — (f, A.g) = (JTf,Tg) where I' :=

(To,T1)" and J := PI é Let f, € dom(I'g) Ndom(I'y) = dom (A,), | fulls, — 0 and

Ufn={Tofn,T1fn} — {¢,¥} as n — oo. Hence

0= lm [(Asfn,9) — (fn,Ag)] = (Jfx,Tg), where foo:={p,0}".

n—oo

Since ran (I") is dense in H @ H one has Jfo = 0. Thus, ¢ = ¢ = 0 and T is closable. O

For any generalized boundary triplet IT = {H,T'o,I'1} we set A; := A* | ker (I';), j € {0,1}. The
extensions Ay and A; are disjoint but not necessarily transversal. The latter holds if and only if
IT is an ordinary boundary triplet. In general, the extension A; is only essentially self-adjoint.

Starting with Definition 2.13, one easily extends the definitions of y-field and Weyl function to the
case of a generalized boundary triplet II by analogy with Definition 2.10 (cf. [13, Definition 6.2]).

Definition 2.16 Let ITI = {H,T5,T'1} be a generalized boundary triplet for A*. Then the operator
valued functions y(-) and M(-) defined by

v(z) = (FO I ‘ﬁz)_

are called the (generalized) ~-field and the Weyl function associated with the generalized boundary
triplet 11, respectively.

YL H M. and M(z) :=T17(2), z € o(Ayp), (2.16)

It follows from Lemma 2.14(i) that () takes values in [H, $], ran (y(z)) = N := dom (A,) NN,
and it satisfies the identity similar to that of (2.10) which shows that v(z) is a holomorphic operator
valued function on p(Ay).

Further, one has dom (M (z)) = H since rany(z) C dom (I'1), z € o(Ap). By (2.16) M (%) is closable
since y(z) is bounded and T’y is closable, by Lemma 2.15. Hence, by the closed graph theorem
M (-) takes values in [H]. Moreover, it is holomorphic on ¢(Ay), because so is ¥(-), and satisfies
the relation (2.11). It follows that ker (Im M(z)) = {0}, z € C,, though the stronger condition
0 € o(Im M(3))(<= ran(v(i)) = ;) is satisfied if and only if II is an ordinary boundary triplet
(in the sense of Definition 2.7).

In the sequel we need the following simple but useful statement.
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Proposition 2.17 Let I1 = {H,To,T'1} be an ordinary boundary triplet for A*, M(-) the corre-
sponding Weyl function, B = B* € C(H) and Agp = A* | ker (I'y — BI'g). Let I'P := Ty and
Fég = BFO — Fl. Then

(i) Op = {H,T8, TP} is a generalized boundary triplet for A* such that it holds dom (A,) =
dom (T') := dom (Ag) + dom (Ap) C dom (A*), Af = A;

(ii) the corresponding (generalized) Weyl function Mp(-) is

MB(z):(B—M(z))_l, z € Cq;

(iii) Op is an (ordinary) boundary triplet if and only if B = B* € [H]. In this case Mp(-) is an
ordinary Weyl function in the sense of Definition 2.7.

Note, an analogon of Proposition 2.9 does not hold for generalized boundary triplets. Neverthe-
less, since the corresponding Weyl function determines the pair {A, Ap} uniquely, up to unitary
equivalence, it is possible to describe the spectral properties of Ay in terms of the (generalized)
Weyl function M(-).

3 Weyl function and spectral multiplicity

Throughout of this section A is a densely defined simple closed symmetric operator in $) with
n4(A) =n_(A). Let I = {H,T,T'1} be a generalized boundary triplet for A*, and let M(-) be
the corresponding generalized Weyl function. Since M(-) € (Ry) it admits representation (2.3).
Since A is densely defined (see [13, 26]), one gets C; = 0, i.e.

> 1 t
M(Z):C()Jr[m <t—z1+t2>d2M'

Proposition 3.1 Let A be a densely defined, simple closed symmetric operator and let 11 =
{H,To,T'1} be a generalized boundary triplet for A.(C A*), AL = A, and let M(-) be the corre-
sponding Weyl function. If E4, is the spectral measure of Ay := A* | ker (Ig), then Xy = Eg4,
and 297 ~ B4

Proof. Alongside X ,(-) we introduce the bounded operator measure ¥9,(-),

1

Clearly, 39,(-) = ¥p/(+). According to [2, formula (2.16)] one has
Z3(0) = V()" Eay(O)y(0), 0 € B(R), (3.1)

where 7(-) is the generalized 7-field of II. Note, that though formula (3.1) is proved in [2] for
ordinary boundary triplets, the proof remains valid for generalized boundary triplets. Due to the
simplicity of A one has

span {(Ag — 2) 'ran(y(i)): z€CLUC_} =9,

Hence the subspace 9; := I, where MNF := ran(y(i)) is cyclic for Ag. Next, let P; be the
orthogonal projection from $ onto 91;. We set X9, (-) := P,Ea,(-) | M;.

Clearly, ENJ?V[( -) is an operator measure. Since the linear manifold 91} is cyclic for Ay, one gets from
[27, Theorem 4.15] that the measures X3, and E,4, are spectrally equivalent.
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Note that %9,(-) = v(i)*S9,(-)7(i). Since ran (y(i)) is dense in N;, the latter yields £9, ~ 29,
Let D € G2(H) and ker (D) = ker (D*) = {0}. We set

dD*30,(t)D dD*39,(t)D
\I/D*ZII)WD(t) = Tlgé) and WE*E(}Wﬁ(t) = TJ(Mt)

where p is a scalar measure such that f)(}v[ ~ p and D = v()D : H — ;. We note that
ker (D) = ker (D*) = {0}. By [27, Corollary 4.7] we have

Nyo (t) =rank (Y p-50 p(t)) and Ni?w (t) = rank(\Ilﬁ*i%ﬁ(t))

for a.e. ¢ € R (mod(p)). Since Vp.xo p(t) = \Ilﬁ*i%ﬁ(t) for a.e. ¢ € R (mod(p)) we get
Ny, (t) = Ng, (t) for ae. t € R (mod(p)). Hence 9, and XY, are spectrally equivalent. Since
30, and E,, are spectrally equivalent the measures X%, and E 4, are spectrally equivalent. This

proves the first statement.

The second statement follows from the equality $3;“(8) = ~(i)* E4 (5)7(4), § € B(R) where X}
is the absolutely continuous part of X9, . O

The proof of Proposition 3.1 leads to the following computing procedure for Nsac(t): choosing
D € 65(H) such that ker (D) = ker (D*) = {0} we introduce the sandwiched Weyl function
MD('))

(MP)(z) := D*M(2)D, =ze€C,.
It turns out that the limit (MP)(t) := s-lim,_, 1o MP(t + iy) exists for a.e. t € R. We define in
accordance with (2.13) the function dyp(-) : R = NU {0},

dyso (t) == rank (Im(MP(t))) = dim(ran (Im(M P (£))))
which is well-defined for a.e. ¢t € R.

For a measurable non-negative function £ : R — Ry defined for a.e. ¢t € R we introduce its
support supp (§) :={t € R: &(¢) > 0}. By clae(-) we denote the absolutely continuous closure of
a Borel set of R., cf. Appendix.

Proposition 3.2 Let A be as in Proposition 3.1, let 1 = {H,To,T1} be a generalized boundary
triplet for A.(C A*), A = A, and let M(-) be the corresponding Weyl function. Further,
let E4,(-) be the spectral measure of Ag = A | ker(Iy) = Af. If D € S3(H) and satisfies
ker (D) = ker (D*) = {0}, then Npge (t) =dpyp(t) for a.e. t € R and 04c(Ag) = clac(supp (dasp)).
If, in addition, the limit M (t) := s-lim,_, 1o M (t +1iy) exists for a.e. t € R, then Npgge (t) = dp(t)
for a.e. t € R and o,.(Ag) = clac(supp (dar)).

Proof. The relation Npqe (t) = dpypo (t) follows from Theorem 2.5 and Theorem 3.1. Further, let

{gi}_,, 1 < N < o0, be a total set in H. We set hy := Dgy. One easily verifies that {h,}3_;
is a total set. We set My, (2) := (M(2)hn, hn), z € C4. Clearly, My, (z) is R-function for every
ne{l,2,...,N} and

M, (£) = Tim, M, (¢ + i) = (M (D, )

exists for a.e. ¢ € R. Set
Qac(Mp,) :={t eR: 0 <Im(My, (t)) < co}.

Combining [9, Proposition 4.1] with Lemma A.3 we obtain

N
Uac(AO) = U Clac(Qac(Mhn)) = clge (
k=1

TC=

Qac(Mhn)> . (3.2)
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If t € supp (dyp), then Im((MP)(t)) # 0. Hence t € Qu.(My,) for some n € {1,2,...,N}.
Therefore supp (dy;p) C Ufcvzl Que(My,,) which yields

N

Clac(supp (dMD)) g Clac (U Qac(Mhn)> . (33)
k=1

Conversely, if t € Que(My,) N Epp, where Eyp = {t € R: I (MP)(#)}, for some n, then 0 <

dpo(t). Hence Qqc(Mp, )NEpp C supp (dysp) which yields Ugil Qae(Mp, )N Epyp C supp (dpyp ).

Hence

N N
Clac <U Qac(Mhn) N EM) = Clac <U Qac(Mhn)> g Clac(Supp (dMD))

k=1 k=1
Combining this equality with (3.2) and (3.3) we obtain ¢4.(Ap) = clac(supp (dasp)). O

Corollary 3.3 Let A be as in Proposition 3.2, let I = {H,To,T1} be an ordinary boundary
triplet for A* and let M(-) be the corresponding Weyl function. Further, let B = B* € C(H),
Ap = A* | ker (I'1 — BTg) and E4,(-) the spectral measure of Ap. If D € G3(H) and satisfies
ker (D) = ker (D*) = {0}, then NEaAcB (t) = dpp(t) for a.e. t € R and 04c(Ap) = clac(supp (dyp))-

If, in addition, the limit Mp(t) := s-lim,_ 1o Mp(t + iy) exists for a.e. t € R, then NEGACB (t) =
dprg (t) for ace. t € R and 04.(Ap) = clac(supp (dary))-

Proof. By Proposition 2.17 Ilg = {H,I'# TP} is a generalized boundary triplet for A, :=
A* | dom (A.), dom (A,) = dom (Ag) + dom (Ap), and Mp(z) = (B — M(2))~ !, z € Cy, the
corresponding generalized Weyl function. Clearly, Az = A, | ker (). It remains to apply
Proposition 3.2. O

This leads to the following theorem.

Theorem 3.4 Let A be a densely defined closed symmetric operator, let I = {H,To,T1} be an
ordinary boundary triplet for A* and let M(-) be the corresponding Weyl function. Further, let
Ap = A* | ker(I'y — BI'y), B = B* € C(H), and Ea,(-) the spectral measure of Ag. Let
D € 63(H) and ker (D) = ker (D*) = {0}. Then

(i) AoE%S (D) is a part of ApEYS (D) if and only if dyo () < dyp(t) for a.e. t €D,

(i) AoEYSS (D) and ApEYS, (D) are unitarily equivalent if and only if dyo(t) = dpp(t) for a.e.
teD.

Proof. Without loss of generality we assume that A is simple since the self-adjoint part of A is
contained as a direct summand in any self-adjoint extension of A. We to show that X47(d) = 0 for
some d € By(R) if and only if dy;p () = 0 for a.e ¢ € §. By the Berezanskii-Gel’fand-Kostyuchenko
theorem [3, 7] the derivative ¥ p«x,, p(t) := %D*E(t)D exists and the relation

D*E(JI\;((S n D)D = \I/D*ZMD(t)dt, 0 € By,
oND

holds. One has ¥95(5) = 0 if and only if Up-x,,p(t) = 0 for a.e. ¢ € §. Since dyp(t) =
dim(ran (U p-x,,p(t))) for a.e. t € R we find that £$7(6ND) = 0 if and only if dy,p (t) = 0 for a.e.
t € 0ND. Similarly we prove that 347 (6ND) = 0 if and only if dp-nr, p(t) = 0 for a.e. t € 6ND.

(i) Since by assumption dyo (¢) < dyp(t) for ae. t € D, one gets by the considerations above that
¥37(6ND) < ¥37,(6 N D). By Theorem 2.5 we have Nxae(t) = dpo(t) and NE%B (t) = dpp(t)
for a.e t € R. Hence Nxae(t) < Nsge (t) for a.e. t € D which proves that the restricted measures
¥37(- N D) is spectrally subordinated to X247, (- N D), cf. Definition 2.3(i). Since X247 ~ E%° and
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¥4, = E%S,, by Theorem 3.1, we get that E° (- N D) is spectrally subordinated to E4S (- N D).
Applying Theorem 2.4(i) we complete the proof.

(ii) If dpo (t) = dp-mpp(t) for ae. t € D, then ¥37(- N D) ~ X497 (- N D). By Theorem 2.5,

Nsae(t) = dpgo (t) and Nxae () = dpo(t) for a.e ¢ € R which implies that the operator measures
B B

¥37(-N'D) and ¥47_ (- N D) are spectrally equivalent, cf. Definition 2.3(ii). By Theorem 3.1,

E%(-ND) and B, (-N D) are spectrally equivalent. Applying Theorem 2.4(ii) we prove that the

absolutely continuous parts AgE4S (D) and ApE4S, (D) are unitarily equivalent. O

Theorem 3.4 reduces the problem of unitary equivalence of ac-parts of certain self-adjoint extensions
of A to investigation of the functions dj/p(-) and dy;o(-).

Corollary 3.5 Let A be as in Theorem 3.4. If the self-adjoint extensions A and A’ of A are
ac-minimal, then their ac-parts are unitarily equivalent.

4 Unitary equivalence

4.1 Preliminaries

In what follows we assume that A is a densely defined simple closed symmetric operator in §). By A
we denote a self-adjoint extension of A which is fixed. Alongside Ay we consider A = A* € Ext 4.
Usually we assume that

(A=) 1= (Ag—i) " € B(H). (4.1)

It is known (see [12] that there exists a boundary triplet IT := {H, ¢, T";} for A* such that Ay :=
A* | ker (I'g). Of course, the boundary triplet II is not uniquely determined by the assumption
A := A* | ker (T'g). IfII; and II5 are two such boundary triplets of A*, then their Weyl functions
M;(-) and My(-) are related by (2.12) (cf. [12]).

Fix a boundary triplet IT := {H,[¢,I'1} for A* such that Ag = A*ker (I'y). By Proposition 2.9
there is a linear relation ©® = ©* € 5(7'{) such that A = Ae. In general, © is not the graph of an
operator, © ¢ C(H). However, let us assume that O is the graph an operator B. By Proposition
2.12 we get that (B —1i)~! € 6,(9), that means, that B is a self-adjoint operator with discrete
spectrum. Hence, o( B)NR # . In what follows we assume without loss of generality that 0 € o(B).
According to the polar decomposition we have B~! = DJD where

D:=|B|7Y2=D" € 6,(H) and J:=sign(B)=J*=J"L (4.2)
Clearly, D € 6 (H), ker (D) = {0}, and D commutes with .J. We set
G(z):=J—MP(2), ze€Cy4, (4.3)

MP(z) := DM(2)D, z € C4, as usually. Obviously, MP(z) and —G(z) are R-functions. We
have ker (G(z)) = {0} for every z € C;. Indeed, if G(2)f = 0, then Jf = DM (z)Df. Hence,
Im(M(z2)Df,Df) =Im(Jf, f) = 0 which yields Df =0 or f = 0. Since J is a Fredholm operator
satisfying ker (J) = ker (J*) = {0} we find by [20, Theorem 5.26] that G(z) is boundedly invertible
for 2 € C4. We set T'(2) := G(2)™', 2 € C4 and note that 7'(-) is a Nevanlinna function because
so is MP(-). Moreover, T'(z) — J = T(2)MP(2)J € &,(9) for z € C,.

4.2 Trace class perturbations: Rosenblum-Kato theorem
Here we apply the Weyl function technique in order to obtain a simple and quite different, proof

of the classical Rosenblum-Kato theorem. In fact, we prove a generalization of the Rosenblum-
Kato theorem due to Birman and Krein [6] which includes non-additive (trace class) perturbations.
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Our proof demonstrates the main idea of the proof of more general results contained in the next
subsection.

Theorem 4.1 Let Ay and A be self-adjoint operators in $) satisfying
(A—i)"1 = (Ag — i)~ € &1(9). (4.4)

Then the absolutely continuous parts A% and Age of A and Ay, respectively, are unitarily equiva-
lent.

Proof. To include the operators Aac and Af¢ in the framework of extension theory we set

A:= Ay | dom(A4), dom (A) = {f € dom(A)Ndom (4g): Aof = Af}.

Obviously, we have A := A | dom (A). Clearly, A is a closed symmetric operator in §) with equal
deficiency indices and Ap, A € Ext 4.

First we assume that A is densely defined. Let II = {H,T0,I'1} be a (ordinary) boundary triplet
for A*, such that Ag := A* | ker (I'g), and M(-) the corresponding Weyl function. By definition
A = A* € Ext 4 and A and Ay are disjoint, that is, dom (4) = dom (4g) N dom (A). Hence, by
Proposition 2.9(ii), there exists an operator B = B* € C(H) such that A= Ag.

It follows from (2.14) and (4.4) that Mp(z) := (B — M(z))~! € &1(H) for z € C,. In accordance
with [5, Lemma 2.4], see also [31], the limits Mp(t) := lim,_, o Mp(t + iy) exist in So(H), for
a.e t € R. By Theorem 3.4 it is it suffices to calculate the multiplicity function das,(t) :=
rank (Mp(t)) = dim(ran (Im(Mp(t)))).

It follows from (4.2) and (4.3) that

1

T(z)=G(z)"' = (J = MP(2)) "' = (J— DM(2)D) "~ (4.5)
=D Y (DWID ~ M(2)) D' = |B|Y*(B - M(2)) '|B|'?, zeC,.
Combining this relation with (4.2) yields
Mp(z) := (B — M(z))"! = DT(2)D, z€Cy.
In turn, this equality implies
Im(Mg(z)) = DT (2)*Im(MP (2))T(2)D,  z€C,. (4.6)

Moreover, since M (z) € &;(H) and T'(z) — J € &; for z € C, by [5, Lemma 2.4] (see also [31]),
for a.e t € R and y — 0 there exist the limits M P (t) and T(t) in &5(H)-norm of the Nevanlinna
operator functions M P ((t + iy)) and T (¢ +iy), respectively. Therefore passing to the limit in (4.6)
as y — 0 we get

Im(Mg(t)) = DT(t)* Im(MP(t))T(t)D for a.e. t€R. (4.7)

Therefore we find
darg (t) = dim(ran (Im(Mp(t)))) (4.8)
= dim(ran (v/Im(Mp(t)))) = dim(ran (/Im(M P (¢))T(t)D)).

Since (J — MP())T(t) = T(t)(J — MP(t)) = I for a.e. t € R, we find ran (T'(t)) = H for a.e.
t € R. Combining this relation with ran (D) = H and (4.8) we obtain

dar (t) = dim(ran (1/ITm(MP(t)))) = dim(ran (Im(M P ()))) = dyo (1) (4.9)

for a.e. t € R. Applying Theorem 3.4(ii) we complete this part of the proof.
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If A is not densely defined one can repeat the above reasonings applying only the boundary triplet
technique for non-densely defined symmetric operators developed in [13, 26]. It turns out that the
proof above can easily be carried over to this case. O

In the following corollary we show that in proving of unitary equivalence of Ay and A€ Ext 4 it
suffices to restrict the consideration to disjoint extensions.

Corollary 4.2 Let A be a densely defined closed symmetric operator in $, let Il = {H,Ty,T'1}
be an ordinary boundary triplet for A*, and let M(-) be the corresponding Weyl function. Let also
Ap := A* T ker (Ty) and D € B(R).

(i) If AL°E 4, (D) is a part of /T“CEE(D) for any extension A = A* € Ext 4 disjoint with Ay, then
AgE 4, (D) is a part of /T“CEK(D) for any extension A = A* € Ext 4.

(i) If AG°Ea, (D) is unitarily equivalent to /T“CEE(D) for any extension A = A* € Ext 4 disjoint
with Ag, then éSCEfo (D) is unitarily equivalent to the absolutely continuous part A*“E z(D) of
any extension A = A* € Ext 4.

Proof. By Proposition 2.9 an extension Ae Ext 4 which is not disjoint with Ag admits a repre-

sentation Ag with © = ©* € C(H) \ C(H). However, © admits a decomposition H = Hep & Hoo,
O = Oop ® O Where O, is the graph of the operator B., = B, € C(Hop) (cf. Section 2).
Denoting by 7, the orthogonal projection from H onto Hop, and Mop(2) 1= mep M (2) [ Hop, We
get (© — M (2))™! = (Bop — Mop(2)) "' mop. Therefore formula (2.14) takes the form

(Ao —2) ' —(Ag —2) ' = ~¥(2)(Bop — Mop(z))flﬂopv(f)*, z € Cy.
Choose an operator B, = B, € C(Hxo) such that (Be —i) ™! € G1(Huo) and put B = Bo, @ Beo.
It follows from Proposition 2.12 that
(Ao 2" — (A5 —2) ' € &1(9),

since (Boo —)~! € &1(Hoo). By Theorem 4.1 the absolutely continuous parts A% and A% of Ae
and Ap, respectively, are unitarily equivalent.

(i) Since by assumption Ai°E 4, (D) is a part of A4 E4, (D) and A% is unitarily equivalent to A%
we get that A3°E 4, (D) is a part of A Ea, (D).

(ii) Since, by assumption, AA°E4,(D) is unitarily equivalent to A% FE 4, (D) and A% is unitarily
equivalent to Ag, we get that AG°E 4, (D) is unitarily equivalent to A Ea, (D). O

4.3 Compact non-additive perturbations

Here we generalize the Rosenblum-Kato theorem for the case of compact perturbations. To this
end we assume that the maximal normal function

mt(t) ;== sup ||M(t+iy)]|
0<y<1

is finite for a.e. ¢ € R. This is the case if and only if the normal limits M (t) := w-lim,_,o M (t+1iy)
exist and are bounded operators for a.e. t € R. Indeed, let D = D* be a Hilbert-Schmidt
operator such that ker (D) = {0} and let M?(z) := DM (z)D, z € C,. Since the limit M (t) :=
o-lim,_, 1o MP(t + iy) exists and is a bounded operator for a.e. t € R, see [5, 31], we find that

11120(M(t +iy)Df,Dg) = (MP(t)f,g), f,g€H, forae tecR.
y—>

Hence the limit lim,_4o(M (¢t + iy)h, k) exists for a.e. t € R and h,k € ran (D) which yields the
existence of M (t) := w-lim, .o M(t + iy) for a.e. t € R. The converse statement is obvious.

Now we are ready to prove the main result of this section.
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Theorem 4.3 Let A be a densely defined, closed symmetric operator in 9, let 11 = {H,Ty,T1}

be an ordinary boundary triplet for A*, and let M(-) be the corresponding Weyl function. Let A
be a self-adjoint extension of A and Ao := A* | ker (Tg). If the mazimal normal function m™(t) is

finite for a.e. t € R and condition (4.1) is satisfied, then the absolutely continuous parts A*¢ and
Af° of A and Ay, respectively, are unitarily equivalent.

Proof. We divide the proof into several steps.

(i) First we assume that the extensions A and Ay are disjoint, that is A = Az where B = B* €
C(H). We define the operator D € &, (H) in accordance with (4.2), D := |B|~'/2, and investigate
the function MP(z) :== MP(z) := DM(2)D, z € C,. Let MP(t) :== DM(t)D. Since the (weak)
limit M (¢) := w-lim,_. 1o M (¢t +iy) exists for a.e. t € R, by [31, Lemma 6.1.4], the following limit
exists

O_ylirﬁo |MP(t+iy) — MP(#)|| =0 for a.e. teR. (4.10)

Let 04 := {t € R: ||M(¢)|| < a}. Since D = D* is a a non-negative compact operator, it admits
the spectral decomposition
D=3 mQ

leN

where {£;;}7°,, is the decreasing sequence of eigenvalues of D, {Q; };en the corresponding sequence
of eigenprojections, dim{@;} < occ.

Since u; — 0 as [ — oo, there exists a number [, € N such that p;, < 1/v2a. We put H; :=

D2, 1 QH and Hy = P, QrH. Clearly, H = H, & Hy and dim(Ha) < co. Moreover, the
operator D admits the following decomposition D = Dy & Do where

oo la
Dy = Z wQr and Dy := Z#ZQ1~
=1

I=lo+1
Since y;, < 1/v/2a, we have ||D1| < 1/v/2a. Hence

|[D1M(t)D4] < 1/2, t € dq. (4.11)
Denote by P; and P, the orthogonal projections from H onto H; and Hs, respectively. Note that
P J=JP, and P,J = JPs.

(ii) Our next aim is to show that the operator function G(z) := J — MP(z) is invertible in C, and
that T'(z) := G(z)~! has the limits T'(¢) := s-lim,_, 1o T(t + iy) for a.e. t € §,. For this purpose
we consider the decompositions

MP(z) = <DiM(z)Dj)2 - (MlDl(Z) MB(Z)): 7:91 — 7;1 :

ij=1
z € Cy, and

— D V4 — D V4
G(z)=J - MP(z) = <J1—MJ;£[{1(12() ) A _Mﬁ;g()z)> , zeCy,

where J, := JP; and Jy := JPs.

(ii); Let us prove that ker (J; — MJ(z)) = {0} for z € C,. Indeed, from 0 = J1g — ME(2)g =
Jig— D1 M (2)D1g one gets that 0 = Im(ME (2)g,g) = (Im(M(2)D1g, D1g). Hence 0 = D1g = Dg
which yields g = 0. Since 0 € o(J1) and MJ(-) € &, we obtain that the operator J; — ME(z) =
Ji(Iy — J1ME (2)) is boundedly invertible for every z € Cy. Since M (z) is a Ry, -function, we
get that =(z) := (J; — M{(2))™!, z € C,, is a Ry, -function too.
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ii)o We show that for a.e. ¢t € &4, a > 0, the limit Z(¢) := o-lim,_ ¢ =Z(t + iy) exists in the
y—+
operator norm and the following representation holds

2(t) = (i — ME@) L. (4.12)

First we note that J, — MJ(z) = Ji(I; — J1ME(z). Using (4.11) we get ||Ji1ME(t)| < 1 for
t € &,. Hence the inverse operator (I; — J; M{(t))~! exists for t € §,. Using (J; — ME(t))™ =
(I; — J1ME(t))~'J; we find that the inverse operator (J; — M#(t))~! exist for ¢t € §,. Since
MZE (2) has limits MJ(t) for a.e. ¢t € R one gets that JyME(t) = o-lim,_. 1o J1 ME(t + iy) for
a.e. t € R. Fix any such tg € J,. Then due to estimate (4.11) there exists n = 7(t¢) such that
SUPye (0,1 |1 M{3 (to + iy)|| < 1/2. Therefore, the family {|[(; — J1ME (to + iy)) "} yeo. is
uniformly bounded for any fixed ¢y € d,. Using this fact and (4.10) we can pass to the limit as
y — 0 in the identity

(11 = JiM{7 (to +iy)) ™ = (I — JuM{j (to)) ™
= (L — JiM{i(to +1iy))~ (JiM{1 (to + iy)) — JIM{ (t)) (I — JuME (to)) ™
We obtain o-lim,_, 1o((l1 — JIME (t +iy))~t = (I — J1ME(t))~! for a.e. t € §, which yields the
existence of Z(t) := o-lim,_, o =(¢ + iy) and proves representation (4.12).

(ii)s Next we set
A(z) = My (2) + My (2) (S — M{7(2) ' Mi3(2), 2 € Cy.

and show that the function Ty(-) := (Jo — A(+)) ™! is Ry, -function.

Clearly, A(-) is holomorphic in C4 and it acts in a finite dimensional Hilbert space Hs. Since
det(Jz — A(+)) is also holomorphic in C, the determinant det(J2 — A(+)) has only a discrete set
of zeros in C,. Hence the inverse operator T5(+) := (Jo — A(+))~! exists for z € Q C C; where
C4+ \ Q is at most countable discrete set, that is, T5(+) is meromorphic in C,.

As we just mentioned the inverse operator (J2 —A(2)) ! exists for z € Q € C,. Choose any z € €.
Then, by the Frobenius formula,

T(Z) = (J — MD(Z))il = <T2(z)]z\}2éz(l)5(z) E(Z)]\??(f))TQ(Z)) (4.13)

where
T1(2) == E(2) + E(2) ME(2)Ta(2) ME (2)2(2). (4.14)

Hence

TQ(Z) = PQT(Z) rHQ, z € Q.

Since T'(+) is a Ry-function, we get that Im (72(z)) > 0 for z € . Since in addition T5(-) is
meromorphic in C,, we conclude that it is holomorphic. Thus, To(-) = (Jo — A(-))7! is Ry,-
function, too.

(ii)4 In this step we show that for any a > 0 the limit T'(¢) := o-lim, ..o T(t + iy) exists in
the operator norm for a.e. ¢ € §,. Since Ty(:) is the matrix Ry,-function, the limit Th(t) =
o-limy 4 T5(t + 4y) exists for a.e. t € R. Besides, (4.10) yields

lim |ME(t+iy) — M) =0 and lim |ME(t+iy) — ME@®)| =0
y——+0 y——+40

for a.e. t € R. Combining these relations with (4.12) and (4.14) yields the existence of the
limit 71 (¢) := o-limy— 4o T1(t + iy) for a.e t € d,. Finally, combining all these relations with the
block-matrix representation (4.13) we complete the proof of (ii).

(iii) Using the results of (ii) we are now going to complete the proof of the theorem. We set

On:={t €R: m*(t) <n} and note that | J,d, differs from R by a set of Lebesgue measure
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zero. By step (ii) the limit T'(t) := o-lim, ., T'(t +1y) exists for a.e. t € |J, 0 in the operator
norm. Hence the limit T'(¢) := o-lim, .o T'(t 4+ iy) exist for a.e. t € R. Combining this fact with
(4.10) we can pass to the limit in the identity (J — MP(t +iy))T(t +iy) = I asy — 0. We get

(J = MP)T(t) =Tt)(J - MP(t) =1 forae. teR (4.15)

The rest of the proof is similar to that of Theorem 4.1. First we assume that A is disjoint
with Ag, hence, it admits a representation A = Ap with B € C(H). Therefore, setting Mp(-) :=
(B—M(-))~! and assuming without loss of generality that 0 € o(B) we arrive at the representation
(4.7) with D = |B|~'/2 for a.e. t € R. Moreover, (4.15) yields ran (T(t)) = H for a.e. t € R.
Therefore arguing as in (4.8) and (4.9) we obtain

dry, (t) = dim(ran (y/Im(MP (1)) )) = dim(ran (/Im(M (¢)) D))

= dim(ran (v/Im(M(t)) )) = dim(ran (Im(M(t)))) = da(t)

for a.e. t € R. Applying Theorem 3.4(ii) we complete the proof.
Finally, we apply Corollary 4.2 to extend the proof for extensions A not disjoint with Aj. a
Remark 4.4 The result as well as the proof remains valid if A is non-densely defined. In this case

it suffices to use the boundary triplet technique for non-densely defined operators developed in [13,
26], cf. proof of Theorem 4.1. However, the assumptions on the Weyl function are indispensable.

The following result is immediate from Theorem 3.4(ii) and Theorem 4.3.

Corollary 4.5 Let the assumptions of Theorem 4.8 be satisfied and let
F={teR:m"(t) < oo} (4.16)

If condition (4.1) holds, then the parts E“Egac (F) and A§°Eaac(F) of A and Ag, respectively,
are unitarily equivalent.

Remark 4.6 Let us define the invariant maximal normal function

mt(t) = 230p1]HIm ()77 (M (¢ + iy) — Re(M(0))) Im(a (0)) ||, (4.17)

for t € R. For Weyl functions one easily proves that m™ (¢) is finite if and only if m™(¢) is finite.

(i) The quantity m™(¢) has the advantage that it is invariant: Let A be a densely defined closed
symmetric operator, II = {’H Lo, I‘l} a boundary triplet for A*, and M (-) the corresponding Weyl
function. Further, let = {’H Fo, Fl} be another boundary triplet for A* with the Weyl function
M( ) and let Ag := A* | ker () = A* | ker (I'o). In this case M(-) and M( ) are related by (2.12)
However, mt(t) = mT(¢) for t € R, where m*(t) is obtained by replacing in (4.17) M(-) by M(-).

(ii) Further, if the Weyl function M (-) satisfies M (i) = i, then m™(t) = m™(¢) for t € R.

(iii) Let 7 be an orthogonal projection onto a subspace H of H. If m* (t) is finite, then the invari-
ant maximal normal function @ * (¢), obtained from (4.17) replacing M(-) by M (-) := «M(:) | H,
is also finite and satisfies M (t) < m*(t) for t € R.
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5 Direct sums of symmetric operators

5.1 Boundary triplets for direct sums

Let S, be a closed densely defined symmetric operators in $,, n4(S,) = n_(S,), and let
I, = {H,,Ton,T'1n} be a boundary triplet for S, n € N. Let

A= éSn, dom (A) := édom(sn). (5.1)

n=1

Clearly, A is a closed densely defined symmetric operator in the Hilbert space $) := @;’:’:1 9, with
n4 (A) = oco. Consider the direct sum II := &5 ,II,, =: {H, Ty, "1} of (ordinary) boundary triplets
defined by

H:= @Hn, FO = @FOn and Fl = @Fln (52)
n=1 n=1 n=1
Clearly,
AF = @ Sy, dom(A*) = @ dom (S}). (5.3)
n=1 n=1

We note that the Green’s identity

(S;;fmgn) - (fnv S;;gn) = (Flnfn; FOngn)Hn - (FOnfm Flngn)Hna

Sy gn € dom (S}), holds for every S}, n € N. This yields the Green’s identity (2.15) for A, :=
A* I dom (T'), dom (T') := dom (T'g) Ndom (T'y) C dom (A*), that is, for f = B2, fn, g = B2 190 €

dom (T") we have

(A*fag) - (fa A*g) - (Flfa FOQ)H - (FOf; Flg)Ha fag € dom (F)v (54)

where A* and T'; are defined by (5.3) and (5.2), respectively. However, the Green’s identity (5.4)
cannot be extended to dom (A*) in general, since dom (I') is smaller than dom (A*) generically. It
might even happen that I'; are not bounded as mappings from dom (A*) equipped with the graph
norm into H. Counterexamples for the direct sum II = @22 ,11,,, which does not form a boundary
triplet, firstly appeared in [21]).

In this section we show that it is always possible to modify the boundary triplets II,, in such a
way that a new sequence II,, = {H,,T0,T'1} of boundary triplets for S} satisfies the following
properties: II = @22 ,1I,, forms a boundary triplet for A* and the following relations hold

Son := 5% I ker (Don) = S | ker (Do) =: Son, n € N. (5.5)

Hence ZO = @j’f:lgo,l = ®72150n =: Ao. We note that the existence of a boundary triplet
I = {H,T{, T} for A* satisfying ker (I'j) = dom (Ay) is known (see [17, 12]). However, we
emphasize that in applications we need a special form (5.2) of a boundary triplet for A* because it
leads to the block-diagonal form of the corresponding Weyl function (cf. Sections 5.2, 5.3 below).

We start with a simple technical lemma.
Lemma 5.1 Let S be a densely defined closed symmetric operator with equal deficiency indices,
IT={H,To, 1} a boundary triplet for S*, and M(-) the corresponding Weyl function. Then there

exists a boundary triplet IL = {H, T, 1} for S* such that ker (I'g) = ker (I'y) and the corresponding
Weyl function M(-) satisfies M (i) = i.

Proof. Let M (i) = Q + iR? where @ := Re(M(i)), R := /Im(M(i)). We set

Ip:=RI, and Ty:=R (I —QIy). (5.6)

20



A straightforward computation shows that II := {H, Lo, fl} is a boundary triplet for A*. Clearly,
ker ([y) = ker (I'g). The Weyl function M(-) of II is given by M(-) = R~1(M(-) — Q)R~* which
yields M (i) = i. O
If S is a densely defined closed symmetric operator in §), then by the first v. Neumann formula the
direct decomposition dom (S*) = dom (S) + 9; + N_; holds where N, := ker (S* Fi). Equipping
dom (S*) with the inner product

(f:9)+ = (51, 5"9) + (f,9), [,g9€dom(57), (5.7)

one obtains a Hilbert space denoted by $,. The first v. Neumann formula leads to the following
orthogonal decomposition
94 = dom (S) ® N, D N_;.

Lemma 5.2 Let S be as in Lemma 5.1, let I = {H,To,T'1} be a (ordinary) boundary triplet for
S*, and M(-) the corresponding Weyl function. If M (i) =i, then the operator T : §, — H & H,
I := (T, I'1)T is a contraction. Moreover, I' isometrically maps O := ; & N_; onto H.

Proof. We show that
ID(f + fi+ f-i)Figw = IIfi + f=ill2 (5.8)

where f + f; + f_i € dom (S) + N; + N_; = dom (S*). Indeed, since dom (S) = ker (Tg) N
ker (T'y), we find

ID(f+ fi + F=i)ll3am = ITo(fi + F=o)|13 + [IT1(fi + f=) |3

Clearly,
IT;(fi + f-)ll3e = [T fill* + 2Re((T f5, T f=i)) + T f=ill®, 5 € {0, 1} (5.9)
Using T f; = M(i)To f; = iTof; and Ty f_; = M(—i)Tof_i = —iTof_; we obtain
IT1(fi + f-)ll3 = Tofi, Tofi) = 2Re((To fi, Tof-i)) + (Cof-is Tof-i) (5.10)
Taking a sum of (5.9) and (5.10) we get
ITo(fi + f=)llF + T2 (fi + F=) I3 = 2o fill3, + 2l|Tof—ill%- (5.11)

Combining equalities I'; f4; = £il'o f1+; with Green’s identity (2.7) we obtain ||To f;||= = ||fi|| and
ITof—ill® = || f=il|. Therefore (5.11) takes the form

ITo(fi + f=i) I3 + T2 (fi + f-o)ll3 = 211 fill* + 21| f=I*. (5.12)

A straightforward computation shows || fi + f—;[|2 = 2|/ fil|* + 2|| f—s||* which together with (5.12)
proves (5.8). Since |fi + f_i2 < 12+ /i + f-sl% = |f + fi + F4ll%, we get from (5.8) that T
is a contraction.

Obviously, I' is an isometry from 0 into H @ H. Since II is a boundary triplet for S*, ran (I') =
H @ H. Hence I is an isometry from 9t onto H & H. O

Passing to direct sum (5.1), we equip dom (A% ) and dom (A*) with the graph’s norms and obtain the
Hilbert spaces 94, and ., respectively. Clearly, the corresponding inner products (f, g)+r, and
(f,9)+ are defined by (5.7) with S replaced by S,, and A, respectively. Obviously, ;1 = €, ; H4n.

Theorem 5.3 Let {S,}52, be a sequence of densely defined closed symmetric operators,

dom (S,) C $n, ny(Sn) = n_(Syn), and let S, = S, € Extg,. Further, let A and Ay be
given by (5.1) and

Ao == P Son, (5.13)
n=1
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respectively. Then there exist boundary triplets 11,, := {Hn,Ton,T1n} for S; such that Son, = S} |
ker (Ton), n € N, and the direct sum II = @52 11, defined by (5.2) forms an ordinary boundary
triplet for A* satisfying Ag = A* | ker (I'y). Moreover, the corresponding Weyl function M(-) and
the y-field v(-) are given by

M(z) =P Mn(z) and ~(z) = P m(2) (5.14)

where My (+) and v,(-) are the Weyl functions and the y-field corresponding to 11,,, n € N. In
addition, the condition M (i) =il holds.

Proof. For every Sy, = 5§, € ExtS, there exists a boundary triplet II,, = {H,,Ton,T1in}
for S’ such that So, := A% | ker (T'o,) (see [12]). By Lemma 5.1 we can assume without loss
of generality that the corresponding Weyl function M, (-) satisfies M, (i) = i. By Lemma 5.2
the mapping ' := (T,,[1n)" @ H4n — Hn @ H,, is contractive for each n € N. Hence
IT;|I = sup, |Tjnll < 1,5 € {0,1}, where I'y and T’y are defined by (5.2). It follows that the
mappings Iy and 'y are well-defined on dom (I') = dom (A*) = @, dom(S}). Thus, the
Green’s identity (5.4) holds for all f, g € dom (A*).

Further, we set My, 1= ker (S F1i), My 1= Min, + N_in, Nuy = ker (A* Fi) and N :=MN; + N_,.
By Lemma 5.2 the restriction I'™ | 91, is an isometry from ,,, regarded as a subspace of 94,
onto H,, & H,,. Since 9 regarded as a subspace of § admits the representation M = @,-; N,

the restriction I' | 0, I' := @, 2, ', isometrically maps 9N onto H & H. Hence ran (') = H & H.
Equalities (5.14) are immediate from Definition 2.10. O

Remark 5.4 Kochubei [21] proved that IT = @22 ,II,, forms a boundary triplet whenever any pair
{Sn,Son}, Son := Sk | ker (I'py,), n € N, is unitarily equivalent to {S7,So1}.

Recall, that for any non-negative symmetric operator A the set of its non-negative self-adjoint
extensions Ext 4(0,00) is non-empty (see [1, 20]). The set Ext 4(0, 00) contains the Friedrichs (the
biggest) extension A" and the Krein (the smallest) extension AX. These extensions are uniquely
determined by the following extremal property in the class Ext 4(0,00) :

(AP 4 2) P < (A+a) < (AK +2)7Y 2>0, AeExt4(0,00).

Corollary 5.5 Assume conditions of Theorem 5.3. Let S,, > 0, n € N, and let SI' and SK be the
Friedrichs and the Krein extensions of S, , respectively. Then

AP =@ SF and  AF =g SK. (5.15)
Proof. Let us prove the second of relations (5.15). The first one is proved similarly. By Theorem

5.3 there exists a boundary triplet IT,, = {Hy,on,[1n} for S? such that SX = S, and II =
@02 11, is a boundary triplet for A*.

Fix any zo € Ry and put Cy := ||[M(—x2)||. Then any h = @52 ,h,, € H can be decomposed by
h=h® @ h® with h® € &2 H, and h® € &2, H, such that [2®] < C; /. Hence
|(M(—x2)h® h)| < 1. Due to the monotonicity of M(-) we get

<M(x)h(2),h(2)> > <M(zg)h(2),h(2)) > -1, x€(0,22).

Since So,, = SK, the Weyl function M,,(-) satisfies

h?ol <Mn(z)gn,gn) = 400, gn € Hn \ {0}, (5.16)
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cf. [12, Proposition 4]. Since M(-) = &2, M, (-) is block-diagonal, cf. (5.14), we get from (5.16)
that for any N > 0 there exists 1 > 0 such that

P

(M(x)h(1>,h(1)) => <Mn(m)hn,hn> >N for ze(0,z). (5.17)

n=1
Combining (5.16) with (5.17) and using the diagonal form of M(-), we get
(M (—a)h, h) = (M (=2)hD VY + (M(=z)h® h?) > N -1

for 0 < x < min(x1,z2). Thus, lim, o(M(—xz)h,h) = +oo for h € H \ {0}. Applying [12, Proposi-
tion 4] we prove the second relation of (5.15). O

Remark 5.6 Another proof can be obtained by using characterization of A" and AX by means
of the respective quadratic forms.

5.2 Summands with arbitrary equal deficiency indices

Here we apply Theorem 4.3 to direct sums of symmetric operators (5.1), allowing summands
Sp to have arbitrary (finite or infinite) equal deficiency indices. We start with a simple general
proposition.

Proposition 5.7 Let {S,}°2, be a sequence of densely defined closed symmetric operators,
dom (S,) C $n, ny(Sn) = n_(Syn), and let So, = S, € Extg,. Further, let A and Ay be
given by (5.1) and (5.13), respectively. If A is a self-adjoint extension of A such that condition
(4.1) is satisfied, then

Tac(Ao) = Oac(Son) € 0(A) and  ac(A) €| Jo(Son) = o(Ao). (5.18)

Proof. By the Weyl theorem, condition (4.1) yields cess(A) = 0ess(Ap). Hence

Uaac(SOn) == Uac(AO) g Uess(AO) - Uess(g) g U(A)

and

Tac(A) C Oess(A) = Tess(Ag) € 0(Ag) = | J o (Son).

Our further considerations are substantially based on Theorem 5.3.

Theorem 5.8 Let {S,}52, be a sequence of densely defined closed symmetric operators,
dom (S,,) C 9, ny(Sp) =n_(Sy), and let So, = S, € Ext g, . Further, let 11, = {H,,Ton, T1n}
be an ordinary boundary triplet for S} such that So, = S} | ker (I'gy,), n € N, and let M, (-) be
the corresponding Weyl function. Moreover, let m;}(t), n € N, be the invariant mazimal normal
function obtained from (4.17) by replacing M(-) by M,(-). If sup,cym;} (t) < +oo for a.e. t € R,
then for any self-adjoint extension A of A defined by (5.1), which satisfies the condition (4.1), the
absolutely continuous parts A and A8 are unitarily equivalent. In particular, instead of (5.18)
we have 04.(Ag) = oac(/T).

Proof. Let ﬁn = {Hn,fon,fln} be a boundary triplet for S*,, n € N, defined according to
(5.6), that is ', := RpI'op and I'yy, := R (D1 — Re(M,(i))Ton ), where Ry, := \/Im M,,(i)). The
corresponding Weyl function Mn() is

M, (z) = R,;' (M, (z) — Re M,,(i))R,;*, n€N.
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Since Mn(z) =i, n € N, by Theorem 5.3, Il = @2 ,II,, =: {H,[,T1} is a boundary triplet for
A* = @225, " satisfying A* | ker Lo = Ag := &2 1 Soy,. By definition of m;f (-) and due to Remark
4.6 one has m/} (t) = m} (t) := sup,e (o, | M, (t + iy)| for t € R, n € N. Since Ay = B>, S0, we
get that m™ () = sup,, m;! (t), where m™* (t) := sup,¢ o 1 |M(t+iy)|, t € R. Since, by assumption,
the maximal normal function m™(t) is finite, we obtain from Theorem 4.3 that A% and AG© are
unitarily equivalent. O

Corollary 5.9 Let the assumptions of Theorem 5.8 be satisfied and let

N :={teR: supm}(t) < co}. (5.19)
neN

If condition (4.1) holds, then the parts Z“CEZ(./\/') and AS°Ea,(N) of the operators A and Ay,
respectively, are unitarily equivalent.

Let T and T” be densely defined closed symmetric operators in § and let Ty and T be self-adjoint
extensions of T and T”, respectively. It is said that the pairs {T,Tp} and {T”,T§} are unitarily
equivalent if there exists a unitary operator U in §) such that 7" = UTU ! and T}, = UT,U .

Corollary 5.10 Assume the conditions of Theorem 5.8. Let also the pairs {S,,Son}, n € N,
be unitarily equivalent to the pair {S1,So1}. If the mazimal normal function mi (t) is finite for
a.e. t € R and condition (4.1) is satisfied, then the absolutely continuous parts A qnd Aj° are
unitarily equivalent.

Proof. Since the symmetric operators S,, are unitarily equivalent, we assume without loss of
generality that H,, = H for each n € N. Let U,, be a unitary operator such that A; = U,,S,,U,; ! and
A = UpSon Uyt A straightforward computation shows that IT), := {H,T{,,, 1.}, To, = Lo1Uny
and I}, = I'1,,U,, defines a boundary triplet for S;;. The Weyl function M/ (-) corresponding
to I/, is M/ (z) = My(z). Hence m}(-) = m/F(-) and m] (t) = m/F(¢) for t € R, where m} (¢)
and m/F(¢) are the invariant maximal normal functions corresponding to the triplets II,, and II,,,
respectively. By Remark 4.6(i), m{ (t) = m}(¢) for t € R and n € N. Applying Theorem 5.8 we
complete the proof. O

5.3 Finite deficiency summands: ac-minimal extensions

Here we improve the previous results assuming that n4(S,,) < co. First, we show that extensions
Ap = B2 1 Son (€ Ext 4) of the form (5.13) posses a certain spectral minimality property. To this
end we start with the following lemma.

Lemma 5.11 Let H be a bounded non-negative self-adjoint operator in a separable Hilbert space
9 and let L be a bounded operator in $. Then

(i) dim(ran (H)) = dim(ran (v H)).

(ii) If L*L < H, then dim(ran (L)) < dim(ran (H)).
(iii) If P is an orthogonal projection, then dim(ran (PHP)) < dim(ran (H)).

Proof. The assertion (i) is obvious.

(ii) If L*L < H, then there is a contraction C' such that L = Cv/H. Hence dim(ran (L)) =

dim(ran (C\/ﬁ)) < dim(ran (\/ﬁ)) = dim(ran (H)).
(iii) Clearly, dim(ran (PHP)) < dim(ran (HP)) < dim(ran (H)). O
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Theorem 5.12 Let {S,}5°, be a sequence of densely defined closed symmetric operators,
dom (S,) C $p, with ny(Sy) = n_(S,) < oo, n € N and let Sy, = S§,, € Extg,. Let also
A and Ay be given by (5.1) and (5.13), respectively. Then Ag is ac-minimal, in particular,
Uac(AO) g Uac(g)-

Proof. By Theorem 5.3 there is a sequence of boundary triplets II,, := {H,,Ton, 10}, n € N,
for S} such that So,, = S | ker (To,), n € N, and the direct sum II = {H,To,I'1} = @, II,, of
the form (5.1) is a boundary triplet for A* satisfying Ag = A* | ker (I'g). By Proposition 2.9, any
A = A* € Ext 4 admits a representation A = Ag with © = ©* € C(H). By Corollary 4.2(i), we
can assume that A and Ay, are disjoint, that is © = B = B* € C(H). Consider the generalized
Weyl function Mp(+) := (B — M(-))"!, where M(-) = @, M,(-), cf. (5.14). Clearly,

Im (Mp(z)) = Mp(2)" Im (M(z))Mp(z), =z¢€Cy.

Denote by Py, N € N, the orthogonal projection from H onto the subspace Hy := @27:1 H,-
Setting M LN (2) := PxMp(z) | Hy, and taking into account the block-diagonal form of M(-) and
the inequality Im (M (z)) > 0 we obtain

Im (M} (2)) = Im (Py Mp(2) Py) (5.20)
= Py Mp(2)"Im (M (2))Mp(2) Py > Mg™ ()" Tm (M ™ (2)) Mg (2),

where MPN(2) .= PyM(z) | Hy = @2]:1 M, (2). Since PV is a finite dimensional projection
the limits MEN (t) := s-limy_ o MEY (t +iy) and MV (t) := s-lim, o M PN (t +iy) exist for a.e.
t € R. From (5.20) we get

T (MEN (£)) > MEN (£)*Tm (MY (£))MEN (1) for ae. t € R. (5.21)

Since Mp(+) is a generalized Weyl function, it is a strict Ry-function, that is, ker (Im (Mp(2))) =
{0}, z € C4. Therefore, MY (-) is also strict. Hence 0 € o(M5~(2)), z € C4, and Gy (-) :=
—(MEN ()" is strict. Since both G (-) and MY () are matrix-valued R-functions, the limits
MEN (t +140) := lim,, o M (t + iy) and Gy (t 4 i0) == lim, o Gn(t + iy) exist for a.e. t € R.
Therefore, passing to the limit in the identity M};N (t+iy)Gny(t+iy) = =1 as y — 0, we get
MEN (t +i0)Gn(t +1i0) = —I for a.e. t € R. Hence Mp™ (t) := Mg (t + i0) is invertible for a.e.
teR.

Further, combining (5.21) with Lemma 5.11(ii) we get

dim (ran ( Tm MPv (£) MEN (t))) <d,ry(t) forae teR.

Since MpN (t) is invertible for a.e. t € R, we find

dyrey (t) := dim (ran ( Im M P~ (t))) < dMgN (t) forae. teR. (5.22)

Let Dy = Py @ Dy where Dy € Go(Hy) and satisfy ker (Dg) = ker (Dg) = {0}. Then ker (Dy) =
ker (D?V) = {0} and PN = PNDN = DNPN. By Lemma 5.11(iii), dMPN (t) S dMgN (t) for a.e.
t € R. Further, for any D € &3(H) and satisfying ker (D) = ker (D*) = {0}, dyp(t) = dMBDN (t)
for a.e. ¢ € R. Combining this equality with (5.22) we get dj;ry (t) < dyp(t) for a.e. ¢t € R and

N € N. Since
N

dyew (8) =Y dar, ) and  dyo(t) =Y da, (t) (5.23)

n=1
for a.e. t € R, we finally prove that d;o () < dyp (t) for a.e. t € R. One completes the proof by
applying Theorem 3.4(i). O
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Corollary 5.13 Let the assumptions of Theorem 5.12 be satisfied and let S, > 0, n € N.
Further, let A and A be given by (5.1) and (5.13), respectively. Then the Friedrichs and the
Krein extensions AT and AX of A are ac-minimal. In particular, (AT)2¢ and (A%)% are unitarily
equivalent.

Proof. Combining Theorem 5.12 and Corollary 5.5 yields the assertion. O

Corollary 5.14 Let the assumptions of Theorem 5.12 be satisfied and let

Di={teR: Y du,(t) =oc}. (5.24)
neN
If, in addition, condition (4.1) holds, then the parts /T“CEK(D) and AJ°E 4, (D) of the operators
A and Ay, respectively, are unitarily equivalent.

Proof. By (5.23) and (5.24), dy;p (t) = +o0 for a.e. t € D. Applying Theorem 5.12 and Theorem
2.4(ii) we complete the proof. O

Corollary 5.15 Let the assumptions of Theorem 5.12 be satisfied and let N _and D be given by
(5.19) and (5.24), respectively. If condition (4.1) is valid, then the parts A*Ez(DUN) and
A%E 4, (DUN) are unitarily equivalent.

Proof. By Corollary 5.9, the parts /T“CEX(N') and A°FE 4, (N) are unitarily equivalent. Corollary
5.14 yields the unitary equivalence of the parts Z“CEK(D) and A%F4,(D). Hence the parts
A“E(DUN) and AZ°Ea, (D UN) are unitarily equivalent too. O

Corollary 5.16 Assume conditions of Theorem 5.12. Then U, cy Oac(Son) C O'ac(;{). If, in
addition, condition (4.1) is valid and the extensions Sp,, n € N, are purely absolutely continuous,
then

O'ac(Av) = U Uac(SOn)- (525)

neN

Proof. The first statement immediately follows from Theorem 5.12. Relation (5.25) is implied
by Proposition 5.7. O

Corollary 5.17 Assume the conditions of Theorem 5.12. Let also the pairs {Sy,, Son}, n € N, be
pairwise unitarily equivalent. If condition (4.1) holds , then for any A € Ext 4 the ac-parts A*©
and A§° are unitarily equivalent.

Remark 5.18 (i) For the special case ny(S,) =1, n € N, Theorem 5.12 complements [2, Corol-
lary 5.4] where the inclusion o,.(Ap) C aac(/T) was proved. Moreover, Corollary 5.17 might be
regarded as a substantial generalization of [2, Theorem 5.6(i)] to the case ny(S,) > 1. However, in
the case ny (S,) = 1, Corollary 5.17 is implied by [2, Theorem 5.6(i)] where the unitary equivalence
of A% = Z%C and Agf° was proved under the weaker assumption that B is purely singular. Indeed,

by Proposition 2.12 condition (4.1) with A = Ap is equivalent to discreteness of B.

(i) The inequality NEZ% (t) < NE%c (t) in Theorem 5.12 might be strict even for ¢ € 0,.(A4p). Indeed,
assume that (o, 3) is a gap for all except for the operators Sy,...,Sy. Set Sy := ®)_,S,, and
So = D5 N4 190 Then ni(S2) = oo and (a, 3) is a gap for Sz. By [8] there exists Sy = S3 € Ext g,
having ac-spectrum within («, ) of arbitrary multiplicity. Moreover, even for operators A =
@22, S, satisfying assumptions of Corollary 5.17 with ny (S,) = 1 the inclusion o4.(A4g) C aac(g)
might be strict whenever condition (4.1) is violated, cf. [8] or [2, Theorem 4.4] which guarantees
the appearance of prescribed spectrum either within one gap or within several gaps of Aj.
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6 Sturm-Liouville operators with operator
potentials

6.1 Bounded operator potentials

Let H be a separable Hilbert space. As usual, L?(R;,H) := L*(R;) ® H stands for the Hilbert
space of (weakly) measurable vector-functions f(-) : Ry — H satisfying fR+ I f@))F,dt < .

Denote also by W22(R,, H) := W22(R,) ® H the Sobolev space of vector-functions taking values
in H.

Let T'=T"* > 0 be a bounded operator in H. Denote by A := A,;, the minimal operator generated
2

on § = L*(Ry,H) by a differential expression A = —-2L; @ I, + I,y @T. Tt is known (see

[17, 28]) that A is given by

(Af)(@) = =f"(z) + Tf(x), [ € dom(A)=W5*Ry,H), (6.1)

where WZ (R, H) == {f e W>2(R,,H) : f(0) = f'(0) = 0}.

The operator A is closed, symmetric and non-negative. It can be proved similarly to [9, Example
5.3] that A is simple. The adjoint operator A* is given by [17, Theorem 3.4.1]

(A*f)(x) = —f"(2) + Tf(z), [€dom(A")=W?(Ry, H). (6.2)
By [25, Theorem 1.3.1] the trace operators I'g, I'; : dom (A*) — H,
Tof =f(0) and Tyf= f'(0), f € dom(A*), (6.3)
are well defined Moreover, the deficiency subspace 91.(A) is
N.(A) = {“V"Th: heH}, z€Cy. (6.4)

Lemma 6.1 A triplet 1 = {H,To,T1}, with Ty and T'y defined by (6.3), forms a boundary triplet
for A*. The corresponding Weyl function M(-) is

M(2) :i\/sz:z‘/\/tJriyf)\dET()\), z=t+iyeCy. (6.5)

Proof. One obtains the Green formula integrating by parts. The surjectivity of the mapping
[ := (Iy,I'1)" : dom (A4*) — H @ H is immediate from (6.3) and [25, Theorem 1.3.2]. Formula
(6.5) is implied by (6.4). O

Lemma 6.2 Let T be a bounded non-negative self-adjoint operator in H and let A and II =
{H,To,T'1} be defined by (6.1) and (6.3), respectively. Then

(i) the invariant maximal normal function m™(t) of the Weyl function M(-) is finite for all t € R
and satisfies
mt(t) <201 +t3)V4, teR. (6.6)

(i) The limit M(t+10) := s-lim,_, o M(t + iy) exists, is bounded and equals

M(t+1i0) = z/ Vit —XErp(\)  for any teR. (6.7)
R

(iii) da(t) = dim(ran (E7([0,1)))) for any t € R.
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Proof. (i) It is immediate from (6.5) and definition (4.17) of m™*(-) that

m—Re(\/—i—)\)‘
Tm (vVi = \) '

mT(t) < sup sup
y€(0,1] A>0

Clearly, vi — A = (1 + A2)1/4i(m=%)/2 where ¢ := arccos (#) . Hence

VITAZ
‘L ”_)‘)‘ :tan(f): ; <1, A>0.
Im(vi— A 2 A+ V14 A2

Furthermore, we have

0 — 12 12

‘ t+y )\‘S\/i A=1)?*+y < 93/4(1 4 ¢2) 1/
Im(vi - ) At VIt A

for A\ >0,t € R and y € (0,1] which yields (6.6).

(ii) From (6.5) we find M(¢) := M (¢t +i0) := slimy_4oivt+iy—T =iVt — T, for any t € R,
which proves (6.7). Clearly, M(t) € [H] since T € [H].

(iii) It follows that Im(M(t)) = vt — TEr([0,t)), which yields das(t) = dim(ran (Im(M(¢))))

O

dim(ran (E7([0,1)))).
With the operator A = A, it is naturally associated a (closable) quadratic form tr[f] :=
(Af, f), dom (t') = dom (A). Its closure tp is given by
)= [ {17 @I+ VTR @B} do (68)
+

f e dom (tp) = Wy (Ry, H), where Wy (R, H) := {WH2(R,,H) : f(0) = 0}. By definition,
the Friedrichs extension A of A is a self-adjoint operator associated with tz. Clearly, A" = A* |
(dom (A*) Ndom (tg)).

Theorem 6.3 Let T > 0, T = T* € [H], and ty := info(T). Let A be defined by (6.1) and
IT={H,To,T'1} the boundary triplet for A* defined by (6.3). Then

(i) the Friedrichs extension AT coincides with Ay that is
dom (A") = dom (A*) Ndom (tr) = {f € W*2(Ry,H) : f(0) =0} = dom (Ap),

and AT corresponds to the Dirichlet problem. Moreover, AT is absolutely continuous, AF =
(AF)ee and o(AF) = 04.(AF) = [ty, 00).

(ii) the Krein extension AKX is given by
dom (AK) = {f e W22(R, H): f'(0) +VTf(0) = 0}. (6.9)

Moreover, ker (AX) = 9 := 9/, 9) = {e=*VTh : h € ran(TY*)} and the restriction AX |
dom (AK) N 9 is absolutely continuous, that is Hy- = H(AX) and AK = 0g, ® (AK)ac.

(iii) The extension A; := A* | ker (I'1), coincides with AN, dom (AN) := {f € W*2(R,,H) :
f'(0) =0}, id.e. Ay corresponds to the Neumann boundary condition. Moreover, AN is absolutely

continuous (AN)* = AN and o(AN) = 04,.(AN) = [tg, 00).

(iv) The operators AY, (AK)% and AN are unitarily equivalent.
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Proof. (i) Let II = {H,T,I'1} be the boundary triplet defined in Lemma 6.1. We show that
AP = Ay = A* | ker ([g). It follows from (6.2) and (6.3) that dom (4g) = {f € W*%(R,,H) :
£(0) = 0}. Since dom (Ag) € Wy?(R,,H) = dom (tr), we have Ay = AF (see [1, Section 8] and
[20, Theorem 6.2.11]).

It follows from (6.7) and [9, Theorem 4.3] that 0,(Ag) = 0sc(Ao) = 0. Hence Ay is absolutely
continuous. Taking into account Lemma 6.2(iii) and Proposition 3.2 we get 0(Ag) = 04c(Ap) =
clae(supp (dasr)) = [to, 00) which proves (i).

(ii) By [12, Proposition 5] A is defined by A% = A* | ker (I'y — M (0)['g). It follows from (6.5)
that M (0) = —/T. Therefore, AX is defined by (6.9).

It follows from the extremal property of the Krein extension that ker (A%) = ker (A*). Clearly,
fu(x) == exp(—zvVT)h € L>(Ry,H), h € ran (T*/*), since

oo leall o0 Il
/ | exp(—aVT)h||3,dz = / dph(t)/ e 2Vidy = / idph(t) < 00
0 0 0 0 2\/%

where py,(t) := (Er(t)h,h). Thus, $) C ker (A*). It is easily seen that § is dense in $,. To
investigate the rest of the spectrum of AX consider the Weyl function Mg (-) corresponding to AK.
It follows from (6.5) and Proposition 2.17 that

My(z) = M_5(z) = —(VT + M(2)) "

(VT +ivz—T)"t = l(i\/szf VT) = *2\/7 + O(2).

z z

where ®(z) := 1[iv/z — T + VT]. It follows that for ¢t >0

Im Mg (t +i0) = Im ®(t +i0) = t '/t — TE7([0,1)). (6.10)

Hence, by [9, Theorem4.3|, 0,(A%) N (0,00) = 05.(A%) N (0,00) = 0. It follows from (6.10) that
Im (Mg (t +i0)) > 0 for t > tg. By Proposition 3.2 04.(AX) = [tg, o). Further, it follows from
(6.7) and (6.10) that for any ¢ > ¢

dys(t) = rank (Tm (M (t))
= rank (E7([0,t))) = rank (Im(Mg (t))) = da, (t)

Combining this equality with o,.(A%) = 0,.(AF) = [to, 00), we conclude that AT and (AX)? are
unitarily equivalent.

(iii) By Proposition 2.17 the Weyl function corresponding to A; = A* | ker (I'y — 0T) is

My(z) = (0— M(2) P =i(z—T)"/2 = / dEr(N\), ze€C,.

Vioa

Since Mp(-) is regular within (—oo,tg), we have (—oo,tg) C 0(A41). Further, let 7 > ¢;. We set
H, = Er([to, 7))H and note that for any h € H, and ¢t > 7

T

(Mo(t +i0)h, k) = i((t — T)"V2h, 1) = i \/%d(ET(A)h,h). 6.11)

Hence for any h € H, \ {0} and ¢ > 7
0 < (t —to)"Y?||h||? < Im (Mo (t + i0)h, h) = / (t — N)"Y2d(Er(N)h, h) < oo
to

By [9, Proposition 4.2], 04c(A1) D [r,00) for any 7 > to, which yields o4.(A1) = [to,00). It
remains to show that A; is purely absolutely continuous. Since My(t + i0) & [H] we cannot apply
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[9, Theorem 4.3] directly. Fortunately, to investigate the ac-spectrum of A; we can use [9, Corollary
4.7]. For any t € R, y >0, and h € H we set

1

Vh(t +iy) = Im(MO(t + iy)hv h) = /Im (m

) d(Er(\h, h).

Obviously, one has

1
(=t + )7

Vh(t+z‘y)§/ d(Er(\h,h), teR, y>0, heH.

Hence
1
(=07 + 27

We show that for p € (1,2) and —co < a < b < o0

Vit + i) < [[B]2@D / d(Er(Vh, 1), pe (L),

b
Cp(h;a,b) == sup / Vi (t + iy)? dt < .
ye(0,1] Ja

Clearly,

7l

b b
t+iy)Pdt < h2(p_1)/ dE)\hh/ dt
[ vt igpa <oy [amonn [ o
2p1) Il b=A 1
= e [ amnn [

Note, that for p € (1,2) and —co < a < b <

b—A 1 b )
——— 7 dt < ——dt =: _
/af/\ (2 +y2)p/4 = /alTl 2t =t s (ba —|[T]) < oo,

Hence Cp(h;a,b) < s,(b,a — | T|)||R]|*P < oo for p € (1,2), —00 < a < b < o0 and h € H. By
[9, Corollary 4.7], A; is purely absolutely continuous on any bounded interval (a,b). Hence A4; is
purely absolutely continuous.

(iv) It follows from (6.7) and (6.10) that das(t) = das, (t) = rank (vt — T') for ¢ > tg. Combining
this equality with ,.(A%) = 0,.(AF) = [tg,00), we conclude that AF and (A%)?¢ are unitarily
equivalent.

Passing to A;, we assume that 1 < dim(ran (E7([0,s)))) = p1 < oo for some s > 0. Let A,
Ee{l,....p}, p < pi1, be the set of distinct eigenvalues within [0, s). Since Mo (t +iy)Er([0,1)) is
the p x p matrix-function, the limit My(t + i0)E7([0,t)) exists for ¢ € [0, ) \ Ur—;{\&}. It follows
from (6.11) that

Im(MO(t)) = |T - t|71/2ET([07t))a te [Oa S)\ U {)‘k}
k=1

This yields
dagy(py) := dim(ran (Im(My(t)))) = dim(ran (E7([0,1)))) = d(t)

for a.e t € [0,s) \ Ur_,{\x}, that is, for a.e. ¢ € [0, s).

If dim(Er([to,s))) = oo, then there exists a point sg € (0, s), such that dim(E7 ([0, so])) = oo
and dim(E7([0,s))) < oo for s € [0,89). For any ¢ € (so,s) choose T € (sg,t) and note that
dim(ran (E7([0,7)))) = co. We set H, := Ep([0,7))H and Hoo := Ep([1,00))H as well as T :=
TEr([0,7)) and Ts := TEp(]r,00)). Further, we choose Hilbert-Schmidt operators D, and D
in H, and He, respectively, such that ker (D;) = ker (DX) = ker (Ds) = ker (D% ) = {0}.
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According to the decomposition H = H, & Ho, we have My = M, & My, D = D, ® D, and
dpp (t) = dyo- (1) + dyo (t) for ae. t € [0,00). Hence dyp(t) > dy o, (t) for ae. t € [0,00).
Clearly, M, (t +iy) = i(t +iy —T,)"/2. If t > 7, then t € o(T,) and M(t) := s-lim, o M (t +10)
exists and
M (t) = s-lim M (t + iy) = it — )~ Y2Er (0, 7).
y—?

Hence d;,p. (t) = dim(ran (Er([0,7)))) = oo for t > so. Hence dyp(t) = da(t) = oo for a.e.
t > so which yields dy;p (t) = da(t) for a.e. ¢ € [0,00). Using Theorem 3.4(ii) we obtain that Aj*
and A{¢ are unitarily equivalent which shows Ay and A; are unitarily equivalent. a

Next we describe the spectral properties of any self-adjoint extension of A. In particular, we show
that the Friedrichs extension AF of A is ac-minimal, though A does not satisfy conditions of
Theorem 5.12.

Theorem 6.4 Let T > 0, T = T* € [H], and t; := infoes (T'). Let also A be the symmetric
operator defined by (6.1) and A = A* € Ext o. Then

(i) the absolutely continuous part E“CEX([tl,oo)) of EE;(([tl,oo)) is unitarily equivalent to
AT Eyr([tr, 00)) = (AF) B ar ([t1,00));

(i) the Friedrichs extension AT is ac-minimal and oac(AF) C 0ae(A);

(iii) the absolutely continuous part Aac of A is unitarily equivalent to AY whenever either (Z —
i) (AF =)7L € 6. (H) or (A—i)"! — (AK — i) € 6,.(9).

Proof. By Corollary 4.2 it suffices to assume that the extension A= A*is disjoint with Ay, that
is, by Proposition 2.9(ii) it admits a representation A = Ap with B € C(H).

(i) Let IT = {H,T'0,T'1} be a boundary triplet for A* defined by (6.3). In accordance with Theorem
3.4 we calculate dyr (t) where Mp(-) := (B — M(-))~! is the generalized Weyl function of the
extension Ap. Clearly,

Im(Mp(z)) = Mp(2)*Im(M (2))Mp(z), z¢€C;. (6.12)

Since Re(vz — A) > 0 for z =t + 4y, y > 0, it follows from (6.5) that

Im(M(z)):/[O Re(vZ ) dET()\)z/ Re(vVz =) dEr(\), (6.13)

[0,7)

where z =t 4 7y. It is easily seen that

Re(Vz— N >Vt—A>Vt—1, Xe€[0,7), t>T (6.14)
Combining (6.12) with (6.13) and (6.14) we get
Im(Mp(t+iy)) > VvVt —TMp(t +iy) Er([0,7))Mp(t +iy), t>7>0.
Let @ be a finite-dimensional orthogonal projection, Q < Er([0,7)). Hence
Im(Mp(t+iy)) > vVt —TMp(t +iy)" QMp(t +iy), t>7>0, y>0.
Setting H; = ran(Q), Hz := ran(Q'), and choosing Ky € Go(H2) and satisfying ker (K3) =
ker (K3) = {0}, we define a Hilbert-Schmidt operator K := Q & Ky € G2(H). Clearly, ker (K) =
ker (K*) = {0} and,
Im(K*Mp(t + iy)K) > (6.15)
Vt—TK*Mp(t+iy)"QMp(t+iy)K, t>7>0.
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Since Mp(-) € (Ry) and Q, K € G3(H), the limits

K'Mp(t)'Q = s- 1ir£rlo K*Mp(t +iy)"Q and
y*}
(QMBK)(t) := s—ylirEO QMp(t+iy)K

exist for a.e. t € R (see [5]). Therefore passing to the limit as y — 0 in (6.15), we arrive at the
inequality

Im(ME (1) >Vt — 7(K*Mp(t)*Q)(QMpK(t)), t>7>0, y>0.
It follows that

dim(ran (QMpK)(t))) < dim(ran (Im M} (t))) = dyx(t), t>r. (6.16)

We set M (2) := QMp(2)Q | Hy. Since dim(H;) < oo the limit M(t) := slim, o ME(t + iy)
exists for a.e. ¢ € R. Since (QMpK)(t) [ H1 = ran ((Mg)(ﬂ), (6.16) yields the inequality

dim(ran (Mg(t))) < dim(ran (QMpK)(1))) < dyx (1) (6.17)
for a.e. t € [1,00).

Since dim(H;) < oo and ker (Mg (z)) = {0}, z € C, we easily get by repeating the corresponding
reasonings of the proof of Theorem 5.12 that ran (Mg (t)) = H; for a.e. t € R. Therefore (6.17)
yields dim(H1) < dyx () for a.e. t € [1,00).

If 7 > t1, then dim(E7([0,7))H) = oo and the dimension of a projection @ < Ep([0,7)) can be
arbitrary. Thus, dyx (1) = oo for a.e. t > 7. Since 7 > ¢; is arbitrary we get djx (t) = oo for a.e.
t > t;. By Theorem 3.4(ii) the operator Z“CEK([tl, 00)) is unitarily equivalent to AgFE 4, ([t1,0)).
(ii) If 7 € (to,t1), then dim(E7([0,7))H) =: p(7) < oo. Hence, dim(QH) < p(7) which shows that
dpxc (t) = p(7) for ace. t € (7,t1). Since 7 is arbitrary, we obtain dyx (t) > p(7) for a.e. ¢ € [0,11).
Using Theorem 3.4(i) we prove (ii).

(iii) By Lemma 6.2 the invariant maximal normal function m*(¢) is finite for ¢ € R. By Theorem

4.3 A% and (AF)a¢ are unitarily equivalent. Similarly we prove that A% and (AK)ae are unitarily
equivalent. To complete the proof it remains to apply Theorem 6.3(iv). O

Corollary 6.5 Let the assumptions of Theorem 6.4 be satisfied. If dim(H) = oo and ty :=
inf 0(T') = inf 0ess (T') =: t1, then the Friedrichs extension AT is strictly ac-minimal.

Remark 6.6 Let dim(Ep([to,t1))H) = oo. Then there are self-adjoint extensions A = A* €

Ext 4 of A such that o4.(A) = 0(AF) = 04.(AF) but A is not unitarily equivalent to AF.

6.2 Unbounded operator potentials

In this subsection we consider the differential expression (6.1) with unbounded T' = T* > 0,

T € C(H),

2

(Arf)() =~ (@) + TS (2). (6.18)

The minimal operator A := Agp i, is defined as the closure of the operator A’. generated on
$ := L%(R4,H) by expression (6.18) on the domain

Dy:i=14 Y. di(@)h;: ¢; € WPP(Ry), by € dom (T), keNp, (6.19)
1<j<k
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that is A f = Arf, dom (A%) = D}. Clearly, A is non-negative, since T > 0 and Az min = A%
coincides with A defined by (6.1) provided that T is bounded.

Let Hr be the Hilbert space which is obtained equipping the set dom (7") with the graph norm
of T. Following [25] we introduce the Hilbert spaces Wi?(R; H) := WE2(R,; H) N L2(Ry, Hr),
k € N, equipped with the Hilbert norms

11 :/]R (L@, A L ON3 + 1T £ (@)113,) d
Obviously, we have W&i(R+,H) ={fe W%’Q(R+;H) : f(0) = f'(0) =0} C dom (A7 min)-

Lemma 6.7 Let T =T* be a non-negative operator in H. Then dom (Ap min) and Wgy’%(RJﬂ H)
coincide algebraically and topologically.

Proof. Obviously, for any f € Df we have

A = [ 15w de

n / TSl 2me { / + (f”(w),Tf(x))de} -

Integrating by parts we find

/ @I dr = - / +

Combining these equalities yields

Az fI2 = / 172 de + / I f () [P+ 2 /

for any f € D). Hence

\/Tf’(x)Hidx.

\/Tf'(x)Hj_‘dac

111522 < IAfIS +11F1I% f € Dy

Furthermore, by the Schwartz inequality,

Re { / + (f’(w),Tf(ﬂf))deE}

Az FI5 + 1712 < 2015220 f € D

Thus, we arrive at the two-sided estimate

2
11522 < IA2FIS + A5 < 201f15z22  f €D

2 < fIyz2  f€Dp.

which gives

Since Dj, is dense in WOQ% too, we obtain that dom (A7 min) coincides with WOQ% algebraically and
topologically. O

Since A is non-negative it admits the Friedrichs extension A and the Krein extension AX. We
define the extension AV as the self-adjoint operator associated with the closed quadratic form ty,

o0
wlfl = [ {IF @I+ IVEF@IB} do = [z~ e, 0, (6.20)
0 VT
dom (ty) := W\I/’;(RJF, H). The definition makes sense for T € [H]. In this case AN = A; with A;

defined in Theorem 6.3(iii).
We also put tp :=ty [ dom (tg), dom (tp) := {f € W\l/’;(RJr;H) . f(0) = 0}.
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Proposition 6.8 Let T =T* € C(H), T > 0, and let A := Apwmin be defined by (6.18)-(6.19).
Let also Hy, = ran (Ep(n — 1,n))), T, :== TET([n —1,n)) and let S, be the closed minimal
symmetric operator defined by (6.1) in 9, := L*(Ry,H,,) with T replaced by T,. Then

(i) the following decompositions hold
A=PS., A"=s, A =psk, AN=EPsy. (6.21)
n=1 n=1 n=1 n=1

(ii) The domain dom (AF") equipped with the graph norm is a closed subspace of W%’Q(RJF, H),

dom (A¥) = {f € W*(Ry, H) : £(0) = 0}.

(iii) The domain dom (AYN) equipped with the graph norm is a closed subspace of W%’Q(R+,H),
dom (AN) = {f € Wy* (R4, ) : f/(0) = 0}.

Proof. (i) We introduce the sets

DY =19 > ¢j(@h;: ¢ € Wi*(Ry), hj € Hn, k,n €N
1<5<k

and Dfj, := {f € D} : f(z) € Hn}, n € N. Obviously, we have Dj = @ -, Djj, C D}. Setting
AT = A7 | Dy we find All = Al = Ag min. Moreover, setting A” := A, | Dy, n € N, we have
AT = A,, n€ N Since A = @, Al C AL, we obtain

AT,min = A_I'II‘ = @A_% = @ An g AT,min
which proves the first relation of (6.21). The second and the third relations are implied by

Corollary 5.5.

To prove the last relation of (6.21) we set SV := @°7 | SV. Since SY = (SY)* € Extg, and
A = @25, SV is a self-adjoint extension of A, SV € Exta. Let f = ®°,f, € dom (SV).
Then integrating by parts we obtain

(SY1.5) = S (S s f) = Z/ {1720 Be, + VT fu(a) B, } e

- /Ooo {Hf/(as)H?1 + Hﬁf(m)”%} dz = ta[f].

Since, by definition, A" is associated with the quadratic form ty, the last equality yields S c AN,
Hence SN = AN since both SV and A" are self-adjoint extensions of A.

(ii) Following the reasoning of Lemma 6.7 we find

2 Ifald, <2 falzz,  meEN, (622

where f, € dom (S') = {g, € W22(R4,H,) : gn(0) = 0}. Using representation (6.21) for A
and setting ™ := @7, fn, fn € dom (F,,), we obtain from (6.22)

1F™ 22 < HATS™IG + 1715 < 2001522, meN. (6.23)
Since the set {f™ = @™, f, : fn € dom (SI'), m € N}, is a core for A”, inequality (6.23) remains

valid for f € dom (AF). This shows that dom (AF) = {f € W>*(Ry,H) : f(0) = 0}. Moreover,
due to (6.23) the graph norm of A and the norm || - HW%’Q restricted to dom (AF") are equivalent.
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(iii) Similarly to (6.22) one gets

B 5l < 20 £l 2

for f, € dom(SY) = {g, € W22(R,H,) : g,(0) = 0}, n € N. It remains to repeat the
reasonings of (ii) O

To extend Theorem 6.3 to the case of unbounded operators T' = T* > 0 we first construct a
boundary triplet for A*, using Theorem 5.3 and representation (6.21) for A.

Lemma 6.9 Assume conditions of Proposition 6.8. Then there is a sequence of boundary triplets
I, = {H,, FOn; Fln} for SZ such that 11 := @22, 10, =: {H, FO, 1} forms an ordinary
boundary triplet for A*. Moreover, A = A* | ker (') and the corresponding Weyl function is

— o iz—T+Im(vi—T)
M) = e

A (C+, (624)

Proof. For any n € N we define a boundary triplet II,, = {H,,Ton, 15} for S; with To,, L1
defined by (6.3). By Theorem 6.3(1) S = Sy, = S’ | ker(I'p,) and by Lemma 6.1 the
corresponding Weyl function is M, (z) = iv/z — T),.

Following Lemma 5.1, cf. (5.6), we define a sequence of regularized boundary triplets o, =

{Hn, Don, T1n} for S7 by setting R, := (Re(vi — Tp))/2, Qn :=—Im(v/i—1T,) and
Con:=Rulons Dini=R;'(T1n — Qulon), neN. (6.25)
Hence SI = Sy, and the corresponding Weyl function J\/Zn() is given by

M o(z) = ivz = To +Im(Vi —Tp)
e Re(vi—Ty) ’

By Theorem 5.3 the direct sum II := ®., I, = {H, T, fl} forms a boundary triplet for A*
and the corresponding Weyl function is

= @ Z/W\n(z) z e Cy. (6.27)

neN

A (C+, n € N. (626)

Combining (6.27) with (6.26) we arrive at (6.24).
Combining Theorem 5.3 (cf. (5.13)) with Corollary 5.5 we get

o0 o0 oo

Ag=A" [ ker (To) =P S; | ker (Ton) = P Son = P S5 = A" (6.28)

n=1 n=1 n=1
which proves the second assertion. O

Next we generalize Theorem 6.3 to the case of unbounded operator potentials.

Theorem 6.10 Let T = T* > 0, to := info(T"), and A := Ap min, cf. (6.18)-(6.19). Let also

M= {H, Lo, T 1} be the boundary triplet for A* defined by Lemma 6.9 and ]/W\() the corresponding
Weyl function (cf. (6.24)). Then

(i) The Friedrichs extension AY coincides with Ag := A* [ker(fo). Moreover, AY is absolutely
continuous, AF = (A" and o(AF) = 0,.(AF) = [ty, 00).
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-- - - K o o g K
BE -— - ’
(ii) The Krein extension A" is given by Agx := A* | ker (I'y — B*Ty), where

P 1 1
_ , (6.29)
VT + VT +VI+ T2 VT + V1+ 12
Moreover, ker (AK) = 6 := 9], 9 = {e=*VTh : h e ran(TY4)}, the restriction AX |
dom (AK) N 9 is absolutely continuous, and AX = 0g, & (AK)ec.
(iii) The extension AN is given by AN = A* | ker(fl — BNT) where BN := /T +1+12.

Moreover, AN is absolutely continuous, AN = (AN)% and o(AN) = 04.(AN) = [tg, 00).

(iv) The operators AT, (AK) and and AN are unitarily equivalent.

Proof. (i) This statement is implied by combining Theorem 6.3 with (6.28).
(ii) Using the polar decomposition i — A = v/1 + A2e??N) with 0(\) = 7 — arctan(1/\), A > 0 we

get
Re( / YTT N cos(0(N)/2)dBr (). (6.30)

Setting ¢(\) = arctan(1/\), A > 0 and noting that cos(p())) = A1+ A?)"Y2 we find
cos(B(N)/2) = 271/2(1 + X2)~ 4\ + /1 + A2)~ /2, Substituting this expression in (6.30) yields

Re(Wi—T)=2"Y2(T+/1+T2)7'/2 (6.31)

Similarly, taking into account sin(f(\)/2) = cos(¢(A)/2) and cos(p(N)/2) = 27 /2(1 4 X2) " V4(\ +
V14 A2 we get

Im /\/1+)\2COS N)/2)dEr(X) = %\/T—i—\/l—i—T? (6.32)

It follows from (6.24) with account of (6.31) and (6.32) that M (0) := s-lim,_ o M(—x) =: BX
where BE is defined by (6.29). Therefore, by [12, Proposition 5(iv)] the Krein extension A is
given by Agx := A* | ker (I'y — BXTy). The second statement follows from Proposition 6.8 and
Theorem 6.3(ii).

(iii) It is easily seen that in the boundary triplet ﬁn = {Hp, fOn, fm} defined by (6.25) the

extension AY admits a representation AY = Ap where B, = /T, ++/1+7T2, n € N. By
Proposition 6.8, AN = @®% | AN = A~y where BN = @22 | B,,. The remaining part of (iii) follows
from the representation AN = @>7 , AY and Theorem 6. 3(1ii).

(iv) The assertion follows from Theorem 6.3(iv) and (6.21). O

Next we generalize Theorem 6.4 to the case of unbounded 7" > 0.

Theorem 6.11 Let T =T* > 0 and t; := inf 0ess(T'). Further, let A := Ap min, cf- (6.18)-(6.19),
and A= A* € Exty. Then

(i) the absolutely continuous part Z“CEK([tl,oo)) is wunitarily equivalent to the part
AT E e ([t1,00)) = (AT)*E e ([t1, 00));

(ii) the Friedrichs extension AT is ac-minimal and 0,.(AY) C aac(g);

(iii) the ac-part A% of A is unitarily equivalent to AT if either (A — i)~ — (AF — i)™ € &o.(9)
or (A—i)~! — (AK — )7l € 6. (9).
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Proof. By Corollary 4.2 it suffices to assume that the extension A=A*is disjoint with Ag, that
is, it admits a representation A = Ap with B € C(H).

(i) We consider the boundary triplet I = {H, ['o, I'1} defined in Lemma 6.9. By Proposition

2.17 the generalized Weyl functlon corresponding to the generalized boundary triplet Il 5 is defined
by MB( )= (B - M( )Y, z € Cy, where M (2) is given by (6.24). Clearly,

Im(M p(2)) = M p(z)*Im(M (2)) M p(z),  z€Cy. (6.33)
It follows from (6.24) that (Re(v/i — T))_1 > /2. Therefore (6.31) yields

Im(M (2)) > V2Im(M(z)), z€Cy, where M(z)=ivz—T, (6.34)

cf. (6.5). Following the line of reasoning of the proof of Theorem 6.4(i) we obtain from (6.34) that
dy;p(t) = oo for a.e. t € [t1,00), where D = D* € &3(H) and ker D = {0}. Moreover, it follows
from (6.33) that d]\’Zﬁ (t) = dip(t) = oo for ae. t € [t1,00). One completes the proof by applying
Theorem 3.4.

(ii) To prove (ii) we use again estimates (6.34) and follow the proof of Theorem 6.4(ii). We complete
the proof by applying Theorem 3.4.

(iii) The Weyl function J/W\() is given by (6.24). Taking into account (6.27) one obtains
Sup, ey M, < oo, where m is the maximal normal invariant function defined by (4.17). Indeed,
this follows from (6.6) because this estimate shows that m does not depend on n € N. Applying
Theorem 4.3 and Remark 4.6 we complete the proof.

To prove the second statement we note that the operator BK deﬁned by (6. 29) is bounded.
Therefore by Proposition 2.17 a triplet HBK = {H, FO r } with Fl Iy and
K

~B
FO .= BKT — T'y, is a boundary triplet for A* such that AK = A* | ker(I'y ). The
corresponding Weyl function is

o~

M px(2) = (BX — M (2))"!, ze€C,.
Inserting expression (6.29) into this formula we get

T (z):—i 1 1 _ 1 VT —iNz=T
o V2VT +iVe—T T+ V1112 =2 T+ Vit T2

It follows that the limit M (t +i0) exists for any ¢t € R\ {0} and

— 1 T—ivt—-T
M g (t) := s- lim MBK(tJrzy) VT i

y—+0 2T VI T

Clearly, M px (t) € [H] for any ¢t € R\{0}. By Theorem 4.3 the ac-parts of A and AX are unitarily
equivalent whenever (A —i)~! — (AK —4)7! € &,.(9). This completes the proof. O

Finally, we generalize Corollary 6.5 to unbounded operator potentials.
Corollary 6.12 Assume conditions of Theorem 6.11. If dim(H) = oo and ty := info(T) =

inf oess (T') =: t1, then the Friedrichs extension AF and the Krein extension AX are strictly ac-
minimal.

6.3 Application

In this subsection we apply previous results of this section to Schroedinger operator in the half-
plane. To this end we denote by L = Ly, the minimal elliptic operator associated in L?(Q), Q :=
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R. x R”, with the differential expression
82 n 82
L:=—-A+q(z):= 7(@+;8—x?) +q(z), (taz)eq, (6.35)

where ¢ =7 € L*°(R), z:=(x1,...,2,) and n > 1.

Recall that Ly, is the closure of £, defined on C§°(Q). It is known that dom (Lyin) = HZ(L).
Clearly, L is symmetric. The maximal operator L.y is then defined by Lyax = (Lmin)*. We
emphasize that H?(Q) C dom (Amax) C HE (), while dom (Liax) # H?(Q).

Next we define the trace mappings v;: C>(Q) — C>(99), j € {0,1}, by setting you := u | 9Q
and y1u = 9 (0u/On) where n stands for the interior normal to 9. Denote by D (€2) the domain

dom (Lmax) equipped with the graph norm. It is known (see [25, 18]) that v, can be extended by
continuity to the operators mapping D.(f2) continuously onto H=7-1/2(9Q), j € {0,1}.

Let us define the following extensions of L., (realizations of £):

(i) LPf = L[f], f€dom(LP):={pe€ H* Ry xR): yop =0};
(i) IV f = L[f), | € dom (IN) i= {p € H2(Ry x B) : 70 = O};
(iii) LEf := L[f], f € dom (LX) = {¢ € dom (Amax) : 11 + Ao = 0}, where A :=
—A, +q(): HY2(0Q) — H3/2(0Q).

To treat the operator Ly, as the Sturm-Liouville operator with (unbounded) operator potential
we denote by T the (closed) minimal operator associated in H := L?(R") with the Schrddinger
expression

—A, +q(z) = — Z % + q(z). (6.36)

Since ¢ = ¢ € L*°(R), the operator T is self-adjoint and semibounded. Moreover, T > 0 if ¢(-) > 0.
Let A := A7 min be the minimal operator associated with (6.18) where 7' is defined by (6.36).

Proposition 6.13 Let ¢(-) € L>®(R), q(-) > 0, and let T be the minimal (self-adjoint) operator
associated in L*(R) with the Schrédinger expression (6.36). Let also to := info(T) and t; =
inf oess (T'). Then:

(i) the operator Ar min coincides with L = Ly, and dom (A min) = HZ(Q);

(ii) the Friedrichs extension AT coincides with LP, hence LT is absolutely continuous, o(LP) =
0ac(LP) = [tg,00) and Npp(t) = oo for a.e. t € [ty,0);

(iii) the Krein extension AX coincides with L, in particular, L admits the decomposition L™ =
Ory @ (LE)2, Hy = ker (LX), and 04,.(L%) = [ty, 0);

(iv) the extension AN defined by (6.21), coincides with LY, in particular, LN is absolutely con-
tinuous and o(AN) = a,.(AN) = [tg, o0);

(v) the operators LY, LN, and (L¥) are ac-minimal, in particular, LP, LY, and (L)% are
pairwise unitarily equivalent. If, in addition, to = ty, then the operators LP, L, and (LX) are
strictly ac-minimal;

(vi) if L is a self-adjoint extension of L and (L — i)' — (L? — i)' € Gu, then Lo and LP are
unitarily equivalent. If L satisfies (L —i)~' — (L¥ — )71 € G, then L% and L are unitarily
equivalent.
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Proof. (i) We introduce the set

D=4 Y. 6i(@)hi(€): ¢; € C(Ry), hj € C*(R), k€N

1<<k
We note that D, C Dj, and D., C C§° (R4 x R). Moreover, Ay win | Pi = L | DL, . Since DL is
a core for both A7 min and Lyin, we have A7 min = Lmin-

It is clear (after applying the Fourier transform) that dom (T') = dom (A, ) = H?(R"). Therefore,
by Lemma 6.7, dom (Aqmin) = Wy7 = HZ(Q).

(i) Since dom (T') = H?(R™), we have W2?(R;H) = H?(Q). Therefore by Proposition 6.8 A" =
LP. The second assertion follows from Theorem 6.10(i).

(iii) It is proved in [12, Section 9.7] that LX is the Krein extension of Ly,. The rest of the
statements is implied by Theorem 6.10(ii).

(iv) The equality AN = L¥ is immediate from Proposition 6.8(iii). The second statement follows
from Theorem 6.10(iii).

(v) By Theorem 6.11(ii) the extension LP(= A) is ac-minimal. By Theorem 6.10(iv) L?, LY (=
AN), and (LE)e¢(= (AK)?€) are pairwise unitarily equivalent, hence LY, and L¥ are ac-minimal
too. The last statement is immediate from Corollary 6.12.

(vi) The statement is immediate from (ii), (iii) and Theorem 6.11(iii). O

Remark 6.14 Let T be the (closed) minimal non-negative operator associated in H := L?(R")
with general uniformly elliptic operator

- Z i@ﬂx)% +q(x), ajr€CHQ), g€ C@Q)NL>(Q), (6.37)

where the coefficients aj(-) are bounded with their C'-derivatives, ¢ > 0. If the coefficients have
some additional “good” properties, then dom (T') = H?(R") algebraically and topologically. By
Lemma 6.7, dom (A7 min) = WOQ”2 (Ry, H) = HOQ’Q(Q) and Proposition 6.13 remains valid with T'
in place of the Schrodinger operator (6.36).

Note also that the Dirichlet and the Neumann realizations L” and LY are always self-adjoint ((cf.
[25, Theorem 2.8.1], [18])).

Corollary 6.15 Assume the conditions of Proposition 6.13. If, in addition,

lim la(y)|dy = 0, (6.38)

lzl=00 Jja—y|<1
then the operators LP, LY and (L¥) are strictly ac-minimal,
0(LP) = 04e(LP) = 04 (LX) = 0(LY) = 04(LY) = [0, 00),
and Ng, ,,(t) = Ng, () = Npac, (t) = oo for a.e. t € ]0,00).
Proof. By [16, Section 60] condition (6.38) yields the equality o.(T") = Ry, in particular 0 € o.(T)

and t; = 0. Since ¢ > 0, we have 0 < ty < t; = 0, that is tg = t; = 0. It remains to apply Proposition
6.13 (ii)-(v). O

Remark 6.16 Condition (6.38) is satisfied whenever lim ;| g(z) = 0. Thus, in this case the

conclusions of Corollary 6.15 are valid. However, it might happen that o(LF) = 0,.(L¥) =
o(LN) = [tg,00), to > 0 though inf ¢(z) = 0.
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A Appendix: Absolutely continuous closure

Let us recall some basic facts of the ac-closure of a Borel set of R introduced in[9], see also [15].

Definition A.1 ([9]) Let § € B(R). The set cly.(0) defined by
clec(d) :={z €eR: |[(x —g,x+e)NJ| >0 Ve > 0}

is called the absolutely continuous closure of the Borel set § € B(R).

Obviously, two Borel sets d1,d2 € B(R) have the same ac-closure if their symmetric difference
81 A\ 5, has Lebesgue measure zero. Moreover, the set cl,.(0) is always closed and cl,.(6) € 6. In
particular, if we have two measurable non-negative functions & and & which differ only on a set
of Lebesgue measure zero, then cl,.(supp (£1)) = clae(supp (£2)).

Lemma A.2 If§ € B(R), then [0\ clac(d)] = 0.

Proof. Since cl,.(9) is closed the set A := R\ cl,.(d) is open. The open set A is decomposed as
A= UzL:1 A;, 1 < L < oo, where A; = (a,b;) are disjoint open intervals. We set A; = § N Ay,
l=1,2,..., L. Obviously,

L
S\ clac(®) =dnAa=]JA.
=1
We note that A; Ncle.(6) = 0,1 =1,2,..., L. Hence for each t € A; there is a sufficiently small
neighborhood O; such that |O; Né| = 0. If n is sufficiently small, then [a; + 7, a; — 1] C (a;, b;) and

{O4}+en, forms a covering of [a; + n, a; — n]. Since [a; +n, a; —n] is compact we can chosen a finite
covering {O, }M_, of [a;+n, a1 —n). By [ai+n,a1—n] C Un]\le O, we find |[a;+n, a1 —n]N6| =0
for each sufficiently small n > 0. Using that we get

(a1, b1) N 6] = [(ar, a1 +n) N6 + [ (b —n,b) NI| =
[(ar, ar +m) N S|+ [(br —n, b)) N 6] < 21

for sufficiently small n > 0. Hence |A;| = |(a;,b;) N6 = 0 which yields that [ \ clge(0)] =0. O

Lemma A.3 If {6 }ren, 0r C R, is a sequence of Borel subsets, then

clac(0) = | clac(r), 0= o (A.1)

keN keN

Proof. We set gk = 0k Nclae(dr) and Ay = 0 \ clac(dr). We have 6 = S U A, where 5 =
Uren 0% and A := [J, oy Ax. By Lemma A2, |A;| = 0, k € N, which yields |A| = 0. Hence
clae(6) = clac(g). Similarly one gets cl,.(dx) = clac(gk), k € N. Notice that Sk C clac(gk),
k € N. We have R R R R
clac(8) 2 | clac(61) 2 | 0k = 9.
keN kEN

Hence

clac(3) = clac(5) 2 | clac(51) 2 8 2 cluc(3)
keN

which yields clac(g) = Uren clac(gk). Since clac(g) = clac(d) and clac(gk) = clae(0r), k € N, we
prove (A.1). O

40



Acknowledgment

The first author thanks Weierstrass Institute of Applied Analysis and Stochastics in Berlin for
financial support and hospitality.

References

[1] N. L Achieser and I. M. Glasmann. Theorie der linearen Operatoren im Hilbert-Raum. Verlag
Harri Deutsch, Thun, eighth edition, 1981.

[2] S. Albeverio, J. F. Brasche, M. M. Malamud, and H. Neidhardt. Inverse spectral theory
for symmetric operators with several gaps: scalar-type Weyl functions. J. Funct. Anal.,
228(1):144-188, 2005.

[3] Yu. M. Berezanskil. Ezpansions in eigenfunctions of selfadjoint operators. Translated from
the Russian by R. Bolstein, J. M. Danskin, J. Rovnyak and L. Shulman. Translations of
Mathematical Monographs, Vol. 17. American Mathematical Society, Providence, R.I., 1968.

[4] M. S. Birman. Existence conditions for wave operators. Izv. Akad. Nauk SSSR Ser. Mat.,
27:883-906, 1963.

[5] M. S. Birman and S. B. Entina. Stationary approach in abstract scattering theory. Izv. Akad.
Nauk SSSR Ser. Mat., 31:401-430, 1967.

[6] M. S. Birman and M. G. Krein. On the theory of wave operators and scattering operators.
Dokl. Akad. Nauk SSSR, 144:475-478, 1962.

[7] M. S. Birman and M. Z. Solomjak. Spectral theory of selfadjoint operators in Hilbert space.
Mathematics and its Applications (Soviet Series). D. Reidel Publishing Co., Dordrecht, 1987.

[8] J. F. Brasche. Spectral theory for self-adjoint extensions. In Spectral theory of Schridinger
operators, volume 340 of Contemp. Math., pages 51-96. Amer. Math. Soc., Providence, RI,
2004.

[9] J. F. Brasche, M. M. Malamud, and H. Neidhardt. Weyl function and spectral properties of
self-adjoint extensions. Integral Equations Operator Theory, 43(3):264—289, 2002.

[10] V. A. Derkach, S. Hassi, M. M. Malamud, and H. S. V. de Snoo. Generalized resolvents of
symmetric operators and admissibility. Methods Funct. Anal. Topology, 6(3):24-55, 2000.

[11] V. A. Derkach and M. M. Malamud. On the Weyl function and Hermite operators with
lacunae. Dokl. Akad. Nauk SSSR, 293(5):1041-1046, 1987.

[12] V. A. Derkach and M. M. Malamud. Generalized resolvents and the boundary value problems
for Hermitian operators with gaps. J. Funct. Anal., 95(1):1-95, 1991.

[13] V. A. Derkach and M. M. Malamud. The extension theory of Hermitian operators and the
moment problem. J. Math. Sci., 73(2):141-242, 1995. Analysis. 3.

[14] A. Dijksma and H. S. V. de Snoo. Symmetric and selfadjoint relations in Krein spaces. I
volume 24 of Oper. Theory Adv. Appl., pages 145-166. Birkhauser, Basel, 1987.

[15] F. Gesztesy, K. A. Makarov, and M. Zinchenko. Essential closures and AC spectra for reflec-
tionless CMV, Jacobi, and Schrédinger operators revisited. Acta Appl. Math., 103(3):315-339,
2008.

[16] I. M. Glazman. Direct methods of qualitative spectral analysis of singular differential operators.
Israel Program for Scientific Translations, Jerusalem, 1966.

41



[17] V. I. Gorbachuk and M. L. Gorbachuk. Boundary value problems for operator differential
equations, volume 48 of Mathematics and its Applications (Soviet Series). Kluwer Academic
Publishers Group, Dordrecht, 1991.

[18] G. Grubb. Distributions and operators, volume 252 of Graduate Texts in Mathematics.
Springer, New York, 2009.

[19] T. Kato. Perturbation of continuous spectra by trace class operators. Proc. Japan Acad.,
33:260-264, 1957.

[20] T. Kato. Perturbation theory for linear operators. Springer-Verlag, Berlin, second edition,
1976. Grundlehren der Mathematischen Wissenschaften, Band 132.

[21] A. N. Kochubei. Symmetric operators and nonclassical spectral problems. Mat. Zametki,
25(3):425-434, 477, 1979.

[22] M. G. Krein and G. K. Langer. The defect subspaces and generalized resolvents of a Hermitian
operator in the space Il,. Funkcional. Anal. i PriloZen, 5(3):54-69, 1971.

[23] M. G. Krein and A. A. Nudel'man. The Markov moment problem and extremal problems.
American Mathematical Society, Providence, R.I., 1977.

[24] S. T. Kuroda. On a theorem of Weyl-von Neumann. Proc. Japan Acad., 34:11-15, 1958.

[25] J.-L. Lions and E. Magenes. Non-homogeneous boundary value problems and applications. Vol.
I Springer-Verlag, New York, 1972. Die Grundlehren der mathematischen Wissenschaften,
Band 181.

[26] M. M. Malamud. On a formula for the generalized resolvents of a non-densely defined Hermi-
tian operator. Ukrain. Mat. Zh., 44(12):1658-1688, 1992.

[27] M. M. Malamud and S. M. Malamud. Spectral theory of operator measures in a Hilbert space.
Algebra i Analiz, 15(3):1-77, 2003.

[28] F. S. Rofe-Beketov. Selfadjoint extensions of differential operators in a space of vector-valued
functions. Teor. Funkcii Funkcional. Anal. i PriloZen. Vyp., 8:3—24, 1969.

[29] M. Rosenblum. Perturbation of the continuous spectrum and unitary equivalence. Pacific J.
Math., 7:997-1010, 1957.

[30] J. v. Neumann. Charakterisierung des Spektrums eines Integraloperators. Paris: Hermann &
Cie., 1935.

[31] D. R. Yafaev. Mathematical scattering theory, volume 105 of Translations of Mathematical
Monographs. American Mathematical Society, Providence, RI, 1992.

42



