
Computational Mechanics (2023) 71:615–636
https://doi.org/10.1007/s00466-022-02261-z

ORIG INAL PAPER

Numerical upscaling of parametric microstructures in a possibilistic
uncertainty framework with tensor trains

Martin Eigel1 · Robert Gruhlke1 · Dieter Moser2 · Lars Grasedyck2

Received: 12 April 2022 / Accepted: 10 December 2022 / Published online: 27 December 2022
© The Author(s) 2022

Abstract
A fuzzy arithmetic framework for the efficient possibilistic propagation of shape uncertainties based on a novel fuzzy edge
detection method is introduced. The shape uncertainties stem from a blurred image that encodes the distribution of two phases
in a composite material. The proposed framework employs computational homogenisation to upscale the shape uncertainty to
a effective material with fuzzy material properties. For this, many samples of a linear elasticity problem have to be computed,
which is significantly sped up by a highly accurate low-rank tensor surrogate. To ensure the continuity of the underlying
mapping from shape parametrisation to the upscaled material behaviour, a diffeomorphism is constructed by generating an
appropriate family of meshes via transformation of a reference mesh. The shape uncertainty is then propagated to measure
the distance of the upscaled material to the isotropic and orthotropic material class. Finally, the fuzzy effective material is
used to compute bounds for the average displacement of a non-homogenized material with uncertain star-shaped inclusion
shapes.

Keywords Fuzzy partial differential equations · Possibility · Polymorphic uncertainty modeling · Uncertainty quantification ·
Low-rank tensor formats · Parametric partial differential equations · Linear elasticity · Homogenisation · Tensor trains
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1 Introduction

Composite materials are ubiquitous in many applications.
Whether they are formed by chance (like with unfavourable
impurities in metal) or by design (like pebbles in concrete),
the mechanical properties of the whole material are deter-
mined by the resulting composite structure [1]. The different
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types of composite materials—e.g. metal matrix composites
[2], fiber-reinforced polymers [3], composite wood [4] and
other advanced composite materials [5]—find their use in a
wide range of applications, e.g. masonry, aerospace industry,
wind power plants and sports equipment. In many applica-
tions, the added composite material improves a base matrix
material in terms of wear resistance, damping properties
and mechanical strength, while keeping the same weight.
However, such improved composite materials are a result of
empirical studies, experimentation and chance. It hence is
obvious that a thorough understanding of composite mate-
rials via theoretical and accurate computational models is
desirable to predict and systematically improve the proper-
ties and applicability of composites.

What makes this task challenging are the influence of
material behaviour on the micro- and macro scales, as well
as themultifaceted sources of uncertainties. For instance, the
involved length scales may span up to ten orders of magni-
tudes, i.e. the size of a nano particle of 10−6 m is embedded
in a material with a length scale of 10−1−101 m [2]. The
same holds for the material constants if the constituents are
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fundamentally different as in metals and polymers. A stan-
dard finite element approach becomes very costly in such a
setting since the details of the composite have to be resolved
by the mesh for accurate simulations. Additionally, one has
to handle the uncertainty of the material constants such as
the position, form and size of the inclusions. This increases
the costs even further since many realisations are required
to correctly capture the uncertainty statistically. Each new
realisations requires a costly (possible automatic) remeshing
of the computational domain. The mapping from geometric
parameters—namely position and shape of each inclusion—
onto the generated meshes are usually discontinuous. This
introduces unwanted effects that we tackle in Sect. 4.1.

The first challenge—the span of scales—is tackled by
homogenisation methods, a term introduced by Babuška in
[6]. In some form or another, these methods incorporate
micro-scale behaviour into an adjusted macro-scale model,
replacing the full composite material model by a corrected
homogeneous one, obtained by an asymptotic limit of an
assumed (periodic) domain. The central idea is to derive
equations that describe the effective material properties ana-
lytically. Alternatively, computational approaches have been
devised to solve particular micro-scale problems to deduce
the adjusted macro-scale behaviour numerically [7,8]. Some
notable examples are stochastic homogenisation, see [9–12],
projection based homogenisation [13] and (stochastic) rep-
resentative volume element methods [14].

The second challenge—theuncertainty of thematerial—is
sometimes neglected [15,16] by only considering determin-
istic material properties. If the probability distribution of the
material constants is known, the uncertainty can be mod-
elledwith precise probabilities [17]. Ignoring the uncertainty
seems valid if it has little influence on the system’s response
or the model data is known sufficiently accurate and is
free of inherent fluctuations. Using precise probabilities is
valid if the distributions of the material constants are known
precisely. However, as was pointed out by Motamed and
Babuška [18], stochastic models based on precise probabili-
ties are not always able tomodel the uncertainty in composite
materials. Instead, they propose a model based on an impre-
cise probability theory. Examples for this are evidence theory
[19], random set theory [20], possibility theory [21] and—
more recently—optimal Uncertainty Quantification (UQ)
[22]. In comparison to precise probability, imprecise proba-
bility methods are able to provide estimates of uncertainties
based only on a small set of data and few assumptions, which
would be far too limited for a probabilistic method. For an
illuminating work that dissects the difference between pre-
cise and imprecise probabilities, we refer the reader to [23].
As a motivation the approach developed in what follows,
we especially point to the false confidence theorem, which
qualitatively states that “probability dilution is a symptom of
a fundamental deficiency in probabilistic representations of

statistical inference, in which there are propositions that will
consistently be assigned a high degree of belief, regardless
of whether or not they are true” [23].

In this work, we consider a practical problem that is
supposed to illustratewhen imprecise probabilities are appro-
priate (in particular more so than probabilistic methods),
the challenges performing a non-probabilistic uncertainty
propagation and quantification, and ways to overcome the
computational difficulties. We assume a material consist-
ing of two phases, namely a soft matrix phase and a hard
inclusion phase. Both phases are linear elastic with precisely
known Young’s modulus and Poisson ratio. The inclusions
repeat periodically in a checkerboard fashion. Consequently,
a classical numerical homogenisation method would yield a
homogenised (globally constant) macro-scale material. Con-
sidering real applications, the main problem stems from the
unknown shape of the inclusions.Often, the shape is retrieved
with a non-intrusive imaging process, e.g. computed tomog-
raphy scans ormagnetic resonance imaging. To illustrate this,
Fig. 1 shows a computed tomography scan of an imperfect
adhesive bond within a Henkel beam, cf. [24]. Apparently,
the image is noisy, blurred, pixelated and exhibits artefacts.
While it is possible to de-noise and de-blurr the image with
image post-processing, which might make the identification
of inclusions possible, different numerical methods yield dif-
ferent shapes [25]. This reveals the shapeuncertainty inherent
to the image. Here, we just focus on one blurred image per
inclusion, assuming that the artefacts and noisewere success-
fully removed already, see Fig. 3 for an example. Opposite to
this, in the case of multiple CT scans of the same inclusion,
the additional information can be employed to reduce the
shape uncertainty and thus refine the epistemic uncertainty
model until the uncertainty becomes irreducible and hereby
aleatoric uncertainty models are preferable.

To tackle a problem in this setting, we introduce a novel
fuzzy edge detection based on possibility theory, presented
in Sect. 2.1 and a restriction of possible interface boundaries
via bounded total variation in Sect. 3. This yields a fuzzy
model of the boundary which in turn introduces a compu-
tational challenge in terms of a numerical homogenisation
problem as discussed in Sect. 2.2. For this, the micro-model
has to be solved very often in order to propagate the uncer-
tainty of the boundary to the homogenised material model.
To alleviate this expensive task, we introduce a highly accu-
rate rank adaptive low-rank tensor surrogate in Sect. 4. In the
numerical experiments Sect. 5, the surrogate model is vali-
dated numerically. Moreover, we measure the distance of the
homogenisedmaterial to the class of isotropic andorthotropic
elastic tensors and eventually use the homogenised mate-
rial to perform a worst/best case analysis for a full matrix
composite model with 64 inclusions, i.e., with help of the
homogenised material we will find bounds for the average
displacement of the non-homogenised material.
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Fig. 1 Computed tomography
scan of a Henkel beam taken
from [24]. Material
imperfections are noticeable but
the present resolution does not
reveal the exact shapes of the
imperfections

2 Basics

This section serves as a brief introduction of three funda-
mental topics that form the basis of this work. First, fuzzy set
theorywhich is used tomodel the uncertainty ingrained in the
blurred image. Second, the computational up-scalingmethod
(numerical homogenisation). Third, classes of constitutive
tensors to measure the distance of the up-scaled material to
the isotropic and orthotropic material are discussed.

2.1 Fuzzy set theory

We introduce a possibilistic framework with fuzzy sets based
on 4 central definitions, see e.g. [26] or more recently [27–
29].

Fuzzy sets are common sets that are equippedwith amem-
bership functionwhich assigns each element in the set a value
between zero and one. This values only task is to commu-
nicate a degree of belongingness to the set. The meaning of
this value depends on the problem and—more importantly—
on the community using this value to formalise uncertainty.
Arguably, this ambiguity is a feature and not a short-coming
of this theory since it avoids assumptions that are usually
made by other approaches. In probability theory for instance,
one has to assume a prior distribution before updating the
posterior distribution with new samples. The following def-
inition introduces the terminology of fuzzy sets.

Definition 1 (Fuzzy set/variable, α-cuts and interactivity)
Let Z �= ∅ be a set and μ : Z → [0, 1] be a map such
that there exists z ∈ Z with μ(z) = 1. The map μ is called
(normalised)membership function. We define a (normalised)
fuzzy set z̃ on Z by

z̃ := {(z, μ(z)) | z ∈ Z}. (1)

Ifμ(Z) = {0, 1}with unique z∗ ∈ Z andμ(z∗) = 1 then z̃ is
called a crisp set. Furthermore, we denote byF(Z) the set of
all fuzzy sets on Z . We thus simply write z̃ ∈ F(Z). For each
fuzzy set z̃ ∈ F(Z) we denote the associated membership
function by μz̃ . If Z ⊂ R

N for N ∈ N, we call z̃ ∈ F(Z) a
fuzzy variable (N = 1) or vectorial fuzzy variable (N > 1)

described by a (joint) membership function μz̃ . The support
of μz̃ is defined as

supp(z̃) = {z ∈ Z | μz̃(z) > 0}.

For α ∈ [0, 1], the α-cut Cα of μz̃ is defined as

Cα[z̃] :=
{

{z ∈ Z : μz̃(z) ≥ α}, for α > 0,

supp(z̃), for α = 0.
(2)

Let z̃i ∈ F(Zi ) for sets Zi with i = 1, . . . , M < ∞,

Z :=
MŚ

i=1
Zi and z̃ = (z̃1, . . . , z̃M ). If the joint member-

ship function associated with z̃ has the form μz̃ = mini μz̃i
then z̃ is called non-interactive and interactive otherwise.

Fuzzy sets are quite versatile since there are no restric-
tions on the (type and structure of the) used sets. However,
for numerical methods to become efficient, certain assump-
tions are beneficial. The first restriction mimics numbers and
vectors.

Definition 2 (Fuzzy number/vector) Let z̃ ∈ F(Z)with Z ⊂
R

N for some N ∈ N such that Z is bounded and convex and
the (joint)membership functionμz̃ is upper semi-continuous,
i.e.

lim sup
z→z0

μ(z) ≤ μ(z0), ∀z0 ∈ Z (3)

and quasi-concave, i.e.

μ(λz1 + (1 − λ)z2) ≥ min(μ(z1), μ(z2)), ∀z1, z2 ∈ Z .

(4)

If there exists a unique z∗ ∈ Z such that μz̃(z∗) = 1 then we
call z̃ a fuzzy number for n = 1 and a fuzzy vector for n > 1.

This notion is easily extended to intervals and domains.

Definition 3 (Fuzzy interval/domain)With the same assump-
tions as in Definition 2, there exists a subset S ⊂ Z such that
μz̃(z) = 1 for all z ∈ S. Then z̃ is called a fuzzy interval for
n = 1 and fuzzy domain for n > 1 .
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Note that the quasi-concavity of the membership function
implies convexity of anyα-cutCα . In particular, given S ⊂ Z
as in Definition 3, the convex hull conv(S) is a proper subset
of C1, too. The quasi-concavity also leads to the nestedness
property of α-cuts from Definitions 2 and 3, i.e.

Cα[z̃] ⊂ Cβ [z̃], ∀α ≥ β. (5)

This property is essential for the α-cut propagation
method, see Theorem 2. In the following example, we intro-
duce the most common fuzzy structures. Namely, the fuzzy
trapezoidal interval which we will use throughout this work.

Example 1 A particular class of fuzzy sets is the trapezoidal
fuzzy set z̃, forming a subset of F(Z) with Z ⊂ R. The
respective membership function μz̃ is described by two
upper semi-continuous functions fL : (−∞, 0] → [0, 1]
and fR : [0,∞) → [0, 1]. Here, fL(0) = fR(0) = 1
with fL ( fR) is monotonously increasing (decreasing) and
limz→−∞ fL(z) = 0 (limz→∞ fR(z) = 0) such that there
exist �∗, r∗ ∈ Z with z∗� ≤ z∗r and

μz̃(z) =
⎧⎨
⎩

fL(z∗ − z), z ≤ z∗�,
1, z ∈ (z∗�, z∗r ),
fR(z − z∗), z ≥ r∗,

(6)

The triangle fuzzy number z̃ = 〈�, z∗, r〉 specified by left
and right limit �, r and peak position z∗ = z∗� = z∗r is a
special case of the trapezoidal fuzzy set. Figure 2 depicts the
propagation of a trapezoidal fuzzy set.

For arbitrary fuzzy sets Zadeh’s extension principle is the
way to propagate uncertainty through a mapping.

Theorem 1 (Zadeh’s extension principle [26])
Consider a function f : Z → V with a non-empty set V .

Let z̃ ∈ F(Z) with membership function μz̃ . Define

f̃ := f (z̃) := {( f (z), μ f̃ ( f (z)) ∈ V × [0, 1], z ∈ Z} (7)

with membership function μ f̃ defined for all v ∈ V as

μ f̃ (v) :=
⎧⎨
⎩

sup
z∈ f −1(v)

μz̃(z) if f −1(v) �= ∅,

0 if f −1(v) = ∅.

(8)

Then f̃ ∈ F(V ) with membership function μ f̃ .

If more underlying structure is given, the extension prin-
ciple can be formulated equivalently in terms of constrained
optimization. Zadeh’s principle can be reformulated into
the so-called α-cut propagation for fuzzy vectors and fuzzy
domains to reduce the computational costs.

Theorem 2 (α-cut propagation [30])
Let f : Z → V be continuous between metric spaces

(Z , d1) and (V , d2) and let z̃ ∈ F(Z) with C0[z̃] ⊂ K ⊂ Z
for a compact set K with convex Z. Furthermore, let the
membership function μz̃ be quasi-concave and upper semi-
continuous. Then μ f̃ can be characterised via α-cuts as

Cα[ f̃ ] = f (Cα[z̃]). (9)

Moreover, if V = R then

Cα[ f̃ ] =
[

min
z∈Cα[z̃]

f (z), max
z∈Cα[z̃]

f (z)

]
. (10)

Note that (9) follows from the assumption that Cα[z̃] is
closed and consequently compact as it is a closed subset of
a compact set K in a metric space. Since f is assumed to be
continuous, compact sets are mapped to compact sets.

Comparing Zadeh’s principle with the α-cut propagation,
we immediately see that the former requires the inverse image
and an optimization step for each point v whereas the later
only depends on two optimization steps of f for the number
of α-cuts. Since it is infeasible to perform Zadeh’s princi-
ple for all points v ∈ V , it is combined or replaced with a
sampling approach. We distinguish two variants to sample in
V :

• Semi sampling approach: directly solve the constrained
optimization problemwith a global optimiser. For a given
sequence (vk)k ⊂ V , compute the supremum over Zk :=
{z ∈ Z : f (z) = vk}, see the red line in Fig. 2.

• Full sampling approach: choose a sequence (zk)k ⊂ Z ,
compute ( fk)k = [ f (zk)]k and (μk)k = [μz̃(zk)]k .
Use the data sample pairs (vk, μk) and reconstruct μ f̃ ,
e.g. by convex hull or an envelope approach, see the
orange/purple graphics in Fig. 2.

If f has high evaluation costs, the propagation inevitably
becomes difficult and costly. This for example is the case if
f represents a finite element solution with a large number
of elements. Thus, to still render the propagation feasible
the number of evaluations of f needs to be computationally
feasible. In case of applicability of α-cut propagation, the
number of evaluations depends on the (global) optimization
method. This number is possibly lower than the sampling
counterparts. However, if the requirements of Theorem 2 are
not met one may fall back to the sampling methods. By intro-
ducing a surrogate model fh ≈ f , the computational costs
can be further reduced for both strategies. In essence, this
approach can be interpreted as a reduction of evaluations of
f , determined by the number of evaluations needed to obtain
fh , assuming that the evaluation costs of fh are negligible.
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Fig. 2 Fuzzy propagation via
α-cuts or full sampling and
membership reconstruction with
vk = f (zk), for Z = V = R
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2.2 Upscaling of heterogeneous linear elastic
material

In the following we develop a numerical homogenisa-
tion method which yields a macroscopic material based
on microscopic properties. The goal of the approach is
to dispose of the computationally involved microstructure
and construct an upscaled material surrogate with similar
homogenised behaviour on a larger scale. Equivalent terms
for “homogenised behaviour” are macroscopic, effective or
upscaled behaviour [31], where the examined “behaviour” is
subject to some quantity of interest (e.g. average displace-
ment or stress) based on the system response.

In classical (asymptotic) homogenisation, an effective
property is calculated based on the assumption of an infi-
nite periodic domain [32]. The local microscopic structure is
defined in terms of a representative volume element, which
in our setting would consist of a single inclusion that has
identical shape in the entire domain. For problems in non-
periodic media, the methods of numerical homogenisation
or numerical upscaling as e.g. described in [33] are used,
where local boundary value problems are solved to calculate
effective characteristics in each local domain [34], also see
[9,12,35] for analytical stochastic homogenisation. Periodic
boundary conditions (PBCs) are commonly used for numeri-
cal upscaling methods of matrix composite material [36,37].
In this work, we focus on numerical homogenisation with
PBCs for linear elasticity. Let D = [−1, 1]2 be a unit cell
domain and let the heterogeneous material law be encoded
in a tensor C = C(x) ∈ R

2,2,2,2, x ∈ D. For given macro-
scopic strain E write the displacement u as u(x) = E · x +v

where the D-periodic fluctuation v solves

⎧⎨
⎩
div σ = 0 in D,

σ = C : ε in D,

ε = E + [∇v + ∇T v]/2 in D,

(11)

such that σ ·n is antiperiodic on D with n denoting the outer
normalwith respect to ∂D. Let 〈ε〉 and 〈σ 〉 denote the average
strain and stress of the computed strain ε and stress σ . Then,
there exists a tensor H ∈ R

2,2,2,2 satisfying

〈σ 〉 = H : 〈ε〉. (12)

The tensor H is called the effective or upscaled (macro-
scopic) tensor, representing the elastic moduli of the
homogenisedmedium.By construction it holds that E = 〈ε〉.
Consequently, H can be obtained from (12) by choosing
macro strains E corresponding to different elementary load
cases and subsequently computing 〈σ 〉 by solving (11). In
what follows, the homogenisation technique will be applied
for every shape parametrisation encoded in C.

2.3 Measuring the distance between constitutive
tensors

Constitutive tensors C = (Ci jkl) ∈ R
d,d,d,d in the planar

case of d = 2 determine the behaviour of the linear elastic
material by relating stress and strain. Such a tensor is said to
be in Ela(d) if the symmetry property

Ci jkl = C jikl = Ci jlk = Ckli j

holds. A tensor C ∈ Ela(d) may exhibit further symmetry
properties. If there exist Lamé constants λ,μ ∈ R such that

C iso = λ1 ⊗ 1 + 2μI, I i jk� = 1

2

(
δikδ j� + δi�δ jk

)
,

1i j = δi j ,

the tensor is called isotropic. For orthotropic tensors, we
define a rotation matrix

g(θ) =
(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)
, θ ∈ [0, 2π ]

and the full orthogonal group operation o(g) via

(o(g)C)i jk� = gipg jqgkr g�sCpqrs, C ∈ Ela(d).
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We then say that Cortho ∈ Ela(d) is orthotropic if it can be
represented as

Cortho = C iso + T , T = ρ(g(θ))
(
�1O1 + �2O2

)
,

(13)

for some isotropic C iso ∈ Ela(d), �1,�2 ∈ R, θ ∈ [0, 2π ]
and forth order tensors O1 and O2 with a Kelvin-Mandel
matrix representation [38] given as

1√
2

⎡
⎣ 1/2 −1/2 0

−1/2 1/2 0
0 0 −1

⎤
⎦ and

1√
2

⎡
⎣ 1 0 0
0 −1 0
0 0 0

⎤
⎦ .

Note that any isotropic C iso ∈ Ela(d) is invariant under
action of ρ(g), in particular ρ(g)C iso = C iso. With that
representation, any orthotropic tensor has 5 degrees of free-
dom (λ, μ,�1,�2, θ). The orthotropic tensors represented
in normal form have only 4 degrees of freedom since θ is
chosen as zero. Let Ela(d, iso),Ela(d, ortho) ⊂ Ela(d) be
the set of all isotropic and orthotropic tensors, respectively.
Given any anisotropic tensor C , we define the distance to the
symmetry class of isotropic and orthotropic tensors by

diso(C) = min
X∈Ela(d,iso)

‖C − X‖,
dortho(C) = min

X∈Ela(d,ortho)
‖C − X‖ (14)

with the Frobenius norm ‖ ·‖. The distances to the symmetry
classes can be characterised as follows.

Proposition 3 (Distance to isotropy class [39])
Let C ∈ Ela(d) for d = 2. Define C iso = 2μI +λ1⊗1 with

λ := 1

8
(C1111 + 6C1122 − 4C1212 + C2222)

μ := 1

8
(C1111 − 2C1122 + 4C1212 + C2222)

as the orthogonal projection of C onto the isotropic material
class. Then,

diso(C) = ‖C − C iso‖. (15)

Proposition 4 (Distance to orthotropy class [39])
Let C ∈ Ela(d) for d = 2 and (θk)

K
k=1, K ∈ N be the finite

roots of

a cos 8θ + b sin 8θ + c cos 4θ + d sin 4θ = 0, θ ∈ [0, 2π ]

with a = 4X1Y1, b = 2(Y 2
1 − X2

1), c = 2X2Y2 and d =
Y 2
2 − X2

2 and

X1 = 1

2
√
2
(C1111 − 2C1122 − 4C1212 + C2222),

Y1 = √
2(C1112 − C2212),

X2 = 1√
2
(C1111 − C2222),

Y2 = √
2(C1112 + C2212).

For θ ∈ [0, 2π ], define

�1(θ) := X1 cos 4θ + Y1 sin 4θ,

�2(θ) := X2 cos 2θ + Y2 sin 2θ

and

X(θk) := ρ(g(θk))(�1(θk)E1 + �2(θk)E2)

for k = 1, . . . , K .

Then,

dortho(C) = min
k=1,...,K

‖C − X(θk)‖. (16)

With the introducedmaterial class concepts of constitutive
tensors we are able to measure the distance of our effec-
tivematerial to the isotropic respectively orthotropicmaterial
class for each shape parametrisation.

3 Fuzzy edge detection

Given a blurred image as depicted in Fig. 3, the most com-
mon approach to reconstruct the original image is to use some
method from the wide class of blind deconvolution methods
[40]. These methods assume that an image y is the convolu-
tion of an original image x and some kernel k, distorted with
additive noise n, i.e.,

y = x�k + n. (17)

Finding a pair (x, k) satisfying equation (17) is equivalent
to de-blurring the image, leading to a original image x . This
however is an ill-posed problem, since an infinite number of
such pairs can be found [41], making some form of regu-
larisation inevitable. The classical approaches assume zero
noise and employ regularised least squaredmethods [42–44].
Each regularisation is based on assumptions of the kernel and
the original image. More recently, natural image statistics
and the Bayesian framework were used to formulate such
assumptions more precisely and thus improved the perfor-
mance of blind deconvolution methods, see [45–47] for a
first overview. Simply put, prior knowledge and the ability to
incorporate this knowledge improve the deconvolution result.
However, we are in a different situation since we miss this
prior knowledge and we are shall not be inclined to make
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Fig. 3 Left: Example of a blurred image of an inclusion in a compos-
ite material. Center: the same image after the application of a gradient
filter with sketch of the relation between sample points. Right: Radial

function r(θ) stemming from the trigonometric interpolation T (·, R)

from (19) given the interpolation radii R ∈ R
8+

unverifiable assumptions. Furthermore, we are not primar-
ily interested in the most probable reconstructed image x .
Instead, we want a set of possible boundaries given a blurred
image and a small set of assumptions. Therefore, we intro-
duce the fuzzy edge detection which is based on three simple
assumptions

(a) Each inclusion is a star-shaped, i.e. there exist amidpoint
from which each boundary point is reached by a straight
line.

(b) The gradient of the blurred image yields a connected
domain and the boundary of the inclusion lies in this
connected domain.

(c) Each boundary curve has a limited prescribed variation.

These three assumptions implicitly define a possible set of
boundary curves provided a blurred image. Any of these
boundary curves is possible but nothing can be said about
the probability of each curve. Since we assume a star-shaped
inclusion, a radial function r(θ) : [0, 2π) �→ R+ is able to
describe the boundary of this inclusion. The uncertainty of
the boundary is then captured in a fuzzy function r̃ .

In order to construct a fuzzy function r̃ from a blurred
image with domain D = [−1, 1]2, we use trigonometric
interpolation on a vector of N ∈ N fuzzy numbers. Each
component of the fuzzy vector denoted by

R̃N := R̃N [
] := (
r̃θ1 · · · r̃θN

)
(18)

is constructed from a radial cut (i.e. a line segment) that
starts in the center and ends at the outer boundary for a pre-

scribed set of angles 
 =
{
θi = 2π i

N+1 | i = 1, . . . , N
}
. The

continuous function Ii : [0, Rmax
i ] → R+ with Rmax

i =
1/max{| cos θi |, | sin θi |} determines the intensity of the gra-
dient along this radial cut, see Fig. 4 for an illustration.
The information encoded in Ii is used to construct a trape-

Ii(r)

M

δM

δM

Rmax
i0

possibility of one

possibility greater zero

1

0

μr̃θi

membership
extraction

Fig. 4 Construction of a trapezoidal membership functionμr̃θi
as in (6)

obtained from a intensity function Ii for given angle θi and thresholds
0 < δ < δ < 1

zoidal fuzzy interval. For this, consider lower and upper
percentage threshold values 0 < δ < δ < 1 and deter-
mine M := maxr∈[0,Rmax

i ] Ii (r). If the intensity in one point

is larger than δM , it is assigned a possibility of one. If it is
smaller than δM , it gets assigned a possibility of zero. For
simplicity, in between these thresholdswe assign a possibility
by linear interpolation. This algorithm yields a member-
ship function μr̃θi

of trapezoidal form, which is illustrated
in Fig. 4.

Gathering these fuzzy numbers into a vector yields the
non-interactive fuzzy vector R̃N , encoded in themembership
function

μR̃N
= min{μr̃θ1

(r1), . . . , μr̃θN
(rN )},

where non-interactivity means that the value of one sample
does not influence themembership function of another value.
Let R = (r1 · · · rN ) ∈ C0[R̃N ] and denote the trigonometric
interpolation by

T (·, R) : [0, 2π ] → R+. (19)
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It represents the mapping from interpolation points onto
the trigonometric polynomials. This mapping is bijective if
the degree of freedom coincides with the number of interpo-
lation points. The coefficients are efficiently computed via a
discrete Fourier transformation and the interpolation scheme
yields convergence rates as follows.

Proposition 5 (Trigonometric interpolation) Let f : (0, 2π)

→ R be a k-times differentiable periodic function that
describes the boundary of a star shaped inclusion in R

2,
then there exists c = c(k, f , f (k)) > 0 such that

‖ f − T (·; [ f (θ1), . . . , f (θN )])‖L2(0,2π) ≤ cN−k .

Given all possible interpolation points R ∈ C0[R̃N ], we
define the set of radial boundary functions describing the
interface as

BN =
{
T (·; R) | R ∈ C0[R̃N ]

}
.

Note thatT (·; R̃N ) defines a fuzzy function [29]. The number
of cuts and thus the number of interpolation points N is setted
according to the accuracy required by the considered prob-
lem. With sufficiently many interpolation points, the set BN

can represent highly oscillatory boundaries. For the sake of
efficiency, the interpolation should be carried out with as few
points as possible, which demands an adequate knowledge
about the properties (in particular smoothness/roughness) of
the physical system at hand. We choose the total variation
of the radial function as a measure for roughness, which is
defined for R ∈ C0[R̃N ] as

TV(R) =
∫ 2π

0

∣∣T ′(θ; R)
∣∣ dθ.

Given some bound 0 ≤ b ≤ ∞, the TV restricted set of
radial boundary function based on N grid points is defined
by

BN ,b :=
{
T (·; R) : [0, 2π ] → R+ | R ∈ C0[R̃N ]

and T V (R) ≤ b} . (20)

With this construction, we may define the interactive fuzzy
set

R̃N ,b :=
{
(R, μR̃N ,b

) | R ∈ C0[R̃N ] and TV(R) ≤ b
}

,

(21)

μR̃N ,b
:= μR̃N

1{R|T V (R)≤b}, (22)

where 1X denotes the characteristic function on a set X .
In Sect. 3.1 we make clear that the fuzzy set in (21) in

fact defines a fuzzy vector. This in turn motivates the α-
cut propagation of fuzzy uncertainty, introduced in Sect. 2.1.
In particular, consider a continuous real valued function Q
defined on C0[R̃N ] which is the 0-cut of the non-interactive
fuzzy vector R̃N from (18). Note that C0[R̃N ] is compact
since the image domain D = [−1, 1]2 is bounded. The prop-
agated uncertainty of the interactive fuzzy set R̃N ,b through
Q is then captured on each α-level

Cα[Q̃b] :=
[

min
R∈Cα[R̃N ,b]

Q(R), max
R∈Cα[R̃N ,b]

Q(R)

]
(23)

of the fuzzy set Q̃b := Q(R̃N ,b). We emphasise that C0[R̃N ]
defines a tensor domain on which Q is well defined, i.e.

C0[R̃N ] =
Ną

i=1

C0[r̃θi ], (24)

a fact that becomes useful when applying low-rank tensor
formats in the upcoming Sect. 4.2 as surrogate models forQ.
However, the computation of Q̃b only requires evaluation of
Q on C0[R̃N ,b] ⊂ C0[R̃N ], which in general is not a tensor
domain.

3.1 Properties of the TV bounded fuzzy set R̃N,b

The total variation determines the shape of the inclusion.
With a very small total variation, the shapes become more
and more circular. Any circular shape, independent of the
radius, has a total variation of zero. We want to point out,
that we do not measure the total variation of the trajectory,
where the total variation of a circle would be larger than zero.
Instead we measure the total variation of the radial function.

In Fig. 5 shapeswith different total variations are depicted.
The blue shape is generated by taking alternating radii, the
white shape is the result of optimization. The maximal total
variation is 5.2 for N = 12, whereas a randomly generated
shape has a total variation of around 2. With increasing N
the maximal total variation would also increase.

Note that the resulting shapes may violate the boundaries
in between the sampling points. Especially, the maximum
total variation solution. This can be resolved with more sam-
pling points, a sufficiently strict TV bound or by replacing
the trigonometrical interpolation with a corresponding spline
interpolation.

Bounding the total variation leads to interaction of the
fuzzy set R̃N ,b. Figure 6 illustrates the interaction for the
case N = 3. It shows that fixing one point constraints the
remaining points to the light gray area. Hence the possibility
outside this area is zero. In a non-interactive setting the pos-
sibility could be strictly larger than zero. Consequently, the
total variation bound restricts the set of possible curves. The
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Fig. 5 Influence of the total
variation with underlying
trigonometric interpolation for
N = 12 and
R ∈ C0[R̃N ] = [0.3, 0.7]N

Fig. 6 Slices of the constrained
support of R̃N ,b in light gray
based on C0[R̃N ] = [0.3, 0.7]N
with N = 3 and b = 1. From
left to right:
C0[R̃N ,b] ∩ [0.3, 0.7]2 × {�}
with � = 0.3, 0.4, 0.5, 0.6, 0.7

Figure indicates that the set of valid radial points is convex,
which is shown in the following proposition.

Proposition 6 (Convexity of TV constrained domain) Let
N ∈ N. Then for b ≥ 0 the 0-cut C0[R̃N ,b] defines a convex
set.

Proof Let R1, R2 ∈ supp R̃N , t ∈ [0, 1] and define Rt =
t R1+(1−t)R2. The radial function to describe the boundary
then takes the form

T (φ, Rt ) =
N−1∑
k=0

ak[Rt ]eikφ

with imaginary number i and coefficients ai [Rt ]. Since
the Fourier interpolation defines a linear operator, it holds
ai [Rt ] = tai [R1]+ (1− t)ai [R2]. Thus, by triangle inequal-
ity it follows that

T V (Rt ) ≤ tT V (R1) + (1 − t)T V (R2) ≤ b.

��
Consequently the α-cuts of R̃N ,b are nested and convex.

Proposition 7 (Characterisation of R̃N ,b) Let b ≥ 0 and R̃N

be a fuzzy (domain) vector with C1[R̃N ] ⊂ C0[R̃N ,b]. Then
R̃N ,b defines a fuzzy (domain) vector.

Note that for given N , there always exists b = b(N ) such
that the conditions of Proposition 7 hold true. In particular,
for b large enough it holds R̃N = R̃N ,b. Consequently, the
α-cut propagation (23) can be applied.

Remark 1 The convexity property from Proposition 6 is
essential to apply Theorem 2. It is a consequence of the lin-
ear interpolation and the triangle inequality property of the
TV based restriction. In the case, one of the latter properties
does not hold, the fuzzy set may not define a fuzzy domain.
Then, the propagation of the fuzzy set still can be realised by
sampling approaches as discussed in the end of Sect. 2.1.

4 Accelerated emulation of fuzzy effective
material

The fuzzy edge detection described above yields a fuzzy vec-
tor R̃N , where N is the number of radial cuts. Trigonometric
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interpolation for each realization R ∈ R̃N then results in a
boundary representation of the inclusion. In the following,
we define a composite material based on this representation.

Consider the square [−1, 1]2 on which we define a
two phase composite material C(x) = C(x, R) with
C incl,Cmatrix ∈ Ela(d, iso). This description represents
a piecewise isotropic material with star-shaped inclusion
defined as

C(x, R) :=
{
C incl, r ≤ T (θ, R),

Cmatrix, else,
x = r [cos(θ), sin(θ)],

(25)

such that 0 < Rmin < T (θ, R) < Rmax < 1 uniform in θ

and R.
Given a fixed R, the homogenisation from Sect. 2.2 yields

the constitutive tensor C(·, R) ∈ Ela(d) for the upscaled
macroscopic material. In Voigt notation, this mapping is
denoted as

R �→ H(R) =
⎡
⎣ H11 H12 H13

H22 H23

sym H33

⎤
⎦ (R) ∈ R

3,3, (26)

with symmetric positive definite matrix H(R) ∈ R
3,3. It in

general describes an anisotropic material since the involved
geometry of the inclusion may lack any type of symmetry.

We would like to point out that the parametric depen-
dency R → C(·, R) does not define a continuous function
with images in L∞(D)d,d,d,d since marginal changes of
the shape of the inclusion immediately yield an L∞ error
equal to the contrast ‖C incl−Cmatrix‖F with Frobenius norm
‖ · ‖F . Despite this discontinuity and its effect on the regu-
larity of the parametric solution R → u(R), the parametric
homogenised tensor (26) defines a continuous map.

Recall that the evaluation of H involves multiple simu-
lations of periodic linear elastic boundary value problems
of the form (11). To accelerate the upscaling process, in the
following we replace the simulator with an emulator. The
emulator relies on a mesh discretisation of the domain D and
a group of tensor train surrogates to approximate H, which
is discussed in Sect. 4.2.

If D is discretised by an automatic mesh generator under
the constrained of equal amount of vertices on the inclusion’s
boundary and on the boundary of D for any R, the resulting
meshmap R �→ M(R) in general is discontinuous.As a con-
sequence, a mesh dependent finite element computation may
inherit the lack of continuity even through the whole geome-
try has smooth dependence on R, see Fig. 7 for an example.
This in turn aggravates optimization based on gradient infor-
mation. We solve this issue in Sect. 4.1 by constructing a
family of transformed meshes with smooth dependence on
R.

4.1 Constructive smooth transformation of meshes

For n ∈ N interpolation points, consider the composite inter-
face discretisation

Tn(R) := {x = T (θi , R)[cos(θi ) sin(θi )]�,

θi = 2π i/n, i = 0, . . . , n − 1}.

We now construct a smooth diffeomorphism that creates
meshes based on a single reference mesh M̂ denoted as
� : Rd × R

N → R
d such that �(M̂, R) = M(R). Let

Rref = [0.5, . . . , 0.5] ∈ R
N and T (·, Rref) define a circular

inclusion with radius 0.5. Consider a fixed reference mesh
discretisationMref of [−1, 1]2 such that

• there is a fixed number of nodes on the boundary
∂[−1, 1]2

• any node in Fn(Rref) is part of the mesh.

Compute the sets F2n(Rref) and F2n(R) corresponding to
higher discrete resolution of the reference or target interface.
The transformation � then consists of two parts as follows.
First, let {φi } form a smooth partition of unity of [0, 2π ]with
φi (iπ/n) = 1 and suppφi = [(i − 1)π/n, (i + 1)π/n]. This
function set deals with the angular part of the transformation.
Second, let χi ∈ Ck[0,√2] be a set of splines with k ≥ 2
for the radial part of the transformation with the following
properties:

1. The reference radius is mapped onto the transformed
radius, i.e.

χi (T (θi , Rref)) = T (θi , R).

2. The spline is strong monotonically increasing on
(Rmin, Rmax) and otherwise equals the identity map.

Altogether, the transformation reads

�(x̂, R) :=
2n∑
i=1

χi (r̂)φi (θ̂), x̂ = r̂ [cos θ̂ , sin θ̂ ]�. (27)

Note that the number of radial cuts N determines the range
of shapes, whereas the number of interpolation points n has
to be sufficient large to trace the shape and to account for
the resolution of the finite element mesh. We refer to Fig. 8
for an illustration of the capacity of the constructed map �,
which is characterised next.

Proposition 8 (Ck diffeomorphism)Themap� : [−1, 1]2 →
[−1, 1]2 is bijective and k-times continuously differentiable.
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Fig. 7 Illustration of discontinuity of the homogenisation map R →
H(R) from (26) for N = 3 corresponding to fixing two radial sam-
ple points to 0.5, while running through the last sample point from 0.3
to 0.7. The red lines are based on computations using automatic mesh
generation with a fixed number of mesh vertices on ∂D and on the cir-
cle interface. The green lines are computed with meshes constructed

with the diffeomorphism � from (27). Left: Trajectory of H23. On the
macroscale, both curves seem to coincide. The discontinuity becomes
visible when zooming in. Right: Finite difference plot of H23. The red
markers demonstrates the extent of discontinuity of H23, while the green
line remains smooth. (Color figure online)

N = 4 N = 16N = 6

Ψ from (27)

Fig. 8 Example of the constructive Ck diffeomorphism� with various
target structures parametrised via R ∈ R

N+ . Although a mesh is gener-
ated inside and outside of the inclusion, the inclusions are illustrated
as holes for better visibility. From left to right: Reference mesh and
random target meshes with N = 4, 6, 16

Proof The bijectivity follows from strong monotonicity in
radial direction and the smooth partition of unity in angular
direction. The smoothness of φi and of the polar coordinate
mapping away from zero is given since χi is k-times contin-
uous differentiable. For i = 1, . . . , 2n the desired property
follows immediately. ��

4.2 Tensor trains based emulation

Assume some function f : C0[R̃] ⊂ R
N → RwithC0[R̃] =

ŚN
i=1 C0[R̃i ]. For f = Hi j , 1 ≤ i ≤ j ≤ 3 we consider

surrogates of the form

f (R) ≈ f�(R) :=
∑
β∈�

U[β]�β(R),

� =
Ną

i=1

�i ⊂ N
N , |�| < ∞, (28)

based on a polynomial feature class � := {�β, β ∈
N

N } where each polynomial Pβ ∈ � is of tensorised
form �β = ⊗N

i=1 q
i
βi

with one dimensional polynomials

{qiβi : C0[R̃i ] → R, βi ∈ �i } for i = 1, . . . , N and unknown
coefficient tensor U : � → R. This model suffers from the
curse of dimensionality since the cardinality |�| grows expo-
nential with respect to the dimension N . A possibility to
circumvent this challenge lies in a compressed representa-
tion of the coefficient tensor, here based on the tensor train
format (TT format) [48]. Let ρ = (ρ1, . . . , ρN−1) ∈ N

N−1

be the tensor train rank and let ρ0 = ρN = 1.We then choose
U given in tensor train decomposition by

U[β] := U1[β1]U2[β2] · · ·Un[βN ], β ∈ �, (29)
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with component tensors of order 3, such that Ui [:] ∈
R

ρi−1,|�i |,ρi for i = 1, . . . , N . The number of degrees of
freedom for this design is given as

∑N
i=1 ρi−1|�i |ρi , which

does not grow exponentially but only linearly in dimension
N . Given data (R(k), y(k))Kk=1, K ∈ N with y(k) = f (R(k)),
we obtain a surrogate as in (28) by carrying out a regularised
empirical regression, namely by solving the optimisation
problem

min
U as in (29)

K∑
k=1

‖ f�(R(k)) − y(k)‖ + λ‖U‖Fro (30)

with regularisation parameter λ > 0 and the Frobenius norm
‖ · ‖Fro. The optimisation problem (30) can be solved by
regression with an alternating linear scheme (ALS) [49]. As
a modification of the basic ALS, we introduce a scheme
for rank adaptivity. This concept offers several advantages
to obtain an adjusted tensor train rank which is in general
unknown a priori. From a practical point of view, it reduces
the computational cost during optimisation while obtaining a
prescribed accuracy in the approximation class. Furthermore,
starting with a small rank, the iterative process empirically
enables the ALS to converge to a solution based on succes-
sive computations of initial guesses for models with higher
ranks based on the given restricted number of samples. The
proposed approach is summarised in Algorithm 1 and the
rank adaptivity is presented in Algorithm 2.

A principle of the rank adaptivity is to keep one (con-
trol) singular value to monitor the importance of the related
rank coupling value during the optimisation process. This
additional singular value per rank coupling remains until the
end of the regression scheme to prevent oscillation between
rank growth and reduction. It ensures an upper bound of the
related rank value throughout the entire process. After suc-
cessful termination of Algorithm 2, the existing (possibly
small) control singular value is removed by a final rounding
[48] of the resulting tensor train. We refer to [49] for more
technical details on the basic ALS, e.g. with regard to setting
andmoving the non-orthogonal component (the core) via left
and rightmatricisation and orthogonalisation. Eventually, the
overall emulator is obtained by evaluation of the 6 scalar val-
ued tensor train surrogate maps, replacing R �→ [H(R)]i j
and 1 ≤ i ≤ j ≤ 3 corresponding to the upper triangular
part of the symmetric matrixH(R).

Note that non-zero values of H13 and H23 solely appear
when the effective material behaviour is not isotropic or
rotational-free orthotropic, i.e., this is described by (13) with
θ = 0.

Algorithm 1Rank adaptive empirical tensor train regression
via ALS

Require:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
R(k), y(k)

)K
k=1 � training data,

�β, β ∈ � � polynomial features,
tolMSE > 0 � desired mean square error (MSE) tolerance,
itermax ∈ N � maximum iteration number,
LHIST ∈ N � history length for rank update,
tolDECAY > 0 � minimum decay rate.

Ensure: Tensor train surrogate f� with rank ρ ∈ N
N−1

Set rank ρ to (1, . . . , 1)
HIST ← [ ] � MSE history
while MSE > tolMSE and #HIST < itermax do

for i in [1, . . . , N , N − 1, . . . , 2] do � forward/backward sweep
Fix Uj in (29) for j �= i .
Then update Ui by solving (30).

end for
Compute MSE and append to HIST.
DECAY ← Average decay rate of last LHIST entries in HIST.
if DECAY < tolDECAY then

Apply Algorithm 2 to obtain f� with modified rank ρ∗.
end if

end while

Algorithm 2 Rank adaptivity

Require:

⎧⎪⎪⎨
⎪⎪⎩
U [β] = U1[β1] · · ·UN [βN ] � tensor train with rank ρ ∈ N

n−1

ρmax ∈ N
n−1 � maximal rank limit

ρadd ∈ N � maximal rank increasement
δ > 0 � Dörfler treshold

Ensure: TT decomposition U∗[β] = U∗
1 [β1] · · ·U∗

N [βN ] with rank ρ∗
Set U1 as core.
Define operators L andR as left and right matricisation of order 3 tensors.
for k = 1, . . . , N − 1 do

Perform SVD: L(Uk) = V diag(σ )W , σ ∈ R
rk .

Define splittings σ 1
ρ∗
k

= [σ1, . . . , σρ∗
k
] and σ 2

ρ∗
k

= [σρ∗
k
, . . . , σρk ].

if there exists ρ∗
k with δ‖σ 1

ρ∗
k
‖1 ≥ ‖σ 2

ρ∗
k
‖1 then � possible rank reduction

Set ρ∗
k = min{ρk , ρ∗

k + 1}. � keep control singular value
Set U∗

k = L−1(V [:, : ρ∗
k ]).

Set Uk+1 = diag(σ [ : ρ∗
k ])W [ : ρ∗

k , :]. � Ck+1 becomes next core
else � possible k-th rank increase

Set ρ∗
k = min{ρk + ρadd, ρmax,k}.

Set d = ρ∗
k − ρk .

Extend V with d random columns orthogonal to V .
Extend σ with d values smaller than σρ∗

k
.

ExtendR(WUk+1) with d random rows orthogonal toR(WUk+1).
Set U∗

k = R−1(V ).
Set Uk+1 = diag(σ ∗)R−1(R(WUk+1)). � Uk+1 becomes next core

end if
end for
Set U∗

N = UN .

5 Numerical experiments

This section is concerned with the assessment of the numeri-
cal performance of the approach presented above, for which
two experiments are examined. In the first experiment, we
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measure the distance of the upscaled material to the isotropy
and orthotropy class. Additionally, we identify configura-
tions that maximise and minimise the respective distances.
In the second experiment, we test if the upscaled material is
suitable for a worst case analysis, i.e., we test if it is possible
to find bounds that envelop themost extreme behaviour of the
quantity of interest under consideration. For this, a material
with 8 × 8 arbitrary inclusions placed on a checkerboard is
compared to an upscaled material with the same geometrical
dimensions. Both experiments demonstrate the efficacy of
the fuzzy approach to model uncertainty of the inclusion to
identify extremal behaviour and its source.

Three types of computational tasks are performed in the
experiments. The foundation is laid by Finite Element (FE)
simulations to generate the realisations of constitutive tensors
by solving (11). Furthermore, an alternating linear scheme
is used to train the surrogate model and for optimization
computations to carry out the uncertainty propagation based
on α-cuts.

All FE computations are done with the FEniCS package
[50]. The mesh generation is realised using Gmsh [51] and
the Bubbles package [52]. Moreover, the python package
TensorTrain [53] is utilised for the rank adaptive tensor
train regression andALEA [54] for the underlying polynomial
features. The optimization tasks are performedwith restarted
trust region optimization implemented in Scipy [55].

The computations are performed with N = 6 and N = 12
radial sampling points. Here, the N = 6 case imposes sig-
nificantly less computational burden on the surrogate and the
optimization than the N = 12 case. In particular, our opti-
mization scheme took up to 106 evaluations of the H(R)

for N = 12 and up to 1 × 105 evaluations for N = 6 per
propagated quantity of interest. We underline that all opti-
mization tasks involved are non-convex with non-linear cost
functions and constraints. Consequently, we take arbitrary
points R ∈ [0.3, 0.7]6 for N = 6 and R ∈ [0.4, 0.6]12—
a smaller domain—for N = 12. This enables sufficiently
non-trivial shapes without rendering the surrogate model and
the optimization infeasible. Each realisation R determines a
boundary stellar inclusion in termsof a trigonometric interpo-
lation. Inside andoutside of the inclusionweassume isotropic
material behaviour. Concretely, we let the Young’s modulus
Eincl = 3230 and Poisson ratio of νincl = 0.3 in the inside.
Outside of the inclusion we choose Ematrix = Eincl/4 and
νmatrix = 0.2. These values are transformed into Lamé con-
stants by

λ = Eν

(1 + ν)(1 − 2ν)
, μ = E

2(1 + ν)
.

By adaptation to the plane, adapted Lamé constants are
obtained, namely

λ∗ = 2λμ

λ + 2μ
, μ∗ = μ.

For a given R ∈ C0[R̃N ] = [0.3, 0.7]N the homogenisa-
tion problem (11) is solved with FE of uniform polynomial
degree p = 2. The reference mesh is based on 80 nodes
on the related reference composite interface T (·; Rref) is
shown in Fig. 8. The computational mesh with composite
interface T (·, R) is then obtained by applying the transfor-
mation �(·, R).

5.1 Surrogate validation

As a preparative step, we build an accelerated emulator in
the tensor train format for N = 6 and N = 12 dimensional
fuzzy input vectors R̃N , yielding a compressed surrogate of
the map R → H(R).

Given K = 15635 (N = 6) and K = 12000 + 4096
(N = 12) samples that are normalised with respect to the
sample mean and variance, we iteratively apply Algorithm 1
and Algorithm 2 with tensorised Chebyshev polynomials up
to degree 5 in each coordinate. More precisely, we train the
initial tensor train surrogate with a degree of two. Next, a new
tensor train for polynomial degree deg + 1 up to deg = 4 is
set to the last tensor approximation as initial guess instead
of starting with a random rank-1 tensor train. All tensor
train component entries associated to the higher polynomial
degree are initially set to zero. This training approach turn
out to have two advantages. First, in the iterative procedure
the training and validation sets are split randomly, resulting
in a pseudo stochastic solver. A strategy that is successful
in the context of machine learning. Second, there is a huge
speed-up in the training procedure for finding a local mini-
mum. In fact, with a naive tensor train training for N = 12
with initial tensor polynomial degree 5, we rarely observed
convergence to meaningful surrogates given random initial
values.

We use tolMSE = 1 × 10−8, itermax = 200, LHIST = 10,
tolDECAY = 1× 10−5, rmax ≤ 5, 7, 9, 20 for deg = 2, . . . , 5
, radd ∈ {1, 2}, and δ = 1 × 10−8. The results of the surro-
gate learning approach are depicted in Tables 1 and 2, which
complement Figs. 10 and 11, showing mean square error
or pointwise relative and absolute errors. The highlighted
entries in both tables show a pointwise lack of accuracy of
the tensor train surrogate for the H13 and H23 components,
which represent the pure rotational or anisotropic contribu-
tion in the overall upscaled tensor H on the used test sets.
A further inspection of the high relative errors showed that
these strictly belong to pointwise approximations of values
close to zero. Nevertheless, strikingly small mean squared
errors can be observed as a result of the proposed optimiza-
tion algorithm. Figures 10 and 11 display the value ranges
of the subcomponents ofH and the overall absolute and rel-

123



628 Computational Mechanics (2023) 71:615–636

Table 1 Surrogate validation for N = 6 on [0.3, 0.7]N based on 15635
data points randomly split into 14,635 training and 1000 test samples

Validation set Training set
MSE Max error Max rel. error MSE

H11 4.6 × 10−9 2.9 × 10−1 2.1 × 10−4 4.5 × 10−9

H22 10.2 × 10−9 6.3 × 10−1 6.0 × 10−4 9.4 × 10−9

H33 9.3 × 10−9 1.3 × 10−1 3.2 × 10−4 8.6 × 10−9

H12 9.1 × 10−9 7.6 × 10−2 3.1 × 10−4 8.6 × 10−9

H13 88.8 × 10−9 1.1 × 10−2 1.4 × 10+3 43.7 × 10−9

H23 97.9 × 10−9 9.7 × 10−3 1.2 × 10+3 45.5 × 10−9

The bold values of maximum relative errors of H13 and H23 are the
result of the surrogate model approximating a value 1 × 10−7 with
1× 10−4. These effects do not spoil the accuracy of the total surrogate
H in subsequent experiments

Table 2 Surrogate validation for N = 12 on [0.4, 0.6]N trained on
normalised data

Validation set Training set
MSE Max error Max rel. error MSE

H11 1.1 × 10−7 3.5 × 100 3.1 × 10−3 5.9 × 10−8

H22 1.0 × 10−7 3.8 × 100 3.3 × 10−3 7.4 × 10−8

H33 6.8 × 10−7 5.1 × 100 1.2 × 10−2 5.2 × 10−7

H12 5.1 × 10−7 1.8 × 100 8.0 × 10−3 3.0 × 10−7

H13 6.9 × 10−5 0.8 × 100 1.4 × 10+4 4.4 × 10−5

H23 1.0 × 10−4 0.6 × 100 3.5 × 10+3 7.5 × 10−5

The mean squared error (MSE) is computed w.r.t. to the normalised
value range of the data. The maximum pointwise relative and absolute
errors are measured w.r.t to the surrogate values, which are shifted and
scaled back to the original range. The bold values of maximum relative
errors of H13 and H23 are the result of the surrogate model approximat-
ing a value 1 × 10−7 with 1 × 10−4

ative errors of the subcomponents and the full tensorH. We
observe that the reduced (pointwise) accuracy of the surro-
gates for H13 and H23 does not influence the overall error
for the full parametric tensor H. The final obtained ranks
obtained with the rank adaptive algorithm are depicted in
Fig. 9 for N = 6 and N = 12.

5.2 Distances to the isotropy and orthotropy
material class

In this section we apply the tensor train emulator to obtain
an approximation of the parametric constitutive tensorH(R)

of the effective material defined in (26), given an parametri-
sation of the inclusion through the vector R ∈ C0[R̃N ,b].
For each constitutive tensor we compute the distance to the
isotropy class, denoted by diso, and orthotropy class, denoted
by dortho, according to (14). The fuzzy uncertainty of the
boundary is propagated in terms of α-cuts. On each α-level,
two optimization problems with constraints defined in (23)
have to be solved, where Q is either diso or dortho. As opti-

miser we use a restarted trust region scheme to minimise the
non-convex and non-linear target function with non-linear
constraints.

Figure 12 shows the experimental results for Q = diso
with N = 6, zero α-cut C0[R̃N ] = [0.3, 0.7]N and the
total variation bounds b = 0.5, 1,∞. We point out that
since D = [−1, 1]2 is not of special hexagonal shape
but of square shape, a circular inclusion does not yield
isotropic effective material properties. Nevertheless, the
circular shape—while exhibiting vanishing total variation—
provides effective properties closest to the isotropy class.
Since in our experiments we choose a stiffer material as
inclusion, the circular inclusion minimises its size propor-
tional to the possible maximal radius encoded in the α-level.
In this sense, the size of a circle is a measure of perturbation
of the isotropic matrix material. Moreover, if the total vari-
ation and radii bounds allow it, the inclusion converges to a
peanut shape. The green peanut shaped inclusion in Fig. 12
marks the inclusion with maximum distance to the isotropic
material class for the given parameterisation family BN ,∞
from (20). Note that by rotational invariance also the peanut
rotation of π/2 yields the same maximising shape.

Figure 14 pictures the result for Q = diso with N = 12,
zero α-cut C0[R̃N ] = [0.4, 0.6]N and total variation bounds
b = 0.5, 1,∞. The shrinked domain has an immediate
impact on the maximal possible total variation bound of all
interface realisations. Consequently, maximum distances are
caused by curves with similar shape up to rotation. Already
for a total variation of 0.5, a symmetric shape emerges that
becomes more prominent with increasing total variation.

Figure 13 depicts the experimental results for Q = dortho
with N = 6, zero α-cut C0[R̃N ] = [0.3, 0.7]N and total
variation bounds b = 0.5, 1,∞. A minimum of 0 is attained
on each α cut of the corresponding membership function,
since the orthotropy class Ela(2, ortho) contains the square
symmetric class. Many boundaries in BN ,b lead to a shape
that yields a square symmetric effective material.

As typical maximiser of the distance to the orthotropy
class, a bean shape is found. We observe that the maximal
possible total variation value of BN ,b is not exhausted when
attaining the maximal distance. Note that due to rotational
invariance, the bean shape can be rotated by multiples of
π/2 while still being a (in fact the same) maximiser.

Figure 15 shows the experimental results for Q = dortho
with N = 12, zero α-cut C0[R̃N ] = [0.4, 0.6]N and
total variation bounds b = 0.5, 1,∞. Again the shrinked
domain has an immediate impact on the maximal possible
total variation bound of all interface realisations. Conse-
quently, maximum distances are attained by curves with
similar shapes up to rotation. We observe that symmetric
dented shape maximises the distance to the orthotropy class
for the α = 1 cut or a total variation smaller or equal to
0.5. However, as the total variation bound gets larger and we
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Fig. 9 Final ranks of rank
adaptive reconstruction of the
tensor train surrogate for N = 6
(top) and N = 12 (bottom). In
the algorithm, the maximum
rank is limited to 20. The tensor
train surrogate consists of
Chebychev polynomials of
degree 5 in each direction

Fig. 10 Validation of TT surrogate for N = 6 trained on [0.3, 0.7]6. Left: value ranges of the subcomponents of H, Center: pointwise absolute
error on validation set, Right: pointwise relative error on validation set

allow for larger fluctuations due to a wider parameter range
the inclusion converges to a non-axis aligned structure with
non-symmetric dented shape.

5.3 Best/worst case estimates for non-homogenised
matrix composites

Let the domain D = [−Ns, Ns] × [−Ns, Ns] with Ns =
8 and consider a checkerboard partitioning {Di j , i, j =
1, . . . , Ns} of D with square subdomains Di j defined by

Di j := [−Ns + (i − 1),−Ns + i]
×[−Ns + ( j − 1),−Ns + j] for i, j = 1, . . . , Ns .

On each subdomain Di j we consider a single two phase
composite as defined by (25) using a local polar coordinate
system w.r.t. the midpoint of Di j , encoded in a material ten-
sor C inhomo with piecewise values C incl and Cmatrix specified
in Sect. 5.1.
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Fig. 11 Validation of TT surrogate for N = 12 trained on [0.4, 0.6]12. Left: value ranges of the subcomponents of H, Center: pointwise absolute
error on validation set, Right: pointwise relative error on validation set

Fig. 12 Fuzzy propagation: distance to isotropic material class rep-
resented by Ela(2, iso) based on different bounds b = 0.5, 1,∞ for
the total variation with N = 6. Left: membership function of Q̃b for
Q = diso with square markers bounding the α-cuts with α = 0., 0.5, 1.

Right: underlying coloured shapes of the inclusions associated with the
extremal points displayed as square markers with same colour along the
membership function. (Color figure online)
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Fig. 13 Fuzzy propagation: distance to the orthotropic material class
represented by Ela(2, ortho) based on different bounds b = 0.5, 1,∞
for the total variation with N = 6. Left: membership function of Q̃b for
Q = dortho with square markers bounding the α-cuts for α = 0., 0.5, 1.

Right: underlying coloured shapes of the inclusions associated with the
extremal points displayed as square markers with same colour along the
membership function. (Color figure online)

For this experiment we choose the non-interactive fuzzy
set R̃N ,∞ with N = 6 trapezoidal fuzzy components charac-
terised by

C0[R̃N ,∞] = [0.32, 0.63] × [0.35, 0.66] × [0.36, 0.70]
× [0.32, 0.62] × [0.38, 0.67] × [0.31, 0.66]

C1[R̃N ,∞] = [0.48, 0.55] × [0.47, 0.56] × [0.49, 0.55]
× [0.47, 0.56] × [0.45, 0.59] × [0.48, 0.50].

In between these prescribed points, the α-levels are obtained
by linear interpolation.TheTVbound is ignored in this exper-
iment.

Furthermore, we consider a homogenised material ten-
sor Chomo = H(R) for R ∈ C0[R̃N ,b] obtained from
the homogenisation process of Sects. 2.2 and 5.1. In each
domain, we model individual star shaped material inclusions
as in (25) with boundaries of uniformly bounded total varia-
tion smaller or equal to b.

Given amaterial lawC ∈ {C inhomo,Chomo}, we then solve
the linear elasticity problem

0 = − div σ equilibrium eq.
⎫⎬
⎭ε = [∇u + ∇Tu

]
/2 strain-displ. eq. in D,

σ = C : ε constitutive eq.
u = 0 Dirichlet b.c. on �0,

σ · n = g Neumann b.c. on �σ ,

(31)

representing a linear elastic tensile test. Here, �0 = {−Ns}×
[−Ns, Ns] and

g(x) =
{
0, x ∈ [−Ns, Ns] × {−Ns, Ns},
100e1, x ∈ {Ns} × [−Ns, Ns]. (32)

Weare interested in the fuzzypropagationof thehomogenised
material through the average displacementQ = u defined by

u := 1

vol(D)

∫
D

‖u(x)‖2 dx,

with the solution u of (31). Figure 16 shows the result-
ing membership function based on the fuzzy homogenised
material law. The black dots mark resulting average dis-
placements obtained for various non-periodic inclusions.
Moreover, some configurations of possible realisations of
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Fig. 14 Fuzzy propagation: distance to the isotropic material class rep-
resented by Ela(2, iso) based on different bounds b = 0.5, 1,∞ for
the total variation with N = 12. Left: membership function of Q̃b for
Q = diso with square markers bounding the α-cuts for α = 0., 0.5, 1.

Right: underlying coloured shapes of the inclusions associated with the
extremal points displayed as square markers with same colour along the
membership function. (Color figure online)

the 8 × 8 inclusions are displayed. The corresponding aver-
age displacement is marked with colours, accordingly. Given
any non-periodic configuration of prescribedmatrix compos-
ites, we observe that themembership function at each α-level
bounds the various average displacements. In particular, for
α = 0., 0.5, 1 we illustrated a corresponding single com-
posite shape that (assumed in a periodic structure) results
in the minimum and maximum average displacements. As
the interior composite is slightly stiffer than the surround-
ing matrix material, it is to be expected that the shapes of
the minimiser and maximiser attempt to exhaust or avoid
the maximum capacity of the parameter range encoded in
Cα[R̃N ,∞]. It is noteworthy that the homogenised material is
able to serve as worst/best case estimator for this particular
quantity of interest (i.e. the average displacement). As long
as the repetition of the same cell leads to extremal values
of the quantity of interest, the fuzzy homogenised material
functions as a worst/best case estimator.

6 Conclusion

We considered the possibilistic shape uncertainty of one
inclusion induced by a blurred image. In this setting, com-

putational stochastic homogenisation was carried out to
propagate the uncertainty through the linear elasticity model,
resulting in a fuzzy effective material. Eventually, the effec-
tive material was examined with respect to its distance to the
orthotropic/isotropic material class. Moreover, it was used as
a worst/best case estimator with respect to the global average
displacement for a non-homogenised material.

To achieve this result, two major obstacles had to be over-
come. The first was caused by the discontinuous mapping
from boundary to effective material, which was a conse-
quence of the automatic re-meshing for each new boundary
instance. This was successfully resolved with an arbitrarily
smooth transformation of a single reference mesh onto the
respective mesh for a domain with a star-shaped inclusion.
The second challenge was given by the computational effort
needed to perform the (possibilistic) uncertainty propaga-
tion. Depending on the optimiser and the quantity of interest
at hand, each α-cut required up to 5 × 104 computational
homogenisation simulations. This problem was successfully
resolved with a highly accurate tensor train emulator.

We provide an (numerical) analysis for a problem where
only little knowledge is given and only simple assumptions
can be made. This may be distinguished from other works,
where more prior knowledge is given and more elaborated
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Fig. 15 Fuzzy propagation: distance to the orthotropic material class
represented by Ela(2, ortho) based on different bounds b = 0.5, 1,∞
for the total variationwith N = 12. Left:membership function of Q̃b for
Q = dortho with square markers bounding the α-cuts for α = 0., 0.5, 1.

Right: underlying coloured shapes of the inclusions associated with the
extremal points displayed as square markers with same colour along the
membership function. (Color figure online)

Fig. 16 Fuzzy propagation: average displacement based on fuzzy
homogenised material with N = 6. Left: resulting membership func-
tion with composite shapes causing the α-cut ranges in a periodic

constellations in C inhomo. Right: various periodic (red and green) and
non-periodic (blue and magenta) composite constellations yielding
average displacements within the area of black dots
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assumptions are suitable. In the latter scenario, one usually
can utilise the Bayesian framework to model the uncertainty,
see [56,57], where in our scenario stochastic modelling may
lead to a false confidence [23]. While usually the uncertainty
of material properties is modelled with precise probabilities,
leading to statements about expectation values and probabili-
ties of failure, cf. [58,59],wemodel geometrical uncertainties
with imprecise probability, leading to statements about pos-
sible intervals and worst/best case configurations. Even if an
imprecise probability approach for geometrical uncertainty
is chosen, the geometrical shape is often restricted to simple
parametrisations like a circle of varyingdiameter [60]. This in
fact is a very useful simplification, for instance if the observed
quantities only depend on the volume ratio of the twomateri-
als. Nonetheless, our experiments demonstrate that the shape
determines if the effectivematerial is isotropic, orthotropic or
anisotropic. A circle always results in an orthotropic effective
material in the considered casewith unit square cells. Further-
more, our tensor train surrogate shows a remarkable accuracy
of a relative error of orderO(10−4). This is partly the result of
a suitable choice of features, the novel rank-adaptive training
strategy and the continuity induced by using a mesh transfor-
mation instead of automatic re-meshing. Compared to other
works such as [61,62], where standard generic methods like
artificial neural networks and polynomial chaos are used in
a similar context, we gain several orders of accuracy.

To focus on the influence of the shape uncertainty, other
parts in our setting and analysiswere kept simple. These parts
are ideal starting points for future research. The homogeni-
sation, for example, was performed with two phases of
linear elastic materials. This can easily be substituted with
more sophisticated materials—one may think of anisotropy,
damage and higher contrast—or different homogenisation
settings. The assumption of a star-shaped inclusion can be
discarded with an adjusted edge detection and a different
parametrisation of the boundary. Furthermore, the rough-
ness measurement via total variation can be exchanged or
extended with other restrictions of the boundary curves. In
addition, it is possible to model the material constants appro-
priately with precise probabilities. By doing so, we add a
stochastic dimension which together with the possibilistic
uncertainty results in a fuzzy-stochastic model.

Althoughwe only investigated 2Dmaterials, our approach
can be extended to 3D. The numerical upscaling and the sur-
rogate model are applicable in higher dimensions. For the
fuzzy edge detection the radial cuts should be replaced by
cuts through the sphere. Under the assumption of star-shaped
inclusions in 3D, the inclusion surface can be described in
spherical coordinateswith suitable interpolation for the radial
component, which in turn can be constrained by a corre-
sponding 2DTVmeasure.Moreover, in the 3D case there are
more material classes. Depending on the symmetry class, the
associated distances are—to our knowledge—not yet ana-

lytically given and thus have to be computed numerically
[39,63]. Thus, the theoretical adaption is feasible, but we
expect the computational challenges of the 3D case to be
significantly larger.

Another interesting research direction for our framework
aremore involvedmaterialmodels like hyperelasticmaterials
ormaterialswith damagemodeling. In this case the numerical
upscaling leads to an non-linear effective material law. In
order to represent this non-linearity in our framework the
surrogate model design needs to be adapted, e.g. mapping to
interpolants of effective potentials based on [64].

Finally, we hope that our presented contributions, namely
the treatment of discontinuity from re-meshing, the fuzzy
edge detection, and the highly accurate tensor train surrogate,
can be used and extended beneficially in other research to
simulate composite materials in the presence of shape uncer-
tainty.
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