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Abstract. The largest uncertainty in the estimation of cli-
mate forcing stems from atmospheric aerosols. In early
spring and summer of 2009, two periods of in-situ measure-
ments on aerosol physical and chemical properties were con-
ducted within the HaChi (Haze in China) project at Wuqing,
a town between Beijing and Tianjin in the North China
Plain (NCP). Aerosol optical properties, including the scat-
tering coefficient (σsp), the hemispheric back scattering co-
efficient (σbsp), the absorption coefficient (σap), as well as
the single scattering albedo (ω), are presented. The diur-
nal and seasonal variations are analyzed together with me-
teorology and satellite data. The mean values ofσsp, 550nm
of the dry aerosol in spring and summer are 280±253 and
379±251 Mm−1, respectively. The averageσap for the two
periods is respectively 47±38 and 43±27 Mm−1. The mean
values ofω at the wavelength of 637 nm are 0.82±0.05 and
0.86±0.05 for spring and summer, respectively. The relative
high levels ofσsp andσbsp are representative of the regional
aerosol pollution in the NCP. Pronounced diurnal cycle of
σsp, σap andω are found, mainly influenced by the evolution
of boundary layer and the accumulation of local emissions
during nighttime. The pollutants transported from the south-
west of the NCP are more significant than that from the two
megacities, Beijing and Tianjin, in both spring and summer.
An optical closure experiment is conducted to better under-
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stand the uncertainties of the measurements. Good correla-
tions (R>0.98) are found between the values measured by
the nephelometer and the values calculated with a modified
Mie model. The Monte Carlo simulation shows an uncer-
tainty of about 30 % for the calculations. Considering all
possible uncertainties of measurements, calculatedσsp and
σbsp agree well with the measured values, indicating a stable
performance of instruments and thus reliable aerosol optical
data.

1 Introduction

Atmospheric aerosols influence the earth’s radiation budget
directly by scattering and absorbing solar radiation (Charlson
et al., 1992), and indirectly by acting as condensation nuclei
in cloud formation, thus affecting the optical properties and
lifetimes of clouds (Twomey, 1974; Albrecht, 1989; Rosen-
feld, 1999, 2000). The radiative forcing of these two effects
is estimated at−0.5 W m−2 and−0.7 W m−2, respectively,
with the largest uncertainty of +0.8/−1.5 W m−2 among all
climate forcing factors (IPCC, 2007). One of the reasons for
such great uncertainty is that aerosols have highly inhomoge-
neous horizontal and vertical distributions (van Donkelaar et
al., 2010; Liu et al., 2009) as well as temporal variations, dif-
ferent from well mixed greenhouse gases, such as CO2 and
methane. To better understand the direct effect of aerosols,
further knowledge of aerosol optical properties is of critical
importance. The aerosol optical properties, e.g., scattering
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Fig. 1. The map of the NCP. The site is marked as a star. The shaded contour represents the distribution of the MODIS AOD. The dark red
dashed denotes the 500 m contour line, which also can be considered as the boundary of the NCP.

coefficient (σsp), absorption coefficient (σap), aerosol optical
depth (AOD) and single scattering albedo (ω), are closely
related to the aerosol physical and chemical characteristics,
which are influenced by many processes, such as aerosol for-
mation, growth and removal. To estimate the aerosol optical
properties and radiative impacts with the measured physical
and chemical characteristics, the Mie model and radiative
transfer models are widely employed. However, due to the
uncertainties in measurements and models, the calculations
are needed to be evaluated (Quinn et al., 1998; Bond et al.,
1998; Sheridan et al., 2001). Therefore, more investigations
on aerosol optical properties and optical closure studies are
urgently needed especially in regions such as Asia, Africa,
and South-America.

Closure studies are usually used for estimating the uncer-
tainties of measurement techniques and numerical models.
Quinn et al. (1996) reviewed some of the closure studies in
the research of aerosols. A typical closure study requires an
over-determined set of observations. Then a comparison be-
tween a measured value of an important system property and
a value calculated with an appropriate model based on inde-
pendent measurements can be made. Closure is achieved if
there is an agreement between these two values within the
accepted level of uncertainty (Quinn et al., 1998). Closure
studies can be used as an examination of the measurements
and models. It also provides a platform for sensitivity studies
as well as an approach to evaluate and reduce the uncertain-
ties of both measurements and models. Some optical closure
studies were already done in the past decades (e.g. Wex et
al., 2002; Cheng et al., 2007; Cheng et al., 2009; Pesava et
al., 2001)

Along with the rapid growth of population and economy in
China, emissions of anthropogenic pollutants increased dra-

matically in the past several decades. Urbanization and in-
dustrial activities produce large amounts of aerosols, espe-
cially in the North China Plain (NCP). Aerosol optical prop-
erties in China are highly complex and differ from those in
Europe or North America (Ḧoller et al., 2003). Moreover,
the widespread consumptions of coal and biomass fuels make
China a significant source region of black carbon (BC). It was
reported that the BC amount emitted in China was around
one fourth of the global anthropogenic BC emissions (Cooke
et al., 1999; Street et al., 2001; Bond et al., 2004). In the past
decade, there were some studies focusing on aerosol optical
properties (Yan et al., 2008; Xu et al., 2002, 2004; Cheng,
2008a, 2009), but only a few studies touched the uncertainty
evaluation of measured aerosol properties and related models
(Cheng et al., 2007).

In this paper, the results of aerosol optical property obser-
vations during a two-period in-situ measurement campaign at
a site in the north of NCP are presented. The characteristics
of aerosol optical properties are analyzed. An aerosol optical
closure study between measured and calculated aerosol scat-
tering coefficients and the related uncertainty evaluation are
shown.

2 Measurements

2.1 The field site

The data used in this study was collected during the HaChi
(Haze in China) campaigns. Measurements of aerosol opti-
cal, chemical, hygroscopic properties and size distribution,
as well as trace gas observations, were conducted in Wuqing
in the north NCP in two periods of 2009: the spring cam-
paign was from 6 March to 5 April (65–95 DOY); while the
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summer campaign was from 12 July to 14 August (193–
226 DOY).

The map of the NCP is shown in Fig. 1. The popula-
tion is dense and the land use is mainly agricultural in the
NCP. Several large cities with rapidly developing economy
and industry are located in the NCP. Wuqing (marked as a
star in Fig. 1) is a town with about 0.8 million inhabitants,
located between two megacities: Beijing (16 million inhab-
itants, 80 km away from Wuqing) and Tianjin (10 million
inhabitants, 30 km away from Wuqing), in the north of the
NCP. The site is located in the suburban area of Wuqing and
thus representative of the regional anthropogenic aerosol pol-
lution.

An automatic weather station (AWS) is located next to
the aerosol measurement containers. During the whole cam-
paigns, meteorological parameters, such as wind speed, wind
direction, relative humidity (RH) and temperature (T ) were
measured continuously and reported as 1-min data. The
weather conditions were either clear or cloudy during the
spring campaign, and no precipitation event occurred; while
there were 10 rain events in the summer campaign. In both
of the two periods, the wind direction was dominated of
southwest, with average wind speeds of 3.2±2.2 m/s and
1.8±1.2 m/s, respectively.T and RH show an evident di-
urnal cycles (Fig. 2). AverageT and RH are 7.8±5.6◦C
and 42.2±20.7 % in spring, 26.3±3.4◦C and 75.4±15.3 %
in summer, respectively.

Most of the ground-based measurements were conducted
in a measurement container, in which the temperature was
maintained at 22◦C. The sample air was collected with a
PM10 inlet (16.67 L/min) installed on the top of a stainless
steel tube with a diameter of 3/4 inch and 7 m above the
ground level. The sample air was split into several flows
inside the container, passing through stainless steel tubing,
to different instruments. The residence time for the sample
air in the inlet line was about 5 s. An automatic aerosol dif-
fusion dryer (Tuch et al., 2009) was set upstream all of the
instruments, to keep the RH of the sample air below 30 %.

2.2 Nephelometer measurements

The σsp and σbsp for dry aerosols were measured by a to-
tal/back integrating nephelometer at wavelengths of 450, 550
and 700 nm (TSI, Inc., Shoreview, MN USA, Model 3563;
Heintzenberg and Charlson, 1996; Anderson et al., 1996,
1998). The temporal resolution of the measurement was
1 min. However, in this study, 10-min averaged data was
used. The nephelometer was calibrated before each of the
two campaigns using CO2 (Anderson et al., 1996). Particle
free air checks were performed once a day. The truncation
and non-Lambertian error was corrected using a modified
Mie model, which applied in the closure study. The correc-
tion factor is defined as:

C =
σsp/bsp,Mie

σsp/bsp,Modified−Mie
(1)
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Fig. 2. Autocorrelation analysis of the meteorological parameters
and the aerosol optical properties.

Where σsp/bsp,Mie is the ideal scattering or hemispheric
backscattering coefficient of dry aerosols calculated with the
Mie theory, whileσsp/bsp,Modified−Mie is calculated with the
Modified Mie model simulating the nephelometer. The cal-
culations are based on measured particle number size distri-
butions (PNSDs) and the black carbon (BC) concentrations.
The details will be described in Sect. 3.

2.3 MAAP measurements

A Multi-angle Absorption Photometer (MAAP Model 5012,
Thermo, Inc., Waltham, MA USA) was employed to deter-
mine theσap for dry particles. The instrument determinesσap
via the simultaneous measurement of light (637 nm) passing
through its filter and scattered back from particles accumu-
lated on it. It operates at two detection angles to resolve the
influence of light-scattering aerosol components on the angu-
lar distribution of the back-scattered radiation (Petzold and
Scḧonlinner, 2004). The MAAP provides the BC mass con-
centrations in unit of µg/m3. According to the manual,σap
at 637 nm can be calculated withσap= mBC·6.6 m2/g, where
mBC is the mass concentration of BC. The mass absorption
efficiency of 6.6 m2/g has been validated by the comparison
between the impactor-derived elemental carbon mass con-
centration and the MAAP measurements. The sampling fre-
quency was 1 min, and 10-min averaged data was used.
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2.4 TDMPS/APS measurements

A Twin Differential Mobility Particle Sizer (TDMPS, IfT,
Leipzig, Germany; Birmili et al., 1999) was used to measure
PNSDs with electrical mobility diameter from 3 to 800 nm.
An Aerodynamic Particle Sizer (APS Model 3320, TSI, Inc.,
Shoreview, MN USA) was employed to measure PNSDs
with aerodynamic diameter from 0.5 to 10 µm. Both of them
were operated under dry conditions. It took 10 min for a
complete scan for both TDMPS and APS. A series of pro-
cessing was applied to the TDMPS data. Following the pro-
cedure described by Wiedensohler et al. (1997), the count-
ing efficiencies of CPC (TSI 3010) and UCPC (TSI 3025)
were measured beforehand. Inversion of the raw data was
done according to an algorithm introduced by Stratmann and
Wiedensohler (1996). Electrical mobility diameters mea-
sured by TDMPS and aerodynamic diameters measured by
APS were converted to volume equivalent diameter (DeCarlo
et al., 2004), using a density of 1.7 g cm−3 for the particles
larger than 800 nm as a mean density for the coarse mode
(Wehner et al., 2008). Then the PNSDs measured by TDMPS
and APS were combined to yield aerosol size distributions
with diameter range from 3 nm to 10 µm. Furthermore, the
PNSD data was corrected for diffusion losses, gravitational
losses and impaction losses in the sampling tubing. The elec-
trostatic losses were ignored, since conductive tubing was
used in all portions of the inlet system.

3 Method of optical closure for dry aerosols

An optical closure for dry aerosols is carried out to better
understand the dependence of aerosol optical properties on
their physical and chemical characterizations, and to evaluate
the quality of the measurements.

A two-component optical aerosol model (Wex et al., 2002;
Cheng et al., 2006) was used for dry aerosol optical clo-
sure. In this model, aerosol species are divided into light-
absorbing BC and non-light-absorbing components such as
sulfate, nitrate, ammonium, OC and other undetermined
ones, sinceσsp is not sensitive to the mass fraction of these
non-light-absorbing components (Wex, 2002).

To obtain the size-resolved volume fraction of BC, the av-
erage BC mass size distribution observed during the Cam-
paigns of Air Quality Research in Beijing and Surrounding
Region 2006 (CAREBeijing-2006; Cheng et al., 2009) was
used in this study. In Cheng’s work, size-resolved BC mix-
ing states were measured by a Volatility Tandem Differential
Mobility Analyzer (VTDMA) at the regional site Yufa in the
south of Beijing during the summer of 2006. Both of Yufa
and Wuqing are located in the megacity cluster of Beijing and
Tianjin. The two sites, about 60 km away from each other,
have similar surroundings and pollution levels. Both of them
are located in suburban areas and are influenced mainly by
the regional pollution transported from the southern industri-

alized regions. Thus, the BC mass size distribution normal-
ized by the total mass concentration in Wuqing is assumed
to be the same as the average one in Yufa, which follows a
quasi-log-normal distribution with a geometric mean diame-
ter of 114 nm and a standard deviation of 2.12. The BC mass
concentration at a given particle size and time can be calcu-
lated with the following equation:

m
(
logDp,t

)
Wuqing,BC = (2)

m
(
logDp

)
Yufa,ext−BC,ave+m

(
logDp

)
Yufa,int−BC,ave∑

logDp

(
m

(
logDp

)
Yufa,ext−BC,ave+m

(
logDp

)
Yufa,int−BC,ave

) ·

m(t)Wuqing,MAAP

Where,m
(
logDp

)
Yufa,ext−BC,averepresents the average mass

concentration of externally mixed BC in size binDp mea-
sured at Yufa, whilem

(
logDp

)
Yufa,int−BC,ave is the aver-

age mass concentration of internally mixed BC atDp.
m(t)Wuqing,MAAP is the total mass concentration of BC mea-
sured by MAAP at Wuqing.

In other words, only the normalized BC mass size distri-
bution measured at Yufa was used here. The BC total mass
concentrations were kept the same as the values derived from
the MAAP measurements at Wuqing. The BC volume frac-
tion at each size is calculated as:

f
(
logDp

)
BC,V =

m
(
logDp,t

)
Wuqing,BC

ρBC ·V
(
logDp,t

)
Wuqing,total

(3)

Where,V
(
logDp,t

)
Wuqing,total is the volume concentration

of sampled aerosols in size binDp derived from TDMPS
and APS, andρBC is the density of BC.

In literature (Sloane et al., 1983, 1984; Sloane and Wolff,
1985; Sloane et al., 1991; Ouimette and Flagan, 1982; Se-
infeld and Pandis, 1998), the density of BC is reported as a
range from 1.00 g/cm3 to 2.00 g/cm3. Accordingly, an aver-
age value of 1.5 g/cm3 is used, and the uncertainty (3σ ) is
assigned to be 33 % covering the possible range.

Lacking measurements of BC mixing state, a completely
external mixture and internal mixture of BC are assumed for
the two-component optical aerosol model. Because atmo-
spheric aerosols are probably partial combination of inter-
nally and externally mixed particles (Wex, 2002; Chandra et
al., 2004), theσsp(σbsp) measured by nephelometer should be
within the range determined by the calculated values based
on the assumption of external mixture and internal mixture
of BC.

For the case of completely external mixture, the PNSDs
of BC and non-absorbing component are obtained by
multiplying the aerosol PNSDs withf (logDp)BC,V and
1−f (logDp)BC,V , respectively. The refractive index used
for BC component is̃mBC = 1.96−0.66i (Seinfeld and Pan-
dis, 1998), and for non-absorbing component it is set to
m̃non= 1.53−10−7i (Wex et al., 2002).
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For a completely internally mixed aerosol, the BC
is considered to be homogeneously mixed with non-
absorbing component with the size dependent volume frac-
tion f

(
logDp

)
BC,V . The refractive index is derived as a

volume-weighted average between the two components:

m̃
(
logDp

)
= f

(
logDp

)
BC,V m̃BC+

(
1−f

(
logDp

)
BC,V

)
m̃non (4)

The refractive indices̃m are size dependent, due to the size
dependence off (logDp)BC,V .

Based on the Mie theory (Mie, 1908), the scattering effi-
ciencyQsp and hemispheric back scattering efficiencyQbsp
can be calculated by integrating the scattering intensity func-
tion |S(θ,x,m̃)| from 0◦ to 180◦ and from 90◦ to 180◦, re-
spectively:

Qsp,bsp=
1

x2

∫
θ

|S(θ,x,m̃)|2sinθdθ (5)

where,x = πDp/λ. Dp is the volume equivalent diameter of
particles.λ is the wavelength of light, andθ is the scattering
angle.

Different from the scattering angle ranges used in the orig-
inal Mie model, the scattering integration angle of TSI 3563
integrating nephelometer ranges from 7◦ to 170◦ for scat-
tering and from 90◦ to 170◦ for hemispheric back scatter-
ing, respectively. Thus, the measured values are truncated
in the near-forward and near-backward angular ranges. Fur-
thermore, the light source of the nephelometer is not strictly
Lambertian and shows a non-ideal angular response (Ander-
son et al., 1996). These two factors account for the main sys-
tematic errors of the nephelometer measurements and these
two effects must be corrected.

The angular response is solved in the Mie calculations
based on the Bohren-Huffman Mie model (BHMIE) (Bohren
and Huffman, 1983). The sinθ term in Eq. (5) is replaced by
the angular sensitivity curvesf (θ)sp and f (θ)bsp, derived
from a calibration experiment of the TSI 3563 nephelometer
(Anderson et al., 1996). Theσsp andσbsp are calculated as:

σsp,bsp=

∫
Dp

 1

x2

∫
θ

|S(θ,x,m̃)|2f (θ)sp,bspdθ

· (6)

(π

4
D2

p

)
·N

(
logDp

)
·d logDp

Where,N
(
logDp

)
is the PNSD.

The modified Mie model introduced above, which simu-
lates the measurements of TSI 3563 nephelometer, is applied
in the correction of nephelometer measurements and the op-
tical closure for dry particles. Comparisons between the cal-
culatedσsp (σbsp) and the values measured by nephelometer
are shown in Sect. 4.2.

4 Results and discussion

4.1 Measurements of aerosol optical properties

4.1.1 Overview

Table 1 summarizes the statistics on measured aerosol optical
properties during the two campaigns. For 550 nm, the mean
σsp for the spring campaign and the summer campaign are
280±253 and 379±251 Mm−1, respectively. The meanσap
of the two campaigns are 47±38 and 43±27 Mm−1, respec-
tively.

Theσsp in Wuqing is lower than the mean value of Beijing
(488±370 Mm−1) in June, 1999, while theσap is half of that
in Beijing (83±40 Mm−1) (Bergin et al., 2001). During Jan-
uary 2005, theσsp andσap in Beijing had been found to be at
an even higher level of 777±689 and 89±74 Mm−1, respec-
tively (J. Heintzenberg, personal communication, 2008).

Compared with the regional sites around Beijing, theσsp
and σap in Wuqing are about twice as much as the mean
values measured in Shangdianzi regional background station
(SDZ) (175±189 and 18±13 Mm−1) during 2003 to 2005
(Yan et al., 2008). Garland et al. (2009) reported a meanσsp
of 361±295 Mm−1 and a meanσap of 52±37 Mm−1 mea-
sured in Yufa in summer of 2006. They are very similar to
the values observed in Wuqing.

Compared with other regional sites in China, theσsp in
Wuqing is similar to that in Lin’an (353±202 Mm−1) in
November 1999 (Xu et al., 2002) and in Xinken, China
(333±137 Mm−1) in October 2004 (Cheng et al., 2008a).
Theσap in Wuqing is a factor of 0.6 lower than that in Xinken
(70±42 Mm−1), while it is the double of that measured in
Lin’an (23±14 Mm−1). Overall, theσsp andσap in Wuqing
are higher than that in the rural area and lower than that mea-
sured in megacities.

For seasonal comparison, the averageσsp and σbsp are
higher in summer than in spring, while the averageσap shows
an opposite variation. This is mainly due to the seasonal
changes of air pollutant transportation. The change of lo-
cal pollutant emissions is also one potential reason. Details
will be discussed in Sects. 4.1.2 and 4.1.3.

The single scattering albedo, defined asω = σsp/(σsp+σap),
is one of the most important parameters in estimating of the
direct aerosol radiative forcing. Even a small error in its esti-
mation might change the sign of the aerosol radiative forcing
(Takemura et al., 2002). To calculateω at the wavelength of
637 nm, a wavelength correction is applied to the measured
σsp using an empirical approach,σsp∝ λα. The Ångstr̈om
exponent (α) is yielded from the measuredσsp at the wave-
length of 550 nm and 700 nm.

The averageω at the wavelength of 637 nm in Wuqing
is 0.82±0.05 in spring and 0.86±0.05 in summer, respec-
tively. These values are similar to those measured in Yufa,
which is 0.86±0.07 at the wavelength of 532 nm (Garland et
al., 2009). Yan et al. (2008) reported a higherω in spring
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Table 1. Statistic values of aerosol optical properties measured at dry condition. (4321 data points for spring campaign and 4897 data points
for summer campaign).

Mean Std Median
spring summer spring summer spring summer

σsp (Mm−1) 450 nm 363 464 319 290 280 392
550 nm 280 379 253 251 206 314
700 nm 191 270 175 191 137 218

σbsp (Mm−1) 450 nm 54 60 43 37 44 51
550 nm 45 49 37 31 35 42
700 nm 36 41 27 26 27 34

σap (Mm−1) 637 nm 47 43 38 27 34 37
LV (km) 550 nm – 4.2 – 4.1 – 4.2
ω 637 nm 0.82 0.86 0.05 0.05 0.82 0.87
b ( %) 550 nm 17 13 2 1 17 13
Å 450–700 nm 1.45 1.33 0.34 0.24 1.52 1.32

(0.91±0.03) and a lowerω in summer (0.86±0.06) in SDZ.
Theω in Wuqing is relatively low compared to the values re-
trieved through the Aerosol Robotic Network (AERONET)
for the northern hemisphere (0.85–0.95) (Dubovik et al.,
2002), since our measurements are controlled at a RH be-
low 30 %. At ambient condition, water uptakes of aerosols
would result in higherω (Cheng et al., 2008b).

The averageω in spring is lower than that in summer,
caused by higher emissions of BC in spring than in sum-
mer (Zhang et al., 2009; Lu et al., 2010). In northern China,
house heating in early spring is provided by central heating
plants, mainly fueled by coal. Aerosols with a relative high
fraction of soot from combustion processes are emitted into
the atmosphere.

4.1.2 Wind dependence of aerosol optical properties

Figure 3 presents the wind dependence of theσsp, σap and
ω. From the wind rose (Fig. 3a and e), it can be found that
the prevailing winds came from SSW for both spring and
summer campaign. In spring, weather systems with strong
winds in NNW direction occurred occasionally.

The average MODIS (Moderate Resolution Imaging Spec-
troradiometer) AOD distributions at the NCP during the two
campaign periods are presented in Fig. 1. The AOD, which
represents the columnar optical property of aerosols at am-
bient condition, is influenced by many factors such as the
vertical profiles of RH and PNSD. However, it can provide
information about the distribution of regional aerosol pollu-
tion, which can help to understand the wind dependence pat-
tern of aerosol optical properties.

In both spring and summer, the averageσsp andσap (dash-
dot line) for southerly winds (90◦-270◦) are higher than that
for northerly winds, caused by the transportation of pollu-
tants from the southern areas. This can be seen through the
AOD distributions in Fig. 1. In both spring and summer, the

AOD of the southern areas is obviously higher than that of
the northern areas. Since in the NCP, the major cities and
industrial areas with high pollution emissions are mainly lo-
cated in the southern region.

In spring, the maximumσspandσapoccur with calm winds
(wind speed<2 m s−1), independent of wind direction. This
indicates that aerosol emissions of local sources mostly con-
tribute to the aerosol pollution. It should be noticed that the
average AOD in Beijing is higher than in the areas around
the city. But the NW wind, which is from the direction of
Beijing, does not cause highσsp andσap. The reason is that
in spring the NW winds usually occur with cold front sys-
tems and with high wind speeds. The dilution effect of such
strong winds is more significant. The strong northerly winds
sweep away air pollutants, resulting in the lowσsp andσap in
spring.

In summer, the maximumσsp andσap occur with southerly
winds, relating to the pollutants transportation from the
southern region in the NCP, as shown in Fig. 1.

The wind maps ofω are shown in Fig. 3 d and h. In both
spring and summer, theω accompanied by calm winds is al-
ways lower than during strong winds, indicating that the lo-
cally emitted aerosols contain a higher fraction of BC than
the aerosols transported from surrounding areas. During
transport, the aging process and secondary aerosol forma-
tion produce non-light-absorbing components. As indicated
in Cheng et al. (2009), for aged aerosols, even though the
coating effect may increase the light absorption of the BC,
the scattering increase by the secondary particle formation
and condensation will still overcome the increase of the light
absorption, which will result in an increase ofω. The average
ω for southerly winds is lower than that for northerly winds,
which may relate to the denser industrialization in the south
of the NCP.
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Fig. 3. Wind speed and direction dependence map ofσsp (B, F), σap (C, G) andω (D, H), as well as wind rose(A, E). The upper fours
pictures are for spring and the lower ones are for summer. In each picture, the shaded contour indicates the average of variables for varying
wind speeds (radial direction) and wind directions (transverse direction). The dash-dot lines stand for the relative mean values at each wind
direction.

4.1.3 Diurnal variation of aerosol optical properties

Figure 4 shows the average diurnal cycle of the wind speed,
σsp, σap andω during the spring and summer campaign. Evi-
dent diurnal variations can be found for all of those variables,
mainly determined by the diurnal cycle of the boundary layer
height and the local emission pattern. The diurnal cycle of
wind speed and secondary aerosol production are also poten-
tial players.

The diurnal patterns of theσsp andσap are similar in spring
and summer. The maximum of theσsp andσap appears in the
morning between 06:00 LT and 08:00 LT. During this period,
the rapid increase of the aerosol pollutants is mainly due to
the morning traffic, just before the increase of the boundary
layer height. The dilution effect of the increasing boundary
layer height results in a decrease of theσsp andσap between
08:00 LT and 14:00 LT. They reach their minimum around
16:00 LT. During night, theσsp and σap remain at relative
high values, since particle emissions are accumulated in the
shallow nocturnal boundary layer.

Theσsp andσap are lower in spring than in summer during
night. This difference is mainly caused by the different lev-
els of wind speed between spring and summer at night. The
diurnal pattern of wind speed is shown in Fig. 4. The wind
speed during the nighttime in spring (approximately 3 m/s)
is higher than that in summer (around 1.5 m/s). The higher
average wind speed in springtime suppresses accumulation
of pollutants at ground level at night.

The diurnal pattern ofω shows two dips, first in the morn-
ing and again in the evening probably caused by the emis-
sion of diesel engine trucks, since trucks are forbidden to en-
ter the city area of Wuqing during the daytime of 08:00 LT–
20:00 LT. The maximumω appears around 14:00 LT. Dur-
ing the daytime, the light-scattering aerosols are enhanced
by secondary aerosol formation and aging processes, which
rapidly occur in the NCP (Wu et al., 2007; Wiedensohler et
al., 2009). This could be the potential explanation for the
maximumω in the afternoon.

The median values (dash) of all aerosol optical properties
are typically different from the mean values (dot), since the
probability distributions of these variables are deviate from
normal distributions. Forσsp andσap, the median values are
lower than the arithmetic mean values, especially in spring
campaign, indicating heavier pollution events in spring than
in summer.

4.1.4 Aerosol optical properties in pollution episodes

Time series of the measured optical properties for the PM10
aerosols at dry condition (RH<30 %) are presented in Fig. 5.
In both spring and summer, large temporal variations can be
found for all optical properties mainly relating to the chang-
ing of weather systems. Some heavy pollution events can be
identified. A pollution episode is defined as a significant rise
in σsp andσap, satisfying that both ofσsp andσap are within
the top 20 % highest values with lasting time of at least 12 h.
We determined three episodes in spring and two in summer
campaign, respectively, as shown in Fig. 5.
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Table 2. The fitting parameters (b) and correlation coefficients (R) of the linear fittings for calculated and measuredσsp, σbspandσap.

spring summer

λ external internal external internal

σsp

450 nm 1.12 (0.987) 0.97 (0.986) 0.896 (0.989) 0.780 (0.990)
550 nm 1.13 (0.987) 1.02 (0.986) 0.913 (0. 989) 0.827 (0. 990)
700 nm 1.15 (0.987) 1.08 (0.987) 0.945 (0. 989) 0.889 (0. 990)

σbsp

450 nm 0.817 (0.985) 0.646 (0.982) 0.743 (0.991) 0.575 (0.988)
550 nm 0.839 (0.986) 0.706 (0.984) 0.775 (0.991) 0.642 (0.990)
700 nm 0.850 (0.987) 0.754 (0.986) 0.759 (0.988) 0.668 (0.989)

σap

637 nm 0.705 (1.00) 1.63 (0.997) 0.705 (1.00) 1.71 (0.996)
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Fig. 4. The average diurnal cycle of wind speed,σsp, σap andω.
The left 4 pictures are for spring and the right ones are for summer.
In each picture, the boxes and whiskers denote the 5, 25, 50, 75 and
95 percentiles, while the dots denote the mean values. The x-axis
denotes the time of day, with the last box-and-whisker denoting the
percentile and mean value for the entire period. The horizontal line
also denotes the mean value for the entire study period.

For the episodes in spring, the averageσsp,550 nm andσap
are 742±283 Mm−1 and 112±37 Mm−1, respectively, which
are about two times higher than the average values for the
whole campaign. The averageω is 0.84±0.03, 2.4 % higher
than that of the whole period. The prevailing winds dur-

ing these episodes are mainly from SSW and ESE, basically
same as the prevailing winds for the whole period. Because
there is infrequent strong wind from the NW, the average
wind speed for the episodes (1.7±1.2) is much less than that
for the whole period (3.2±2.2). It seems that these episodes
in spring occurred in stable weather systems. The accumu-
lation of locally emitted aerosols causes the relative highσsp
andσap, and aging processes cause the highω (Cheng et al.,
2009).

For the episodes in summer, the averageσsp,550nmandσap
are 874±282 Mm−1 and 85±26 Mm−1, respectively. The
averageω is 0.89±0.03, 3.5 % higher than that of the whole
period. The winds during these episodes are from S and
SSW, with the average wind speed of 1.8±0.6, close to the
average value of the whole period (1.8±1.2). The episodes
in summer are all caused by the advection of air pollutants
from the southern regions under the southerly winds from
consecutive synoptic weather patterns.

4.2 Optical closure for dry particles

4.2.1 Comparison of measured and calculated optical
properties for dry particles

For the optical closure of the dry PM10 aerosols, compar-
isons between measured and calculatedσsp and σbsp were
performed for both of the spring and summer datasets. As de-
scribed in Sect. 3,σsp andσbsp were calculated based on the
combined PNSDs measured by TDMPS and APS. A modi-
fied Mie model was applied for simulating the measurements
of nephelometer. Calculations were carried out for the wave-
lengths of 450, 550 and 700 nm corresponding to the wave-
lengths of TSI 3563 integrating nephelometer. Based on the
two-component optical aerosol model, either completely ex-
ternal or internal aerosol mixing states were assumed to de-
fine the refractive indices.
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Theσap was also calculated for 637 nm using the model,
data, and mixing states mentioned above. The result was
compared to theσap measured by MAAP. This comparison
is not a true closure study, since the MAAP-derived BC mass
concentration is also used in the model to calculateσap.

Measuredσsp (σbsp) versus calculatedσsp(σbsp) at the
wavelength of 550 nm and measuredσap versus calculated
σapat the wavelength of 637 nm are shown for both campaign
periods in Fig. 6. In general, theσsp andσbsp calculated for
external mixture are slightly larger than that for internal mix-
ture. For wavelengths of 450, 550 and 700 nm, theσsp,external
are respectively factors of 1.14, 1.10 and 1.06 larger than the
σsp,internal, while theσbsp,external are respectively factors of
1.26, 1.19 and 1.13 larger than theσbsp,internal. However, the
σap calculated for internal mixture is much larger than that
for external mixture, as a factor of 2.32. This is because for
external mixture, only BC particles make contribution to ab-
sorption; while for internal mixture, BC is dispersed in all
particles leading to the well-known enhancement of absorp-
tion. For the same BC concentration, internally mixed par-
ticles have a larger absorbing cross section than externally
mixed particles (Jacobson, 2000; Cheng, 2007). This result
is in a good agreement with the studies of Cheng et al. (2006).
Wex et al. (2002) reported a lower factor, which is 2.05, at a
European site.

To quantify the comparison of measured and calculated
values, linear fitting was applied forσsp, σbsp and σap.
We assume that the relationship between calculated and
measured values isσmodel = b·σmeasure. Since the val-
ues spread over 3 orders of magnitudes, if the fitting is
done in linear coordinates, the large values will be over-
represented. Therefore, the fitting formula is modified as
log(σmodel)=log(b)+log(σmeasure) to yield more reasonable
results.

Table 2 summarizes the fitting parameters (b) and the cor-
relation coefficients (R) for σsp, σbspandσap. It can be noted
that for both campaign periods, measured values and calcu-
lated values have significant correlations. At all of the three
wavelengths, the correlation coefficients are above 0.98. The
fitting parametersb are all around 1 for the three wave-
lengths.

As mentioned above, atmospheric aerosols are partial
combinations of internal and external mixtures, due to their
sources, physical and chemical processes, and stage of mix-
ing state. The measured values should fall within the range
limited by the calculated values for internal and external mix-
ture.

It should be noticed that only a small part of the
nephelometer-measuredσsp and σbsp fall within the range
of the corresponding calculated values based on the assump-
tions of internal and external mixture. Table 3 shows the
ratios of the amount of measuredσsp andσbsp that fall within
the two calculated values to the total amount of the measured
σsp andσbsp. Most of the ratios are low, varying from 1.6 %
to 84.4 % for different wavelengths and parameters. Discrep-

Table 3. The ratios of the amount of nephelometer-measuredσsp
andσbsp that fall within the range of the corresponding calculated
values based on the assumptions of internal and external mixture to
the total amount of the measured values.

λ σsp σbsp

spring summer spring summer
450 nm 84.4 % 46.2 % 13.1 % 1.4 %
550 nm 74.4 % 56.5 % 21.7 % 3.3 %
700 nm 50.2 % 67.5 % 25.9 % 3.7 %

Table 4. Uncertainties of the input parameters for the model, given
in terms of one standard deviation.

Parameter Standard deviation (%)

Dp,TDMPS 1.1
Dp,APS 3
NTDMPS,3−20 nm 10
NTDMPS,20−200 nm 3.3
NTDMPS,200−700 nm 8.3
NAPS 3.3
BC mass concentration 4
BC density 11
nnon 0.5
nBC 4
inon 0
iBC 6.6

ancies probably stem from the uncertainties of the measure-
ments and models, which have not been taken into account.
Analysis of uncertainties is needed for such comparison.

4.2.2 Uncertainties of dry aerosol optical closure

To estimate the influence of the uncertainties in the model in-
put parameters on the calculatedσsp andσbsp, a Monte Carlo
simulation was applied for both spring and summer datasets.
The simulation repeatedly used a set of randomly varied in-
put parameters with normally distributed frequency.

Uncertainties of measurements

The model input parameters used in the dry aerosol optical
closure are listed in Table 4. For each parameter, the de-
viation is considered to conform to a normal distribution.
The original values of model input parameters mentioned in
Sect. 3 are applied as the mean values. The standard devia-
tions of the normal distributions for these values are listed in
Table 4.

There are many factors influencing the uncertainties in
number concentration and particle size, including CPC,
UCPC, APS and DMA measurement uncertainties. The
TDMPS measurement induces uncertainties in both size and
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Table 5. Mean standard deviations of the calculatedσsp andσbspyielded from the Monte Carlo simulation.

Standard deviation ofσsp (%) Standard deviation ofσbsp (%)

spring summer spring summer

λ external internal external internal external internal external internal
450 nm 8.25 9.19 8.38 9.49 7.28 8.48 7.83 9.54
550 nm 8.23 8.94 8.36 9.14 7.23 8.17 7.73 8.99
700 nm 7.87 8.35 8.13 8.62 7.16 7.80 7.60 8.40

Table 6. The ratios of the amount of nephelometer-measuredσsp
andσbspfall within the range of the corresponding calculated values
based on the assumptions of internal and external mixture to the
total amount of the measured values, considering the uncertainties
of the calculations.

σsp σbsp

λ spring summer spring summer
450 nm 99.71 % 98.57 % 87.20 % 61.47 %
550 nm 99.57 % 98.71 % 88.77 % 80.05 %
700 nm 99.51 % 98.99 % 90.58 % 65.10 %

number concentration. From a comparison test reported by
Wiedensohler et al. (2010), the uncertainty ofDp,TDMPS is
estimated to be 3.5 %, and the uncertainties of NTDMPS are
estimated at 30 %, 10 % and 25 % for the size of 3–20 nm,
20–200 nm and 200–700 nm, respectively. The APS mea-
surement induces uncertainties of 9 % and 10 % in size and
number concentration, respectively (Wex et al., 2002). The
uncertainty in BC mass concentration measured by MAAP
is estimated as 12 %, as reported by Petzold et al. (2004). It
should be noted that OC may also have light-absorbing com-
ponents, such as HUmic-LIke Substances (HULIS) (Graber
et al., 2006), thus causes a bias in the BC mass concentration
reported by MAAP. This possible source of uncertainty is not
considered in this study. In open literatures, BC density is
reported from 1.00 to 2.00 g/cm3 (Sloane et al., 1983, 1984;
Sloane and Wolff, 1985; Sloane et al., 1991; Ouimette and
Flagan, 1982; Seinfeld and Pandis, 1998). The standard de-
viation of BC density is constrained to cover the above men-
tioned range. Similarly, the standard deviation for the refrac-
tive indices is also chosen to agree with the values reported in
open literatures (Ouimette and Flagan, 1982; Sloane, 1984;
Seinfeld and Pandis, 1998; Covert et al., 1990). The uncer-
tainty of measuredσsp andσbsp is estimated at 10 % (Ander-
son et al., 1998; Heintzenberg et al., 2006).

Monte Carlo variations

A Monte Carlo simulation was applied to obtain the uncer-
tainties of the results introduced by the uncertainties of the

Mie model input parameters. Mie calculations were repeated
with each data record of the measurements, using a randomly
varying set of input parameters. The random values of input
parameters were chosen according to Table 4, and distributed
as normal distributions. Several hundreds of runs were done
for each of the 3492 data records in spring and 3553 data
records in summer to obtain the standard deviation of theσsp
andσbsp at all the three wavelengths, for both external and
internal mixture.

Table 5 summarizes the mean standard deviations of the
calculatedσsp andσbsp derived from the Monte Carlo simu-
lation. It can be found that the standard deviations of calcu-
latedσsp andσbsp are around 8 %. For a normal distribution,
the range of mean value plus/minus triple standard deviation
covers 99 % of all possible values. Thus, the uncertainties of
the Mie model results are equal to the values of triple stan-
dard deviation. The uncertainties of the calculatedσsp and
σbsp are approximately within±30 %.

Comparisons similar to those described in Sect. 4.2.1 were
carried out for the measured and calculated values, taking
into account the uncertainties. Forσsp andσbsp, the calcu-
lated value with assumption of external mixture plus triple
standard deviation and the calculated value with assumption
of internal mixture minus triple standard deviation were de-
fined as the boundaries of the possible range within which
the measured value should be fall.

Table 6 displays the ratio of the amount of measuredσsp
and σbsp which fall within the possible range to the total
amount of measuredσsp andσbsp. For all the three wave-
lengths, more than 97 % of the measuredσsp fall within the
possible range of Mie calculations for both spring and sum-
mer. Forσbsp, the ratios of points that fall within the possible
range are lower than those forσsp.

The results of the closure comparison for backscattering
are not as good as for total scattering. A possible rea-
son is that compared with total scattering, the backscatter-
ing is probably more sensitive to the shape of the parti-
cles. Non-spherical particles may cause higher backscatter-
ing than spherical ones. An indirect evidence is that high
backscattering ratio (b) was observed during dust event in
HaChi campaign. Dust particles have non-spherical shape
and make significant contribution to aerosol optical proper-
ties during dust event. Therefore, with the assumption of
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spherical shape for all particles, the Mie calculation will un-
derestimate the backscattering.

Considering the uncertainties, most of the measuredσsp
andσbsp agree with the calculated values. However, the un-
certainties for the calculatedσsp andσbsp are approximately
±30 %. This is mainly due to the large uncertainties of the
Mie model input parameters. To reduce such uncertainties
of calculation results, effort should be made to further im-
prove measurement techniques to minimize the uncertainties
of measured parameters. And more high quality measure-
ments of aerosol chemical compositions are required to re-
duce the uncertainties in aerosol refractive indices.

5 Summary and conclusions

In early spring and summer of 2009, two field campaigns of
aerosol physical properties were carried out in Wuqing, Tian-
jin in the NCP. In this investigation, we analyzed aerosol op-
tical properties and conducted an optical closure experiment
to examine the measurements and evaluate the uncertainties
of measured parameters. The mean values of the measured
σsp are 280±253 and 379±251 Mm−1 at 550 nm in spring
and summer, respectively. These values are lower than those
measured in the urban area of Beijing (Bergin et al., 2001),
similar to those measured in Yufa (Garland et al., 2009) and
twice as much as that measured in SDZ (Yan et al., 2008).
The mean values of theσap during the two periods are 47±38
and 43±27 Mm−1, respectively. They are only a half of those
measured in Beijing urban area (Bergin et al., 2001), slightly
lower than those measured in Yufa (Garland et al., 2009) and
three times as much as those measured in SDZ (Yan et al.,
2008). Overall, theσsp andσap in Wuqing are higher than
those in the regional areas of the NCP and are lower than
those measured in urban of Beijing. The averageω values of
dry aerosols at the wavelength of 637 nm are 0.82±0.05 for
spring and 0.86±0.05 for summer. Three and two episodes
with increased levels of pollution were observed in spring
and summer campaign, respectively.

For the several aerosol parameters studied, pronounced
and different diurnal cycles are found. The maximum value
of the σsp and σap appears at 06:00 LT–08:00 LT, and be-
gins to decrease at 08:00 LT. A minimum is reached around
16:00 LT. During the night, theσsp andσap remain at rela-
tive high values. This diurnal pattern is mainly influenced by
the diurnal variation of the boundary layer height and direct
particle emissions. Theω diurnal pattern shows two dips in
the morning and evening probably caused by the truck emis-
sions. The maximumω occurs in the afternoon due to sec-
ondary aerosol formation and aging processes.

Aerosol optical properties are also highly related to the
meteorological parameters. The averageσsp and σap for
southerly winds are higher than for northerly winds caused
by the significant transport of pollutants from southern re-
gions. In spring, the maximumσsp andσap occurred during

periods with calm winds indicating the accumulation of local
particle emissions. In summer, the maximumσsp andσap oc-
curred with southerly winds relating to the pollutants trans-
port from southern areas. Theω accompanied by calm winds
is always lower than that with higher wind speeds indicating
a high fraction of BC in the locally emitted aerosols. The av-
erageω for southerly winds is lower than that for northerly
winds, because of the higher emission rates of BC in the
southern areas of the NCP.

An aerosol optical closure experiment was applied for both
of spring and summer measurements. Measuredσsp andσbsp
were compared with the corresponding calculated values ob-
tained via a modified Mie model. The calculations were
based on measured PNSDs and estimated refractive indices.
A two-component optical aerosol model was assumed in the
calculations. Theσsp andσbspwere calculated separately un-
der assumptions of internal mixture and external mixture of
aerosols. Additionally, a Monte Carlo simulation was used
to estimate the dependence of theσsp andσbsp calculation
uncertainties on the uncertainties of input parameters used in
the Mie model.

Good correlations are found between measured and calcu-
latedσsp andσbsp with R>0.98, confirming a stable perfor-
mance of instruments. Considering the uncertainties of all
input parameters used in the Mie model, the Monte Carlo
simulation shows standard deviations of around 8 % with un-
certainties within 30 % for the calculatedσsp andσbsp. More
than 97 % of measuredσsp at all the three wavelengths fall
within the 99 % confidence range of the calculated values,
taking into account of the uncertainties of measured and cal-
culated values. This indicates that the modified Mie model
and corresponding assumptions used for the optical closure
study are appropriate for estimating the aerosol optical prop-
erties.
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