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Abstract

An extension of the local projection stabilization (LPS) finite element method
for convection-diffusion-reaction equations is presented and analyzed, both in the
steady-state and the transient setting. In addition to the standard LPS method, a
nonlinear crosswind diffusion term is introduced that accounts for the reduction of
spurious oscillations. The existence of a solution can be proved and, depending on
the choice of the stabilization parameter, also its uniqueness. Error estimates are
derived which are supported by numerical studies. These studies demonstrate also
the reduction of the spurious oscillations.

1. INTRODUCTION

The solution of convection-dominated convection-diffusion-reaction equations with finite
element methods constitutes a very challenging (and open) problem. Over the last three
decades, the amount of work devoted to this problem is impressive. The usual way of
treating dominating convection, at least in the context of finite element methods, consists
in adding extra terms to the standard Galerkin formulation, aimed at enhancing the sta-
bility of the discrete solution by means of introducing artificial diffusion. These new terms
vary according to the method, and can be residual-based, as in the SUPG/GLS/SDFEM
family (see [6, 16, 13, 14, 27]), or edge based, such as the CIP method (see [9, 7]). For
an up-to-date and thorough review of these and other techniques, see [29]. It is striking to
notice that, despite the impressive amount of work that has been devoted to this topic, up
to now there is not a method that ’ticks all the boxes’, i.e., a method that produces sharp
layers while avoiding oscillations, see [1] for a recent review and a numerical assessment.

Among the various stabilized finite element methods, the local projection stabilization
(LPS) method has received some attention over the last decade. Originally proposed for
the Stokes problem in [2], and extended to the Oseen equations in [4] (see also [5, 28]),
the LPS method has also been used recently to treat convection-diffusion equations (see
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[24, 15, 22, 23]). The basic idea of this method consists in restricting the direct application
of the stabilization to so-called fluctuations or resolved small scales, which are defined by
local projections. It has several attractive features, such as adding symmetric terms to the
formulation and avoiding the computation of second derivatives of the basis functions (thus
using only information that is needed for the assembly of the matrices from the standard
Galerkin method). Unfortunately, the solutions obtained with the LPS method possess
the same deficiency like solutions computed, e.g., with the SUPG method: non-negligible

spurious oscillations are often present in a vicinity of layers.

Motivated by the wish of recovering the monotonicity properties of the continuous prob-
lem, which might be crucial in applications, a number of so-called Spurious Oscillations at
Layers Diminishing (SOLD) methods were proposed. SOLD methods add an extra term
to the already stabilized formulation, which usually depends on the discrete solution in a
nonlinear way, vanishes for small residuals (thus acting mostly at layers), and adds some
extra, but different, diffusivity to the formulation. In particular, methods that add cross-
wind diffusion, like the one proposed in [11], have been proved to belong to the best SOLD
methods in comprehensive studies [17, 18]. Although these methods diminish oscillations
considerably, no single method succeeds to fully eliminate them [17, 18, 21]. Also, from a
purely mathematical point of view, it is unknown if these methods lead to well-posed prob-
lems. In fact, existence of solutions is usually possible to prove, but, to our best knowledge,
there is no nonlinear SOLD method that is known to produce a unique solution, see [25] and

[7] for a discussion of this topic.

This paper proposes a LPS method with nonlinear crosswind diffusion for convection-
diffusion-reaction equations. The crosswind diffusion term is chosen in such a way that, for a
certain choice of the stabilization parameter, the existence and the uniqueness of the solution
can be proved for the steady-state equation and for the time-dependent equation, which is
discretized in time with an implicit one-step #-scheme. To our best knowledge, this is the first
nonlinear discretization for convection-diffusion-reaction equations for that both, existence
and uniqueness of a solution can be shown. The form of the crosswind term is motivated by
the Smagorinsky Large Eddy Simulation (LES) model which was analyzed in [26]. It involves
fluctuations of a term mimicking a p-Laplacian. The crucial analytical property for proving
the uniqueness of the solution is the strong monotonicity of the corresponding operator. In
addition, a second variant of the stabilization parameter is studied, whose proposal is based
on scaling arguments. For this parameter, the existence of a solution can be proved and the

uniqueness for the time-dependent equation in the case of sufficiently small time steps.
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The plan of the paper is as follows. In the remaining part of this introduction, the
problems of interest are stated and some basic notations are given. Section 2 will summarize
the main abstract hypothesis imposed on the different partitions of the domain and the finite
element spaces considered. Section 3 presents the method for the steady-state case, whose
well-posedness is analyzed in Section 3.1 and convergence and error estimates are presented
in Section 3.2. In Section 4, the method for the time-dependent problem is presented.
Well-posedness and stability are proved in Section 4.1 and error estimates in Section 4.2.
Since the analysis is based on the abstract framework from Section 2, Section 5 presents
some concrete examples that fit into this framework. Finally, numerical illustrations that
support the analytical results and which demonstrate the reduction of spurious oscillations
are presented in Section 6.

Throughout the paper, standard notations are used for Sobolev spaces and corresponding
norms, see, e.g., [10]. In particular, given a measurable set D C R? the inner product in
L*(D) or L?(D)? is denoted by (-,+)p and the notation (-,-) is used instead of (-,-)q. The
norm (seminorm) in W™?(D) will be denoted by || - ||, » (| - |,.,.p); With the convention

| .o = |l - l,n.2.p, and the same notation is used for scalar and vector-valued functions.

1.1. The problems of interest. Let Q C R? d € {2,3}, be a bounded polygonal (polyhe-
dral) domain with a Lipschitz-continuous boundary 92 and let us consider the steady-state

convection-diffusion-reaction equation
(1) —Au+b-Vu+cu=f inQ, u=mu, ond.

It is assumed that ¢ is a positive constant and b € WH*(Q)4, ¢ € L>®(Q), f € L*(Q), and
u, € H'Y?(08)) are given functions satisfying

1
(2) UZ:C—§V~bZUO>O in 2,

where oq is a constant. Then the boundary value problem (1) has a unique solution in
HYQ).
Besides the steady-state case, also the time-dependent convection-diffusion-reaction equa-
tion
u—eAu+b-Vu+cu = f in(0,7]xQ,
(3) u = u, in [0,7] x 09,
u(0,:) = wy in {2,

will be considered. In (3), [0,7] is a finite time interval, ¢ is assumed to be a posi-
tive constant, b(-,t) € Wh(Q)4 c(-,t) € L=®(Q), f(-,t) € L*(Q), up(-,t) € HY2(00Q)
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for all ¢ € [0,T], and uy € H'(Q) denotes the initial condition. Moreover, it is as-
sumed that b € L>®(0,T; W1°(Q)9), ¢ € L>(0,T; L>(2)), f € L*(0,T;L*(Q)), and u, €
L2(0,T; HY/2(052)). The function o is defined analogously to (2) and the inequality (2) is
assumed to hold for all ¢ € [0, T7.

2. ASSUMPTIONS ON APPROXIMATION SPACES AND THE SET .4},

From now on, C, C' or C denote generic constants which may take different values at
different occurrences but are always independent of the data e, b, ¢, f, and u, and the
discretization parameters (h and 0t in the following).

Given h > 0, let W), € W1>(Q) be a finite-dimensional space approximating the space
H'(Q) and set Vj, = W), N HL(2). Next, let .4}, be a set consisting of a finite number of
open subsets M of Q such that Q = Upe 4, M. It will be supposed that, for any M € .,

(4) card{M' € My; MOM #0} < C,

(5) har = diam(M) < C'h,

(6) hat < Chyr Y M € My, MOM £,
(7) B, < Cmeas (M)

The space W), is assumed to satisfy the local inverse inequality
(8) onliar < Chig llvnllops Y on € Wa, M € .

For any M € .#), a finite-dimensional space Dy; C L*(M) is introduced. It is assumed

that there exists a positive constant Sy p independent of h such that

U, q)m
(9) sup (v,q) > Bre llallom Vg€ Dy, M e M,
veVy ||U||O,M

where Vi = {vp, € Vj,; v, = 01in Q\ M }. This hypothesis will be needed in what follows
for the construction of a special interpolation operator (see Lemma 6 below). Concrete
examples of spaces W), and D), satisfying the assumptions formulated here will be presented
in Section 5.
Furthermore, for any M € .#),, a finite-dimensional space Gy C L®(M) with Gy D Dy
is introduced such that
vy,

0:)3,~ M

€ Gy Yo, eWy, i=1,...,d,
and it is assumed that, for any p € [1, o], there is a constant C' such that

d_d
(10) lglloprr < Chis *llalloys ¥V a€Gu, M€ .M.
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To characterize the approximation properties of the spaces W}, and D,;, it is assumed
that there exist interpolation operators i, € £ (H?*(Q), W,,) N L (H?*(Q) N H} (), V4) and
Jju € L(HY (M), Dy), M € M), such that, for some constants [ € N and C' > 0 and for
any set M € 4}, it holds

(11) v —invfypr + R v — invlloar < C hy V] kg1,00 VoeH Y (M), k=1,...,1,
(12> ||q_qu,|0,M§ChIf\4|q‘k,M VQEHk(M)v kzlv"'vl'

In addition, it is assumed that, for any p € [1, 6],

k+4-4d

(13) v =iy < Chy” > iy YveH(M), k=1,...,L.

3. A LOCAL PROJECTION DISCRETIZATION OF THE STEADY-STATE PROBLEM
The weak form of problem (1) is: Find u € H*(Q) such that « = u, on 9Q and
(14) a(u,v) = (f,v) Vv eHy(Q),
where the bilinear form a is given by
a(u,v) :=¢e(Vu,Vov)+ (b- Vu,v) + (cu,v).

As it was mentioned in the introduction, the most often used approach to cure the insta-
bilities of the Galerkin method consists in adding extra terms to the formulation. To build
these additional terms for the method studied here, for any M € .#),, a continuous linear
projection operator 7y, is introduced which maps the space L?(M) onto the space Dy;. Tt

is assumed that
(15) Imaell 2z any,c2nyy < C Y M e A, .

E.g., if my; is the orthogonal L? projection, then C' = 1. Using this operator, the fluctuation

operator kyy 1= id— )y is defined, where id is the identity operator on L2(M). Then, clearly
(16) |5l 22 ny,z2anyy < C VM e A,.

Since ky vanishes on Dy, it follows from (16) and (12) that

(17) 1501 qlloar < C h%, lqlr YV a€ H*(M), M € My, k=0,...,1.

An application of k,; to a vector-valued function means that x,; is applied component-wise.

For any M € .#, a constant by; € R? is chosen such that

(18) [bar] < [Blo00,01 5 16— barllo,c0nr < Chas [bl1 oo s -
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A typical choice for by, is the value of b at one point of M, or the integral mean value of b
over M. In addition, a function wu, € W), is introduced such that its trace approximates the
boundary condition .

We are now ready to present the finite element method to be studied: Find u;, € W), such
that up, — up, € V3, and

(19) a(un, vp) + sp(un, V) + dp(un; up,vn) = (f,on) YV op € Vi,
where

sn(u,0) = > 7ar (ks (bas - V), s (bas - Vo))as

Me. iy,
. _ sold
dy(wiu,v) = Y (137 w) £ar(Pa V), k3 (PaVo)
Me. iy,

and Py : R — R? is the projection onto the line (plane) orthogonal (crosswind) to the
vector by, defined by

by @ by
[ LE oM

if by # 0,

I being the identity tensor. The stabilization parameters are given by
hat h3,
(20) TV = Top MinQ ——— —= 5
1Bl0,00,00 " €
Tag (un) = Tar(un) [Kar(Par V)|

where 7y is a positive constant and 7y, is a non-negative function of u; and the data of (1).

In particular, we shall investigate the properties of the discrete problem for

(21) v = B har |bul,
and for
/2 g '
~ ol g, 20,
(22) Tar(un) = ‘uh‘l,M

where [ is a positive constant. The power of hy; in (22) assures a proper scaling of the

parameter 7594 with respect to the length scale of the problem. Note that the crosswind

stabilization term is of p-Laplacian type with p = 3.
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Remark.

o If d = 2 and by, # 0, one has Py, = by, ® by, where by, is a vector satisfying
by, - by = 0 and |by,| = 1. Thus, in this case, the nonlinear stabilization term can

be written in the form

dh(w7 u, U) = Z (Tls\gld(w) ’%M(b?\k ’ VU), ’%M(b?\k ’ VrU))M .
Mey,

e It is useful for the analysis of the discrete problem to note that kp(bys - Vu) =
by - Ky Vu and Ky (PyVu) = PykarVu. Note also that || Pyl = 1.
e Finally, if 7 is defined by (22), then, using (18), (16), and || Py||, = 1, one obtains

(23) 1752 ) loar < C oy [bllgons Vv € H(Q), M € M.
In the analysis, the error will be measured using the following mesh-dependent norm
1/2
[v]lLps == (5|U‘i9+ ||01/2U’|3,Q+8h(vuv>) ;

and a term involving the crosswind derivative of the error. Note that integrating by parts

gives

(24) a(v,v) +sp(v,v) = [[vllips Vv € Hy(Q).

3.1. Well-posedness of the nonlinear discrete problem. This section studies the exis-
tence and uniqueness of solutions for the nonlinear discrete problem (19). Let us define the

nonlinear operator T}, : V}, — V}, by

(25)  (Thzn,vn) = a(zn + Upn, V) + Sh(2h + Qon, V) + din (2 + Tons 20 + Uon, vn) — (f,0n)

for any zj,, v, € V3. Then u;, € W), is a solution of (19) if and only if up|50 = Uen|sq and
T (up — upn) = 0,

or, equivalently, u, = uy, + Uy, € W), is a solution of (19) if w, € V}, and Tj,(wy,) = 0. Thus,
our aim is to prove that the operator 7T, has a zero in V},. To this end, the properties of
the form dj, shall be investigated first. As these properties are different with respect to the

definition of 7/, we start supposing that 7, is given by (21).
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Lemma 1. Let Ty be defined by (21). Consider any u,v,z € WH3(Q) and set w := u — v.

Then
1 ) , 1
(26) dp(u; u, w) — dp(v;v,w) > = Z ™ 6 (PuVw)|[6 3.0 = - dp(w; w, w) ,
Mey,
27)  fdn(wsu, 2) = da(viv,2)| < D Far (1w (Par V) oz ar + 15ar (ParVo) [lo.5.0) X
Me Ay,
X \[kar (ParVw)llo s ar 1520 (ParV 2)llo 301 -
Proof. Let us denote
(28) dp(usu, 2) — dp(v;v, 2) Z Ny (u,v, 2)

Me Ay,

where
Ny (u,v,2) = (Tjs\fjld( ) kar(Par V) — 7594 (v )/{M(PMV’U),/{M(PMVZ))M.

For t € [0, 1], let us define u' := tu + (1 — t)v and set

g(t) == 7ar s (PaVud)| ar(PyVal),  te€0,1].
Then
Nas(u,v,2) = (g(1) — g(0), kar (P V2)),, = ( /0 1 g'(t)dt, KM(PMVZ))M .
Since
gt) =7u % kont (ParVut) - kg (PyVw) 4 7ag | ks (P Vut)| kar(Py V)
one has

19/ ()] < 2 Far [ar (ParVu)| [k (Par V)|

which implies (27). On the other hand,

(29) Ny (u,v,w) > (TM / |kpr (ParVub)| dt kps (Pa V), /@M(PMVUJ))M

Next, clearly

1 1
/ ‘HM(PMVU )| dt > Irllaxd/ ‘tHM(PMVU)Z + (1 - t) HM(PMV’U)Z‘ dt .
0 0

-----

Denoting
1
I(a,b):/ ta+(1—tb|dt, abeR,
0
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a direct computation gives

1 2 2
M fab>0, Iab) =T Grap<o.

I(a,b) =
(a,0) 2 T+ 1

Thus, for any a,b € R, it follows

jal + bl _ Ja—bl

>

Consequently,

1

1
..... T 4+/d

Combining this estimate with (29) and using (28) gives (26).

Next, the properties of d;, are explored for the case that 7, is defined by (22).

Lemma 2. Let 7y be defined by (22). Consider any u,v,z € WH4(Q). Then

(30)

(31)

where

d
|dn(u;v,2)] < C Z hjl\j[— /2 HbHo,oo,M ||“M(PMVU)||0,4,M H’KLM(PMVZ)HOA,Mv
Me.#y,

(s u, 2) — di(v;0,2)] < C > Bt 1Bl o ar Car (1, v) %
Me#,

X ([[Kar (Par V) lo g ar + 11520 (Par VO g an) 152 (ParV2) g a5

|U_U|1’M if lulypr # 0 or vy 3 # 0,
Car(u,v) = < |ulyar + 0]y ar ’ ’

0 if |u|1,M = |U|1,M =0.

Proof. Denoting

dyr(us v, 2) = (7504 (w) £ar(Py Vo), ki (PuV2)),, s

it is easy to realize that

Applying Holder’s inequality yields

[dar (u; 0, 2)] < 1735 (w)lloar 1ar (ParV0) o g nr Iae (ParV ) llgana

which, using (23), gives

(32)

14+d/2
(s (50, 2)| < C it ™ [1Bllo conr 1500 (Par V) llo g ar 1ar (ParV2) o aas
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thus proving (30). Now let us prove that
(33)  ldur(u;u,2) = dur (v v, 2)| < Chyy ™ [1B]lg,conr G (1, 0) X
X (leas (PrrVullloaar + 1621 (PrarV0)lo 4 00) 1600 (ParV 2) g4, -

If Jul, 5y = 0 or |v]; 5, = 0, then (33) is a particular case of (32). Thus, it suffices to consider

the case |ul; ; # 0, |v]; 5 # 0. Denoting {(x) = |z| x, one obtains

Bhyr? by

dyr(u;u, 2) — dpy(v;v,2) = (&(rar(PuVu)) — E(kar(PuVv)), kae(PyV2))

‘U‘I,M
(34) F BB o] [ — L) (€ ar(Par V) mar (P V)
|U|1,M |U|1,M

The integral terms on M possess the same structure as the term Ny (u, v, 2) in the proof
of Lemma 1 (the second term corresponds to Ny (0, v, z)). They are estimated using the same
technique, only with a different Holder inequality. Then, (16) is applied to
|51 (PrrV (u =)o ar resp. [[Ka (ParVo)|lg - Furthermore, the first inequality from (18) is
employed. To finish the estimate of the second term in (34), the triangle inequality is used.
One obtains

u—vly

|U|1,M

X (H“M(PMVU)HOA,M + HFJM(PMVU)HOA,M) ||“M(PMVZ)||0,4,M-

ldar (s, 2) — dag (030, 2)] < Chyr ™ 11B]lg sonr

The same type of inequality follows by interchanging u and v. Then, using the sharper of

these two estimates and min{|u|1_7}\/[, |v|1_}w} < 2/(Jul1,nm + |v]|1,01) gives (33). O

The properties of the operator T}, namely its monotonicity and local Lipschitz continuity,

follow now by the results of the two previous lemmas and (24).

Lemma 3. If 7y is defined by (21), then the operator Ty, defined in (25) is locally Lipschitz-
continuous and strongly monotone, i.e., it satisfies

2 1 ~ 3
(35)  (Twwn — Thznywy, — 21) > llwn — znlltps + = > Far lar(ParV (wn = 20)) 1500 »

7
Me. iy,

for all wp, z, € Vi, If Tar is defined by (22), then the operator Ty, is Lipschitz-continuous

and it satisfies

1 ~
(36) (Than, 1) = 5 20 l1Eps — Co (I@nllo.0 + 1150

for all z, € V},, where Cy > 0 depends on €, b, ¢, og, h, and W}, but not on z.
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Proof. Let us define the operators A,, Ny, : Vj, — V}, by
(Apzn,vn) = alzn, vn) + sp(zn, o) Y zn, v € Vi,
(Nnzn,vp) = dp(zn + Upn; 20 + Uph, Un) YV zp,vn € Vi
Then, for any wy, z € Vj,, there holds
Thwp, — Thzn = Ap(wy — 21,) + Nywy, — Npzy,

The operator Ay, is linear on a finite-dimensional space and hence it is Lipschitz continuous.
Thus, the (local) Lipschitz-continuity of 7}, follows from (27), (31), and the equivalence of
norms on finite-dimensional spaces. The strong monotonicity (35) follows from (24) and
(26). Finally, in view of (24), it holds

(Thzn, 21) = || 201 ps +dn(2n+Tons 2n, 2n)+a(Ton, 1) +5n(Usn, 2n) +dn(zn+Tn; Upn, 20) = (f, 20)
Now, (36) follows from (30), (10), (16), (18), (4), the equivalence of norms on finite-dimen-
sional spaces, the Cauchy-Schwarz inequality, and the Young inequality. U

To prove that the discrete problem (19) has at least one solution, we shall use the following
simple consequence of Brouwer’s fixed-point theorem, whose proof can be found in [30, p. 164,

Lemma 1.4].

Lemma 4. Let X be a finite-dimensional Hilbert space with inner product (-,-) and norm
||. Let P : X — X be a continuous mapping and K > 0 a real number such that (Px,x) > 0
for any v € X with ||z|| = K. Then there exists x € X such that ||z|| < K and Pz = 0.

Collecting the previous results, the main result of this section can be stated now, namely,

the well-posedness of the problem (19).

Theorem 5. If 7y is defined by (21) or (22), then the problem (19) has a solution. If Ty
is defined by (21), the solution of (19) is unique.

Proof. If 7); is defined by (21), then it follows from (35) that, for any z, € V},,
(Tazns 1) 2 [lznllEps + (710, 28) = 00 l2nll5.0 = 17000 12allo.c -
Thus, using Young’s inequality one gets
(Thzn, 21) = C1 ||znllg.0 — Co,

where C}, Cy are positive constants that depend on h and the data of (1) but not on zj,.
According to (36), the same inequality holds if 7y, is defined by (22). Thus, in view of
Lemma 4 with any K > /C3/C}, the operator T}, has a zero and hence the problem (19)
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has a solution. The uniqueness in the case that 7, is defined by (21) follows from the strong

monotonicity (35). O

3.2. Error estimates. For the analysis of the methods introduced in Section 3, we will
need an appropriate interpolation operator. An important tool for the construction of such

an operator is provided by the following result, whose proof can be found in |23, Lemma 1].

Lemma 6. Let us suppose (9) to be satisfied. Then, there exists an operator gy, : L*(2) — V,
such that, for any v,w € L?(QQ), the estimates

(37) (v = oo, w)| <C Y lolloar Ikarwlloar
Me )y,
(38) lonvlfar + b llowollbar <C Y B lolliar VM € A,
M’ € M,
MNM #

are valid. Consequently, for any o € R, it holds

(39) > b (ool ar + haf llenvllda) <C >0 hS2 IR
Me.#y, Me Ay,

where the constant C' is independent of v and h but can depend on c.

With the operators i, and gy, an operator r, € Z(H*(Q), W) N L (H*(2) N HY(Q), Vi)
is defined by

(40) TRV = v + op (v — ipv) .

To formulate the interpolation properties of r,, it is convenient to introduce the mesh de-

pendent norm

1/2
[olln = ( > Aol ar+ bt ||v||3,M}> :

Me.#y,
Then, using (38), (4), (5), and (11), one obtains

(@) o =rvlliy S Cllo =il < CR ol Voe HHYQ), k=11,
and consequently
(42) |v—rhv|179+h_l v —rRvllgq < Ch V]k1.0 Voe HNQ), k=1,...,1.

The derivation of the error estimates will be based on the following two lemmas. The
first one states an interpolation error estimate and the second one states a bound on the

nonlinear form d,.
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Lemma 7. Let u € H*(Q) for some k € {1,...,1}, and let n :== u — rpu. Then, for any
vp, € Vi, \ {0}, the following estimate holds
a(n, vn) + sn(n, vn) — sn(u, vn)

HUhHLPS
< C(e+hIbllgsog + P2 ollomen + 12 1bIT o0 )

43)  lnllees +

1/2
h* \“\Hm-

Proof. Since, in view of (5), (16), (18), and (20)

1/2

Wlieps < C (e + A lbllg oo + h* lollgpon) " 0l VveH (),

it follows from (41) that

1/2

[7)lps < C (5 + 20|y 0.0 + h? ||U||o,oo,9> h* U110

Next, for any v, € V}, \ {0}, integration by parts gives
(b-Vn,up) =—(n,b- Vo) = ((V-b)n,vp).
Thus, applying the Cauchy-Schwarz inequality and (42), it follows that

a(n, vp) + sp(n,vn) < (||77||LPS +C1bly w00 _1/2 Rt |wlpsa Q) lonllps — (1,b- Vug) .
The use of (37), (11), (4) and (5) leads to

(0,6 Vo) <C Y Nu—inullgar |5a(B - Von) o ar
Me. iy,

1/2
< C’hk|u|k+179 ( Z R lar(b - Vor) |13 M) :

Me Ay,

Applying (16), (18), (20), and (8), one derives
1501 (b - Vop)lloar < M[ar((b = bar) - Vou)lloar + 521 (bar - Vou)llo ar
< C Bl oot Ivnllosnr + 76 72 (2 + ot [1Bllg,00.00)" Bt 7a” Nias (Bar = Vom) o s
which leads to the estimate
N 1/2
(7.6~ Vo) < C (e + h[bllgsn + B2 b 005 ) > Bl 0 lonlps -
Finally, using (17), (18), (20), (4), and (5), one obtains

sn(w,u) < Y Tag [barl? [[8ar Vullg pr < C[bllg oo h*F fulf 10,
Me. )y,

and hence

sn(w,v) < V/sn(w,w) /su(on, i) < Cbll2 o BV ulirq lonllps
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which completes the proof. O

Lemma 8. For any w, € Wy, and u,v € H*(Q) with k € {1,...,1}, it holds
1) dwnir ) < 0 (g o) sl

Proof. First, the application of Holder’s inequality and (10) leads to

(45) dn(wp;riu,r0) < > 730 wn)llo.ar 53 (ParV (i) o a a3 (ParV (1)) [l g.a, s
Me Ay,

<C D7 m ) o har” 1kar(ParV () lo,ag 1 (Par ¥ (rn0))llo e
Me.ty,

1/2
<c (W ||T:;1d<wh>||ovM) ( > It ||KM<PMv<mu>>||3,M)

Me Ay,

1/2
X(Z ot ||V»M<PMV<rhv>>||3,M> .

Me Ay,

Using (16) and (17), for u € H**1(Q) with k € {1,...,1} there holds

(46) 120 (ParV (rnw))llo.ar < [l (ParN ) o ar + ll5ar (ParV (w = 7))o, 01

< Chk, Ul 100 + Clu—1huly -

According to (39), one has for any o € R

Z h%f|u—7’hu|iz\4§2 Z Wi |u_ihu|iz\4‘|'2 Z h%f|9h(u_ihu)|iz\4

Me Ay, Me.#y, Me Ay,
<C N7 By (= inul? py + hyf llu — iull?00) |
Me.#y,

and hence it follows from (11), (4), and (5) that, for a > —2,

(47) > B e (P (rau) 1§ ar < CR2FF ulfy g
Me Ay,

Inserting (47) with a = —d/2 into (45), the statement of the lemma is proved. O

We are now in position to prove the first error estimate. The following theorem states the

error estimate in the case 7y, is given by (21).

Theorem 9. Let 7y be defined by (21). Let the weak solution of (1) satisfy u € H*1()
for some k € {1,...,1}. Let u, € H*(Q) be an extension of uy and let Uy, = ipuy. Then the



LPS WITH NONLINEAR CROSSWIND DIFFUSION 15

solution uy, of the local projection discretization (19) satisfies the error estimate

1/2
|u — upllLps + < Z T |[Far (P V (u — Uh))”%,g,M)

Me.#y,

_ _ 1/2
< 0{5 + 2 bllg s (1 + k=il |uly11.0) + h? (||U||o,oo,9 + |b|ioo,ﬂ o 1)} h* [ulj11.0-

If u € WrHLeo(Q) with k € {1,...,1}, then

1/2
| — up ||y ps + < Z T || (P V (u — uh))”(?;,?),M)

Me. iy,

12
< 0{5 + 2 [bllg s (1 + h* U]} 11.00.0) T h? (||U||o,oo,9 + |b|ioo,ﬂ o 1)} h* Ul 110

Proof. The error u — uy, is split into the interpolation error 1 := v — r,u and the discrete
error e;, := uy — rpu. Then e, € Vj, and also r,u — Uy, € Vj,. From the monotonicity (35)
follows with (19) and (14)

1 5 - -
lenllips + - > A lEar(PuVen)§ s ar < (Th(un — tn) — Tu(rw — o), €n)
Me.#y,

= a(up, en) + sp(un, en) + dp(up; up, en) — alrpu, en) — sp(rpu, ep) — dp(rpu; rpu, ep)
= a(n, €h) + Sh(n, €h) - Sh(U, €h) - dh(rhu; TrU, €h) .

The first three terms on the right-hand side can be estimated using (43). To bound the

nonlinear term, Holder’s and Young’s inequalities are applied to conclude

(48) dp(rpu; rpu, en) < {dp(rpu; rhpu, rhu)}g {dn(en; en, eh)}%
< 2dp(rpu; rpu, rpu) + e dn(en; en,en) .

Then (44), (46), (5), (18), and (42) yield

(49) dp(rpu; ru, Thu) < CB]lg 00 B Jully g

Therefore,

(50)  lenllfps + > s lmas(ParVen) I3 50
Me#y,

< Clethl[blloson 1+ R Julyy q) + B llolloco0 + h b o006} h*F fulfss o
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Next, to estimate the interpolation error, for any p € [1,6], it follows from (10), (15), and
(13) that

1) e (PN o par < IVD =70Vl 00

< (V(w = inu)lopar + IV (inu — ) = 7 Vnllgpar
d_d
<|u-— ihu|l,p,M + Chyy IV (inu — rhu) — 7TMV??HO,M

£y

. d_d
< fu—inulypar + Chiy * (lon(u —in)]y 2 + v —inuly 5)
d d

4_d . d_d
" g+ C Ry lon(u —dnu)]y gy -

<Chy
Then, applying (51), (21), (5), (18), (38), (11), (4), and (6), one derives
. k—d
(52) > Aurllma(PuVa§aa < Chlbllosn D By~ fuliiin-
Me Me.y,
Thus, combining (50), (52), and (43), the first estimate of the theorem follows.
If u € WhtLo(Q) with k € {1,...,1}, then local norms of Sobolev spaces with p = 2 can
be estimated with norms of Sobolev spaces with p = oo, thereby gaining powers of h from

the smallness of the local domain: [ul, ., 5, < C’hj\lf U]}, 11,000, fOr any M € #),. Hence, it
follows from (52), (4) and (5) that

(53) Z T ||“M(PMV77)||8,3,M <C HbHo,oo,Q pAEH ‘u‘k—l—l,oo,Q |U|z+1,9-
Mey,

Furthermore, using (38), (11), and (4), one gets

lu —rhuly < C Z hhp |1, < C phar |Uljt1,00,0 VM e M.
M' e (///h,
MNM #0

Therefore, according to (44) and (46),
(54) dn(rpu; rau, rpu) < C ||b||o,oo,Q s |u|k+1,oo,sz |U|i+1,9,
which implies the second estimate of the theorem. O

Remark. Theorem 9 implies, in particular, the following convergence estimates in the convection-
dominated case € < h: If u € H*(2), then

lu—unllips < Coh*~* (WD 4 July(3) [l
where Cj depends on the data of the problem. If u € W2*(2), then

1/2
lu — unllps < Co k2 (14 12 |uly/2 o) [ulyg -
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If u e H*(Q) with k € {2,...,1}, then
_ 1/2
lu —unllps < Co e (1+ pZ A/ |U|kim) |U|k+1,sz~
We end this section by presenting the error estimate in the case 7y is defined by (22).

Theorem 10. Let 7y be defined by (22). Let the weak solution of (1) satisfy u € H* ()
for some k € {1,...,1}. Let w, € H*(Q) be an extension of uy and let Uy, = ipuy,. Then the

solution uy, of the local projection discretization (19) satisfies the error estimate

= unllps + (dn(un; w = wn, u —up))"?

< C (e +hlbllson + B 1o losen + 12 B o 05 ) " B Juliir 0
Proof. Set again n := u — rpu and e, := uy, — rpu. From (19) and (14), it follows that
a(en, en) + sn(en, en) + dn(un; un, €n)
= a(up, en) + sp(un, en) + dp(up; up, en) — a(rpu, ep) — sp(rpu, ep)
= a(n, en) + sun(n, en) — sn(u,en) .

Thus, in view of (24), one gets

Heh“ips + dh(uh; €h, €h) - a(ﬁa €h) + Sh(ﬂa €h) - Sh(uv €h) - dh(uh; Trl, €h) .

The first three terms on the right-hand side can be estimated using (43). To bound the
nonlinear term, Holder’s and Young’s inequalities are again applied
(55)

1
di(up; T, e) < A/ dy(up; rau, raw) /di(up; en, en) < di(up; rau, Thu) + 1 dp(un; en, en) -

Using (44), (23), and (5), one obtains
(56) dp(uns T, Tit) < Cllbllgso.0 B2 410
Therefore,
lenllps + dn(uns enen) < C (e + A Bllgsen + 12 10 llgm0 + 72 b} s a0 ') B2* Juli iy 0
Note that an application of the triangle inequality gives
(57) dp (un; w — up, u — up) < 2dp(un;n, ) + 2 dn(un; en, en) -
It follows from Hoélder’s inequality, (23), (51), (39) with a =0, (11), (4), and (5), that

(58)  dn(unin,m) < D 732 ) llor 5 (P V) G anr < C 1Bllg o B [ufing
Me.#y,
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Finally, using the triangle inequality and the estimate (43), the statement of the theorem
follows. O

Remark. Theorems 9 and 10 prove the convergence of the method in the LPS norm plus
an extra term involving the crosswind derivative of the error. Hence, these estimates give,

essentially, an extra control of the whole gradient of the error.

4. THE TIME-DEPENDENT PROBLEM

We now move on to the study of the time-dependent problem (3). A weak form of problem
(3) reads as follows: Find w € L?(0,T; HY(Q)) N H'(0,T; L*(Q)) such that v = wu, on
[0, 7] x 092, u(0,-) = up and

(59) (ug,v) + a(u,v) = (f,v) Yve H)(Q), for almost everyt e (0,T].

To avoid technicalities in the analysis, it is assumed that the boundary condition does not
depend on time, uy(t, -) = up. The initial condition wug is assumed to satisfy gy, = up and
it is approximated by a function u) € W}, such that u) — Uy, € V.

To perform the discretization of the time derivative, the time interval [0,77] is divided
into Ny equi-distant strips of length 6t = T'/Np. The nodes are denoted by t" = ndt for
n = 0,1,..., Ny and the abbreviations u" := u(t",-), f* := f(t",-), etc. are used. Since
this section studies the LPS method with nonlinear crosswind diffusion in combination with
a one-step #-scheme as temporal discretization, from now on, the superscript n + 6 denotes
for all functions which are defined in [0,7] the values at time ¢"* := 9"l + (1 — 0) "
with any n € {0,...,Np — 1} and 6 € [0,1], e.g. b"™ = b(¢t"*?,.). For functions, which

are defined only at the discrete times t" and #"*!, it denotes the linear interpolation, e.g.

uzw = QUZH + (1 — ) uy. Finally, it is convenient to introduce the interpolation operator
fZJ’@ satisfying
(60) P = O rpu™ + (1 — 0) rpu”

with 7, from (40). Thus, writing « instead of n + 6, functions u®, u?, 7u, etc. are defined
for any o € [0, N7].
Then, given 6 € (0, 1], the fully discrete problem reads as follows: Forn =0,1,..., Ny —1,

find u}*t* € W), such that u}™ — Uy, € V;, and

urtt —
(61) ( h 5 h,’l}h) + an+0(u2+6’ Uh) + SZ+6(UZ+6,U;L) + dz—i—&(uz—i-ﬁ; U;LH-G’ Uh)

= (fn+6, Uh) Y vV € Vh .
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For § = 1/2, the Crank-Nicolson scheme is recovered and for # = 1, the implicit Euler scheme

is obtained.

Remark. To simplify the notation, we will not explicitly indicate at which time instant the
functions b and o in the definition of the norm || - ||} pg are evaluated. This will be implicitly
determined from the context or by the argument of the norm. Thus, if we write, e.g.,

U || ps, the norm || - || ps is defined using 8" and o"+7.

4.1. Well-posedness and stability. The well-posedness of (61) can be traced back to the
well-posedness of the LPS scheme with crosswind diffusion for the steady-state problem. The

discretization of the temporal derivative can be written in the form

upt L g
ot ’ 0 o ’

The first part of this term has the form of a reaction term for uzw. Thus, given u}, the

equation at the discrete time ¢"*! is an equation for u}™ which has the same form as (19)
with the data of the problem at t"*? and with a reaction coefficient which has a contribution

from the temporal derivative. Thus, defining the operator T,:‘Jre : Vi — Vi, by

- 1 ~ 1
(T 20, vn) = (T3 2n,0) + 5 (204 Tony 0n) = 5 (i, o) ¥ 2,00 € Vi,
it follows that T;""%(uft? — %;,) = 0. Therefore, the existence and uniqueness of a solution

uzw can be proved in the same way as in the steady-state case, see Section 3.1. This fact is

stated in the next result.

Corollary 11. Letn € {0,1,..., Ny — 1} and up € W), with u}}|yq = e, be given. If 7o is
defined by (21) or (22), then the problem (61) possesses a solution u}™. In the case that Ty
is defined by (21), the solution of (61) is unique. Furthermore, there is a constant C' > 0 such
that the solution of the scheme (61) with Ty given by (22) is unique if 5t Hb"+9||07007M < Chy
for any M € #,.

Proof. The only point remaining to prove is the uniqueness in the case 7y, is given by (22).
For this, let vy, w;, € W), and 2, := v, — wy. Then, applying (31), (10), (16), ||[Pr™|, = 1,
and (8), one arrives at
|5+ (03 0ny 20) — di ™ (wns wn, z)| < C Y it 167 oo ar 1128115 01
Me.t,
Thus, if vy, wy, € V},, one obtains

~ n+6

Tn—l—G Tn—l—@ > C ¢ Hb - ||0,oo,M 2 2

( R Uh— 1y Wh, 2) > Z a0t h ||Zh||0,M‘|'||Zh||LPs-
Me.#y, M
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Consequently, for 6t small enough, the operator T,:‘Jre is strongly monotone and hence the

solution to the discrete problem (61) is unique. O
The next result states the stability of the method.

Lemma 12. Let 6 € [1/2,1] be given. Let uff := uf — up, for any a € [0, Nr|. Then any
solution of (61) satisfies the following stability estimate for all N =1,2,... Nr:

N-1
(62) [y llio +(26-1) Z @+t —aRl5 e+t D 11 llies
n=0
N-1 N-1
ot S drt ) < @R + ot Y {ai IR
n=0 n=0

+ [+ 0 (BB e+ 113 ) + 1Bl ] 012 + san

where
(63) upt? =upt?, pn = BB o o [T l3 5.0 if Tar is given by (21),
(64) aptt =t pn =10 if Tar is given by (22).

Proof. The proof starts in the usual way by setting v, = u"+6 € V" in (61) and using that

uptt —u = uptt — 4 which leads to
(65) (@ =y, wy*0) + ot [l Eps + 0t di ™ (™ )

= 5t (fn+6 az—i—&) St an+6 (ub}w ~n+9) St SZ+6(Ubh> n+e) )

A straightforward computation gives

201 |~n+1

(66) (™t =, ) = 5 Il

(6.0 — l@hlI6.0) +

_uh||(2),9-

l\Dli—‘

Next, the application of the Cauchy-Schwarz inequality, the Young inequality, (16), (18),
(20), (4), and (5) yields

_ 1
(f"*",UZ”)SU—OIIf"*"!I%,Q T s

1

a0 i, Ty ) <6 [+ 0" (07N e+ 1 NG )] 1Tl T + 5 1T s -

- - 1
SZ“’(Ubh,UZ”) < Ch||bn+6||0009|Ubh|1QWL | n+9||LPS
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If 7, is given by (21), then, from (26) and an analog of (48), one obtains

- 1 - ~ ~ -~ -
dz+9(uz+9; uz+9’ UZ-H)) Z ? dZ+€ (UZ-H); uz+9’ UZ-H)) + dZ+€(Ubh; Ubhs UZH))
1
+0 (~n+0. ~n+0 ~nt0 O~ L~ o~
> 0 dyy ™ (s ™ ) — 2y (U Uk, U, -

Furthermore, the use of (10), (16), (18), ||[P&™|l, = 1, (4), and (5) leads to
A G o W) < €7 i P 1" oot [Tl F a1 < C BBl 0
Me#,
If 7, is given by (22), then, using an inequality like (55), one gets

n+0/ n+6. n+0 ~n+0\ __ m+0/ nt+l, ~n+0 ~n+6 n+0/ n+6.~ ~n+60
dy ™ (g uy T ™) = AT (g ) A+ dy T (s s U )

1 1
n+0/, n+0. ~n+6 ~n+0 n+0 (., n+0. ~ ~
> 2 dy ™ (" T ™) — B dy ™ (up ™" Uph, Up) -

Applying the Hélder inequality, (23), (10), (16), [|Pi||, = 1, (4), and (5), one deduces that

A0 (s T, ) < CY R B g s 10 (P Vi) [12.4.0s
Me. iy,

- 0 ~
<Ch ||anr ||o,oo,9 |Ubh|iﬂ .

Now, inserting the above relations into (65) and using the notation (63) and (64), one obtains

1, - _ 201, .1 -~ ot~ ot b0l ~
5 (@5 e — I1ER15.0) + [@ " = lGe + 5 I lEes + 5 di (™ a0, w )

2 2
<oty |f" N5+ Cot{e+ o5 (16" s + 1" IIE o) + B IO g s} lEnlE g

+C’5t,uh,

and (62) follows by summing up from n =0 to N — 1. O

Remark. The inequality (62) is a proper stability result provided that [|u}||o ¢, |t |l o and,
if 7ar is given by (21), also [t 5 are bounded when h — 0. One may set uj = Iyug and
Uy, = Iy, where Iy, : H'(Q) — W), is the Scott-Zhang interpolation operator (cf., e.g., [12])
and u, € H'(Q2) is an extension of uy. Then [[u)|lgq < C'llugllyq and |[tl]; o < C'lll, g
If u, € W'3(Q) (requiring the stronger assumption u, € W?/33(92)), then also |Ubn|y 3.0 <
C [[tp]]1 3. 0. It is important that I, preserves homogeneous boundary conditions since one has
to assure that u) and %, coincide on the boundary of Q. If ug € H?(Q) and u, € H>/2(9Q),
which are the minimal regularity assumptions for deriving the error estimates in the next
section, one may use the operator i from Section 2 instead of I,. Now u, € H?(f) and,

according to (11) and (13), one has [luj[lo o < C'[|uolly o and [[tslly o+ [tnl 5.0 < C ]l 0-
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Remark. It is worth remarking that, for the homogeneous case u;, = 0, instead of the direct
proof presented in this manuscript, an analysis completely analogous to the one given in [8]

leads to the following stability result

N-1
1
5l g + 0t > {lluy ™ s +di ™ (™5 ™, i)}

n=0

N-—1
_T_ n 1
< e {Tot Y 150+ 5 lubltel -

n=0

A similar analysis could also be carried out for the non-homogeneous case, but in that case

the presence of u;, makes the constants dependent on oy *.

Also, if u, would be supposed time dependent, then in the first line of the proof of stability
there holds uj ™' — u} = @}t — P + ™t — 4P, thus creating an extra right-hand side

depending on the time derivative of wuy.

4.2. Error estimates. In this section, error estimates are derived for the solution of the
discrete problem (61) with 6 € [1/2,1]. The error will be analyzed essentially in the quantity
which is given by the stability estimate (62). Let us denote the error by e* := u® — uf
with a € [0, N7|. Furthermore, to simplify the presentation of our results, we introduce the

quantities

N—1 1/2
EY =Moo + (5152 ||6"+9||ips> :

n=0

N-1
—-1/2 n
Q" = h (Juolsra + 16 irrg + 70l oo sy ) + <6t (= + 216"l

n=

1/2
210" g+ 1205 1" ) (07 + )) ,

N-1 1/2
RY = (&Z P 5 g (10 g + |u“+1\z+l,g)) ,

n=0

N-1 1/2
s = (&Z e N (1 R T AP [ (7 PR i )) ,

n=0
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XY= max (e b6 g0+ 10" o

— 0 _ 1/2
+ 05 10" s + 00 IR ce)

N = pl/2 nt011/2
yV=ht? max 0

where N =1,2,..., Np.

Theorem 13. Let § € [1/2,1] be given. Let the weak solution of (3) satisfy u,u; €
L*(0,T; H*Y(Q)) for some k € {1,...,1} and let uy € L*(0,T;L*(Y)). Let u, € H?*(Q)
be an extension of u, and let Uy, = ipuy. Let ug € H*YQ) and let u) = ijug. Let
{up N be the solution of the local projection discretization (61). If Ty is defined by (21)
and u; € L3(0,T; W13(Q)), then the error estimate

N_1 1/2
EN + (& > %M||HM(PA@+9W"+9)y|3,37M)

n=0 Me.#y

< ChP QY + ChF RY + C 6t XV |Juul| 20,03 .11 )
3/2 —-1/2
+ C (B2 YN el Pl vy + C 0t g 2 el oo v 2oy

is satisfied for N = 1,2,..., Np. Moreover, if 0 = 1/2, uy € L3(0,T;W'3(Q)), and uy €
L*(0,T; L*(Q)), then

N_1 1/2
EN + <5t >N 7~'M||/~€M(PA72+6V6H+6)||g,37M>

n=0 Me.#)

S Ch QN + Ch* RN + C (6t)* X [Juaell 20 43111 (0

3/2 —-1/2
+C ()Y HuttHL/ff(O,tN;Wl’S(Q)) +C (6t)* 7 / HutttHLZ(o,tN;Lz(Q)) :

If u € L?(0,T; WktL22(Q)), then, in both estimates, RN can be replaced by S™.
If 7as is defined by (22) and u; € LY0, T; W4(Q)), then the following error estimate holds

N_1 1/2
m <6t > dpt (et en+6)) < CREQY 4 COtX™ ull o sy
n=0

+ Cot T1/4 YN ||ut||L4(0,tN;W1v4(Q)) + C ot 0'0_1/2 ||utt||L2(O,tN;L2(Q)) .
Moreover, if 0 = 1/2, uy € L*(0,T; W'(Q)), and uy € L*(0,T; L*(2)), then

N-1

1/2
EN + <5t Z dp 0 (uf s ento, e"+9)> < CR QN +C(6t)* XN el 2009, 11 02))

n=0

+C O TY N sl o ovawragay) + C (8)° 05 sl 20,0120
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Proof. Analogously to the steady-state case, the error will be split into an interpolation error
and a remainder which belongs to the finite element space. The decomposition of the error

e® with any « € [0, Nr] has the form

e =n% — ey with N =u* -1y, e i=uy -1, €V,

where we use the abbreviation 7' = 7u with 7 given by (60). Using this decomposition,

one obtains with the triangle inequality and with (57)

N-—1 N-—1
(67) leVI[5.0+ 6t > e IEps + 0t > dptP (gt et )
n=0 n=0
B N-1 N-1
<AV o+ 0t D> 0™ NTes + 06t Y dp (vt ?7"*9,?7"”)]
L n=0 n=0

N-1 N-1
+a(ledlloa +t Y llenlites +dt Yy dit (3™ e, 62’*9)] :

where ;7 = el 4pt0 = gnt0 Ant0 — et if 7 s defined by (21) and 4§t = 47t =
Ao+ =yt if 7y, is defined by (22).

First let us estimate the interpolation errors. The starting point is the identity
(68) 0 = — U — (1= 0)u" 4 0 (T — ™) (1= 0) (U — ™).

One has

tn+9 tn+1

w(t) dt — 6 / w(t) dt,

n+60

(69) W — gt — (1 — f)u" = (1—6) /

tn

which, in view of (42), leads to

’|”7n+9||0,9 < Cht! (Ju" |10 + |Un+1|k+1,9) + Vot el e 15200

\U"Jreh,ﬂ < Ch (Ju" 1.0 + |Un+1|k+1,n) + Vot el p2ggn gt -

Using Taylor’s formula with integral remainder or applying successively integration by parts

gives
t’l’b
(70) P R / wn(t) (7 — 1) dt,
tnto
tn+1
(71) 't =" 4 (1 - 0) ot / w (1) (" —t) dt .
tn+0
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This may be used to derive improved interpolation estimates with respect to the time step

provided that u; € L*(0,T; H(2)). Indeed,

tn+0 tn+1

ug(t) (t—t") dt—0 / uy(t) (" —t) dt,

tn+0

(72) u"?—0u" T —(1-0)u" = —(1-0) /

t’!L

which leads to
17" lloq < C R ([P gy + " eng) + (68 [ul] p2gn nr20
"0 < O ([uero + " 0) + (6t)% weell 2 gen gn1, 1102y -

Now let us estimate the norms of the interpolation error in (67). In view of (60), (42),
(16), (18), (5), and (4), one has

||77N||0,Q = HUN - ThUNHo,Q < ChH! |uN‘k+1,Qv

1/2 1/2

17" lleps < (6 + CRIO o) ™ 10" 0 + 0™ lgecn 11" lloq-

Furthermore, analogously as in (51), for any p € [2, 6], one obtains

(73)  rar (P V" ) lopoar < Clu™™ = i — (1= 0) iu"|y 0

d

a_
+Chiy * (lon(u™ = inu™) |y + lon(u™™ = ipu™ )| p) -
If 75 is defined by (21), this inequality implies that

dz+9(nn+9; ,r]n—i-t‘)7 nn—l—@) < C (I + []> 7

where

L I S L e e () R

Me. iy,
IT:=h 0" gmn Y ("™ —inu 3 g 0 + [u" = inu” 35 0)
Me.#y,
_d i .
010" o Y ad (lon(u™ = inu™) [T ar + lon (™ — i ) -
Me. iy,

Using (69) and (72), one obtains
I < Ch(0t)? 10" |p 000 el 23 gm gm0

resp.

I < Ch(6t)° 6" |g 000 [sel| 23 im gm0 -
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Furthermore, it follows from (13), (38), (11), (6), and (4) that

n 3k—d/2 n n
(74) IT<ChIb™ g e Y R 2 (s + [ )
Me. iy,

which implies in view of (4) and (5) that
I < ORI N0 o 0 0 ([ R0 + [0 fi0)
If u € L2(0,T; WF1(Q)), the inequality (74) together with (4) and (5) implies that
11 < ChpH ||bn+9||0,oo,Q (|un|k+1,oo,ﬂ Iun|i+1,9 + ‘un—l—l‘k—l—l,oo,fl ‘“nH Z—I—I,Q) .

If 7ys is defined by (22), then, proceeding analogously as when deriving (58), but with (73)
instead of (51), and applying (13) in addition, one gets

dZ”( Z+67 n" 0 77n+6) < ci+cC ||bn+9||o,oo,ﬂ h2HH (|un|2+1ﬂ + |UnJrl 2+1,Q)>

where

i d2 n n n
=0 g Y. A — 0wt — (1= 0) w3,
Me.#y,

Similarly as above, one obtains

I < Ch (810" g 0 el Fagen e wracay)
resp.

[<Ch(s) 6™l o0 el T gm0

Now let us estimate the norms of the discrete part of the error on the right-hand side of

(67). To derive an equation for this part of the error, the weak formulation (59) at ¢t = ¢"*+?

is subtracted from (61) with v = v, = €}*?. Then, using the fact that uf = ef + 7%, one
deduces that
(75)  (en™ —en e ™) + ot ey s + ot di T (up T up Y ™)

=
_ n+d _ 'h h n-+0 n+0/ n+0 _n+6 n+0/-n+0 _n+0
= ot [(ut ot ) €n, )+a ("™, ey™) = sy e )
Furthermore, one obtains

(76) dz—l—@(uzﬂ‘) uz+9 n—l—@) > 7dn+€(,}/g+€ n—l—@ n+9) +d"+9(7§+9 —n+6 €Z+0>7

where v5 1% = 7% if 7, is defined by (21) and 4% = u} if 7 is defined by (22) (v was

defined below (67)). This follows from (26) if 75 is defined by (21) and simply by writing
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the second argument of di ™ as e} " +77 and using the fact that dit?(up™?; e t? ent?) > 0

if 757 is defined by (22). Since 6§ > 1/2, it follows from (66) with w replaced by e that

(77) (er™ —emen™) = 5 (llep ™ le.o — llerlls.o) -

l\DI»—t

Substituting (76) and (77) into (75) and summing up over the discrete times yields an upper
bound for the discrete part of the estimate (67)

N-1
(78) ey lon + 0t Z lertllEps + 6t D dit (a5 en et

n=0

DO

7 N-1 Fn-l—l —pn
_ ||eh||0(2 + 75t Z |:(u;z+9 h h €Z+6) + an+€(nn+0 6Z+6)
—~ ot

_ SZ+€( }r:—l—@ 6Z+9) dz+0(7§+97 —ZL+9 ez+€)} )
Using (39), (11), (5), and (4), one obtains

lerllo. = llinu® = rnu’llo g = lon(w” — inu’)lloq < CRH Ul -

Applying the Cauchy-Schwarz and Young inequalities gives

=n+1 =N
nt0 _"h T Th nto) - 1
ut ) eh =~
ot (o)

_nd41 —n 112

T — T
u;z—i-ﬁ h h

ot

7 len* IEes-

O,Q
The last term can be hidden in the left-hand side of (78). The first term is a mixture of
discretization errors in time and space. Elimination of "% from (70) and (71) yields

tn+9 tn+1

uy(t) (" —t) dt — 5 foee uy (t) (" —t) dt.

nto _ u"tt—y 1

u _—
¢ St 5t
Since interpolation in space and differentiation in time commute, one has

tn+1

u"t — _ZH (u" =) = / (wy — rpug)(t) dt .
t

n

Thus, applying the Cauchy-Schwarz inequality, one derives

=n+1 —n (|2

n+0 T —Th

Uy 5t |up — Thut||%z(tn,tn+1;L2(Q)) + 20t ||utt||%2(t",t"+1;L2(Q)) :

_5t|

The first term on the right-hand side can be bounded using (42).
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Assuming uy; € L2(0,7T; L*(2)) and replacing (70) and (71) by

02 I
u" = u"t? — ot urt? + o) (6t)? ult? 4 = / Wy (1) (1" — )2 dt
t

2 n+60
1—6)? 1
utt = (1 - 0) ot uft? + ( 5 ) (6t)% ul? + 5/ 9 U (1) (1" — £)? dt,
i+
one obtains
nt+l _ . n ot
u?—l—@ — % + 5 [92 . (1 o 9)2] UZJH)
1 tn+9 1 tn+1
— ﬁ uttt(t) (tn — t)z dt — ﬁ o uttt(t) (tn+1 — t)z dt,
tm tm

which shows that an improved estimate with respect to dt follows for § = 1/2, i.e., for the

Crank-Nicolson scheme. Indeed, one gets
_n+1 12
JTY? T, =Ty

2
t ot < 5t [Jue — Thut’|%2(t”,t”+1;L2(Q)) + (0t)° Huttt’|%2(t”,t”+1;L2(Q)) :

0,2
Now let us consider the remaining three terms on the right-hand side of (78). According
to (68) and (60), one has

an+€(77n+0’ 62-1-0) _ Sz-l—&(,,:z-i-e’ 6Z+6) — an+0(un+€ _ 9u"+1 _ (1 _ 9) un’ ez-ﬁ-@)

1 [an+9(un+1 e e;wre) _ SZ+9(7“hu"+l, 6Z+6)}
+(1-19) [anw(u” — rpu”, ezw) — szw(rhu", eZ”)} )

The last two terms can be estimated by (43) and the estimation of the first term on the

right-hand side is performed using
[0 = u — (1= 0) u | o < 0t luelZogn s i) »
resp.
[u*? = u" = (1 =) u" [T o < (38)° el Zogen pnr,m1 (0

which follows from (69), resp. (72). Finally, the last term on the right-hand side of (78) can
be estimated analogously as (49), (54), and (56): if 75, is defined by (21), one derives

0 (0 ) < OB g s WP (U Ry o + T R 0)

if, in addition, w € L*(0,T; Wk+1.°°(Q)), then

n+60/-n+60. —n+60 —n+60
dy (T T )

<C ||bn+€||o,oo,ﬂ s (" 541,000 T |un+1|k+l,oo,(2>(|un|z+l,ﬂ + Ju i+1,9) ;
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and, if 7ps is defined by (22), then
dy (0 ) < C B g s PP (0 R0+ [0 R ) -

These estimates together with analogs of (48) and (55) lead to an estimate of the term
dz+€(,yg+€; f}r:—l—@, 6Z+9).

Collecting all the above estimates proves the theorem. U

5. EXAMPLES OF SPACES AND PARTITIONS SATISFYING THE HYPOTHESES

This section is devoted to the presentation of some examples of spaces W), and D,; and
partitions .7}, satisfying the hypotheses from Section 2. For simplicity, the discussion is
restricted to the two-dimensional case. In three dimensions, the spaces can be constructed
analogously. Throughout this section, {7, },>0 stands for a regular family of triangulations
of Q. This family is formed either by triangles or by convex quadrilaterals K with diameters
hx and one has h = maxgeg, hi. In what follows, K stands for a reference mesh cell, which
is either a triangle or a square, depending on the type of elements in .7,. For any K € 7,
there exists a bijective mapping F : K — K that maps K onto K and is affine if K is a
triangle and bilinear if Kis a square. For any integer [ > 0, we denote by P, the space of
polynomials of total degree at most [ and by @Q; the space of polynomials of degree at most
I in each variable. Finally, we set R,(K) = P/(K) if K is a triangle and R/(K) = Q,(K) if
Kisa square.

i) The two-level approach. This is the approach considered in the original local projection
stabilization method (cf. [2, 3]). The starting point is {.#},}r~0, a shape regular family
of triangulations of Q. Then, each triangle is divided into three triangles by connecting
its vertices with the barycenter and each quadrilateral is divided into four quadrilaterals by
connecting midpoints of opposite edges. The resulting triangulation is denoted by .75,. Then,

given an integer [ > 1, the spaces W, and D), are given by
(79) Wy, .= {v, € C(Q); vh|KOFK€Rl(IA() VK € 9}, Dy =P 1(M).

The inf-sup condition (9) is proved for this pair in [28].
Alternatively, for the quadrilateral case, the space D), could be defined as the space of

mapped polynomials. More precisely, we can present the following two alternative definitions
for Djy;:

—

Dy i={ve L*(M); voFy € P_y(M)},
D3 i={vel*(M); voFy € Ql—l(]/w\)}a



30 G.R. BARRENECHEA, V. JOHN, AND P. KNOBLOCH

where M is a reference macro-cell and F, W is the analog of F. Both definitions lead to
different methods (both different from the one presented so far) and have the advantage
that the computations can be done directly on the reference element, leading to simpler
implementations. All the approximation and stability assumptions hold for D3, but for D},
the approximation property (12) holds only on uniformly refined meshes (see |29, pp. 345—
346] for a discussion on the topic).

ii) The one-level approach. This alternative was introduced in [28] and assumes %}, = 7},.
Introducing a polynomial bubble function bz € H&(IA( )\ {0} (cubic if K is a triangle and

biquadratic if Kisa square), the spaces are given by
W, == {Uh € 0(6)7 Uh|K ol € Rl([?) —l—bf( . Rl—l([?) VK € %}, Dy = Pl_l(M).

The inf-sup condition (9) is proved for this pair in [28].

iii) The overlapping method. Let xy,...,xy, be the inner vertices of the triangulation .7,
define the neighborhoods M, := UKe._%,:cieK K. and set ), := {Ml}fvzhl The spaces W), and
Dy are given by (79). The inf-sup condition (9) is proved for this pair in [22].

In all of the examples above, 7, can be chosen to be the Lagrange interpolation operator
and 7y to be the orthogonal L? projection of L?(M) onto D)y (see, e.g., [12]). The validity of
the geometrical hypotheses (4)—(7) follows from the mesh regularity. The inverse inequality
(8) arises from a local inverse inequality (cf. [12]) and the mesh regularity. Finally, if Fi is
linear for any K € .9, then the space Gj; consists of functions that are polynomial on the
mesh cells included in M and the inverse inequality (10) is standard (cf. [12]).

Note that if the set .}, consists of nonoverlapping sets M, which is the case for both the
one-level and two-level methods, then (significantly) more degrees of freedom are used for
constructing the space W), than in case of the method with overlapping sets M. This increase
of the number of degrees of freedom is either due to an enrichment by bubble functions (in the
one-level method) or due to a refinement of the given triangulation (in the two-level method).
On the other hand, given a triangulation .7, of Q and using .4, consisting of overlapping sets
M, the space W}, can be defined as a standard finite element space consisting of piecewise

polynomials of degree [ on ., like in the Galerkin discretization.

6. NUMERICAL ILLUSTRATIONS

In this section, the theory of this paper is illustrated by the results of numerical computa-
tions performed for the steady-state problem (1). From the three possibilities for spaces and
partitions proposed in the preceding section, we have chosen the overlapping version of the

LPS method. This is mainly due to the fact that, as shown in [22], the overlapping version
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FIGURE 1. Type of the triangulations used in numerical computations (left)

and exact solution for Example 1 (right).

is more robust with respect to the stabilization parameter than both the one- and two-level
approaches. The overlapping version was applied with triangular meshes and conforming
piecewise linear approximation spaces W), (thus [ = 1). The solution of the nonlinear sys-
tem was performed using a fixed point iteration with damping (treating the stabilization
parameter 759'(uy,) explicitly), as proposed in [18]|. Both possible definitions (21) and (22)
of Tpr(uyp,) were considered.

In the below examples, = (0, 1)? and Friedrichs-Keller triangulations of the type depicted

in Fig. 1 were used. It is worth mentioning that the mesh is not aligned with the convection.

Example 1. Smooth polynomial solution [20], support of error estimates. We consider
problem (1) with ¢ = 1078, b = (3,2)7, ¢ = 2 and u, = 0. The right-hand side f is chosen
such that

u(z,y) =1002% (1 —2)*y (1 —y) (1 —2y),

is the solution of (1), see Fig. 1.

In the stabilization parameters, the values 7y = 0.02 and 8 = 0.1 were used. Table 1
shows errors of the discrete solutions measured in various norms for various mesh sizes. The
notation | - ||y ., is used for the discrete L> norm defined as the maximum of the errors
at the vertices of the respective triangulation. The convergence orders were computed using
values from the two finest triangulations. One can observe that the convergence order with
respect to the LPS norm is 3/2, as predicted by the theory, and that in other norms one

obtains the usual optimal convergence orders.
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TABLE 1. Example 1, errors of the discrete solutions.

parameter (21) parameter (22)

he | -lees [ -lloo | T-Tio [ I looon || II-Mleps | - lloo | -0 | I lloccn
8.84—2 || 4.74—-2 | 1.83—2 | 4.20—1 | 6.46—2 || 4.30—2 | 1.47—2 | 4.00—1 | 5.04—-2
4.42—2 || 1.48—-2 | 3.54-3 | 1.88—1| 1.52-2 1.41-2 1 293-3 | 1.84-1| 1.13-2
2.21-2|| 5.02—-3 | 7.24—419.02—-2 | 3.40-3 || 4.93-3 | 6.57—4 | 8.96—-2 | 2.44-3
1.10-2 || 1.76—3 | 1.58—4 | 4.45—-2 | 7.63—4 1.75—-3 | 1.57—4 | 4.44-2 | 5.57—4
5.52—3 || 6.19—4 | 3.63—5| 2.21-2| 1.77—4 || 6.18—4 | 3.83—5 | 2.21-2| 1.44—-4
order 1.50 2.12 1.01 2.11 1.50 2.03 1.01 1.95
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FIGURE 2. Example 2: solutions for the parameter (22) with 7

B=0,5=0.03,8=0.05 8=0.1, left to right, top to bottom.

Example 2. Solution with two interior layers [25|, reduction of spurious
tion (1) was considered with e = 1078, b(z,y) = (—y,2)T, c = f = 0,

conditions

ou

on

uw=u, on I'P, =0 on I'V,

\\\\:

oscillations. Equa-

and the boundary

where TV = {0} x (0,1), I’ = 9Q \ 'V, n is the outward pointing unit normal vector to

the boundary of 2, and

1 for (z,y) € (1/3,2/3) x {0},
0

(2, 9) else on I'P.
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FIGURE 3. Example 2: solutions for the parameter (21) with 7o = 0.02, § =
0.03 (left) and 79 = 0.02, 5 = 0.1 (right).

Results are presented that were obtained on the triangulation of the type from Fig. 1
having 33 x 33 vertices. Figure 2 shows results for the LPS method with the nonlinear
crosswind diffusion term dj defined using the parameter (22). One can observe that the
crosswind diffusion term manages to reduce the oscillations appearing in the solution of the
linear LPS method. An increase of the parameter S does not only reduce the oscillations
but also increases the smearing appearing at the layers. In this respect, the method behaves
as expected. Two results obtained for dj defined using the parameter (21) are shown in
Fig. 3. A detailed comparison of the results in Figs. 2 and 3 reveals that the method with
the parameter (21) is less successful in suppressing spurious oscillations whereas it leads to
a more pronounced smearing.

From the discussion of the preceding paragraph, the choice of the stabilization parameter
B appears as an important issue. A good choice of user-chosen parameters in stabilized finite
element methods is an open problem for all methods. In general, the parameters need to
be chosen not as constant but as function (see [18] for the construction of an example). A

non-constant choice, done automatically like in [19], will be the subject of future research.
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