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Abstract

An extension of the local projection stabilization (LPS) finite element method
for convection-diffusion-reaction equations is presented and analyzed, both in the
steady-state and the transient setting. In addition to the standard LPS method, a
nonlinear crosswind diffusion term is introduced that accounts for the reduction of
spurious oscillations. The existence of a solution can be proved and, depending on
the choice of the stabilization parameter, also its uniqueness. Error estimates are
derived which are supported by numerical studies. These studies demonstrate also
the reduction of the spurious oscillations.

1. INTRODUCTION

The solution of convection-dominated convection-diffusion-reaction equations with finite
element methods constitutes a very challenging (and open) problem. Over the last three
decades, the amount of work devoted to this problem is impressive. The usual way of
treating dominating convection, at least in the context of finite element methods, consists
in adding extra terms to the standard Galerkin formulation, aimed at enhancing the sta-
bility of the discrete solution by means of introducing artificial diffusion. These new terms
vary according to the method, and can be residual-based, as in the SUPG/GLS/SDFEM
family (see [6, 16, 13, 14, 27]), or edge based, such as the CIP method (see [9, 7]). For
an up-to-date and thorough review of these and other techniques, see [29]. It is striking to
notice that, despite the impressive amount of work that has been devoted to this topic, up
to now there is not a method that ’ticks all the boxes’, i.e., a method that produces sharp
layers while avoiding oscillations, see [1] for a recent review and a numerical assessment.

Among the various stabilized finite element methods, the local projection stabilization
(LPS) method has received some attention over the last decade. Originally proposed for
the Stokes problem in [2], and extended to the Oseen equations in [4] (see also [5, 28]),
the LPS method has also been used recently to treat convection-diffusion equations (see
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[24, 15, 22, 23]). The basic idea of this method consists in restricting the direct application

of the stabilization to so-called fluctuations or resolved small scales, which are defined by

local projections. It has several attractive features, such as adding symmetric terms to the

formulation and avoiding the computation of second derivatives of the basis functions (thus

using only information that is needed for the assembly of the matrices from the standard

Galerkin method). Unfortunately, the solutions obtained with the LPS method possess

the same deficiency like solutions computed, e.g., with the SUPG method: non-negligible

spurious oscillations are often present in a vicinity of layers.

Motivated by the wish of recovering the monotonicity properties of the continuous prob-

lem, which might be crucial in applications, a number of so-called Spurious Oscillations at

Layers Diminishing (SOLD) methods were proposed. SOLD methods add an extra term

to the already stabilized formulation, which usually depends on the discrete solution in a

nonlinear way, vanishes for small residuals (thus acting mostly at layers), and adds some

extra, but different, diffusivity to the formulation. In particular, methods that add cross-

wind diffusion, like the one proposed in [11], have been proved to belong to the best SOLD

methods in comprehensive studies [17, 18]. Although these methods diminish oscillations

considerably, no single method succeeds to fully eliminate them [17, 18, 21]. Also, from a

purely mathematical point of view, it is unknown if these methods lead to well-posed prob-

lems. In fact, existence of solutions is usually possible to prove, but, to our best knowledge,

there is no nonlinear SOLD method that is known to produce a unique solution, see [25] and

[7] for a discussion of this topic.

This paper proposes a LPS method with nonlinear crosswind diffusion for convection-

diffusion-reaction equations. The crosswind diffusion term is chosen in such a way that, for a

certain choice of the stabilization parameter, the existence and the uniqueness of the solution

can be proved for the steady-state equation and for the time-dependent equation, which is

discretized in time with an implicit one-step θ-scheme. To our best knowledge, this is the first

nonlinear discretization for convection-diffusion-reaction equations for that both, existence

and uniqueness of a solution can be shown. The form of the crosswind term is motivated by

the Smagorinsky Large Eddy Simulation (LES) model which was analyzed in [26]. It involves

fluctuations of a term mimicking a p-Laplacian. The crucial analytical property for proving

the uniqueness of the solution is the strong monotonicity of the corresponding operator. In

addition, a second variant of the stabilization parameter is studied, whose proposal is based

on scaling arguments. For this parameter, the existence of a solution can be proved and the

uniqueness for the time-dependent equation in the case of sufficiently small time steps.
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The plan of the paper is as follows. In the remaining part of this introduction, the

problems of interest are stated and some basic notations are given. Section 2 will summarize

the main abstract hypothesis imposed on the different partitions of the domain and the finite

element spaces considered. Section 3 presents the method for the steady-state case, whose

well-posedness is analyzed in Section 3.1 and convergence and error estimates are presented

in Section 3.2. In Section 4, the method for the time-dependent problem is presented.

Well-posedness and stability are proved in Section 4.1 and error estimates in Section 4.2.

Since the analysis is based on the abstract framework from Section 2, Section 5 presents

some concrete examples that fit into this framework. Finally, numerical illustrations that

support the analytical results and which demonstrate the reduction of spurious oscillations

are presented in Section 6.

Throughout the paper, standard notations are used for Sobolev spaces and corresponding

norms, see, e.g., [10]. In particular, given a measurable set D ⊂ R
d, the inner product in

L2(D) or L2(D)d is denoted by (·, ·)D and the notation (·, ·) is used instead of (·, ·)Ω. The

norm (seminorm) in Wm,p(D) will be denoted by ‖ · ‖m,p,D (| · |m,p,D), with the convention

‖ · ‖m,D = ‖ · ‖m,2,D, and the same notation is used for scalar and vector-valued functions.

1.1. The problems of interest. Let Ω ⊂ R
d, d ∈ {2, 3}, be a bounded polygonal (polyhe-

dral) domain with a Lipschitz-continuous boundary ∂Ω and let us consider the steady-state

convection-diffusion-reaction equation

(1) −ε∆u+ b · ∇u+ c u = f in Ω , u = ub on ∂Ω .

It is assumed that ε is a positive constant and b ∈ W 1,∞(Ω)d, c ∈ L∞(Ω), f ∈ L2(Ω), and

ub ∈ H1/2(∂Ω) are given functions satisfying

(2) σ := c− 1

2
∇ · b ≥ σ0 > 0 in Ω ,

where σ0 is a constant. Then the boundary value problem (1) has a unique solution in

H1(Ω).

Besides the steady-state case, also the time-dependent convection-diffusion-reaction equa-

tion

(3)





ut − ε∆u+ b · ∇u+ c u = f in (0, T ]× Ω,

u = ub in [0, T ]× ∂Ω,

u(0, ·) = u0 in Ω,

will be considered. In (3), [0, T ] is a finite time interval, ε is assumed to be a posi-

tive constant, b(·, t) ∈ W 1,∞(Ω)d, c(·, t) ∈ L∞(Ω), f(·, t) ∈ L2(Ω), ub(·, t) ∈ H1/2(∂Ω)
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for all t ∈ [0, T ], and u0 ∈ H1(Ω) denotes the initial condition. Moreover, it is as-

sumed that b ∈ L∞(0, T ;W 1,∞(Ω)d), c ∈ L∞(0, T ;L∞(Ω)), f ∈ L2(0, T ;L2(Ω)), and ub ∈
L2(0, T ;H1/2(∂Ω)). The function σ is defined analogously to (2) and the inequality (2) is

assumed to hold for all t ∈ [0, T ].

2. Assumptions on approximation spaces and the set Mh

From now on, C, C̃ or C̄ denote generic constants which may take different values at

different occurrences but are always independent of the data ε, b, c, f , and ub and the

discretization parameters (h and δt in the following).

Given h > 0, let Wh ⊂ W 1,∞(Ω) be a finite-dimensional space approximating the space

H1(Ω) and set Vh = Wh ∩ H1
0(Ω). Next, let Mh be a set consisting of a finite number of

open subsets M of Ω such that Ω = ∪M∈Mh
M . It will be supposed that, for any M ∈ Mh,

card{M ′ ∈ Mh ; M ∩M ′ 6= ∅} ≤ C ,(4)

hM := diam(M) ≤ C h ,(5)

hM ≤ C hM ′ ∀ M ′ ∈ Mh, M ∩M ′ 6= ∅ ,(6)

hd
M ≤ C measd(M) .(7)

The space Wh is assumed to satisfy the local inverse inequality

(8) |vh|1,M ≤ C h−1
M ‖vh‖0,M ∀ vh ∈ Wh, M ∈ Mh .

For any M ∈ Mh, a finite-dimensional space DM ⊂ L∞(M) is introduced. It is assumed

that there exists a positive constant βLP independent of h such that

(9) sup
v∈VM

(v, q)M
‖v‖0,M

≥ βLP ‖q‖0,M ∀ q ∈ DM , M ∈ Mh ,

where VM = {vh ∈ Vh ; vh = 0 in Ω \M}. This hypothesis will be needed in what follows

for the construction of a special interpolation operator (see Lemma 6 below). Concrete

examples of spaces Wh and DM satisfying the assumptions formulated here will be presented

in Section 5.

Furthermore, for any M ∈ Mh, a finite-dimensional space GM ⊂ L∞(M) with GM ⊃ DM

is introduced such that

∂vh
∂xi

∣∣∣∣
M

∈ GM ∀ vh ∈ Wh, i = 1, . . . , d ,

and it is assumed that, for any p ∈ [1,∞], there is a constant C such that

(10) ‖q‖0,p,M ≤ C h
d
p
−

d
2

M ‖q‖0,M ∀ q ∈ GM , M ∈ Mh .
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To characterize the approximation properties of the spaces Wh and DM , it is assumed

that there exist interpolation operators ih ∈ L (H2(Ω),Wh) ∩ L (H2(Ω) ∩ H1
0 (Ω), Vh) and

jM ∈ L (H1(M), DM), M ∈ Mh, such that, for some constants l ∈ N and C > 0 and for

any set M ∈ Mh, it holds

|v − ihv|1,M + h−1
M ‖v − ihv‖0,M ≤ C hk

M |v|k+1,M ∀ v ∈ Hk+1(M), k = 1, . . . , l ,(11)

‖q − jMq‖0,M ≤ C hk
M |q|k,M ∀ q ∈ Hk(M), k = 1, . . . , l .(12)

In addition, it is assumed that, for any p ∈ [1, 6],

(13) |v − ihv|1,p,M ≤ C h
k+ d

p
−

d
2

M |v|k+1,M ∀ v ∈ Hk+1(M), k = 1, . . . , l .

3. A local projection discretization of the steady-state problem

The weak form of problem (1) is: Find u ∈ H1(Ω) such that u = ub on ∂Ω and

a(u, v) = (f, v) ∀ v ∈ H1
0 (Ω) ,(14)

where the bilinear form a is given by

a(u, v) := ε (∇u,∇v) + (b · ∇u, v) + (c u, v) .

As it was mentioned in the introduction, the most often used approach to cure the insta-

bilities of the Galerkin method consists in adding extra terms to the formulation. To build

these additional terms for the method studied here, for any M ∈ Mh, a continuous linear

projection operator πM is introduced which maps the space L2(M) onto the space DM . It

is assumed that

(15) ‖πM‖L (L2(M),L2(M)) ≤ C ∀ M ∈ Mh .

E.g., if πM is the orthogonal L2 projection, then C = 1. Using this operator, the fluctuation

operator κM := id−πM is defined, where id is the identity operator on L2(M). Then, clearly

(16) ‖κM‖L (L2(M),L2(M)) ≤ C ∀ M ∈ Mh .

Since κM vanishes on DM , it follows from (16) and (12) that

(17) ‖κM q‖0,M ≤ C hk
M |q|k,M ∀ q ∈ Hk(M), M ∈ Mh, k = 0, . . . , l .

An application of κM to a vector-valued function means that κM is applied component-wise.

For any M ∈ Mh, a constant bM ∈ R
d is chosen such that

(18) |bM | ≤ ‖b‖0,∞,M , ‖b− bM‖0,∞,M ≤ C hM |b|1,∞,M .



6 G.R. BARRENECHEA, V. JOHN, AND P. KNOBLOCH

A typical choice for bM is the value of b at one point of M , or the integral mean value of b

over M . In addition, a function ũbh ∈ Wh is introduced such that its trace approximates the

boundary condition ub.

We are now ready to present the finite element method to be studied: Find uh ∈ Wh such

that uh − ũbh ∈ Vh and

a(uh, vh) + sh(uh, vh) + dh(uh; uh, vh) = (f, vh) ∀ vh ∈ Vh ,(19)

where

sh(u, v) =
∑

M∈Mh

τM (κM(bM · ∇u), κM(bM · ∇v))M ,

dh(w; u, v) =
∑

M∈Mh

(τ soldM (w) κM(PM∇u), κM(PM∇v))M ,

and PM : Rd → R
d is the projection onto the line (plane) orthogonal (crosswind) to the

vector bM defined by

PM =





I − bM ⊗ bM

|bM |2 if bM 6= 0,

0 if bM = 0,

I being the identity tensor. The stabilization parameters are given by

τM = τ0 min

{
hM

‖b‖0,∞,M

,
h2
M

ε

}
,(20)

τ soldM (uh) = τ̃M (uh) |κM(PM∇uh)| ,

where τ0 is a positive constant and τ̃M is a non-negative function of uh and the data of (1).

In particular, we shall investigate the properties of the discrete problem for

(21) τ̃M = β hM |bM | ,

and for

(22) τ̃M(uh) =





β h
1+d/2
M |bM |
|uh|1,M

if |uh|1,M 6= 0,

0 if |uh|1,M = 0,

where β is a positive constant. The power of hM in (22) assures a proper scaling of the

parameter τ soldM with respect to the length scale of the problem. Note that the crosswind

stabilization term is of p-Laplacian type with p = 3.
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Remark.

• If d = 2 and bM 6= 0, one has PM = b
⊥

M ⊗ b
⊥

M where b
⊥

M is a vector satisfying

b
⊥

M · bM = 0 and |b⊥M | = 1. Thus, in this case, the nonlinear stabilization term can

be written in the form

dh(w; u, v) =
∑

M∈Mh

(τ soldM (w) κM(b⊥M · ∇u), κM(b⊥M · ∇v))M .

• It is useful for the analysis of the discrete problem to note that κM(bM · ∇u) =

bM · κM∇u and κM(PM∇u) = PMκM∇u. Note also that ‖PM‖2 = 1.

• Finally, if τ̃M is defined by (22), then, using (18), (16), and ‖PM‖2 = 1, one obtains

(23) ‖τ soldM (v)‖0,M ≤ C h
1+d/2
M ‖b‖0,∞,M ∀ v ∈ H1(Ω), M ∈ Mh .

In the analysis, the error will be measured using the following mesh-dependent norm

‖v‖LPS :=
(
ε |v|21,Ω + ‖σ1/2 v‖20,Ω + sh(v, v)

)1/2
,

and a term involving the crosswind derivative of the error. Note that integrating by parts

gives

(24) a(v, v) + sh(v, v) = ‖v‖2LPS ∀ v ∈ H1
0 (Ω) .

3.1. Well-posedness of the nonlinear discrete problem. This section studies the exis-

tence and uniqueness of solutions for the nonlinear discrete problem (19). Let us define the

nonlinear operator Th : Vh → Vh by

(Thzh, vh) = a(zh + ũbh, vh) + sh(zh + ũbh, vh) + dh(zh + ũbh; zh + ũbh, vh)− (f, vh)(25)

for any zh, vh ∈ Vh. Then uh ∈ Wh is a solution of (19) if and only if uh|∂Ω = ũbh|∂Ω and

Th(uh − ũbh) = 0 ,

or, equivalently, uh = ũh + ũbh ∈ Wh is a solution of (19) if ũh ∈ Vh and Th(ũh) = 0 . Thus,

our aim is to prove that the operator Th has a zero in Vh. To this end, the properties of

the form dh shall be investigated first. As these properties are different with respect to the

definition of τ̃M , we start supposing that τ̃M is given by (21).
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Lemma 1. Let τ̃M be defined by (21). Consider any u, v, z ∈ W 1,3(Ω) and set w := u − v.

Then

dh(u; u, w)− dh(v; v, w) ≥
1

7

∑

M∈Mh

τ̃M ‖κM(PM∇w)‖30,3,M =
1

7
dh(w;w,w) ,(26)

|dh(u; u, z)− dh(v; v, z)| ≤
∑

M∈Mh

τ̃M (‖κM(PM∇u)‖0,3,M + ‖κM(PM∇v)‖0,3,M)×(27)

× ‖κM(PM∇w)‖0,3,M ‖κM(PM∇z)‖0,3,M .

Proof. Let us denote

(28) dh(u; u, z)− dh(v; v, z) =
∑

M∈Mh

NM(u, v, z) ,

where

NM(u, v, z) :=
(
τ soldM (u) κM(PM∇u)− τ soldM (v) κM(PM∇v), κM(PM∇z)

)
M
.

For t ∈ [0, 1], let us define ut := tu+ (1− t)v and set

g(t) := τ̃M |κM(PM∇ut)| κM(PM∇ut) , t ∈ [0, 1] .

Then

NM(u, v, z) =
(
g(1)− g(0), κM(PM∇z)

)
M

=

(∫ 1

0

g′(t) dt, κM(PM∇z)

)

M

.

Since

g′(t) = τ̃M
κM(PM∇ut)

|κM(PM∇ut)| κM(PM∇ut) · κM(PM∇w) + τ̃M |κM(PM∇ut)| κM(PM∇w) ,

one has

|g′(t)| ≤ 2 τ̃M |κM(PM∇ut)| |κM(PM∇w)|
≤ 2 τ̃M (t |κM(PM∇u)|+ (1− t) |κM(PM∇v)|) |κM(PM∇w)| ,

which implies (27). On the other hand,

(29) NM(u, v, w) ≥
(
τ̃M

∫ 1

0

|κM(PM∇ut)| dt κM(PM∇w), κM(PM∇w)

)

M

.

Next, clearly
∫ 1

0

|κM(PM∇ut)| dt ≥ max
i=1,...,d

∫ 1

0

|t κM(PM∇u)i + (1− t) κM(PM∇v)i| dt .

Denoting

I(a, b) =

∫ 1

0

|ta+ (1− t)b| dt , a, b ∈ R ,
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a direct computation gives

I(a, b) =
|a|+ |b|

2
if a b ≥ 0 , I(a, b) =

1

2

a2 + b2

|a|+ |b| if a b < 0 .

Thus, for any a, b ∈ R, it follows

I(a, b) ≥ |a|+ |b|
4

≥ |a− b|
4

.

Consequently,
∫ 1

0

|κM(PM∇ut)| dt ≥ 1

4
max

i=1,...,d
|κM(PM∇w)i| ≥

1

4
√
d
|κM(PM∇w)| ≥ 1

7
|κM(PM∇w)| .

Combining this estimate with (29) and using (28) gives (26). �

Next, the properties of dh are explored for the case that τ̃M is defined by (22).

Lemma 2. Let τ̃M be defined by (22). Consider any u, v, z ∈ W 1,4(Ω). Then

|dh(u; v, z)| ≤ C
∑

M∈Mh

h
1+d/2
M ‖b‖0,∞,M ‖κM(PM∇v)‖0,4,M ‖κM(PM∇z)‖0,4,M ,(30)

|dh(u; u, z)− dh(v; v, z)| ≤ C
∑

M∈Mh

h
1+d/2
M ‖b‖0,∞,M ζM(u, v)×(31)

× (‖κM(PM∇u)‖0,4,M + ‖κM(PM∇v)‖0,4,M) ‖κM(PM∇z)‖0,4,M ,

where

ζM(u, v) =





|u− v|1,M
|u|1,M + |v|1,M

if |u|1,M 6= 0 or |v|1,M 6= 0,

0 if |u|1,M = |v|1,M = 0.

Proof. Denoting

dM(u; v, z) =
(
τ soldM (u) κM(PM∇v), κM(PM∇z)

)
M
,

it is easy to realize that

dh(u; v, z) =
∑

M∈Mh

dM(u; v, z) .

Applying Hölder’s inequality yields

|dM(u; v, z)| ≤ ‖τ soldM (u)‖0,M ‖κM(PM∇v)‖0,4,M ‖κM(PM∇z)‖0,4,M ,

which, using (23), gives

(32) |dM(u; v, z)| ≤ C h
1+d/2
M ‖b‖0,∞,M ‖κM(PM∇v)‖0,4,M ‖κM(PM∇z)‖0,4,M ,
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thus proving (30). Now let us prove that

|dM(u; u, z)− dM(v; v, z)| ≤ C h
1+d/2
M ‖b‖0,∞,M ζM(u, v)×(33)

× (‖κM(PM∇u)‖0,4,M + ‖κM(PM∇v)‖0,4,M) ‖κM(PM∇z)‖0,4,M .

If |u|1,M = 0 or |v|1,M = 0, then (33) is a particular case of (32). Thus, it suffices to consider

the case |u|1,M 6= 0, |v|1,M 6= 0. Denoting ξ(x) = |x| x, one obtains

dM(u; u, z)− dM(v; v, z) =
β h

1+d/2
M |bM |
|u|1,M

(
ξ(κM(PM∇u))− ξ(κM(PM∇v)), κM(PM∇z)

)
M

+ β h
1+d/2
M |bM |

(
1

|u|1,M
− 1

|v|1,M

)
(
ξ(κM(PM∇v)), κM(PM∇z)

)
M
.(34)

The integral terms on M possess the same structure as the term NM(u, v, z) in the proof

of Lemma 1 (the second term corresponds to NM(0, v, z)). They are estimated using the same

technique, only with a different Hölder inequality. Then, (16) is applied to

‖κM(PM∇(u− v))‖0,M resp. ‖κM(PM∇v)‖0,M . Furthermore, the first inequality from (18) is

employed. To finish the estimate of the second term in (34), the triangle inequality is used.

One obtains

|dM(u; u, z)− dM(v; v, z)| ≤ C h
1+d/2
M ‖b‖0,∞,M

|u− v|1,M
|u|1,M

×

× (‖κM(PM∇u)‖0,4,M + ‖κM(PM∇v)‖0,4,M) ‖κM(PM∇z)‖0,4,M .

The same type of inequality follows by interchanging u and v. Then, using the sharper of

these two estimates and min{|u|−1
1,M , |v|−1

1,M} ≤ 2/(|u|1,M + |v|1,M) gives (33). �

The properties of the operator Th, namely its monotonicity and local Lipschitz continuity,

follow now by the results of the two previous lemmas and (24).

Lemma 3. If τ̃M is defined by (21), then the operator Th defined in (25) is locally Lipschitz-

continuous and strongly monotone, i.e., it satisfies

(35) (Thwh − Thzh, wh − zh) ≥ ‖wh − zh‖2LPS +
1

7

∑

M∈Mh

τ̃M ‖κM(PM∇(wh − zh))‖30,3,M ,

for all wh, zh ∈ Vh. If τ̃M is defined by (22), then the operator Th is Lipschitz-continuous

and it satisfies

(36) (Thzh, zh) ≥
1

2
‖zh‖2LPS − C0 (‖ũbh‖20,Ω + ‖f‖20,Ω) ,

for all zh ∈ Vh, where C0 > 0 depends on ε, b, c, σ0, h, and Wh but not on zh.
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Proof. Let us define the operators Ah, Nh : Vh → Vh by

(Ahzh, vh) = a(zh, vh) + sh(zh, vh) ∀ zh, vh ∈ Vh ,

(Nhzh, vh) = dh(zh + ũbh; zh + ũbh, vh) ∀ zh, vh ∈ Vh .

Then, for any wh, zh ∈ Vh, there holds

Thwh − Thzh = Ah(wh − zh) +Nhwh −Nhzh .

The operator Ah is linear on a finite-dimensional space and hence it is Lipschitz continuous.

Thus, the (local) Lipschitz-continuity of Th follows from (27), (31), and the equivalence of

norms on finite-dimensional spaces. The strong monotonicity (35) follows from (24) and

(26). Finally, in view of (24), it holds

(Thzh, zh) = ‖zh‖2LPS+dh(zh+ũbh; zh, zh)+a(ũbh, zh)+sh(ũbh, zh)+dh(zh+ũbh; ũbh, zh)−(f, zh).

Now, (36) follows from (30), (10), (16), (18), (4), the equivalence of norms on finite-dimen-

sional spaces, the Cauchy-Schwarz inequality, and the Young inequality. �

To prove that the discrete problem (19) has at least one solution, we shall use the following

simple consequence of Brouwer’s fixed-point theorem, whose proof can be found in [30, p. 164,

Lemma 1.4].

Lemma 4. Let X be a finite-dimensional Hilbert space with inner product (·, ·) and norm

‖·‖. Let P : X → X be a continuous mapping and K > 0 a real number such that (Px, x) > 0

for any x ∈ X with ‖x‖ = K. Then there exists x ∈ X such that ‖x‖ ≤ K and Px = 0.

Collecting the previous results, the main result of this section can be stated now, namely,

the well-posedness of the problem (19).

Theorem 5. If τ̃M is defined by (21) or (22), then the problem (19) has a solution. If τ̃M

is defined by (21), the solution of (19) is unique.

Proof. If τ̃M is defined by (21), then it follows from (35) that, for any zh ∈ Vh,

(Thzh, zh) ≥ ‖zh‖2LPS + (Th0, zh) ≥ σ0 ‖zh‖20,Ω − ‖Th0‖0,Ω ‖zh‖0,Ω .

Thus, using Young’s inequality one gets

(Thzh, zh) ≥ C1 ‖zh‖20,Ω − C2 ,

where C1, C2 are positive constants that depend on h and the data of (1) but not on zh.

According to (36), the same inequality holds if τ̃M is defined by (22). Thus, in view of

Lemma 4 with any K >
√

C2/C1, the operator Th has a zero and hence the problem (19)
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has a solution. The uniqueness in the case that τ̃M is defined by (21) follows from the strong

monotonicity (35). �

3.2. Error estimates. For the analysis of the methods introduced in Section 3, we will

need an appropriate interpolation operator. An important tool for the construction of such

an operator is provided by the following result, whose proof can be found in [23, Lemma 1].

Lemma 6. Let us suppose (9) to be satisfied. Then, there exists an operator %h : L2(Ω) → Vh

such that, for any v, w ∈ L2(Ω), the estimates

|(v − %hv, w)| ≤ C
∑

M∈Mh

‖v‖0,M ‖κMw‖0,M ,(37)

|%hv|21,M + h−2
M ‖%hv‖20,M ≤ C

∑

M
′ ∈ Mh,

M ∩M
′ 6= ∅

h−2
M ′ ‖v‖20,M ′ ∀ M ∈ Mh ,(38)

are valid. Consequently, for any α ∈ R, it holds

(39)
∑

M∈Mh

hα
M (|%hv|21,M + h−2

M ‖%hv‖20,M) ≤ C
∑

M∈Mh

hα−2
M ‖v‖20,M ,

where the constant C is independent of v and h but can depend on α.

With the operators ih and %h, an operator rh ∈ L (H2(Ω),Wh) ∩ L (H2(Ω) ∩H1
0 (Ω), Vh)

is defined by

(40) rhv := ihv + %h(v − ihv) .

To formulate the interpolation properties of rh, it is convenient to introduce the mesh de-

pendent norm

‖v‖1,h =

( ∑

M∈Mh

{|v|21,M + h−2
M ‖v‖20,M}

)1/2

.

Then, using (38), (4), (5), and (11), one obtains

(41) ‖v − rhv‖1,h ≤ C ‖v − ihv‖1,h ≤ C̃ hk |v|k+1,Ω ∀ v ∈ Hk+1(Ω), k = 1, . . . , l ,

and consequently

(42) |v − rhv|1,Ω + h−1 ‖v − rhv‖0,Ω ≤ C hk |v|k+1,Ω ∀ v ∈ Hk+1(Ω), k = 1, . . . , l .

The derivation of the error estimates will be based on the following two lemmas. The

first one states an interpolation error estimate and the second one states a bound on the

nonlinear form dh.
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Lemma 7. Let u ∈ Hk+1(Ω) for some k ∈ {1, . . . , l}, and let η := u − rhu. Then, for any

vh ∈ Vh \ {0}, the following estimate holds

‖η‖LPS +
a(η, vh) + sh(η, vh)− sh(u, vh)

‖vh‖LPS
(43)

≤ C
(
ε+ h ‖b‖0,∞,Ω + h2 ‖σ‖0,∞,Ω + h2 |b|21,∞,Ω σ

−1
0

)1/2
hk |u|k+1,Ω .

Proof. Since, in view of (5), (16), (18), and (20)

‖v‖LPS ≤ C
(
ε+ h ‖b‖0,∞,Ω + h2 ‖σ‖0,∞,Ω

)1/2 ‖v‖1,h ∀ v ∈ H1(Ω) ,

it follows from (41) that

‖η‖LPS ≤ C
(
ε+ h ‖b‖0,∞,Ω + h2 ‖σ‖0,∞,Ω

)1/2
hk |u|k+1,Ω .

Next, for any vh ∈ Vh \ {0}, integration by parts gives

(b · ∇η, vh) = −(η, b · ∇vh)− ((∇ · b) η, vh) .

Thus, applying the Cauchy-Schwarz inequality and (42), it follows that

a(η, vh) + sh(η, vh) ≤
(
‖η‖LPS + C |b|1,∞,Ω σ

−1/2
0 hk+1 |u|k+1,Ω

)
‖vh‖LPS − (η, b · ∇vh) .

The use of (37), (11), (4) and (5) leads to

(η, b · ∇vh) ≤ C
∑

M∈Mh

‖u− ihu‖0,M ‖κM(b · ∇vh)‖0,M

≤ C hk |u|k+1,Ω

( ∑

M∈Mh

h2
M ‖κM(b · ∇vh)‖20,M

)1/2

.

Applying (16), (18), (20), and (8), one derives

‖κM(b · ∇vh)‖0,M ≤ ‖κM((b− bM) · ∇vh)‖0,M + ‖κM(bM · ∇vh)‖0,M
≤ C |b|1,∞,M ‖vh‖0,M + τ

−1/2
0 (ε+ hM ‖b‖0,∞,M)1/2 h−1

M τ
1/2
M ‖κM(bM · ∇vh)‖0,M ,

which leads to the estimate

(η, b · ∇vh) ≤ C
(
ε+ h ‖b‖0,∞,Ω + h2 |b|21,∞,Ω σ

−1
0

)1/2
hk |u|k+1,Ω ‖vh‖LPS .

Finally, using (17), (18), (20), (4), and (5), one obtains

sh(u, u) ≤
∑

M∈Mh

τM |bM |2 ‖κM∇u‖20,M ≤ C ‖b‖0,∞,Ω h
2 k+1 |u|2k+1,Ω ,

and hence

sh(u, vh) ≤
√

sh(u, u)
√

sh(vh, vh) ≤ C ‖b‖1/20,∞,Ω hk+1/2 |u|k+1,Ω ‖vh‖LPS ,
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which completes the proof. �

Lemma 8. For any wh ∈ Wh and u, v ∈ Hk+1(Ω) with k ∈ {1, . . . , l}, it holds

(44) dh(wh; rhu, rhv) ≤ C h2 k−d/2

(
max
M∈Mh

‖τ soldM (wh)‖0,M
)
|u|k+1,Ω |v|k+1,Ω .

Proof. First, the application of Hölder’s inequality and (10) leads to

dh(wh; rhu, rhv) ≤
∑

M∈Mh

‖τ soldM (wh)‖0,M ‖κM(PM∇(rhu))‖0,4,M ‖κM(PM∇(rhv))‖0,4,M(45)

≤ C
∑

M∈Mh

‖τ soldM (wh)‖0,M h
−d/2
M ‖κM(PM∇(rhu))‖0,M ‖κM(PM∇(rhv))‖0,M

≤ C

(
max
M∈Mh

‖τ soldM (wh)‖0,M
)( ∑

M∈Mh

h
−d/2
M ‖κM(PM∇(rhu))‖20,M

)1/2

×
( ∑

M∈Mh

h
−d/2
M ‖κM(PM∇(rhv))‖20,M

)1/2

.

Using (16) and (17), for u ∈ Hk+1(Ω) with k ∈ {1, . . . , l} there holds

‖κM(PM∇(rhu))‖0,M ≤ ‖κM(PM∇u)‖0,M + ‖κM(PM∇(u− rhu))‖0,M(46)

≤ C hk
M |u|k+1,M + C |u− rhu|1,M .

According to (39), one has for any α ∈ R

∑

M∈Mh

hα
M |u− rhu|21,M ≤ 2

∑

M∈Mh

hα
M |u− ihu|21,M + 2

∑

M∈Mh

hα
M |%h(u− ihu)|21,M

≤ C
∑

M∈Mh

hα
M (|u− ihu|21,M + h−2

M ‖u− ihu‖20,M) ,

and hence it follows from (11), (4), and (5) that, for α ≥ −2,

(47)
∑

M∈Mh

hα
M ‖κM(PM∇(rhu))‖20,M ≤ C h2 k+α |u|2k+1,Ω .

Inserting (47) with α = −d/2 into (45), the statement of the lemma is proved. �

We are now in position to prove the first error estimate. The following theorem states the

error estimate in the case τ̃M is given by (21).

Theorem 9. Let τ̃M be defined by (21). Let the weak solution of (1) satisfy u ∈ Hk+1(Ω)

for some k ∈ {1, . . . , l}. Let ũb ∈ H2(Ω) be an extension of ub and let ũbh = ihũb. Then the
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solution uh of the local projection discretization (19) satisfies the error estimate

‖u− uh‖LPS +
( ∑

M∈Mh

τ̃M ‖κM(PM∇(u− uh))‖30,3,M

)1/2

≤ C
{
ε+ h ‖b‖0,∞,Ω (1 + hk−d/2 |u|k+1,Ω) + h2

(
‖σ‖0,∞,Ω + |b|21,∞,Ω σ−1

0

)}1/2

hk |u|k+1,Ω .

If u ∈ W k+1,∞(Ω) with k ∈ {1, . . . , l}, then

‖u− uh‖LPS +
( ∑

M∈Mh

τ̃M ‖κM(PM∇(u− uh))‖30,3,M

)1/2

≤ C
{
ε+ h ‖b‖0,∞,Ω (1 + hk |u|k+1,∞,Ω) + h2

(
‖σ‖0,∞,Ω + |b|21,∞,Ω σ−1

0

)}1/2

hk |u|k+1,Ω .

Proof. The error u − uh is split into the interpolation error η := u − rhu and the discrete

error eh := uh − rhu. Then eh ∈ Vh and also rhu − ũbh ∈ Vh. From the monotonicity (35)

follows with (19) and (14)

‖eh‖2LPS +
1

7

∑

M∈Mh

τ̃M ‖κM(PM∇eh)‖30,3,M ≤ (Th(uh − ũbh)− Th(rhu− ũbh), eh)

= a(uh, eh) + sh(uh, eh) + dh(uh; uh, eh)− a(rhu, eh)− sh(rhu, eh)− dh(rhu; rhu, eh)

= a(η, eh) + sh(η, eh)− sh(u, eh)− dh(rhu; rhu, eh) .

The first three terms on the right-hand side can be estimated using (43). To bound the

nonlinear term, Hölder’s and Young’s inequalities are applied to conclude

dh(rhu; rhu, eh) ≤ {dh(rhu; rhu, rhu)}
2

3 {dh(eh; eh, eh)}
1

3(48)

≤ 2 dh(rhu; rhu, rhu) +
3

70
dh(eh; eh, eh) .

Then (44), (46), (5), (18), and (42) yield

(49) dh(rhu; rhu, rhu) ≤ C ‖b‖0,∞,Ω h3 k+1−d/2 |u|3k+1,Ω .

Therefore,

‖eh‖2LPS +
∑

M∈Mh

τ̃M ‖κM(PM∇eh)‖30,3,M(50)

≤ C
{
ε+ h ‖b‖0,∞,Ω (1 + hk−d/2 |u|k+1,Ω) + h2 ‖σ‖0,∞,Ω + h2 |b|21,∞,Ω σ−1

0

}
h2 k |u|2k+1,Ω .
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Next, to estimate the interpolation error, for any p ∈ [1, 6], it follows from (10), (15), and

(13) that

‖κM(PM∇η)‖0,p,M ≤ ‖∇η − πM∇η‖0,p,M(51)

≤ ‖∇(u− ihu)‖0,p,M + ‖∇(ihu− rhu)− πM∇η‖0,p,M

≤ |u− ihu|1,p,M + C h
d
p
−

d
2

M ‖∇(ihu− rhu)− πM∇η‖0,M

≤ |u− ihu|1,p,M + C̃ h
d
p
−

d
2

M

(
|%h(u− ihu)|1,M + |u− ihu|1,M

)

≤ C̄ h
k+ d

p
−

d
2

M |u|k+1,M + C̃ h
d
p
−

d
2

M |%h(u− ihu)|1,M .

Then, applying (51), (21), (5), (18), (38), (11), (4), and (6), one derives

(52)
∑

M∈Mh

τ̃M ‖κM(PM∇η)‖30,3,M ≤ C h ‖b‖0,∞,Ω

∑

M∈Mh

h
3 k−d/2
M |u|3k+1,M .

Thus, combining (50), (52), and (43), the first estimate of the theorem follows.

If u ∈ W k+1,∞(Ω) with k ∈ {1, . . . , l}, then local norms of Sobolev spaces with p = 2 can

be estimated with norms of Sobolev spaces with p = ∞, thereby gaining powers of h from

the smallness of the local domain: |u|k+1,M ≤ C h
d/2
M |u|k+1,∞,M for any M ∈ Mh. Hence, it

follows from (52), (4) and (5) that

(53)
∑

M∈Mh

τ̃M ‖κM(PM∇η)‖30,3,M ≤ C ‖b‖0,∞,Ω h3 k+1 |u|k+1,∞,Ω |u|2k+1,Ω .

Furthermore, using (38), (11), and (4), one gets

|u− rhu|1,M ≤ C
∑

M
′ ∈ Mh,

M ∩M
′ 6= ∅

hk
M ′ |u|k+1,M ′ ≤ C̃ hk+d/2 |u|k+1,∞,Ω ∀ M ∈ Mh .

Therefore, according to (44) and (46),

(54) dh(rhu; rhu, rhu) ≤ C ‖b‖0,∞,Ω h
3 k+1 |u|k+1,∞,Ω |u|2k+1,Ω ,

which implies the second estimate of the theorem. �

Remark. Theorem 9 implies, in particular, the following convergence estimates in the convection-

dominated case ε < h: If u ∈ H2(Ω), then

‖u− uh‖LPS ≤ C0 h
2−d/4 (h(d−2)/4 + |u|1/22,Ω) |u|2,Ω ,

where C0 depends on the data of the problem. If u ∈ W 2,∞(Ω), then

‖u− uh‖LPS ≤ C0 h
3/2 (1 + h1/2 |u|1/22,∞,Ω) |u|2,Ω .
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If u ∈ Hk+1(Ω) with k ∈ {2, . . . , l}, then

‖u− uh‖LPS ≤ C0 h
k+1/2 (1 + h(2 k−d)/4 |u|1/2k+1,Ω) |u|k+1,Ω .

We end this section by presenting the error estimate in the case τ̃M is defined by (22).

Theorem 10. Let τ̃M be defined by (22). Let the weak solution of (1) satisfy u ∈ Hk+1(Ω)

for some k ∈ {1, . . . , l}. Let ũb ∈ H2(Ω) be an extension of ub and let ũbh = ihũb. Then the

solution uh of the local projection discretization (19) satisfies the error estimate

‖u− uh‖LPS + (dh(uh; u− uh, u− uh))
1/2

≤ C
(
ε+ h ‖b‖0,∞,Ω + h2 ‖σ‖0,∞,Ω + h2 |b|21,∞,Ω σ−1

0

)1/2
hk |u|k+1,Ω .

Proof. Set again η := u− rhu and eh := uh − rhu. From (19) and (14), it follows that

a(eh, eh) + sh(eh, eh) + dh(uh; uh, eh)

= a(uh, eh) + sh(uh, eh) + dh(uh; uh, eh)− a(rhu, eh)− sh(rhu, eh)

= a(η, eh) + sh(η, eh)− sh(u, eh) .

Thus, in view of (24), one gets

‖eh‖2LPS + dh(uh; eh, eh) = a(η, eh) + sh(η, eh)− sh(u, eh)− dh(uh; rhu, eh) .

The first three terms on the right-hand side can be estimated using (43). To bound the

nonlinear term, Hölder’s and Young’s inequalities are again applied

(55)

dh(uh; rhu, eh) ≤
√

dh(uh; rhu, rhu)
√

dh(uh; eh, eh) ≤ dh(uh; rhu, rhu) +
1

4
dh(uh; eh, eh) .

Using (44), (23), and (5), one obtains

(56) dh(uh; rhu, rhu) ≤ C ‖b‖0,∞,Ω h2 k+1 |u|2k+1,Ω .

Therefore,

‖eh‖2LPS + dh(uh; eh, eh) ≤ C
(
ε+ h ‖b‖0,∞,Ω + h2 ‖σ‖0,∞,Ω + h2 |b|21,∞,Ω σ

−1
0

)
h2 k |u|2k+1,Ω .

Note that an application of the triangle inequality gives

(57) dh(uh; u− uh, u− uh) ≤ 2 dh(uh; η, η) + 2 dh(uh; eh, eh) .

It follows from Hölder’s inequality, (23), (51), (39) with α = 0, (11), (4), and (5), that

(58) dh(uh; η, η) ≤
∑

M∈Mh

‖τ soldM (uh)‖0,M ‖κM(PM∇η)‖20,4,M ≤ C ‖b‖0,∞,Ω h2 k+1 |u|2k+1,Ω .
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Finally, using the triangle inequality and the estimate (43), the statement of the theorem

follows. �

Remark. Theorems 9 and 10 prove the convergence of the method in the LPS norm plus

an extra term involving the crosswind derivative of the error. Hence, these estimates give,

essentially, an extra control of the whole gradient of the error.

4. The time-dependent problem

We now move on to the study of the time-dependent problem (3). A weak form of problem

(3) reads as follows: Find u ∈ L2(0, T ;H1(Ω)) ∩ H1(0, T ;L2(Ω)) such that u = ub on

[0, T ]× ∂Ω, u(0, ·) = u0 and

(59) (ut, v) + a(u, v) = (f, v) ∀ v ∈ H1
0(Ω), for almost every t ∈ (0, T ].

To avoid technicalities in the analysis, it is assumed that the boundary condition does not

depend on time, ub(t, ·) = ub. The initial condition u0 is assumed to satisfy u0|∂Ω = ub and

it is approximated by a function u0
h ∈ Wh such that u0

h − ũbh ∈ Vh.

To perform the discretization of the time derivative, the time interval [0, T ] is divided

into NT equi-distant strips of length δt = T/NT . The nodes are denoted by tn = n δt for

n = 0, 1, . . . , NT and the abbreviations un := u(tn, ·), fn := f(tn, ·), etc. are used. Since

this section studies the LPS method with nonlinear crosswind diffusion in combination with

a one-step θ-scheme as temporal discretization, from now on, the superscript n + θ denotes

for all functions which are defined in [0, T ] the values at time tn+θ := θ tn+1 + (1 − θ) tn

with any n ∈ {0, . . . , NT − 1} and θ ∈ [0, 1], e.g. b
n+θ = b(tn+θ, ·). For functions, which

are defined only at the discrete times tn and tn+1, it denotes the linear interpolation, e.g.

un+θ
h = θ un+1

h + (1 − θ) un
h. Finally, it is convenient to introduce the interpolation operator

r̃n+θ
h satisfying

(60) r̃n+θ
h u = θ rhu

n+1 + (1− θ) rhu
n

with rh from (40). Thus, writing α instead of n + θ, functions uα, uα
h , r̃αhu, etc. are defined

for any α ∈ [0, NT ].

Then, given θ ∈ (0, 1], the fully discrete problem reads as follows: For n = 0, 1, . . . , NT −1,

find un+1
h ∈ Wh such that un+1

h − ũbh ∈ Vh and
(
un+1
h − un

h

δt
, vh

)
+ an+θ(un+θ

h , vh) + sn+θ
h (un+θ

h , vh) + dn+θ
h (un+θ

h ; un+θ
h , vh)(61)

= (fn+θ, vh) ∀ vh ∈ Vh .
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For θ = 1/2, the Crank-Nicolson scheme is recovered and for θ = 1, the implicit Euler scheme

is obtained.

Remark. To simplify the notation, we will not explicitly indicate at which time instant the

functions b and σ in the definition of the norm ‖ · ‖
LPS

are evaluated. This will be implicitly

determined from the context or by the argument of the norm. Thus, if we write, e.g.,

‖un+θ
h ‖

LPS
, the norm ‖ · ‖

LPS
is defined using b

n+θ and σn+θ.

4.1. Well-posedness and stability. The well-posedness of (61) can be traced back to the

well-posedness of the LPS scheme with crosswind diffusion for the steady-state problem. The

discretization of the temporal derivative can be written in the form
(
un+1
h − un

h

δt
, vh

)
=

1

θ

(
un+θ
h − un

h

δt
, vh

)
.

The first part of this term has the form of a reaction term for un+θ
h . Thus, given un

h, the

equation at the discrete time tn+1 is an equation for un+θ
h which has the same form as (19)

with the data of the problem at tn+θ and with a reaction coefficient which has a contribution

from the temporal derivative. Thus, defining the operator T̃ n+θ
h : Vh → Vh by

(T̃ n+θ
h zh, vh) = (T n+θ

h zh, vh) +
1

θ δt
(zh + ũbh, vh)−

1

θ δt
(un

h, vh) ∀ zh, vh ∈ Vh ,

it follows that T̃ n+θ
h (un+θ

h − ũbh) = 0. Therefore, the existence and uniqueness of a solution

un+θ
h can be proved in the same way as in the steady-state case, see Section 3.1. This fact is

stated in the next result.

Corollary 11. Let n ∈ {0, 1, . . . , NT − 1} and un
h ∈ Wh with un

h|∂Ω = ũbh be given. If τ̃M is

defined by (21) or (22), then the problem (61) possesses a solution un+1
h . In the case that τ̃M

is defined by (21), the solution of (61) is unique. Furthermore, there is a constant C > 0 such

that the solution of the scheme (61) with τ̃M given by (22) is unique if δt ‖bn+θ‖0,∞,M ≤ C hM

for any M ∈ Mh.

Proof. The only point remaining to prove is the uniqueness in the case τ̃M is given by (22).

For this, let vh, wh ∈ Wh and zh := vh − wh. Then, applying (31), (10), (16), ‖P n+θ
M ‖2 = 1,

and (8), one arrives at

|dn+θ
h (vh; vh, zh)− dn+θ

h (wh;wh, zh)| ≤ C
∑

M∈Mh

h−1
M ‖bn+θ‖0,∞,M ‖zh‖20,M .

Thus, if vh, wh ∈ Vh, one obtains

(T̃ n+θ
h vh − T̃ n+θ

h wh, zh) ≥
∑

M∈Mh

(
C̃

θ δt
−

C ‖bn+θ‖0,∞,M

hM

)
‖zh‖20,M + ‖zh‖2LPS .
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Consequently, for δt small enough, the operator T̃ n+θ
h is strongly monotone and hence the

solution to the discrete problem (61) is unique. �

The next result states the stability of the method.

Lemma 12. Let θ ∈ [1/2, 1] be given. Let ũα
h := uα

h − ũbh for any α ∈ [0, NT ]. Then any

solution of (61) satisfies the following stability estimate for all N = 1, 2, . . . , NT :

‖ũN
h ‖20,Ω + (2 θ − 1)

N−1∑

n=0

‖ũn+1
h − ũn

h‖20,Ω + δt
N−1∑

n=0

‖ũn+θ
h ‖2LPS(62)

+ δt

N−1∑

n=0

dn+θ
h (ūn+θ

h ; ũn+θ
h , ũn+θ

h ) ≤ ‖ũ0
h‖20,Ω + C δt

N−1∑

n=0

{
σ−1
0 ‖fn+θ‖20,Ω

+
[
ε+ σ−1

0 (‖bn+θ‖20,∞,Ω + ‖cn+θ‖20,∞,Ω) + h ‖bn+θ‖0,∞,Ω

]
‖ũbh‖21,Ω + µh

}
,

where

ūn+θ
h = ũn+θ

h , µh = h ‖bn+θ‖0,∞,Ω |ũbh|31,3,Ω if τ̃M is given by (21) ,(63)

ūn+θ
h = un+θ

h , µh = 0 if τ̃M is given by (22) .(64)

Proof. The proof starts in the usual way by setting vh = ũn+θ
h ∈ V h in (61) and using that

un+1
h − un

h = ũn+1
h − ũn

h, which leads to

(ũn+1
h − ũn

h, ũ
n+θ
h ) + δt ‖ũn+θ

h ‖2LPS + δt dn+θ
h (un+θ

h ; un+θ
h , ũn+θ

h )(65)

= δt (fn+θ, ũn+θ
h )− δt an+θ(ũbh, ũ

n+θ
h )− δt sn+θ

h (ũbh, ũ
n+θ
h ) .

A straightforward computation gives

(66) (ũn+1
h − ũn

h, ũ
n+θ
h ) =

1

2
(‖ũn+1

h ‖20,Ω − ‖ũn
h‖20,Ω) +

2 θ − 1

2
‖ũn+1

h − ũn
h‖20,Ω .

Next, the application of the Cauchy-Schwarz inequality, the Young inequality, (16), (18),

(20), (4), and (5) yields

(fn+θ, ũn+θ
h ) ≤ 1

σ0
‖fn+θ‖20,Ω +

1

4
‖ũn+θ

h ‖2LPS ,

an+θ(ũbh, ũ
n+θ
h ) ≤ 6

[
ε+ σ−1

0 (‖bn+θ‖20,∞,Ω + ‖cn+θ‖20,∞,Ω)
]
‖ũbh‖21,Ω +

1

8
‖ũn+θ

h ‖2LPS ,

sn+θ
h (ũbh, ũ

n+θ
h ) ≤ C h ‖bn+θ‖0,∞,Ω |ũbh|21,Ω +

1

8
‖ũn+θ

h ‖2LPS .
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If τ̃M is given by (21), then, from (26) and an analog of (48), one obtains

dn+θ
h (un+θ

h ; un+θ
h , ũn+θ

h ) ≥ 1

7
dn+θ
h (ũn+θ

h ; ũn+θ
h , ũn+θ

h ) + dn+θ
h (ũbh; ũbh, ũ

n+θ
h )

≥ 1

10
dn+θ
h (ũn+θ

h ; ũn+θ
h , ũn+θ

h )− 2 dn+θ
h (ũbh; ũbh, ũbh) .

Furthermore, the use of (10), (16), (18), ‖P n+θ
M ‖2 = 1, (4), and (5) leads to

dn+θ
h (ũbh; ũbh, ũbh) ≤ C

∑

M∈Mh

h
1−d/2
M ‖bn+θ‖0,∞,M |ũbh|31,M ≤ C̃ h ‖bn+θ‖0,∞,Ω |ũbh|31,3,Ω .

If τ̃M is given by (22), then, using an inequality like (55), one gets

dn+θ
h (un+θ

h ; un+θ
h , ũn+θ

h ) = dn+θ
h (un+θ

h ; ũn+θ
h , ũn+θ

h ) + dn+θ
h (un+θ

h ; ũbh, ũ
n+θ
h )

≥ 1

2
dn+θ
h (un+θ

h ; ũn+θ
h , ũn+θ

h )− 1

2
dn+θ
h (un+θ

h ; ũbh, ũbh) .

Applying the Hölder inequality, (23), (10), (16), ‖P n+θ
M ‖2 = 1, (4), and (5), one deduces that

dn+θ
h (un+θ

h ; ũbh, ũbh) ≤ C
∑

M∈Mh

h
1+d/2
M ‖bn+θ‖0,∞,M ‖κM(P n+θ

M ∇ũbh)‖20,4,M

≤ C̃ h ‖bn+θ‖0,∞,Ω |ũbh|21,Ω .

Now, inserting the above relations into (65) and using the notation (63) and (64), one obtains

1

2
(‖ũn+1

h ‖20,Ω − ‖ũn
h‖20,Ω) +

2 θ − 1

2
‖ũn+1

h − ũn
h‖20,Ω +

δt

2
‖ũn+θ

h ‖2
LPS

+
δt

6
dn+θ
h (ūn+θ

h ; ũn+θ
h , ũn+θ

h )

≤ δt σ−1
0 ‖fn+θ‖20,Ω + C δt

{
ε+ σ−1

0 (‖bn+θ‖20,∞,Ω + ‖cn+θ‖20,∞,Ω) + h ‖bn+θ‖0,∞,Ω

}
‖ũbh‖21,Ω

+ C δt µh ,

and (62) follows by summing up from n = 0 to N − 1. �

Remark. The inequality (62) is a proper stability result provided that ‖u0
h‖0,Ω, ‖ũbh‖1,Ω and,

if τ̃M is given by (21), also |ũbh|1,3,Ω are bounded when h → 0. One may set u0
h = Ihu0 and

ũbh = Ihũb, where Ih : H1(Ω) → Wh is the Scott-Zhang interpolation operator (cf., e.g., [12])

and ũb ∈ H1(Ω) is an extension of ub. Then ‖u0
h‖0,Ω ≤ C ‖u0‖1,Ω and ‖ũbh‖1,Ω ≤ C ‖ũb‖1,Ω.

If ũb ∈ W 1,3(Ω) (requiring the stronger assumption ub ∈ W 2/3,3(∂Ω)), then also |ũbh|1,3,Ω ≤
C ‖ũb‖1,3,Ω. It is important that Ih preserves homogeneous boundary conditions since one has

to assure that u0
h and ũbh coincide on the boundary of Ω. If u0 ∈ H2(Ω) and ub ∈ H3/2(∂Ω),

which are the minimal regularity assumptions for deriving the error estimates in the next

section, one may use the operator ih from Section 2 instead of Ih. Now ũb ∈ H2(Ω) and,

according to (11) and (13), one has ‖u0
h‖0,Ω ≤ C ‖u0‖2,Ω and ‖ũbh‖1,Ω+ |ũbh|1,3,Ω ≤ C ‖ũb‖2,Ω.



22 G.R. BARRENECHEA, V. JOHN, AND P. KNOBLOCH

Remark. It is worth remarking that, for the homogeneous case ub = 0, instead of the direct

proof presented in this manuscript, an analysis completely analogous to the one given in [8]

leads to the following stability result

1

2
‖uN

h ‖20,Ω + δt

N−1∑

n=0

{‖un+θ
h ‖2LPS+dn+θ

h (un+θ
h ; un+θ

h , un+θ
h )}

≤ e
T

T−δt {T δt
N−1∑

n=0

‖fn+θ‖20,Ω +
1

2
‖u0

h‖20,Ω} .

A similar analysis could also be carried out for the non-homogeneous case, but in that case

the presence of ub makes the constants dependent on σ−1
0 .

Also, if ub would be supposed time dependent, then in the first line of the proof of stability

there holds un+1
h − un

h = ũn+1
h − ũn

h + ũn+1
bh − ũn

bh, thus creating an extra right-hand side

depending on the time derivative of ub.

4.2. Error estimates. In this section, error estimates are derived for the solution of the

discrete problem (61) with θ ∈ [1/2, 1]. The error will be analyzed essentially in the quantity

which is given by the stability estimate (62). Let us denote the error by eα := uα − uα
h

with α ∈ [0, NT ]. Furthermore, to simplify the presentation of our results, we introduce the

quantities

EN = ‖eN‖0,Ω +

(
δt

N−1∑

n=0

‖en+θ‖2LPS

)1/2

,

QN = h
(
|u0|k+1,Ω + |uN |k+1,Ω + σ

−1/2
0 ‖ut‖L2(0,tN ;Hk+1(Ω))

)
+

(
δt

N−1∑

n=0

(
ε+ h ‖bn+θ‖0,∞,Ω

+ h2 ‖σn+θ‖0,∞,Ω + h2 σ−1
0 |bn+θ|21,∞,Ω

)(
|un|2k+1,Ω + |un+1|2k+1,Ω

))1/2

,

RN =

(
δt

N−1∑

n=0

hk+1−d/2 ‖bn+θ‖0,∞,Ω

(
|un|3k+1,Ω + |un+1|3k+1,Ω

))1/2

,

SN =

(
δt

N−1∑

n=0

hk+1 ‖bn+θ‖0,∞,Ω

(
|un|k+1,∞,Ω + |un+1|k+1,∞,Ω

)(
|un|2k+1,Ω + |un+1|2k+1,Ω

))1/2

,
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XN = max
n=0,...,N−1

(
ε+ h ‖bn+θ‖0,∞,Ω + ‖σn+θ‖0,∞,Ω

+ σ−1
0 ‖bn+θ‖20,∞,Ω + σ−1

0 ‖cn+θ‖20,∞,Ω

)1/2
,

Y N = h1/2 max
n=0,...,N−1

‖bn+θ‖1/20,∞,Ω ,

where N = 1, 2, . . . , NT .

Theorem 13. Let θ ∈ [1/2, 1] be given. Let the weak solution of (3) satisfy u, ut ∈
L2(0, T ;Hk+1(Ω)) for some k ∈ {1, . . . , l} and let utt ∈ L2(0, T ;L2(Ω)). Let ũb ∈ H2(Ω)

be an extension of ub and let ũbh = ihũb. Let u0 ∈ Hk+1(Ω) and let u0
h = ihu0. Let

{un
h}NT

n=0 be the solution of the local projection discretization (61). If τ̃M is defined by (21)

and ut ∈ L3(0, T ;W 1,3(Ω)), then the error estimate

EN +

(
δt

N−1∑

n=0

∑

M∈Mh

τ̃M‖κM(P n+θ
M ∇en+θ)‖30,3,M

)1/2

≤ C hk QN + C hk RN + C δtXN ‖ut‖L2(0,tN ;H1(Ω))

+ C (δt)3/2 Y N ‖ut‖3/2L3(0,tN ;W 1,3(Ω))
+ C δt σ

−1/2
0 ‖utt‖L2(0,tN ;L2(Ω))

is satisfied for N = 1, 2, . . . , NT . Moreover, if θ = 1/2, utt ∈ L3(0, T ;W 1,3(Ω)), and uttt ∈
L2(0, T ;L2(Ω)), then

EN +

(
δt

N−1∑

n=0

∑

M∈Mh

τ̃M‖κM(P n+θ
M ∇en+θ)‖30,3,M

)1/2

≤ C hk QN + C hk RN + C (δt)2XN ‖utt‖L2(0,tN ;H1(Ω))

+ C (δt)3 Y N ‖utt‖3/2L3(0,tN ;W 1,3(Ω))
+ C (δt)2 σ

−1/2
0 ‖uttt‖L2(0,tN ;L2(Ω)) .

If u ∈ L2(0, T ;W k+1,∞(Ω)), then, in both estimates, RN can be replaced by SN .

If τ̃M is defined by (22) and ut ∈ L4(0, T ;W 1,4(Ω)), then the following error estimate holds

EN +

(
δt

N−1∑

n=0

dn+θ
h (un+θ

h ; en+θ, en+θ)

)1/2

≤ C hk QN + C δtXN ‖ut‖L2(0,tN ;H1(Ω))

+C δt T 1/4 Y N ‖ut‖L4(0,tN ;W 1,4(Ω)) + C δt σ
−1/2
0 ‖utt‖L2(0,tN ;L2(Ω)) .

Moreover, if θ = 1/2, utt ∈ L4(0, T ;W 1,4(Ω)), and uttt ∈ L2(0, T ;L2(Ω)), then

EN +

(
δt

N−1∑

n=0

dn+θ
h (un+θ

h ; en+θ, en+θ)

)1/2

≤ C hk QN + C (δt)2XN ‖utt‖L2(0,tN ;H1(Ω))

+C (δt)2 T 1/4 Y N ‖utt‖L4(0,tN ;W 1,4(Ω)) + C (δt)2 σ
−1/2
0 ‖uttt‖L2(0,tN ;L2(Ω)) .
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Proof. Analogously to the steady-state case, the error will be split into an interpolation error

and a remainder which belongs to the finite element space. The decomposition of the error

eα with any α ∈ [0, NT ] has the form

eα = ηα − eαh with ηα := uα − r̄αh , eαh := uα
h − r̄αh ∈ Vh ,

where we use the abbreviation r̄αh = r̃αhu with r̃αh given by (60). Using this decomposition,

one obtains with the triangle inequality and with (57)

‖eN‖20,Ω + δt

N−1∑

n=0

‖en+θ‖2LPS + δt

N−1∑

n=0

dn+θ
h (γn+θ

0 ; en+θ, en+θ)(67)

≤ 4

[
‖ηN‖20,Ω + δt

N−1∑

n=0

‖ηn+θ‖2LPS + δt
N−1∑

n=0

dn+θ
h (γn+θ

1 ; ηn+θ, ηn+θ)

]

+4

[
‖eNh ‖20,Ω + δt

N−1∑

n=0

‖en+θ
h ‖2LPS + δt

N−1∑

n=0

dn+θ
h (γn+θ

2 ; en+θ
h , en+θ

h )

]
,

where γn+θ
0 = en+θ, γn+θ

1 = ηn+θ, γn+θ
2 = en+θ

h if τ̃M is defined by (21) and γn+θ
0 = γn+θ

1 =

γn+θ
2 = un+θ

h if τ̃M is defined by (22).

First let us estimate the interpolation errors. The starting point is the identity

(68) ηn+θ = un+θ − θ un+1 − (1− θ) un + θ (un+1 − rhu
n+1) + (1− θ) (un − rhu

n) .

One has

(69) un+θ − θ un+1 − (1− θ) un = (1− θ)

∫ tn+θ

tn
ut(t) dt− θ

∫ tn+1

tn+θ

ut(t) dt ,

which, in view of (42), leads to

‖ηn+θ‖0,Ω ≤ C hk+1 (|un|k+1,Ω + |un+1|k+1,Ω) +
√
δt ‖ut‖L2(tn,tn+1;L2(Ω)) ,

|ηn+θ|1,Ω ≤ C hk (|un|k+1,Ω + |un+1|k+1,Ω) +
√
δt ‖ut‖L2(tn,tn+1;H1(Ω)) .

Using Taylor’s formula with integral remainder or applying successively integration by parts

gives

un = un+θ − θ δt un+θ
t +

∫ tn

tn+θ

utt(t) (t
n − t) dt ,(70)

un+1 = un+θ + (1− θ) δt un+θ
t +

∫ tn+1

tn+θ

utt(t) (t
n+1 − t) dt .(71)
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This may be used to derive improved interpolation estimates with respect to the time step

provided that utt ∈ L2(0, T ;H1(Ω)). Indeed,

(72) un+θ−θ un+1−(1−θ) un = −(1−θ)

∫ tn+θ

tn
utt(t) (t−tn) dt−θ

∫ tn+1

tn+θ

utt(t) (t
n+1−t) dt ,

which leads to

‖ηn+θ‖0,Ω ≤ C hk+1 (|un|k+1,Ω + |un+1|k+1,Ω) + (δt)3/2 ‖utt‖L2(tn,tn+1;L2(Ω)) ,

|ηn+θ|1,Ω ≤ C hk (|un|k+1,Ω + |un+1|k+1,Ω) + (δt)3/2 ‖utt‖L2(tn,tn+1;H1(Ω)) .

Now let us estimate the norms of the interpolation error in (67). In view of (60), (42),

(16), (18), (5), and (4), one has

‖ηN‖0,Ω = ‖uN − rhu
N‖0,Ω ≤ C hk+1 |uN |k+1,Ω ,

‖ηn+θ‖LPS ≤
(
ε+ C h ‖bn+θ‖0,∞,Ω

)1/2 |ηn+θ|1,Ω + ‖σn+θ‖1/20,∞,Ω ‖ηn+θ‖0,Ω .

Furthermore, analogously as in (51), for any p ∈ [2, 6], one obtains

‖κM(P n+θ
M ∇ηn+θ)‖0,p,M ≤ C |un+θ − θ ihu

n+1 − (1− θ) ihu
n|1,p,M(73)

+ C h
d
p
−

d
2

M

(
|%h(un − ihu

n)|1,M + |%h(un+1 − ihu
n+1)|1,M

)
.

If τ̃M is defined by (21), this inequality implies that

dn+θ
h (ηn+θ; ηn+θ, ηn+θ) ≤ C (I + II) ,

where

I := h ‖bn+θ‖0,∞,Ω

∑

M∈Mh

|un+θ − θ un+1 − (1− θ) un|31,3,M

II := h ‖bn+θ‖0,∞,Ω

∑

M∈Mh

(
|un+1 − ihu

n+1|31,3,M + |un − ihu
n|31,3,M

)

+ h ‖bn+θ‖0,∞,Ω

∑

M∈Mh

h
−

d
2

M

(
|%h(un − ihu

n)|31,M + |%h(un+1 − ihu
n+1)|31,M

)
.

Using (69) and (72), one obtains

I ≤ C h (δt)2 ‖bn+θ‖0,∞,Ω ‖ut‖3L3(tn,tn+1;W 1,3(Ω)) ,

resp.

I ≤ C h (δt)5 ‖bn+θ‖0,∞,Ω ‖utt‖3L3(tn,tn+1;W 1,3(Ω)) .
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Furthermore, it follows from (13), (38), (11), (6), and (4) that

(74) II ≤ C h ‖bn+θ‖0,∞,Ω

∑

M∈Mh

h
3 k−d/2
M (|un|3k+1,M + |un+1|3k+1,M) ,

which implies in view of (4) and (5) that

II ≤ C h3 k+1−d/2 ‖bn+θ‖0,∞,Ω (|un|3k+1,Ω + |un+1|3k+1,Ω) .

If u ∈ L2(0, T ;W k+1,∞(Ω)), the inequality (74) together with (4) and (5) implies that

II ≤ C h3 k+1 ‖bn+θ‖0,∞,Ω (|un|k+1,∞,Ω |un|2k+1,Ω + |un+1|k+1,∞,Ω |un+1|2k+1,Ω) .

If τ̃M is defined by (22), then, proceeding analogously as when deriving (58), but with (73)

instead of (51), and applying (13) in addition, one gets

dn+θ
h (un+θ

h ; ηn+θ, ηn+θ) ≤ C Ĩ + C ‖bn+θ‖0,∞,Ω h
2 k+1 (|un|2k+1,Ω + |un+1|2k+1,Ω) ,

where

Ĩ := h ‖bn+θ‖0,∞,Ω

∑

M∈Mh

h
d/2
M |un+θ − θ un+1 − (1− θ) un|21,4,M .

Similarly as above, one obtains

Ĩ ≤ C h (δt)3/2 ‖bn+θ‖0,∞,Ω ‖ut‖2L4(tn,tn+1;W 1,4(Ω)) ,

resp.

Ĩ ≤ C h (δt)7/2 ‖bn+θ‖0,∞,Ω ‖utt‖2L4(tn,tn+1;W 1,4(Ω)) .

Now let us estimate the norms of the discrete part of the error on the right-hand side of

(67). To derive an equation for this part of the error, the weak formulation (59) at t = tn+θ

is subtracted from (61) with v = vh = en+θ
h . Then, using the fact that uα

h = eαh + r̄αh , one

deduces that

(en+1
h − enh, e

n+θ
h ) + δt ‖en+θ

h ‖2LPS + δt dn+θ
h (un+θ

h ; un+θ
h , en+θ

h )(75)

= δt

[(
un+θ
t − r̄n+1

h − r̄nh
δt

, en+θ
h

)
+ an+θ(ηn+θ, en+θ

h )− sn+θ
h (r̄n+θ

h , en+θ
h )

]
.

Furthermore, one obtains

(76) dn+θ
h (un+θ

h ; un+θ
h , en+θ

h ) ≥ 1

7
dn+θ
h (γn+θ

2 ; en+θ
h , en+θ

h ) + dn+θ
h (γn+θ

3 ; r̄n+θ
h , en+θ

h ) ,

where γn+θ
3 = r̄n+θ

h if τ̃M is defined by (21) and γn+θ
3 = un+θ

h if τ̃M is defined by (22) (γn+θ
2 was

defined below (67)). This follows from (26) if τ̃M is defined by (21) and simply by writing
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the second argument of dn+θ
h as en+θ

h + r̄n+θ
h and using the fact that dn+θ

h (un+θ
h ; en+θ

h , en+θ
h ) ≥ 0

if τ̃M is defined by (22). Since θ ≥ 1/2, it follows from (66) with ũ replaced by e that

(77) (en+1
h − enh, e

n+θ
h ) ≥ 1

2
(‖en+1

h ‖20,Ω − ‖enh‖20,Ω) .

Substituting (76) and (77) into (75) and summing up over the discrete times yields an upper

bound for the discrete part of the estimate (67)

‖eNh ‖20,Ω + δt

N−1∑

n=0

‖en+θ
h ‖2LPS + δt

N−1∑

n=0

dn+θ
h (γn+θ

2 ; en+θ
h , en+θ

h )(78)

≤ 7

2
‖e0h‖20,Ω + 7 δt

N−1∑

n=0

[(
un+θ
t − r̄n+1

h − r̄nh
δt

, en+θ
h

)
+ an+θ(ηn+θ, en+θ

h )

− sn+θ
h (r̄n+θ

h , en+θ
h )− dn+θ

h (γn+θ
3 ; r̄n+θ

h , en+θ
h )

]
.

Using (39), (11), (5), and (4), one obtains

‖e0h‖0,Ω = ‖ihu0 − rhu
0‖0,Ω = ‖%h(u0 − ihu

0)‖0,Ω ≤ C hk+1 |u0|k+1,Ω .

Applying the Cauchy-Schwarz and Young inequalities gives

(
un+θ
t − r̄n+1

h − r̄nh
δt

, en+θ
h

)
≤ 1

σ0

∥∥∥∥un+θ
t − r̄n+1

h − r̄nh
δt

∥∥∥∥
2

0,Ω

+
1

4
‖en+θ

h ‖2LPS.

The last term can be hidden in the left-hand side of (78). The first term is a mixture of

discretization errors in time and space. Elimination of un+θ from (70) and (71) yields

un+θ
t =

un+1 − un

δt
− 1

δt

∫ tn+θ

tn
utt(t) (t

n − t) dt− 1

δt

∫ tn+1

tn+θ

utt(t) (t
n+1 − t) dt .

Since interpolation in space and differentiation in time commute, one has

un+1 − r̄n+1
h − (un − r̄nh) =

∫ tn+1

tn
(ut − rhut)(t) dt .

Thus, applying the Cauchy-Schwarz inequality, one derives

∥∥∥∥un+θ
t − r̄n+1

h − r̄nh
δt

∥∥∥∥
2

0,Ω

≤ 2

δt
‖ut − rhut‖2L2(tn,tn+1;L2(Ω)) + 2 δt ‖utt‖2L2(tn,tn+1;L2(Ω)) .

The first term on the right-hand side can be bounded using (42).
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Assuming uttt ∈ L2(0, T ;L2(Ω)) and replacing (70) and (71) by

un = un+θ − θ δt un+θ
t +

θ2

2
(δt)2 un+θ

tt +
1

2

∫ tn

tn+θ

uttt(t) (t
n − t)2 dt ,

un+1 = un+θ + (1− θ) δt un+θ
t +

(1− θ)2

2
(δt)2 un+θ

tt +
1

2

∫ tn+1

tn+θ

uttt(t) (t
n+1 − t)2 dt ,

one obtains

un+θ
t =

un+1 − un

δt
+

δt

2
[θ2 − (1− θ)2] un+θ

tt

− 1

2 δt

∫ tn+θ

tn
uttt(t) (t

n − t)2 dt− 1

2 δt

∫ tn+1

tn+θ

uttt(t) (t
n+1 − t)2 dt ,

which shows that an improved estimate with respect to δt follows for θ = 1/2, i.e., for the

Crank-Nicolson scheme. Indeed, one gets
∥∥∥∥u

n+1/2
t − r̄n+1

h − r̄nh
δt

∥∥∥∥
2

0,Ω

≤ 2

δt
‖ut − rhut‖2L2(tn,tn+1;L2(Ω)) + (δt)3 ‖uttt‖2L2(tn,tn+1;L2(Ω)) .

Now let us consider the remaining three terms on the right-hand side of (78). According

to (68) and (60), one has

an+θ(ηn+θ, en+θ
h )− sn+θ

h (r̄n+θ
h , en+θ

h ) = an+θ(un+θ − θ un+1 − (1− θ) un, en+θ
h )

+ θ
[
an+θ(un+1 − rhu

n+1, en+θ
h )− sn+θ

h (rhu
n+1, en+θ

h )
]

+ (1− θ)
[
an+θ(un − rhu

n, en+θ
h )− sn+θ

h (rhu
n, en+θ

h )
]
.

The last two terms can be estimated by (43) and the estimation of the first term on the

right-hand side is performed using

‖un+θ − θ un+1 − (1− θ) un‖21,Ω ≤ δt ‖ut‖2L2(tn,tn+1;H1(Ω)) ,

resp.

‖un+θ − θ un+1 − (1− θ) un‖21,Ω ≤ (δt)3 ‖utt‖2L2(tn,tn+1;H1(Ω)) ,

which follows from (69), resp. (72). Finally, the last term on the right-hand side of (78) can

be estimated analogously as (49), (54), and (56): if τ̃M is defined by (21), one derives

dn+θ
h (r̄n+θ

h ; r̄n+θ
h , r̄n+θ

h ) ≤ C ‖bn+θ‖0,∞,Ω h3 k+1−d/2 (|un|3k+1,Ω + |un+1|3k+1,Ω) ,

if, in addition, u ∈ L2(0, T ;W k+1,∞(Ω)), then

dn+θ
h (r̄n+θ

h ; r̄n+θ
h , r̄n+θ

h )

≤ C ‖bn+θ‖0,∞,Ω h3 k+1 (|un|k+1,∞,Ω + |un+1|k+1,∞,Ω)(|un|2k+1,Ω + |un+1|2k+1,Ω) ,
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and, if τ̃M is defined by (22), then

dn+θ
h (un+θ

h ; r̄n+θ
h , r̄n+θ

h ) ≤ C ‖bn+θ‖0,∞,Ω h2 k+1 (|un|2k+1,Ω + |un+1|2k+1,Ω) .

These estimates together with analogs of (48) and (55) lead to an estimate of the term

dn+θ
h (γn+θ

3 ; r̄n+θ
h , en+θ

h ).

Collecting all the above estimates proves the theorem. �

5. Examples of spaces and partitions satisfying the hypotheses

This section is devoted to the presentation of some examples of spaces Wh and DM and

partitions Mh satisfying the hypotheses from Section 2. For simplicity, the discussion is

restricted to the two-dimensional case. In three dimensions, the spaces can be constructed

analogously. Throughout this section, {Th}h>0 stands for a regular family of triangulations

of Ω. This family is formed either by triangles or by convex quadrilaterals K with diameters

hK and one has h = maxK∈Th
hK . In what follows, K̂ stands for a reference mesh cell, which

is either a triangle or a square, depending on the type of elements in Th. For any K ∈ Th,

there exists a bijective mapping FK : K̂ → K that maps K̂ onto K and is affine if K̂ is a

triangle and bilinear if K̂ is a square. For any integer l ≥ 0, we denote by Pl the space of

polynomials of total degree at most l and by Ql the space of polynomials of degree at most

l in each variable. Finally, we set Rl(K̂) = Pl(K̂) if K̂ is a triangle and Rl(K̂) = Ql(K̂) if

K̂ is a square.

i) The two-level approach. This is the approach considered in the original local projection

stabilization method (cf. [2, 3]). The starting point is {Mh}h>0, a shape regular family

of triangulations of Ω. Then, each triangle is divided into three triangles by connecting

its vertices with the barycenter and each quadrilateral is divided into four quadrilaterals by

connecting midpoints of opposite edges. The resulting triangulation is denoted by Th. Then,

given an integer l ≥ 1, the spaces Wh and DM are given by

(79) Wh := {vh ∈ C(Ω) ; vh|K ◦ FK ∈ Rl(K̂) ∀K ∈ Th} , DM := Pl−1(M) .

The inf-sup condition (9) is proved for this pair in [28].

Alternatively, for the quadrilateral case, the space DM could be defined as the space of

mapped polynomials. More precisely, we can present the following two alternative definitions

for DM :

D1
M := {v ∈ L2(M) ; v ◦ FM ∈ Pl−1(M̂)} ,

D2
M := {v ∈ L2(M) ; v ◦ FM ∈ Ql−1(M̂)} ,
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where M̂ is a reference macro-cell and FM is the analog of FK . Both definitions lead to

different methods (both different from the one presented so far) and have the advantage

that the computations can be done directly on the reference element, leading to simpler

implementations. All the approximation and stability assumptions hold for D2
M , but for D1

M

the approximation property (12) holds only on uniformly refined meshes (see [29, pp. 345–

346] for a discussion on the topic).

ii) The one-level approach. This alternative was introduced in [28] and assumes Mh = Th.

Introducing a polynomial bubble function bK̂ ∈ H1
0 (K̂) \ {0} (cubic if K̂ is a triangle and

biquadratic if K̂ is a square), the spaces are given by

Wh := {vh ∈ C(Ω) ; vh|K ◦ FK ∈ Rl(K̂) + bK̂ · Rl−1(K̂) ∀K ∈ Th} , DM := Pl−1(M) .

The inf-sup condition (9) is proved for this pair in [28].

iii) The overlapping method. Let x1, . . . , xNh
be the inner vertices of the triangulation Th,

define the neighborhoods Mi :=
⋃

K∈Th,xi∈K
K, and set Mh := {Mi}Nh

i=1. The spaces Wh and

DM are given by (79). The inf-sup condition (9) is proved for this pair in [22].

In all of the examples above, ih can be chosen to be the Lagrange interpolation operator

and jM to be the orthogonal L2 projection of L2(M) onto DM (see, e.g., [12]). The validity of

the geometrical hypotheses (4)–(7) follows from the mesh regularity. The inverse inequality

(8) arises from a local inverse inequality (cf. [12]) and the mesh regularity. Finally, if FK is

linear for any K ∈ Th, then the space GM consists of functions that are polynomial on the

mesh cells included in M and the inverse inequality (10) is standard (cf. [12]).

Note that if the set Mh consists of nonoverlapping sets M , which is the case for both the

one-level and two-level methods, then (significantly) more degrees of freedom are used for

constructing the space Wh than in case of the method with overlapping sets M . This increase

of the number of degrees of freedom is either due to an enrichment by bubble functions (in the

one-level method) or due to a refinement of the given triangulation (in the two-level method).

On the other hand, given a triangulation Th of Ω and using Mh consisting of overlapping sets

M , the space Wh can be defined as a standard finite element space consisting of piecewise

polynomials of degree l on Th, like in the Galerkin discretization.

6. Numerical illustrations

In this section, the theory of this paper is illustrated by the results of numerical computa-

tions performed for the steady-state problem (1). From the three possibilities for spaces and

partitions proposed in the preceding section, we have chosen the overlapping version of the

LPS method. This is mainly due to the fact that, as shown in [22], the overlapping version
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Figure 1. Type of the triangulations used in numerical computations (left)

and exact solution for Example 1 (right).

is more robust with respect to the stabilization parameter than both the one- and two-level

approaches. The overlapping version was applied with triangular meshes and conforming

piecewise linear approximation spaces Wh (thus l = 1). The solution of the nonlinear sys-

tem was performed using a fixed point iteration with damping (treating the stabilization

parameter τ soldM (uh) explicitly), as proposed in [18]. Both possible definitions (21) and (22)

of τ̃M(uh) were considered.

In the below examples, Ω = (0, 1)2 and Friedrichs-Keller triangulations of the type depicted

in Fig. 1 were used. It is worth mentioning that the mesh is not aligned with the convection.

Example 1. Smooth polynomial solution [20], support of error estimates. We consider

problem (1) with ε = 10−8, b = (3, 2)T , c = 2 and ub = 0. The right-hand side f is chosen

such that

u(x, y) = 100 x2 (1− x)2 y (1− y) (1− 2 y) ,

is the solution of (1), see Fig. 1.

In the stabilization parameters, the values τ0 = 0.02 and β = 0.1 were used. Table 1

shows errors of the discrete solutions measured in various norms for various mesh sizes. The

notation ‖ · ‖0,∞,h is used for the discrete L∞ norm defined as the maximum of the errors

at the vertices of the respective triangulation. The convergence orders were computed using

values from the two finest triangulations. One can observe that the convergence order with

respect to the LPS norm is 3/2, as predicted by the theory, and that in other norms one

obtains the usual optimal convergence orders.
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Table 1. Example 1, errors of the discrete solutions.

parameter (21) parameter (22)

h ‖ · ‖
LPS

‖ · ‖
0,Ω | · |

1,Ω ‖ · ‖
0,∞,h ‖ · ‖

LPS
‖ · ‖

0,Ω | · |
1,Ω ‖ · ‖

0,∞,h

8.84−2 4.74−2 1.83−2 4.20−1 6.46−2 4.30−2 1.47−2 4.00−1 5.04−2

4.42−2 1.48−2 3.54−3 1.88−1 1.52−2 1.41−2 2.93−3 1.84−1 1.13−2

2.21−2 5.02−3 7.24−4 9.02−2 3.40−3 4.93−3 6.57−4 8.96−2 2.44−3

1.10−2 1.76−3 1.58−4 4.45−2 7.63−4 1.75−3 1.57−4 4.44−2 5.57−4

5.52−3 6.19−4 3.63−5 2.21−2 1.77−4 6.18−4 3.83−5 2.21−2 1.44−4

order 1.50 2.12 1.01 2.11 1.50 2.03 1.01 1.95
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Figure 2. Example 2: solutions for the parameter (22) with τ0 = 0.02 and

β = 0, β = 0.03, β = 0.05, β = 0.1, left to right, top to bottom.

Example 2. Solution with two interior layers [25], reduction of spurious oscillations. Equa-

tion (1) was considered with ε = 10−8, b(x, y) = (−y, x)T , c = f = 0, and the boundary

conditions

u = ub on ΓD ,
∂u

∂n
= 0 on ΓN ,

where ΓN = {0} × (0, 1), ΓD = ∂Ω \ ΓN , n is the outward pointing unit normal vector to

the boundary of Ω, and

ub(x, y) =

{
1 for (x, y) ∈ (1/3, 2/3)× {0},
0 else on ΓD.
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Figure 3. Example 2: solutions for the parameter (21) with τ0 = 0.02, β =

0.03 (left) and τ0 = 0.02, β = 0.1 (right).

Results are presented that were obtained on the triangulation of the type from Fig. 1

having 33 × 33 vertices. Figure 2 shows results for the LPS method with the nonlinear

crosswind diffusion term dh defined using the parameter (22). One can observe that the

crosswind diffusion term manages to reduce the oscillations appearing in the solution of the

linear LPS method. An increase of the parameter β does not only reduce the oscillations

but also increases the smearing appearing at the layers. In this respect, the method behaves

as expected. Two results obtained for dh defined using the parameter (21) are shown in

Fig. 3. A detailed comparison of the results in Figs. 2 and 3 reveals that the method with

the parameter (21) is less successful in suppressing spurious oscillations whereas it leads to

a more pronounced smearing.

From the discussion of the preceding paragraph, the choice of the stabilization parameter

β appears as an important issue. A good choice of user-chosen parameters in stabilized finite

element methods is an open problem for all methods. In general, the parameters need to

be chosen not as constant but as function (see [18] for the construction of an example). A

non-constant choice, done automatically like in [19], will be the subject of future research.
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