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ABSTRACT. We explore the possibility of modifying the classical Gauss free energy functional used in capillarity

theory by considering surface tension energies of nonlocal type. The corresponding variational principles lead to

new equilibrium conditions which are compared to the mean curvature equation and Young’s law found in clas-

sical capillarity theory. As a special case of this family of problems we recover a nonlocal relative isoperimetric

problem of geometric interest.

1. INTRODUCTION

1.1. Overview. Classical capillarity theory is based on the study of volume-constrained critical points and lo-

cal/global minimizers of the Gauss free energy of a liquid droplet occupying a region E inside a container

Ω ⊂ R
n, n > 2. If Hn−1 denotes the (n − 1)-dimensional Hausdorff measure in R

n, then the Gauss free

energy of E is

Hn−1(Ω ∩ ∂E) + σHn−1(∂Ω ∩ ∂E) +

∫

E
g(x) dx (1.1)

where Hn−1(Ω∩∂E) accounts for the surface tension energy of the interior liquid/air interface, σHn−1(∂Ω∩
∂E) for the surface tension energy due to the liquid/solid interface (measured relatively to the liquid/air tension,

so that the relative adhesion coefficient σ is assumed to satisfy −1 < σ < 1), and where g(x) stands for the

potential energy density acting on the droplet. It is well-known that when E is a volume-constrained critical point

of the Gauss free energy having sufficiently smooth boundary, then the equilibrium conditions (Euler-Lagrange

equations) for E take the form

H∂E(x) + g(x) = c , for every x ∈ Ω ∩ ∂E , (1.2)

νE(x) · νΩ(x) = σ , for every x ∈ Ω ∩ ∂E ∩ ∂Ω , (1.3)

where νE is the outer unit normal to E, H∂E is the mean curvature of ∂E (computed with respect to νE ) and

c ∈ R is a Lagrange multiplier.

In this paper we introduce and investigate a family of capillarity-type energies where the effect of surface tension

is measured through nonlocal interaction energies, rather then through surface area. Given s ∈ (0, 1) and

ε ∈ (0,∞] we denote by

Iε
s (E, F ) =

∫

E
dx

∫

F

1(0,ε)(|x − y|) dy

|x − y|n+s

the fractional interaction energy of order s truncated at scale ε between two disjoint sets E and F contained in

R
n. We then work with the following “fractional Gauss free energy”

Iε
s (E, Ω ∩ Ec) + σ Iε

s (E, Ωc) +

∫

E
g(x) dx , (1.4)

Points in E interact with points in Ω ∩ Ec and with points in Ωc; the second type of interaction is weighted by

a constant σ having the same role of the relative adhesion coefficient in the classical model, and interactions

are truncated at distance ε. Since the kernel |z|−n−s is not locally integrable, the function x ∈ E 7→
∫

Ec |x −
y|−n−s dy explodes like dist(x, ∂E)−s as x ∈ E approaches the boundary of E. Now for every y ∈ ∂E the

function t > 0 7→ dist(y − tνE(y), ∂E)−s = t−s is integrable as t → 0+, and thus we understand a term

like the integral over x ∈ E of x ∈ E 7→
∫

Ec |x− y|−n−s dy, or more generally Iε
s (E, Ec) with ε < ∞, as a

nonlocal measurement of the surface area of ∂E. This intuition is confirmed by the fact that, in the limit s → 1−

corresponding to highly concentrated kernels, and after scaling by the factor (1 − s), the nonlocal capillarity

energy (1.4) converges to its local counterpart (1.1),

lim
s→1−

(1 − s)

κn

(

Iε
s (E, Ω ∩ Ec) + σ Iε

s (E, Ωc)
)

= Hn−1(Ω ∩ ∂E) + σHn−1(∂Ω ∩ ∂E)

see Proposition 1.2 below. The latter property indicates that for s close to 1 the nonlocal model is quite close to

the classical one. There are however some qualitative differences of possible interest, and the goal of this paper

is starting their study.

Clearly, in order to understand these differences, the first step is deriving and discussing the Euler-Lagrange

equations for the nonlocal capillarity energy (1.4). Both the interior equilibrium condition (1.2) and Young’s law

(the contact angle condition (1.3)) are affected by the non-locality of the model.
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FIGURE 1.1. The contact angle for the fractional Young’s law of order s is computed by balancing the

volume of the cone Lθ and the volume of Hc multiplied by σ. In both cases “volume” is computed with

respect to the singular density |z − e(θ)|−n−sdz, where both integral converge as the non-integrable

singularity e(θ) is at positive distance from both Lθ and Hc. Notice that Lθ is defined by considering

the reflection J∗

θ
of Jθ with respect to H ∩ ∂Jθ , and then by setting Lθ = J∗

θ
∩ H .

A first remarkable difference is that the interior equilibrium condition feels the effect of the relative adhesion

coefficient σ at interior points whose distance from ∂Ω is within the range of the interaction kernel. (This is

in striking difference with the classical model, where the corresponding interior equilibrium condition, namely

(1.2), is completely unaffected by the mismatch in surface tension even at points in the boundary of the droplet

lying at arbitrarily small distance from the container walls.) Indeed, as proved in Theorem 1.3 below, the interior

equilibrium condition in the fractional setting takes the form

H
s,ε
∂E(x) − (1 − σ)

∫

Ωc

1(0,ε)(|x − y|)
|x − y|n+s

dy + g(x) = c for every x ∈ Ω ∩ ∂E , (1.5)

where H
s,ε
∂E(x) is the fractional mean curvature of ∂E at x (of fractional order s and with truncation at scale ε),

defined as

H
s,ε
∂E(x) = p.v.

∫

Rn

(

1Ec(y) − 1E(y)
) 1(0,ε)(|x − y|)

|x − y|n+s
dy ∀x ∈ ∂E .

This last integral has to be defined in the principal value sense and only for x ∈ ∂E, because in order for the

integral to converge it is essential that, in a ball of radius r > 0 centered at x, 1Ec and −1E cancel out the

presence of the non-integrable kernel on outside of a region of volume o(rn). With this caveat in mind, it holds

that, as s → 1−, (1 − s)Hs,ε
∂E(x) → H∂E(x) for every x ∈ ∂E such that ∂E is an hypersurface of class

C2 around x. The novel feature of the fractional model is contained in the second term on the left-hand side of

(1.5), namely

−(1 − σ)

∫

Ωc

1(0,ε)(|x − y|)
|x − y|n+s

dy .

Because of this term, the mismatch 1− σ in the surface tension between the liquid/air and liquid/solid interface

is felt also at point x ∈ Ω ∩ ∂E lying at a distance at most ε from the boundary wall ∂Ω. Notice that this

nonlocal term, multiplied by (1 − s), converges to 0 as s → 1− for every x ∈ Ω.

Coming to the contact angle condition, as proved in Theorem 1.4 below, when working with the fractional model

one finds a different contact angle than the one predicted in the classical Young’s law (1.3). Independently from

the considered value of ε and on the ambient space dimension n, the fractional Young’s law takes the form

νE(x) · νΩ(x) = cos(π − θ(s, σ)) , for every x ∈ Ω ∩ ∂E ∩ ∂Ω , (1.6)

where θ = θ(s, σ) ∈ (0, π) is uniquely defined in terms of s and σ by the identity

∫

Rn

(1Jc
θ∩H + σ 1Hc − 1Jθ

)(z)

|e(θ) − z|n+s
dz = 0, (1.7)

where Jθ =
{

x ∈ R
n : xn > 0 and cos α xn = sinα x1 for some α ∈ (0, θ)

}

,

H = {x ∈ R
n : xn > 0}

and e(θ) = cos θ e1 + sin θ en ,

whose geometric significance is illustrated in Figure 1.1. (Notice that the independence of θ from n is not
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apparent from (1.7).) One has σ ∈ (−1, 1) 7→ θ(s, σ) is strictly increasing with

θ(s, 0) =
π

2
, lim

σ→(−1)+
θ(s, σ) = 0 , lim

σ→1−
θ(s, σ) = π

and, quite importantly,

lim
s→1−

cos(π − θ(s, σ)) = σ ,

so that the fractional Young’s law (1.6) converges to its local counterpart (1.3) as s → 1−. The fact of obtaining

a different contact angle than the classical one may be reconciliated with physical observation as the angle pre-

dicted by the classical Young’s law may be actually observed in the nonlocal context at a characteristic distance

from the boundary of the container. In other words, the nonlocal model may predict different microscopic and

macroscopic contact angles, the latter in accordance with (1.3). We plan to address this issue in a subsequent

paper, by focusing on the fractional sessile droplet problem.

Let us now comment on the mathematical background of our work. The use of fractional Sobolev norms in the

analysis of partial differential equations is of course a well established area of research with a vast literature

and a huge range of applications. The study of nonlocal geometric variational problems has attracted a large

attention since the seminal work [CRS10], where nonlocal minimal surfaces have been introduced motivated by

the study of the mean curvature flow as the limit of a process based on long range correlation. The boundary of

a set E is nonlocal area minimizing in an open set Ω if the quantity
∫

E∩Ω

∫

Ec∩Ω

dxdy

|x − y|n+s
+ additional “lower order” interaction terms

is minimized by E among all sets F such that F \ Ω = E \ Ω. The main result in [CRS10] is partial C1,α-

regularity theorem outside a closed singular set of dimension n − 2. Higher order regularity and improved

dimensional estimates for the singular set have been obtained in [SV13, BFV14, FV16], examples of singular

minimizing cones have been obtained in [DdPW13, DdPW14], while boundaries with constant fractional mean

curvature have been studied in [CFSW16,CFW16,CFMN16,DdPDV16]. The present paper is also a contribution

to the developing theory of nonlocal geometric variational problems. Indeed the minimization of (1.4) in the case

σ = 0, g = 0, and ε = +∞ leads to study a family of relative isoperimetric problems for fractional perimeters

in the open set Ω. Relative isoperimetric problems are of course a classical subject in the calculus of variations,

especially because of their importance in determining (or in bounding) sharp constants in Poincaré-type inequal-

ities; see [Maz11]. This kind of application uses the possibility of writing Dirichlet energies as perimeter integrals

over super-level sets by the coarea formula. This is possible also in the nonlocal case, where an appropriate

version of the coarea formula can be found, for example, in [Vis91].

1.2. Interaction kernels. The study of nonlocal geometric variational problems is mainly concerned with the

nonlocal perimeters defined through the infinite-range isotropic singular kernels or, briefly, fractional kernels.

Given s ∈ (0, 1), the fractional kernel of order s is defined as

Ks(ζ) =
1

|ζ|n+s
, ζ ∈ R

n \ {0} . (1.8)

It also seems interesting to consider finite range interactions. We thus introduce the truncated fractional kernel

of order s,

Kε
s (ζ) =

1(0,ε)(|ζ|)
|ζ|n+s

, ζ ∈ R
n \ {0} , ε ∈ (0,∞] . (1.9)

Given Ks and Kε
s as the prototype kernels in our theory, we may finally want to consider possibly anisotropic

interactions. We are thus led to introduce the following family of kernels.

Given n > 2, s ∈ (0, 1), λ > 1 and ε ∈ [0,∞] we consider the family of interaction kernels

K(n, s, λ, ε) (and set K(n, s, λ) = K(n, s, λ, 0))

consisting of those even functions K : R
n \ {0} → [0, +∞) satisfying

1Bε(ζ)

λ |ζ|n+s
6 K(ζ) 6

λ

|ζ|n+s
∀ζ ∈ R

n \ {0} . (1.10)

(Here, Bε(x) is the ball of center x and radius ε, and we simply set Bε = Bε(0).) In particular, we assume

that K is bounded from above by a homogeneous kernel with polynomial decay of degree −(n + s) and that
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is bounded from below by the same type of homogeneous kernels up to distance ε from the origin. Notice that

K(n, s, 1,∞) contains only the fractional kernel Ks defined in (1.8). Given any K ∈ K(n, s, λ, ε) we set

K∗(ζ) = lim
r→0+

rn+s K(r ζ) ζ 6= 0 , (1.11)

provided the limit exists. Notice that K∗ is automatically −(n + s)-homogeneous and bounded from above by

λ |ζ|−n−s, and that in the case of truncated fractional kernels we have

(Kε
s )

∗ = Ks ∀s ∈ (0, 1) , ε > 0 .

Occasionally we shall need to work with smoother interaction kernels: given h ∈ N we thus introduce the class

K
h(n, s, λ, ε) (and set Kh(n, s, λ) = K

h(n, s, λ, 0))

consisting of those K ∈ K(n, s, λ, ε) ∩ Ch(Rn \ {0}), with

|DjK(ζ)| 6
λ

|ζ|n+s+j
∀ζ ∈ R

n \ {0} , 1 6 j 6 h . (1.12)

Each kernel K defines an interaction functional between disjoint subsets of R
n,

I(E, F ) =

∫

E

∫

F
K(x − y) dx dy ∈ [0,∞] , E, F ⊂ R

n , E ∩ F = ∅ .

The nonlocal perimeter associated to K is defined as the interaction of a set with its complement

P (E) = I(E, Ec) , Ec = R
n \ E .

In the important cases of the fractional kernel K = Ks and of truncated fractional kernel K = Kε
s we write Is

and Iε
s in place of I , and Ps and P ε

s in place of P , so that

Is(E, F ) =

∫

E

∫

F

dx dy

|x − y|n+s
, Ps(E) = Is(E, Ec) ,

Iε
s (E, F ) =

∫

E

∫

F

1Bε(x − y) dx dy

|x − y|n+s
, P ε

s (E) = Iε
s (E, Ec) .

As shown in [Dáv02] (see also [BBM01])

lim
s→1−

(1 − s)P ε
s (E) = κn Hn−1(∂∗E) κn :=

1

2

∫

Sn

|e · ω|dHn−1
ω e ∈ Sn−1 ,

whenever E is a set of finite perimeter in R
n and ∂∗E denotes the reduced boundary of E (for example, if E

is a bounded open set with Lipschitz boundary, then E is a set of finite perimeter and ∂∗E = ∂E).

1.3. Nonlocal capillarity energy. Given K ∈ K(n, s, λ, ε), an open set Ω ⊂ R
n, and σ ∈ (−1, 1) we

define the nonlocal capillarity energy of E ⊂ Ω as

E(E) = I(E, EcΩ) + σ I(E, Ωc) . (1.13)

Here and in the following we adopt the following unusual convention in order to simplify formulas involving the

interaction functional: precisely, when a set intersection F ∩ G will appear as an argument of I , we shall write

FG in place of F ∩ G. For example,

I(EF, GH) stands for I(E ∩ F, G ∩ H) . (1.14)

Looking at (1.13), the term I(E, EcΩ) accounts for interactions between liquid and air particles, while the term

I(E, Ωc) accounts for interactions between E and the solid walls of the container. From the physical point of

view, we expect short range interactions to matter the most. When working with the fractional kernels Iε
s , this

can be taken into account either by requiring the truncation parameter ε to be small, or by taking s close to 1.

As already noticed, the latter option corresponds to highly concentrated kernels whose fractional perimeter are

increasingly close to the classical perimeter.

The basic variational problem we are interested in is then

γ = inf
{

E(E) +

∫

E
g(x) dx : E ⊂ Ω , |E| = m

}

(1.15)

where m ∈ (0, |Ω|) and g : R
n → R are given. As already noticed, when σ = 0 and g = 0, (1.15) is a

nonlocal relative isoperimetric problem of geometric and functional interest. The minimization problem in (1.15)

is indeed well-posed, according to the following simple result:
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Proposition 1.1 (Existence of minimizers). If K ∈ K(n, s, λ), Ω is an open bounded set with P (Ω) < ∞,

and g ∈ L∞(Ω), then there exist minimizers in (1.15). Moreover, I(E, EcΩ) < ∞ for every minimizer E.

We have already mentioned the fact that, as s → 1−, fractional perimeters converge to classical perimeters.

This is true also for our nonlocal capillarity energy.

Proposition 1.2 (Convergence to the classical energy). If Ω and E are open sets with Lipschitz boundary and

E ⊂ Ω, then

lim
s→1−

(1 − s) Is(E, EcΩ) = κn Hn−1(Ω ∩ ∂E)

lim
s→1−

(1 − s) Is(E, Ωc) = κn Hn−1(∂E ∩ ∂Ω) .

In particular,

lim
s→1−

(1 − s)

κn
E(E) = Hn−1(Ω ∩ ∂E) + σHn−1(∂Ω ∩ ∂E) .

1.4. Euler-Lagrange equations. We now address the form taken by the equilibrium conditions (Euler-Lagrange

equations) at boundary points of minimizers in the nonlocal capillarity problem. Notice that a minimizer E in

(1.15) could be in principle quite irregular, and actually the property of being a minimizer is invariant under mod-

ifications of E on and by a set of volume zero. It is thus convenient to work with a robust notion of boundary of

E and set

∂E =
{

x ∈ Ω : 0 < |E ∩ Br(x)| < ωn rn ∀r > 0
}

.

We shall then define the regular part RegE and the singular part ΣE of ∂E by setting

RegE =

{

x ∈ Ω ∩ ∂E :
there exists % > 0 and α ∈ (s, 1) s.t. B%(x) ∩ ∂E is a C1,α-manifold

with boundary, whose boundary points are in ∂Ω

}

and ΣE = ∂E \ RegE , respectively. We expect the Euler-Lagrange equations to hold in weak form at every

point x ∈ ∂E and in a stronger, pointwise form at every x ∈ RegE ; see (1.22) and (1.23) below. Since our

primary goal here is understanding the qualitative features of the proposed nonlocal capillarity model, and thus

its possible physical interest, we shall not be concerned with the regularity problem, which would consists in

showing the smallness of ΣE . Let us recall that, in the local case, when n = 3 the singular set is empty

[Tay77,Luc87,DPM15].

In order to introduce the Euler-Lagrange equations for the nonlocal capillarity energy E , it is convenient to recall

the form taken by the equilibrium conditions for local minimizers of nonlocal perimeters. Given two sets E and

F which are equal outside of a bounded open set A we formally have

P (E) − P (F ) = P (E, A) − P (F, A)

where we have set

P (E; A) = I(EA, EcA) + I(EA, EcAc) + I(EcA, EAc) ,

and where the identity P (E) − P (F ) holds in general only in a formal sense as it involves the cancellation of

the possibly infinite interaction terms I(EAc, EcAc) = I(FAc, F cAc) (as E∩Ac = F ∩Ac by assumption).

We thus say that E ⊂ R
n is a critical point of P in a bounded open set A if

d

dt

∣

∣

∣

∣

t=0

P (ft(E), A) = 0 ,

for every family of diffeomorphisms {ft}|t|<δ such that

f0 = Id spt(ft − Id ) ⊂⊂ A ∀|t| < δ . (1.16)

If K ∈ K
1(n, s, λ), then being a critical point is equivalent to the condition

∫

E

∫

Ec

div (x,y)

(

K(x − y) (T (x), T (y))
)

dx dy = 0 ∀T ∈ C1
c (A; Rn) . (1.17)

where we have set

div (x,y)

(

K(x − y) (T (x), T (y))
)

= div x

(

K(x − y)T (x)
)

+ div y

(

K(x − y)T (y)
)

.
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We refer to (1.17) as to the weak form of the Euler-Lagrange equation of P in A. Notice that (1.17) “holds at

every x ∈ ∂E” in the sense that it is satisfied by every measurable set E if restricted to vector fields T with

spt T ∩ ∂E = ∅. If K ∈ K
2(n, s, λ), then (1.17) implies that

H
K
∂E(x) = 0 ∀x ∈ A ∩ RegE (1.18)

where H
K
∂E(x) is the nonlocal mean curvature of ∂E at x (with respect to the kernel K), and is defined as

H
K
∂E(x) := p.v.

∫

Rn

(

1Ec(y) − 1E(y)
)

K(x − y) dy x ∈ ∂E . (1.19)

This integral converges in the principal value sense as soon as E is the epigraph of a C1,α-function with α > s
in a neighborhood of x, and actually H

K
∂E is a continuous function on RegE . Equation (1.18) is the strong form

of (1.17), and in the limit s → 1− of highly concentrated fractional kernels we have

lim
s→1−

(1 − s)H
Kε

s
∂E(x) = H∂E(x)

provided ∂E is of class C2 in a neighborhood of x.

Coming back to the capillarity problem, we say that E ⊂ Ω is a (volume-constrained) critical point of E +
∫

g if

d

dt

∣

∣

∣

∣

t=0

E(ft(E)) +

∫

ft(E)
g = 0 , (1.20)

for every family of diffeomorphisms {ft}|t|<δ such that, for every |t| < δ,

f0 = Id , spt(ft − Id ) ⊂⊂ R
n , ft(Ω) = Ω , |ft(E)| = |E| . (1.21)

Global minimizers in (1.15) are of course critical sets. At regular points of a critical set of E +
∫

g the Euler-

Lagrange equations take the following form.

Theorem 1.3 (Euler-Lagrange equation). Let Ω be a bounded open set with C1-boundary, g ∈ C1(Rn), and

E be a critical point of E +
∫

g. If K ∈ K
1(n, s, σ), then there exists a constant c ∈ R such that

∫∫

E×(Ec∩Ω)
div (x,y)

(

K(x − y) (T (x), T (y))
)

dxdy

+ σ

∫∫

E×Ωc

div (x,y)

(

K(x − y) (T (x), T (y))
)

dxdy +

∫

E
div (g T ) = c

∫

E
div T

(1.22)

for every T ∈ C∞
c (Rn; Rn) with

T · νΩ = 0 on ∂Ω .

Moreover, if K ∈ K
2(n, s, σ), then

H
K
∂E(x) − (1 − σ)

∫

Ωc

K(x − y) dy + g(x) = c , ∀x ∈ Ω ∩ RegE . (1.23)

We next investigate the contact angle condition, or Young’s law, in the nonlocal setting. Let us recall that in the

local setting Young’s law can be derived through integration by parts starting from the weak form of (1.2), that is
∫

∂E
div ∂ET +

∫

∂E
g (T · νE) = c

∫

∂E
T · νE

for every T ∈ C1
c (Rn; Rn) with T · νΩ = 0 on ∂Ω; see, e.g., [Mag12, Theorem 19.8], and compare with

(1.22). In the nonlocal case we need to use a different approach, avoiding integration by parts. More precisely,

the nonlocal Young’s law will be obtained by taking blow-ups of (1.23) along sequences of regular interior points

converging to ∂Ω ∩ RegE . Here and in the following we shall use the notation

Ax0,r =
A − x0

r

for the blow-up of A ⊂ R
n at scale r > 0 around x0 ∈ R

n.
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FIGURE 1.2. The nonlocal Young’s law is computed at points x0 ∈ ∂Ω where E blow-ups a cone

of the form V ∩ H where V is an half-space, and H is the half-space blow-up of Ω at x0. This law

determines the angle between V and H via the identity (1.24).

Theorem 1.4 (Nonlocal Young’s law). Let K ∈ K
2(n, s, λ) be such that the homogeneous kernel K∗ is well-

defined accordingly to (1.11), and let g ∈ C0(Rn). Let Ω be a bounded open set with C1-boundary and E be

a volume-constrained critical set of E +
∫

g. Given x0 ∈ RegE ∩ ∂Ω, let H and V be the half-spaces such

that

Ωx0,r → H and Ex0,r → H ∩ V in L1
loc(R

n) as r → 0+

and set νE(x0) := νV (0). Then the angle between H and V must satisfy the identity

H
K∗

∂(H∩V )(v) − (1 − σ)

∫

Hc

K∗(v − z) dz = 0 , ∀v ∈ H ∩ ∂V , (1.24)

see Figure 1.2. In the special case when K = Kε
s , and thus K∗ = Ks, (1.24) uniquely identifies the angle

between H and V . More precisely, for every s ∈ (0, 1) and σ ∈ (−1, 1) there exists a unique θ = θ(s, σ) ∈
(0, π) such that

νE(x0) · νΩ(x0) = νV (0) · νH(0) = cos
(

π − θ(s, σ)
)

. (1.25)

The function σ ∈ (−1, 1) 7→ θ(s, σ) is strictly increasing with

θ(s, 0) =
π

2
, lim

σ→(−1)+
θ(s, σ) = 0 , lim

σ→1−
θ(s, σ) = π

and

lim
s→1−

cos
(

π − θ(s, σ)
)

= σ .

In particular, the fractional Young’s law (1.25) converges to the classical Young’s law in the limit s → 1− of

highly concentrated interaction kernels.

Theorem 1.4 shows that the nonlocal Young’s law may take different forms depending on the considered ker-

nels. Even in the class of isotropic fractional kernels Ks, the contact angle will depend on s (in addition to

its dependency on σ), although it will converge to the angle predicted by the classical Young’s law in the limit

s → 1−. The contact angle predicted by the classical Young’s law may be actually observed in the nonlocal

context at a characteristic distance from the boundary of the container. We plan to further investigate this issue

in a subsequent paper, focusing on the sessile droplet problem.

We also remark that in the case σ = 0 with isotropic kernel K = Kε
s , the nonlocal Young’s law always boils

down to

νE(x0) · νΩ(x0) = 0 ∀x0 ∈ ∂Ω ∩ RegE .

This is interesting as the corresponding variational problem

inf
{

Iε
s (E, EcΩ) : E ⊂ Ω , |E| = m

}

is a natural fractional variant of the classical relative isoperimetric problem in Ω. Thus critical points in the relative

isoperimetric problem and in all of its fractional variants share the same orthogonality condition at the boundary

of Ω, independently from ε and s. At the same time, the equilibrium interior condition H
Kε

s
∂E = constant valid

on Ω ∩ RegE depends on the specific values of s and ε.
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A

Ω

E

∂F

FIGURE 1.3. Since in Definition 1.5 we consider variations in an open set A which is not contained

in Ω, we are in practice imposing on E a Dirichlet condition along Ω ∩ ∂A and a Neumann condition

along A ∩ ∂Ω.

1.5. Interior regularity and other regularity properties. In the last part of our paper we address some reg-

ularity properties of local (almost) minimizers of the nonlocal capillarity energy E . In order to introduce the

minimality condition that we shall consider, let us notice that if E and F are equal outside of an open set A (not

necessarily contained in Ω, see Figure 1.3), that is, if F ∩ Ac = E ∩ Ac, then one can formally compute (with

the convention (1.14) in force)

E(E) − E(F ) = I(E, EcΩ) + σ I(E, Ωc) − I(F, F cΩ) − σ I(F, Ωc)

= I(EA, EcΩ) + I(EAc, EcΩA) + σ I(EA, Ωc)

−I(FA, F cΩ) − I(FAc, F cΩA) − σ I(FA, Ωc) .

We are thus led to consider the following kind of local (almost) minimality inequality.

Definition 1.5 (Almost minimizers). Let K ∈ K(n, s, λ), Ω and A be open (possibly unbounded) sets in R
n

such that

I(ΩA, Ωc) < ∞ , (1.26)

and let Λ ∈ [0,∞), r0 ∈ (0,∞] and σ ∈ (−1, 1). Given E ⊂ Ω, one says that E is a (Λ, r0, σ, K)-minimizer

in (A, Ω) if

I(EA, EcΩ) + I(EAc, EcΩA) + σ I(EA, Ωc) (1.27)

6 I(FA, F cΩ) + I(FAc, F cΩA) + σ I(FA, Ωc) + Λ |E∆F | ,
for every F ⊂ Ω with diam(F∆E) < 2 r0 and F ∩ Ac = E ∩ Ac. Notice that (1.26) guarantees that

I(FA, Ωc) < ∞ whenever F ⊂ Ω, so that, even when σ < 0, the quantity

I(FA, F cΩ) + I(FAc, F cΩA) + σ I(FA, Ωc) ,

appearing on the right-hand side of (1.27) is well-defined in (−∞,∞].

As proved in Corollary 5.5 below, if E is a minimizer in (1.15), then there exist Λ > 0 and r0 > 0 (depending on

E and ‖g‖L∞(Ω)) such that E is a (Λ, r0, σ, K)-minimizer in (Rn, Ω). The same is true for local minimizers

of course, and the lower order term Λ |E∆F | in the minimality inequality (1.27) actually allows to reabsorb

various type of constraints (see [Alm76,Tam84] for more examples of this idea).

We are thus interested in understanding the regularity of (Λ, r0, σ, K)-minimizers. Since at present an inte-

rior regularity theory for nonlocal variational problems has only been developed in the isotropic case of the

fractional kernel Ks (see [CRS10, CG10]) we shall mainly focus on this case. The first important remark is

that on variations supported away from the boundary of Ω, the minimality inequality (1.27) implies the type of

almost–minimality condition considered in [CRS10,CG10]. Thus, interior regularity is readily established.

Theorem 1.6 (Interior regularity). If E is a (Λ, r0, σ, Ks)-minimizer in (A, Ω), then A∩Ω∩RegE is a C1,α-

hypersurface for some universal α ∈ (0, 1) and A ∩ Ω ∩ ΣE is a closed set with Hausdorff dimension less

than n − 3.

The regularity problem near points on ∂Ω is more complex than its interior counterpart because it involves

the study of a free boundary. Here we just address what is usually the first step in the analysis of a regularity

problem, namely, we obtain perimeter and volume density estimates which hold uniformly up to the boundary

of Ω. This problem, in the case σ < 0, presents some additional difficulties with respect to the interior case.

These difficulties are addressed by exploiting some geometric inequalities for fractional perimeters.
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Theorem 1.7 (Density estimates). Let n > 2, s ∈ (0, 1), σ ∈ (−1, 1), Λ > 0, and K = Kε
s for some ε > 0.

If Ω is either a bounded open set with C1 boundary or an half-space, then there exist positive constants C0

(depending on n, s, σ, and Λ), c∗ (depending on n and s) and κ (depending on n, s, σ and Ω) such that if E
is a (Λ, r0, σ, Kε

s)-minimizer in (A, Ω), then

Iε
s (EBr(x), (EBr(x))c) 6 C0 rn−s , (1.28)

whenever Br(x) ⊂ A and r < min{r0, c∗ κ, c∗ ε}. Moreover,

1

C0
6

|E ∩ Br(x)|
rn

6 1 − 1

C0
(1.29)

whenever Br(x) ⊂ A, r < min{r0, c∗ κ, c∗ ε}, and x ∈ Ω ∩ ∂E.

Remark 1.8. Theorem 1.7 holds for a much larger class of “uniformly-C1” open sets, of which bounded

open set with C1-boundary and half-spaces are particular cases. The dependence of κ from Ω can actually

be expressed quite precisely in terms of this uniform C1-property as explained in the course of the proof of

Theorem 1.7.

1.6. Organization of the paper. In section 2 we address the existence of minimizers in the nonlocal capillarity

problem, and the convergence of the fractional capillarity energy to the classical Gauss free-energy in the limit

s → 1−. In section 3 and section 4 we discuss, respectively, the deduction of the Euler-Lagrange equations in

weak and in strong form, and of the nonlocal Young’s law. In section 5 we explain how to quickly deduce interior

regularity, while section 6 is devoted to the proof of Theorem 1.7. Finally, in appendix A we obtain a quite natural

closure result for sequences of almost-minimizers which shall be useful in future investigations.

2. EXISTENCE OF MINIMIZERS AND CONVERGENCE TO THE CLASSICAL ENERGY

We start by proving the existence of minimizers in the variational problem (1.15), namely

γ = inf
{

E(E) +

∫

E
g(x) dx : E ⊂ Ω , |E| = m

}

(2.1)

under the assumptions that K ∈ K(n, s, λ, ε), Ω is an open bounded set with P (Ω) < ∞, and g ∈ L∞(Ω),

and where

E(E) = I(E, EcΩ) + σ I(E, Ωc) ;

see Proposition 1.1. The proof is based on a semicontinuity argument and on a direct minimization procedure.

We premise the following lower semicontinuity lemma.

Lemma 2.1 (Lower semicontinuity). If P (Ω) < ∞, Ej ⊂ Ω, and Ej → E in L1(Ω), then

lim inf
j→∞

E(Ej) > E(E) .

Proof. This is immediate by Fatou’s lemma if σ > 0. If σ ∈ (−1, 0), then we exploit the identity

E(E) = −P (Ω) + I(E, EcΩ) + P (Ω) − |σ| I(E, Ωc)

= −P (Ω) + I(E, EcΩ) + (1 − |σ|) I(E, Ωc) + I(EcΩ, Ωc) ,

and, again, Fatou’s lemma, to complete the proof. �

Proof of Proposition 1.1. We first remark that since K ∈ K(n, s, λ, ε), then and any p ∈ R
n,

P (F ) >
1

λ
Is(F Bε/2(p), F cBε/2(p)) , ∀F ⊂ R

n . (2.2)

Indeed, if x, y ∈ Bε/2(p), then |x − y| 6 |x − p| + |p − y| < ε and so, by (1.10),

P (F ) = I(F, F c) >

∫

F∩Bε/2(p)

∫

F c∩Bε/2(p)
K(x − y) dx dy >

1

λ

∫

F∩Bε/2(p)

∫

F c∩Bε/2(p)

dx dy

|x − y|n+s
,

that proves (2.2). Now, if H is a half-space such that |H ∩ Ω| = m and R > 0 is such that Ω ⊂ BR, then

E(H ∩ Ω) = I(HΩ, (HΩ)cΩ) + σ I(HΩ, Ωc) 6 I(H BR, Hc BR) + P (Ω) < ∞ ,
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since I(H BR, Hc BR) 6 C(n, s)Rn−s thanks to (1.10). As a consequence, we find that γ < ∞. Let

Ej ⊂ Ω be such that E(Ej) +
∫

Ej
g → γ, then for j large enough

γ + 1 +

∫

Ω
|g| > I(Ej , E

c
jΩ) + σ I(Ej , Ω

c) > I(Ej , E
c
jΩ) − P (Ω) ,

and thus

P (Ej) = I(Ej , E
c
jΩ) + I(Ej , E

c
jΩ

c) 6 γ + 1 +

∫

Ω
|g| + 2P (Ω) .

Since Ej ⊂ BR, using this and (2.2), we find that, up to extracting subsequences, Ej → E in L1
loc(R

n) for

some E ⊂ Ω with |E| = m. By Lemma 2.1, we conclude that E is a minimizer. Now we remark that

I(E, Ωc) 6 I(Ω, Ωc) = P (Ω) < +∞, (2.3)

and so the fact that E(E) < ∞ also implies that

I(E, EcΩ) < +∞ , (2.4)

as claimed. �

We now turn to the convergence of the fractional capillarity energy to the Gauss free energy in the limit s → 1−,

that is, we prove Proposition 1.2. Recalling that, by definition,

κn =

∫

Sn

|e · ω|dHn−1
ω

we shall actually prove a stronger result, valid for every set of finite perimeter contained in Ω. Here ∂∗E denotes

the reduced boundary of the set of finite perimeter E, see [Mag12].

Proposition 2.2. If Ω is an open set with Lipschitz boundary and E ⊂ Ω is a set of finite perimeter with

Is(E, Ec) < ∞, then

lim
s→1−

(1 − s) Is(E, EcΩ) =
κn

2
Hn−1(Ω ∩ ∂∗E) (2.5)

lim
s→1−

(1 − s) Is(E, Ωc) =
κn

2
Hn−1(∂∗E ∩ ∂Ω) (2.6)

Proof. Given V ⊂ R
n we define a Radon measure µV

s on R
n by setting

µV
s (A) = (1 − s)

(

Is(EA, EcV ) + Is(EV, EcA)
)

= (1 − s)

∫

A
dx

∫

V
|1E(x) − 1E(y)|Ks(x − y) dy .

Notice that µV
s (Rn) is finite as µV

s (Rn) 6 2 (1 − s)Is(E, Ec). By [Dáv02, Lemma 2] we have that

µV
s

∗
⇀ κnHn−1

x(V ∩ ∂∗E) weakly-* as Radon measures in V (2.7)

whenever V is an open set, with

κn Hn−1(V ∩ ∂∗E) = lim
s→1−

µV
s (V ) = 2 lim

s→1−
(1 − s) Is(EV, EcV ) (2.8)

provided V is open, bounded, with Lipschitz boundary. By applying (2.8) with V = Ω we find that

κn Hn−1(Ω ∩ ∂∗E) = 2 lim
s→1−

(1 − s) Is(E, EcΩ) ,

that is (2.5). We now set

Nr(A) =
{

x ∈ R
n : dist(x, A) < r

}

r > 0

and apply (2.8) with V = Nr(Ω
c), to find

κn Hn−1(Nr(Ω
c) ∩ ∂∗E) = 2 lim

s→1−
(1 − s) Is(ENr(Ω

c), EcNr(Ω
c))

and thus

κn Hn−1(∂Ω ∩ ∂∗E) = 2 lim
r→0+

lim
s→1−

(1 − s) Is(ENr(Ω
c), EcNr(Ω

c)) . (2.9)
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We have

Is(ENr(Ω
c), EcNr(Ω

c)) = Is(E, EcNr(Ω
c)) − Is(E \ Nr(Ω

c), EcNr(Ω
c))

= Is(E, Ωc) − Is(E, EcNr(Ω
c)Ω) − Is(E \ Nr(Ω

c), EcNr(Ω
c))

(2.10)

where in the last step we have use the fact that Ωc ⊂ Ec ∩Nr(Ω
c). We now want to estimate the two negative

terms on the right-hand side of (2.10). First, since E ⊂ Ω,

(1 − s) Is(E, EcNr(Ω
c)Ω) 6 µΩ

s (Nr(Ω
c) ∩ Ω)

and since for a.e. r > 0 we have Hn−1(Nr(Ω
c) ∩ ∂∗E) = 0 we find

lim sup
s→1−

(1 − s) Is(E, EcNr(Ω
c)Ω) 6 κn Hn−1(Nr(Ω

c) ∩ Ω ∩ ∂∗E) for a.e. r > 0 ,

where Hn−1(Nr(Ω
c) ∩ Ω ∩ ∂∗E) → 0 as r → 0+ thanks to Ω ∩ ∂Ω = ∅ and Hn−1(∂∗E) < ∞;

summarizing,

lim
r→0+

lim
s→1−

(1 − s) Is(E, EcNr(Ω
c)Ω) = 0 . (2.11)

Coming now to the second term on the right-hand side of (2.10), we have

Is(E \ Nr(Ω
c), EcNr(Ω

c)) = Is(E \ Nr(Ω
c), EcNr(Ω

c)Ω) + Is(E \ Nr(Ω
c), EcNr(Ω

c)Ωc)

6 Is(E, EcNr(Ω
c)Ω) + Is(E \ Nr(Ω

c), Ωc)

where the first term has been addressed in (2.11), while the second satisfies

Is(E \ Nr(Ω
c), Ωc) =

∫

E\Nr(Ωc)
dx

∫

Ωc

dy

|x − y|n+s
6

∫

E\Nr(Ωc)
dx

∫

Br(x)c

dy

|x − y|n+s

6 C(n) |E|
∫ ∞

r

dt

t1+s
= C(n)

|E|
s rs

,

so that

lim
s→1−

(1 − s) Is(E \ Nr(Ω
c), Ωc) = 0 ∀r > 0 . (2.12)

By combining (2.9), (2.10), (2.11) and (2.12) we deduce (2.6). �

3. THE EULER-LAGRANGE EQUATION

In this section we characterize the Euler-Lagrange equation for the nonlocal capillarity energy E , see Theorem

1.3.

Lemma 3.1 (Weak form of the Euler-Lagrange equation). Let K ∈ K
1(n, σ, λ). If Ω is a bounded open set

with C1-boundary, g ∈ C1(Rn), and E is a critical point of E +
∫

g, then there exists a constant c ∈ R such

that
∫∫

E×(Ec∩Ω)
div (x,y)

(

K(x − y) (T (x), T (y))
)

dxdy

+ σ

∫∫

E×Ωc

div (x,y)

(

K(x − y) (T (x), T (y))
)

dxdy +

∫

E
div (g T ) = c

∫

E
div T

(3.1)

for every T ∈ C∞
c (Rn; Rn) with

T · νΩ = 0 on ∂Ω .

Proof. Step one: Given T ∈ C∞
c (Rn; Rn) satisfying

T · νΩ = 0 on ∂Ω

∫

E
div T = 0 (3.2)

the flux
{

∂tht(x) = T (ht(x))

h0(x) = x
∀|t| < ε ,
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generated by T satisfies ht(Ω) = Ω for every |t| < ε and |ht(E)| = |E|+ O(t2). By picking any vector field

S ∈ C∞
c (Ω; Rn) with support a positive distance from the support of T and such that

∫

E
div S > 0

and by exploiting a classical argument based on the implicit function theorem (see [Mag12, Theorem 19.8, Step

one]) we can find s ∈ C∞((−ε, ε)) with s(0) = s′(0) = 0 such that the family of diffeomorphisms

ft(x) = x + t T (x) + s(t)S(x) (x, t) ∈ R
n × (−ε, ε) (3.3)

satisfies ft(Ω) = Ω and |ft(E)| = |E|, that is (1.21). In particular, by assumption,

d

dt

∣

∣

∣

∣

t=0

E(ft(E)) +

∫

ft(E)
g = 0 . (3.4)

We notice that by (3.3) (see, e.g. [Mag12, Lemma 17.4])

∇ft = Id + t∇T + O(t2) , Jft = det(∇ft) = 1 + t div T + O(t2) , (3.5)

uniformly on R
n as t → 0, as well as

|ft(x) − ft(y)| 6 C|x − y| ∀x, y ∈ R
n . (3.6)

for some C > 0. Moreover, if F is an arbitrary Borel set and h ∈ C1(Rn) then

d

dt

∣

∣

∣

∣

t=0

∫

ft(F )
h =

∫

F
div (hT ) (3.7)

while if F is of locally finite perimeter in an open neighborhood of spt T and h ∈ C0(Rn), then

d

dt

∣

∣

∣

∣

t=0

∫

ft(F )
h =

∫

∂∗F
h (T · νF ) dHn−1 , (3.8)

see for example [Mag12, Proposition 17.8].

Step two: We assume that K ∈ C2
c (Rn) and prove that

d

dt

∣

∣

∣

∣

t=0

I(ft(E), ft(E)cΩ) =

∫∫

E×(Ec∩Ω)

[

div x

(

K(x − y)T (x)
)

+ div y

(

K(x − y)T (y)
)

]

dx dy

d

dt

∣

∣

∣

∣

t=0

I(ft(E), Ωc) =

∫∫

E×Ωc

[

div x

(

K(x − y)T (x)
)

+ div y

(

K(x − y)T (y)
)

]

dx dy .

(3.9)

By (3.3) and since s′(0) = 0 we have

|(ft(x) − ft(y)) − (x − y)| 6 C t |x − y| ∀x, y ∈ R
n , |t| < ε ,

so that if , then

|ζ| >
|x − y|

2
, (3.10)

whenever x, y ∈ R
n, |t| < ε, and ζ is a point lying on the segment joining x − y and ft(x) − ft(y). From

(1.12) and (3.10), |D2K(ζ)| 6 C |x − y|−n−s−2, and thus

|D2K(ζ)| |ft(x) − ft(y) − (x − y)|2 6
Ct2 min{1, |x − y|2}

|x − y|n+s+2
(3.11)

for x, y, t and ζ as in (3.10). Also, since (3.3) and s′(0) = 0 give
∣

∣ft(x) − ft(y) − (x − y) − t(T (x) − T (y))
∣

∣ 6 C t2|x − y| , ∀x, y ∈ R
n , |t| < ε ,

by using again (1.12) we find
∣

∣∇K(x − y) ·
(

ft(x) − ft(y) − (x − y)
)

− t∇K(x − y) ·
(

T (x) − T (y)
)∣

∣

6
C

|x − y|n+s+1

∣

∣ft(x) − ft(y) − (x − y) − t(T (x) − T (y))
∣

∣

6
Ct2 min{1, |x − y|}

|x − y|n+s+1
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for every x, y ∈ R
n, |t| < ε. From this and (3.11),

K
(

ft(x) − ft(y)
)

= K(x − y) + t∇K(x − y) ·
(

T (x) − T (y)
)

+ t2Υ(x, y), (3.12)

where here and in the rest of this proof, Υ denotes a generic function (which may change from line to line) such

that

|Υ(x, y)| 6
C min{1, |x − y|}

|x − y|n+s+1
. (3.13)

By combining (3.5) and (3.12) we find

K
(

ft(x) − ft(y)
)

Jft(x)Jft(y)

=
[

K(x − y) + t∇K(x − y) ·
(

T (x) − T (y)
)

+ t2Υ(x, y)
]

·
[

1 + tdiv T (x) + O(t2)
] [

1 + tdiv T (y) + O(t2)
]

= K(x − y) + t∇K(x − y) ·
(

T (x) − T (y)
)

+ tK(x, y)
(

div T (x) + div T (y)
)

+ t2Υ(x, y) .

(3.14)

Now we observe that

div x

(

K(x − y)T (x)
)

= ∇K(x − y) · T (x) + K(x − y)div T (x).

Then, since K is even,

div y

(

K(x − y)T (y)
)

= ∇K(x − y) · T (y) + K(x − y)div T (y)

and therefore

div x

(

K(x − y)T (x)
)

+ div y

(

K(x − y)T (y)
)

= ∇K(x − y) ·
(

T (x) + T (y)
)

+ K(x − y)
(

div T (x) + div T (x)
)

.

Comparing this with (3.14), we conclude that

K
(

ft(x) − ft(y)
)

Jft(x)Jft(y)

= K(x − y) + t
[

div x

(

K(x − y)T (x)
)

+ div y

(

K(x − y)T (y)
)

]

+ t2Υ(x, y).

Consequently, by the area formula,

I(ft(E), ft(E)c ∩ Ω) = I(E, Ec ∩ Ω)

+ t

∫∫

E×(Ec∩Ω)

[

div x

(

K(x − y)T (x)
)

+ div y

(

K(x − y)T (y)
)

]

dx dy

+ t2
∫∫

E×(Ec∩Ω)
Υ(x, y) dx dy

I(ft(E), Ωc) = I(E, Ωc)

+ t

∫∫

E×Ωc

[

div x

(

K(x − y)T (x)
)

+ div y

(

K(x − y)T (y)
)

]

dx dy

+ t2
∫∫

E×Ωc

Υ(x, y) dx dy.

(3.15)

By (1.10), (3.13) and (2.3) it follows that

+∞ > I(E, Ωc) >

∫∫

E×Ωc

|x−y|6ε

dx dy

λ |x − y|n+s
>

1

C λ

∫∫

E×Ωc

|x−y|6ε

Υ(x, y) dx dy

and thus
∫∫

E×Ωc

Υ(x, y) dx dy < +∞.

Similarly (using (2.4) in lieu of (2.3)), we obtain that
∫∫

E×(Ec∩Ω)
Υ(x, y) dx dy < +∞.
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Accordingly, we find from (3.15) that

I(ft(E), ft(E)c ∩ Ω) = I(E, Ec ∩ Ω)

+ t

∫∫

E×(Ec∩Ω)

[

div x

(

K(x − y)T (x)
)

+ div y

(

K(x − y)T (y)
)

]

dx dy + O(t2)

I(ft(E), Ωc) = I(E, Ωc)

+ t

∫∫

E×Ωc

[

div x

(

K(x − y)T (x)
)

+ div y

(

K(x − y)T (y)
)

]

dx dy + O(t2) .

This completes the proof of (3.9), thus of step two.

Step three: We now claim that (3.9) holds with K ∈ K∗(n, σ, λ, ε) in place of a generic K ∈ C2
c (Rn). For

each δ ∈ (0, 1/2), let ηδ ∈ C∞([0, +∞)) be such that ηδ = 1 in [0, δ]∪ [1/δ, +∞), ηδ = 0 in [2δ, 1/(2δ)],
|η′δ| 6 4/δ, and ηδ → 0 monotonically as δ → 0, and set

Kδ = (1 − ηδ)K . (3.16)

If we let

φδ(t) := Eδ(ft(E)) φ(t) := E(ft(E))

then by monotone convergence, φδ(t) → φ(t) as δ → 0+ for every |t| < ε, where φδ and φ are smooth

functions by the area formula (and since I(E, EcΩ), I(E, Ωc) < ∞). On noticing that

∂ft

∂t
(x) = T (x) + s′(t)S(x) =: Tt(x)

by (3.9) we have

φ′
δ(t) =

(
∫∫

E×(Ec∩Ω)
+σ

∫∫

E×Ωc

)

[

div x

(

Kδ(x−y)Tt(x)
)

+div y

(

Kδ(x−y)Tt(y)
)

]

dxdy . (3.17)

We now claim that

φ′
δ(t) →

(
∫∫

E×(Ec∩Ω)
+σ

∫∫

E×Ωc

)

[

div x

(

K(x− y)Tt(x)
)

+div y

(

K(x− y)Tt(y)
)

]

dxdy (3.18)

uniformly on |t| < ε as δ → 0+. By applying the mean value theorem to φδ and since φδ → φ as δ → 0+

pointwise, this will imply that

φ′(0) =

(
∫∫

E×(Ec∩Ω)
+σ

∫∫

E×Ωc

)

[

div x

(

K(x − y)T (x)
)

+ div y

(

K(x − y)T (y)
)

]

dxdy

as required. To prove (3.18) we just notice that

div x

(

Kδ(x − y)Tt(x)
)

+ div y

(

Kδ(x − y)Tt(y)
)

= Kδ(x − y)
(

div Tt(x) + div Tt(y)
)

+ ∇Kδ(x − y) · (Tt(x) − Tt(y))

where |Tt(x) − Tt(y)| 6 C |x − y| for every x, y ∈ R
n and |t| < ε, so that (1.12) gives

∣

∣

∣
div x

(

Kδ(x − y)Tt(x)
)

+ div y

(

Kδ(x − y)Tt(y)
)

∣

∣

∣
6

C

|x − y|n+s
6 C K(x − y) ,

and, in conclusion, (3.18) holds by dominated convergence and thanks to I(E, EcΩ), I(E, Ωc) < ∞ (recall

(2.3) and (2.4)).

Step four: Let us consider the linear functional on T ∈ C∞
c (Rn; Rn) defined by

Λ(T ) =

(
∫∫

E×(Ec∩Ω)
+σ

∫∫

E×Ωc

)

div (x,y)

(

K(x − y)
(

T (x), T (y)
)

)

dxdy +

∫

E
div (g T ) .

By combining (3.4), (3.7) and step three we find that Λ(T ) = 0 whenever T satisfies (3.2). If T1, T2 ∈
C∞(Rn; Rn) have disjoint supports and are such that

T1 · νΩ = T2 · νΩ = 0 on ∂Ω

∫

E
div T2 6= 0 ,
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then

T = T1 −
∫

E div T1
∫

E div T2
T2

is admissible in (3.2), and thus satisfy Λ(T ) = 0. Thus Λ(T1)/
∫

E div T1 = Λ(T2)/
∫

E div T2, and the proof

is completed by the arbitrariness of T1 and T2. �

In passing from Lemma 3.1 to Theorem 1.3 we shall need the following proposition.

Proposition 3.2. If σ ∈ (−1, 1) and K ∈ K
1(n, s, λ), then for every E ⊂ Ω the function

H
K,σ,Ω
∂E (x) := p.v.

∫

Rn

K(x − y)
(

1Ec∩Ω(y) + σ 1Ωc(y) − 1E(y)
)

dy x ∈ ∂E

is continuous on Ω ∩ RegE with

H
Kδ ,σ,Ω
∂E → H

K,σ,Ω
∂E as δ → 0+ (3.19)

uniformly on compact subsets of Ω ∩ RegE . Here, Kδ is defined as in (3.16).

Proof. Since Kδ ∈ C1
c (Rn) we definitely have

H
Kδ ,σ,Ω
∂E (x) = H

Kδ
∂E(x) − (1 − σ)

∫

Ωc

Kδ(x − y) dy ∀x ∈ ∂E , (3.20)

see (1.19) for the definition of H
Kδ
∂E . It is shown in [FFM+15, Proposition 6.3] that the continuous functions

{HKδ
∂E}δ converge uniformly on compact subsets of Ω ∩ RegE to H

K
∂E . An identical argument leads to obtain

(3.19), proves the continuity of H
K,σ,Ω
∂E on RegE ∩ Ω. �

Proof of Theorem 1.3. Let Kδ ∈ C2
c (Rn) be defined as in (3.16). As soon as E has finite perimeter, one has

(by [Mag12, Formula (15.11)])
∫

E
div x

(

Kδ(x − y)T (x)
)

dx =

∫

∂∗E
Kδ(x − y)T (x) · νE dHn−1

x

where ∂∗E denotes the reduced boundary of ∂E and νE its measure-theoretic outer unit normal. In particular,

for any set F that does not intersect E we find
∫

E×F
div x

(

Kδ(x − y)T (x)
)

dx dy =

∫

F

(
∫

∂∗E
Kδ(x − y)T (x) · νE dHn−1

x

)

dy. (3.21)

Similarly, for any set F that does not intersect E,
∫

F
div y

(

Kδ(x − y)T (y)
)

dy =

∫

∂∗F
Kδ(x − y)T (y) · νF dHn−1

y

and therefore, integrating in E and changing the names of the variables,
∫∫

E×F
div y

(

Kδ(x − y)T (y)
)

dx dy =

∫

E

(
∫

∂∗F
Kδ(x − y)T (y) · νF dHn−1

y

)

dx

=

∫

E

(
∫

∂∗F
Kδ(x − y)T (x) · νF dHn−1

x

)

dy.

Using this formula and (3.21) with F = Ec ∩ Ω, we obtain that
∫∫

E×(Ec∩Ω)
div (x,y)

(

Kδ(x − y)(T (x), T (y))
)

dx dy

=

∫

Ec∩Ω

(
∫

∂∗E
Kδ(x − y)T (x) · νE dHn−1

x

)

dy

+

∫

E

(

∫

∂∗(Ec∩Ω)
Kδ(x − y)T (x) · νEc∩Ω dHn−1

x

)

dy

=

∫

Ω∩∂∗E
T (x) · νE

(
∫

Rn

Kδ(x − y)
(

1Ec∩Ω(y) − 1E(y)
)

dy

)

dHn−1
x ,

(3.22)
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and analogously
∫∫

E×Ωc

div (x,y)

(

Kδ(x − y)(T (x), T (y))
)

dx dy

=

∫

Ω∩∂∗E
T (x) · νE

(
∫

Rn

Kδ(x − y) 1Ωc(y) dy

)

dHn−1
x .

(3.23)

In particular,
(
∫∫

E×(Ec∩Ω)
+σ

∫∫

E×Ωc

)

div (x,y)

(

Kδ(x − y)(T (x), T (y))
)

dx dy

=

∫

Ω∩∂∗E
(T · νE)HKδ ,σ,Ω

∂E dHn−1 .

(3.24)

Let us now fix x ∈ Ω∩RegE and T ∈ C1
c (B%(x)∩Ω) with % > 0 such that B2 %(x)∩ ∂E ⊂ Ω∩RegE . In

this way, H
Kδ ,σ,Ω
∂E converges uniformly to H

K,σ,Ω
∂E on spt T and thus the right-hand side of (3.24) converges to

∫

B%(x)∩∂E(T · νE)HK,σ,Ω
∂E . Since we have already shown in the proof of Lemma 3.1 that in the limit δ → 0+

we can take replace Kδ by K on the left-hand side of (3.24), we conclude that
(
∫∫

E×(Ec∩Ω)
+σ

∫∫

E×Ωc

)

div (x,y)

(

K(x − y)(T (x), T (y))
)

dx dy

=

∫

B%(x)∩∂E
(T · νE)HK,σ,Ω

∂E dHn−1 .

for every x ∈ Ω ∩RegE and T ∈ C1
c (B%(x) ∩Ω), for % > 0 depending on x. By combining this identity with

(3.1),
∫

E div (T g) =
∫

B%(x)∩∂E g (T · νE), and the arbitrariness of T , we finally deduce (1.23). �

4. NONLOCAL YOUNG’S LAW

This section addresses the proof of Theorem 1.4. We premise a simple technical lemma. Here, we decompose

x ∈ R
n as x = (x′, xn) ∈ R

n−1 × R and set

C = {x ∈ R
n : |x′| < 1 , |xn| < 1} and D = {z ∈ R

n−1 : |z| < 1} .

Lemma 4.1. Let λ > 1, s ∈ (0, 1) and α ∈ (s, 1). If {Fk}k∈N is a sequence of Borel sets in R
n with

0 ∈ ∂Fk,

Fk → F in L1
loc(R

n) for some F ⊂ R
n ,

and, for some functions uk, u ∈ C1,α(Rn−1),

C ∩ Fk =
{

x ∈ C : xn 6 uk(x
′)
}

and lim
k→∞

‖uk − u‖C1,α(D) = 0 ,

then

lim
k→∞

H
Kk
∂Fk

(0) = H
K
∂F (0)

whenever {Kk}k∈N and K are kernels in K(n, s, λ, 0) with Kk → K pointwise in R
n \ {0}.

Proof. Up to rigid motions we may assume without loss of generality that 0 ∈ ∂F (so that u(0) = uk(0) = 0)

and that ∇uk(0) = ∇u(0) = 0. Since u ∈ C1,α(D) and uk → u in C1,α(D) we can find γ > 0 such that

max{|uk(z)|, |u(z)|} 6 γ|z|1+α ∀z ∈ D , k ∈ N .

If we let

Pε,γ =
{

x ∈ Bε : |xn| < γ |x′|1+α
}

ε ∈ (0, 1) ,

then |z|−n−s ∈ L1(Pε,γ ∪ (Bε)
c) and thus

H
Kk
∂Fk

(0) =

∫

(Bε)c∪Pε,γ

(1c
Fk

− 1Fk
)Kk H

K
∂F (0) =

∫

(Bε)c∪Pε,γ

(1c
F − 1F )K .

Since (1c
Fk

− 1Fk
) → (1c

F − 1F ) a.e. on R
n we conclude by dominated convergence that H

Kk
∂Fk

(0) →
H

K
∂F (0). �



17

Proof of Theorem 1.4. Step one: We start proving the validity of (1.24). Let us fix x0 ∈ ∂Ω ∩ RegE so that x0

is a boundary point of the manifold with boundary B%(x0)∩∂E. Consider a sequence {xk}k∈N ⊂ Ω∩RegE

such that xk → x0, and set

rk = |xk − x0| vk =
xk − x0

rk
Ex0,rk =

E − x0

rk
Ωx0,rk =

Ω − x0

rk
.

We recall that, by (1.23),

H
K
∂E(xk) − (1 − σ)

∫

Ωc

K(xk − y) dy + g(xk) = c (4.1)

for a constant c independent of k. We have that

Ωx0,rk → H and Ex0,rk → V ∩ H in L1
loc(R

n)

where H and V are suitable half-spaces in R
n so that

νΩ(x0) = νH(0) νV (0) = lim
k→∞

νE(xk) =: νV (0) .

Up to extracting subsequences, we have that vk → v for some v ∈ Sn−1. We can use the change of variables

y = x0 + rk z to find

H
K
∂E(xk) =

∫

Rn

K(xk − y)
(

1Ec(y) − 1E(y)
)

dy (4.2)

= r−s
k

∫

Rn

rn+s
k K(xk − x0 − rk z)

(

1(Ex0,rk )c(z) − 1Ex0,rk (z)
)

dz (4.3)

Now, since {xk}k∈N ⊂ Ω∩RegE , we can find rigid motions Qk : R
n → R

n and functions uk ∈ C1,α(Rn−1)
such that if we set

Fk = Qk(E
x0,rk − vk)

then 0 ∈ ∂Fk and

C ∩ Fk =
{

x ∈ C : xn 6 uk(x
′)
}

.

Notice that

Fk → F = H ∩ V in L1
loc(R

n)

with uk → u in C1,α(D) for a linear function u : R
n−1 → R. If we set

Kk(ζ) = rn−s
k K(rk ζ) ζ ∈ R

n \ {0} ,

then by (4.2) we get

H
K
∂E(xk) = r−s

k H
Kk
∂Fk

(0) .

Since Kk → K∗ pointwise in R
n \ {0}, by Lemma 4.1 we find

lim
k→∞

rs
k H

K
∂E(xk) = H

K∗

∂(H∩V )(v) ,

and since rs
k g(xk) → 0 (indeed xk → x0 and g is locally bounded), (4.1) implies

H
K∗

∂(H∩V )(v) − (1 − σ) lim
k→∞

rs
k

∫

Ωc

K(xk − y) dy = 0 .

By the change of variable y = x0 + rk z,
∫

Ωc

K(xk − y) dy = r−s
k

∫

(Ωx0,rk )c

rn+s
k K

(

rk(vk − z)
)

dz

where

lim
k→∞

∫

(Ωx0,rk )c

rn+s
k K

(

rk(vk − z)
)

dz =

∫

Hc

K∗(v − z) dz .

We have thus proved that

H
K∗

∂(H∩V )(v) − (1 − σ)

∫

Hc

K∗(v − z) dz = 0 , ∀v ∈ H ∩ ∂V , (4.4)

that is (1.24).
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Lθ ∂Jθ

Jθ

e(θ)

L∗

θ

Mθ

FIGURE 4.1. The cones Jθ , Lθ and Mθ when θ ∈ (0, π/2).

Step two: We now assume that K = Kε
s for some ε > 0, so that K∗ = Ks. Up to a rigid motion we can

assume that H and V satisfy

H = {x ∈ R
n : xn > 0}

H ∩ V =
{

x ∈ R
n : xn > 0 and cos α xn = sinα x1 for some α ∈ (0, θ)

}

=: Jθ ,

for some θ ∈ (0, π). Since (4.4) is −s homogeneous in |v|, we find that (4.4) is equivalent to
∫

Rn

(1Jc
θ∩H + σ 1Hc − 1Jθ

)(z)

|e(θ) − z|n+s
dz = 0 (4.5)

where

e(θ) = cos θ e1 + sin θ en .

In this step we show that there exists a unique θ = θ(n, s, σ) ∈ (0, π) such that (4.5) holds – so that,

correspondingly,

νE(x0) · νΩ(x0) = νV (0) · νH(0) = cos
(

π − θ(n, s, σ)
)

and (1.25) holds – and that the function σ ∈ (−1, 1) 7→ θ(n, s, σ) is strictly increasing with

θ(n, s, 0) =
π

2
, lim

σ→(−1)+
θ(n, s, σ) = 0 , lim

σ→1−
θ(n, s, σ) = π . (4.6)

We first notice that we do not need to specify the integral in (4.5) in the principal value sense as there always

is a ball centered at e(θ) with one half of it contained in Jθ, the other half contained in Jc
θ ∩ H . It is also

geometrically evident (see Figure 4.1) that the choice σ = 0, θ = π/2 solves (4.5) and that if a pair (σ, θ)
satisfies (4.5) then (i) θ ∈ (0, π/2) if and only if σ ∈ (−1, 0); (ii) θ ∈ (π/2, π) if and only if σ ∈ (0, 1); (iii) if

θ ∈ [π/2, π), then (−σ, π − θ) also solves (4.5).

We are thus left to show that σ ∈ (−1, 0) there exists a unique θ ∈ (0, π/2) (also depending on n and s)

such that (4.5) holds, and that the correspondence σ ∈ (−1, 0) 7→ θ(n, s, σ) is strictly increasing and satisfies

θ(n, s, (−1)+) = 0. To prove this, let us notice that having restricted σ ∈ (−1, 0), we can directly consider

(4.5) with θ ∈ (0, π/2). Since in this case the reflection of Jθ with respect to the hyperplane containing H∩∂Jθ

is entirely contained in Jc
θ ∩ H , (4.5) turns out to the be equivalent to

∫

Rn

(1Lθ
+ σ 1Hc)(z)

|e(θ) − z|n+s
dz = 0 (4.7)

where Lθ is equal to H minus the union of Jθ with its reflection with respect to the hyperplane containing

H ∩ ∂Jθ. With Figure 4.1 in mind, now let L∗
θ be the reflection of Lθ with respect to the hyperplane containing

H ∩ ∂Jθ, so that L∗
θ is contained in Hc, and let Mθ = Hc ∩ (L∗

θ)
c. As Hc = L∗

θ ∪ Mθ with L∗
θ ∩ Mθ = ∅

and since L∗
θ is mapped into Lθ by an isometry keeping the distance from e(θ) invariant, we get
∫

Rn

(1Lθ
+ σ 1Hc)(z)

|e(θ) − z|n+s
dz = (1 + σ)

∫

Lθ

dz

|e(θ) − z|n+s
+ σ

∫

Mθ

dz

|e(θ) − z|n+s
(4.8)

and thus, by (4.7), we conclude that (4.5) holds for some θ ∈ (0, π/2) if and only if
∫

Mθ

dz

|e(θ) − z|n+s
= −

(

1 +
1

σ

)

∫

Lθ

dz

|e(θ) − z|n+s
. (4.9)
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Let us set

a(θ) =

∫

Mθ

dz

|e(θ) − z|n+s
b(θ) =

∫

Lθ

dz

|e(θ) − z|n+s
.

Clearly a(θ) is strictly increasing on (0, π/2), with a(0) = 0 and a(π/2) < ∞: indeed

a(θ) =

∫

Uθ

dz

|z − en|n+s
Uθ =

{

x ∈ R
n : xn < 0 , |x1| < |xn| tan θ

}

,

where the latter function is trivially increasing as |Uθ2 \ Uθ1 | > 0 whenever 0 < θ1 < θ2 < π/2. At the same

time b(θ) is strictly decreasing with b(0+) = +∞ and b((π/2)−) = 0+. This is seen as while θ increases

from 0 to π/2, the region Lθ is strictly decreasing from H to the empty set, while the distance between the

singularity e(θ) and Lθ is strictly increasing. In conclusion

θ ∈
(

0,
π

2

)

7→ a(θ)

b(θ)

is a strictly increasing function on (0, π/2) with limit 0 as θ → 0+ and limit +∞ as θ → (π/2)−. Moreover,

σ ∈ (−1, 0) 7→ −
(

1 +
1

σ

)

is a strictly increasing function on (−1, 0) with limit 0 as σ → (−1)+ and limit +∞ as σ → 0−. In conclusion,

for every σ ∈ (−1, 0) there exists a unique θ = θ(n, s, σ) ∈ (0, π/2) such that (4.7) holds. The resulting map

σ ∈ (−1, 0) 7→ θ(n, s, σ) is strictly increasing and satisfies the first two properties in (4.6). This completes

the proof of step two.

Step three: We conclude the proof of the theorem by showing that θ(n, s, σ) = θ(s, σ) with

lim
s→1−

cos(π − θ(s, σ)) = σ , ∀σ ∈ (−1, 1) .

To this end, let us first go back to (4.7), and notice that

(1Lθ
+ σ 1Hc)(z) = f(z1, zn)

so that if n > 3, then (4.7) takes the form
∫

R

dz1

∫

R

f(z1, zn) dzn

∫

Rn−2

dw

(`2 + |w|2)(n+s)/2
= 0 (4.10)

where we have set

`(z1, zn) =
√

(z1 − cos θ)2 + (zn − sin θ)2 .

Now, in polar coordinates,
∫

Rn−2

dw

(`2 + |w|2)(n+s)/2
= (n − 2)ωn−2

∫ ∞

0

rn−3 dr

(`2 + r2)(n+s)/2

where, by scaling,
∫ ∞

0

rn−3 dr

(`2 + r2)(n+s)/2
=

C(n, s)

`2+s
.

By taking (4.10) into account, the definition (4.7) of θ boils down to
∫

R

dz1

∫

R

f(z1, zn)

`2+s
dzn = 0 ,

which is actually equivalent to (4.7) in the case n = 2. This proves that θ(n, s, σ) = θ(2, s, σ) for every

n > 3. We thus plainly set θ = θ(s, σ) and then turn to the proof of cos(π − θ(s, σ)) → σ as s → 1−.

By exploiting the symmetries of θ(s, σ) in σ, it suffices to consider the case when σ ∈ (−1, 0) (and thus

θ ∈ (0, π/2)). It is then convenient to rewrite (4.8) by using
∫

Lθ
=
∫

Lθ∪Mθ
−
∫

Mθ
, to find that

1 + σ =

∫

Mθ
|z − e(θ)|−(2+s)dz

∫

Lθ∪Mθ
|z − e(θ)|−(2+s)dz

.

Notice that Lθ ∪ Mθ is an half-plane lying at distance sin θ from e(θ). Hence,
∫

Lθ∪Mθ

dz

|z − e(θ)|2+s
=

∫

{y2<0}

dy

|y − sin θe2|2+s
=

1

(sin θ)s

∫

{x2<0}

dx

|x − e2|2+s
.
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{u = t}

Γθ

Lθ

x2

t

x1

x1

x2

e2

e(θ)

sin θ

Mθ

FIGURE 4.2. Notation used in computing the limit of θ(s, σ) as s → 1−.

At the same time, by a counter-clockwise rotation around the origin of angle (π/2) − θ, which thus maps

e(θ) = cos θe1 + sin θ e2 into e2, we find
∫

Mθ

dz

|z − e(θ)|2+s
=

∫

Γθ

dx

|x − e2|2+s

where we have set

Γθ =
{

w ∈ R
2 : x2 < 0 ,−θ < arctan

(

− x1

x2

)

< θ
}

,

see Figure 4.2. Putting everything together we find that θ = θ(s, σ) satisfies

(1 + σ)

(sin θ)s

∫

Γπ/2

dx

|x − e2|2+s
=

∫

Γθ

dx

|x − e2|2+s
, (4.11)

(indeed Γπ/2 = {x2 < 0}). We now consider the function u : {x2 < 0} → (−π/2, π/2) defined by

u(x) = arctan
(

− x1

x2

)

and notice that u(x) is a locally Lipschitz on {x2 < 0} with Γθ = {−θ < u < θ} and

|∇u| =
1

|x| .

By the Coarea formula for every Borel function g : {x2 < 0} → [0,∞] we have

∫

{x2<0}
g(x) |∇u(x)| dx =

∫ π/2

−π/2
dt

∫

{u=t}
g(x) dHn−1(x)

so that, by choosing

g(x) =
1Γθ

(x)

|∇u(x)| |x − e2|2+s

we get

∫

Γθ

dx

|x − e2|2+s
=

∫ θ

−θ
dt

∫

{u=t}

|x|
|x − e2|2+s

dH1
x = 2

∫ θ

0
dt

∫

{u=t}

|x|
|x − e2|2+s

dH1
x .

Now, if t ∈ (0, π/2), then {u = t} is the half-line {x ∈ R
2 : x1 > 0 , x2 = −(tan t)x1} so that

x1 = |x| sin t x2 = −|x| cos t ∀x ∈ {u = t} .

Hence, setting |x| = r we find

∫

{u=t}

|x|
|x − e2|2+s

dH1
x =

∫ ∞

0

r dr

(r2 + 2r cos t + 1)(2+s)/2
.
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By dominated convergence

lim
s→1−

∫ θ

0
dt

∫ ∞

0

r dr

(r2 + 2r cos(t) + 1)(2+s)/2
=

∫ θ

0
dt

∫ ∞

0

r dr

(r2 + 2r cos t + 1)3/2

=

∫ θ

0

dt

1 + cos t
=

sin θ

1 + cos θ
,

where we have used
∫

r dr

(r2 + 2r cos t + 1)3/2
= − 1

sin2 t

1 + r cos t√
1 + 2r cos t + r2

+ const.

In summary, by taking the limit as s → 1− in (4.11) we find

1 + σ

sin(θ(1, σ))
=

sin(θ(1, σ))

1 + cos(θ(1, σ))
,

which gives σ = − cos(θ(1, σ)) = cos(π − θ(1, σ)). This completes the proof of Theorem 1.4. �

5. ALMOST-MINIMALITY AND INTERIOR REGULARITY

In this section we gather some simple basic properties of the almost-minimizers introduced in Definition 1.5,

show that minimizers in (1.15) are almost-minimizers, and then check the interior regularity theory from [CG10]

applies in our case. Let us recall that given K ∈ K(n, s, λ), open sets Ω and A with

I(ΩA, Ωc) < ∞ , (5.1)

and Λ ∈ [0,∞), r0 ∈ (0,∞] and σ ∈ (−1, 1), we say that E ⊂ Ω is (Λ, r0, σ, K)-minimizer in (A, Ω) if

I(EA, EcΩ) + I(EAc, EcΩA) + σ I(EA, Ωc) (5.2)

6 I(FA, F cΩ) + I(FAc, F cΩA) + σ I(FA, Ωc) + Λ |E∆F | ,
whenever F ⊂ Ω, diam(F∆E) < 2 r0 and F ∩Ac = E∩Ac. Thanks to (1.26), I(FA, Ωc) < ∞ whenever

F ⊂ Ω, and in particular the right hand side of (5.2) is always well definite in (−∞,∞]. We begin with two

simple remarks.

Remark 5.1 (Almost-minimality and blow-ups). Let us recall our notation Ax,r = (A − x)/r for the blow-up

of A ⊂ R
n near x ∈ R

n at scale r > 0. It is easily seen that for every x ∈ R
n and r > 0 one has that E is a

(Λ, r0, σ, K)-minimizer in (A, Ω) if and only if

Ex,r is a (rsΛ, r0/r, σ, rn+s K(r ·))-minimizer in (Ax,r, Ωx,r) .

In particular, should Ex,r converge to a limit set E∗ as r → 0+ (for some x ∈ A fixed), then one expects

E∗ to be a (0,∞, σ, K∗)-minimizer in (BR, H) for every R > 0, with H = R
n if x ∈ A ∩ Ω, and with

H = {z : z · νΩ(x) < 0} if x ∈ A ∩ ∂Ω and Ω is an open set of class C1. Here K∗ is defined as in (1.11).

Remark 5.2 (Almost-minimality and complement). One notices that E is a (Λ, r0, σ, K)-minimizer in (A, Ω)
if and only if

Ω ∩ Ec is a (Λ, r0,−σ, K)-minimizer in (A, Ω).

This can be easily checked by noticing that, for any set E ⊂ Ω,

I(ΩEcA, (ΩEc)cΩ) = I(ΩEcA, E)

= I(EA, EcΩA) + I(EAc, EcΩA) ,

I(ΩEcAc, (ΩEc)cΩA) = I(EA, EcΩAc) ,

σ I(ΩEcA, Ωc) = −σ I(EA, Ωc) + σ I(ΩA, Ωc) .

Let us recall the definition of (nonlocal) relative perimeter of E in an open set A,

P (E; A) = I(EA, EcA) + I(EA, EcAc) + I(EAc, EcA) .
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Proposition 5.3. If K ∈ K(n, s, λ) and E is a (Λ, r0, σ, K)-minimizer in (A, Ω) and x0 and %0 are such

that B2 %0(x0) ⊂⊂ Ω ∩ A with %0 6 r0, then

P (E; B%0(x0)) 6 P (F ; B%0(x0)) + C
|E∆F |

%s
0

(5.3)

for every set F such that E∆F ⊂⊂ B%0(x0), where C depends on Λ, λ, n and s.

Proof. Since %0 6 r0 we can plug any F such that E∆F ⊂⊂ B%0(x0) into (5.2), and then deduce

I(EA, EcΩ) + I(EAc, EcΩA) 6 I(FA, F cΩ) + I(FAc, F cΩA)

+|I(FA, Ωc) − I(EA, Ωc)| + Λ |E∆F | ,
where K ∈ K(n, s, λ) gives

|I(FA, Ωc) − I(EA, Ωc)| 6 λ

∫

Ωc

dy

∫

(E∆F )∩B%0 (x0)

dx

|x − y|n+s

6 λ |E∆F |
∫

B2%0 (x0)c

dy

dist(y, B%0(x0))n+s

6
λ

%s
0

nωn

∫ ∞

2

tn−1 dt

(t − 1)n+s
|E∆F | 6 C

|E∆F |
%s
0

.

We thus have

I(EA, EcΩ) + I(EAc, EcΩA) 6 I(FA, F cΩ) + I(FAc, F cΩA) + C
|E∆F |

%s
0

. (5.4)

Let us now set W = B%0(x0) for the sake of brevity. Since W ⊂⊂ Ω ∩ A we have

I(EA, EcΩ) + I(EAc, EcΩA) = I(EW, EcW ) + I(EW, EcW cΩ)

+I(EAW c, EcW ) + I(EAW c, EcW cΩ)

+I(EAc, EcW ) + I(EAc, EcΩAW c)

where E∆F ⊂⊂ W ⊂⊂ A implies that by replacing E with F we leave unchanged both the fourth and sixth

interaction terms. We denote by κ their sum, so that κ(E) = κ(F ), and rewrite the above identity as

I(EA, EcΩ) + I(EAc, EcΩA) = I(EW, EcW ) + I(EW, EcW cΩ)

+I(EAW c, EcW ) + I(EAc, EcW ) + κ

= I(EW, EcW ) + I(EW, EcW cΩ) + I(EW c, EcW ) + κ

= P (E; W ) − I(EW, EcΩc) + κ .

Hence (5.4) is equivalent to

P (E; W ) 6 P (F ; W ) + I(EW, EcΩc) − I(FW, F cΩc) + C
|E∆F |

%s
0

. (5.5)

But since Ec ∩ Ωc = F c ∩ Ωc, by arguing as before we find

|I(EW, EcΩc) − I(FW, F cΩc)| 6

∫

Ωc

dy

∫

(E∆F )∩W
K(x − y) dx 6 C

|E∆F |
%s
0

,

and (5.3) is proved. �

Corollary 5.4. If E is a (Λ, r0, σ, Ks)-minimizer in (A, Ω), then there exists a relatively closed subset Σ of

Ω∩ ∂E such that Ω∩ ∂E \Σ is a C1,α-hypersurface for some α ∈ (0, 1) and Σ has Hausdorff dimension at

most n − 3. In particular, Σ is empty if n = 2.

Proof. The validity of (5.3) allows one to apply the main result of [CG10] and the deduce the above assertion

with the Hausdorff dimension of Σ bounded by n − 2. The improvement on the dimensional bound for Σ is

obtained by exploiting [SV13]. �

We now show that minimizers in (1.15) are almost-minimizers.
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Proposition 5.5. If E is a minimizer in (1.15), then E is a (Λ, r0, σ, K)-minimizer in (Rn, Ω) for values of r0

and Λ depending on E and ‖g‖L∞(Ω) only.

Proof. Let us fix two points x0 6= y0 ∈ Ω ∩ ∂E so that for some %0 > 0 we have

|E ∩ B%0(x0)| > 0 , |E ∩ B%0(y0)| > 0 , |x0 − y0| > 4 %0 , B%0(x0) ∪ B%0(y0) ⊂⊂ Ω .

Then there exists T ∈ C∞
c (B%0(x0); R

n) and S ∈ C∞
c (B%0(y0); R

n) such that

∫

E
div T =

∫

E
div S = 1 ,

see, e.g. [CM16, Lemma 3.5]. Let us now pick F ⊂ Ω with diam(F∆E) < 2 r0. If r0 is small enough with

respect to %0, then we either have dist(F, B%0(x0)) > 0 or dist(F, B%0(y0)) > 0. Without loss of generality,

we may assume to be in the first case. Now let ft(x) = x + t T (x) and define

Ft =
(

ft(E) ∩ B%0(x0)
)

∪
(

F \ B%0(x0)
)

= ft(F )

for |t| < ε0 and ε0 small enough to ensure that {ft}|t|<ε0
is a family of smooth diffeomorphisms with spt(ft −

Id ) ⊂⊂ B%0(x0) for every |t| < ε0. If we set ϕ(t) = |Ft|, then

ϕ′(0) =

∫

E
div T = 1 ,

so that, up to decreasing the value of ε0, ϕ is strictly increasing on (−ε0, ε0), with range (−v0, v0) for some

v0 > 0. Notice that the size of v0 only depends on E through the choice of x0 and of the vector field T . Thus,

up to decreasing the value of r0 depending on E, we find that ||F | − |E|| < ωn rn
0 < v0, and thus that there

exists t∗ = t∗(F ) such that

|Ft∗ | = |E| |t∗| 6 C
∣

∣|F | − |E|
∣

∣

for a constant C = C(E). By minimality of E we have

I(E, EcΩ) + σ I(E, Ωc) +

∫

E
g 6 I(Ft∗ , F

c
t∗Ω) + σ I(Ft∗ , Ω

c) +

∫

Ft∗

g .

Now, since for some C = C(E) we have |Jft(x) − 1| 6 C |t| and |∇ft| 6 C on R
n for every |t| < ε0, by

the area formula we find

∣

∣I(Ft, F
c
t Ω) − I(F, F cΩ)

∣

∣ 6 C |t| I(F, F cΩ) ,
∣

∣I(Ft, Ω
c) − I(F, Ωc)

∣

∣ 6 C |t| I(F, Ωc) ,
∣

∣

∣

∫

Ft

g −
∫

E
g
∣

∣

∣
6

∣

∣

∣

∫

Ft

g −
∫

F
g
∣

∣

∣
+ ‖g‖L∞(Ω) |E∆F | 6 C |t| + ‖g‖L∞(Ω) |E∆F | ,

whenever |t| < ε0. By exploiting these facts with t = t∗ and taking into account |t∗| 6 C
∣

∣|F | − |E|
∣

∣, we

conclude that

I(E, EcΩ) + σ I(E, Ωc)+ 6 I(F, F cΩ) + σ I(F, Ωc) + C
∣

∣E∆F
∣

∣ ,

where Λ = Λ(E, ‖g‖L∞(Ω)). �

6. DENSITY ESTIMATES AT THE BOUNDARY

We now discuss the proof of Theorem 1.7. We shall actually prove a more general result, involving the following

notion of uniformly C1 domain.

Definition 6.1. If η > 0, A is an open set, Ω is an open set in R
n with boundary of class C1 in A, and Hp

denotes the affine tangent half-space to Ω at p ∈ ∂Ω, then we define

%A(η,Ω)
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as the supremum of all % > 0 such that for every p ∈ A ∩ ∂Ω there exists a C1-diffeomorphisms Tp : R
n →

R
n with

Tp(B%(p)) = B%(p) , (6.1)

T (B%(p) ∩ Ω) = B%(p) ∩ Hp , (6.2)

‖Tp − Id ‖C0(Rn) + ‖T−1
p − Id ‖C0(Rn) 6 η % , (6.3)

‖∇Tp − Id ‖C0(Rn) + ‖(∇Tp)
−1 − Id ‖C0(Rn) 6 η . (6.4)

Remark 6.2. If Ω is a bounded open set with C1-boundary, then %Rn(η,Ω) > 0; but, of course, one can have

%Rn(η,Ω) > 0 even if Ω is unbounded (for example, if %Rn(η, H) = ∞ if H is a half-space). We also notice

that for every x0 ∈ R
n and r > 0 one has

%A(η,Ω) = r %Ax0,r(η,Ωx0,r) . (6.5)

Indeed, given a set of maps {Tp}p∈∂Ω associated to some % < %A(η,Ω) one can use the maps {Sq}q∈Ωx0,r

defined by

p = x0 + r q , Sq(y) =
Tp(x0 + r y) − x0

r
,

to show that %/r < %Ax0,r(η,Ωx0,r). In particular, %A(η,Ω) 6 %Ax0,r(η,Ωx0,r) for every r ∈ (0, 1), that

is, the positivity of %Ax0,r(η,Ωx0,r) is stable under blow-ups of Ω. Identity (6.5) is needed to obtain density

estimates that are stable under blow-up limits.

With Definition 6.1, we can formulate the following improved version of Theorem 1.7. Notice that the assumption

of Ω being a bounded open set with C1-boundary or an half-space is replaced here by the requirement that

%A(η,Ω) > 0 for every η > 0.

Theorem 6.3 (Density estimates). Let n > 2, s ∈ (0, 1), σ ∈ (−1, 1), Λ > 0 and K = Kε
s for some ε > 0.

If A is an open set and Ω is an open set with C1-boundary in A such that %A(η,Ω) > 0 for every η > 0, then

there exist positive constants C0 (depending on n, s, σ and Λ), c∗ (depending on n and s) and η1 (depending

on n, s and σ) with the following property: for every (Λ, r0, σ, Kε
s)-minimizer E in (A, Ω), one has

Iε
s (EBr(x), (EBr(x))c) 6 C0 rn−s , (6.6)

whenever Br(x) ⊂ A and r < min{r0, c∗ %A(η1, Ω), c∗ ε}, and, moreover,

1

C0
6

|E ∩ Br(x)|
rn

6 1 − 1

C0
, (6.7)

whenever Br(x) ⊂ A, r < min{r0, c∗%A(η1, Ω), c∗ ε}, and x ∈ Ω ∩ ∂E.

We now turn to the proof of Theorem 6.3. A key tool is a geometric inequality, stated in Lemma 6.4 below,

which can be introduced by the following considerations. A crucial role in the study of local capillarity problems

is played by the geometric remark that, if Per denotes the classical (local) perimeter, then

Per(Z; H) > Per(Z; ∂H) , (6.8)

whenever Z ⊂ H is of finite perimeter and finite volume (this is a consequence of the divergence theorem; see,

for example, [Mag12, Proposition 19.22]). An analogous inequality to (6.8) holds for fractional perimeters too: if

H is a half-space in R
n and Z is a bounded subset of H , then

Is(Z, ZcH) > Is(Z, Hc) . (6.9)

Indeed, let R > 0 be such that Z ⊂ H ∩ BR. If we set J = Hc and Y = J ∪ Z , then J is a half-space and

Y \ BR = J \ BR, so that, by [CRS10, Corollary 5.3(b)] (see also [ADPM11, Proposition 17]),

Is(Y BR, Y c) + Is(Y Bc
R, Y cBR) > Is(JBR, Jc) + Is(JBc

R, JcBR) . (6.10)

Since Y c = Zc ∩ H and Z ⊂ H ∩ BR, one finds

Is(Y BR, Y c) = Is(Z, ZcH) + Is(H
cBR, ZcH) ,

Is(Y Bc
R, Y cBR) = Is(H

cBc
R, HZcBR) ,
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which, combined with (6.10), gives

Is(Z, ZcH) > Is(H
cBR, H) − Is(H

cBR, ZcH)

+Is(H
cBc

R, HBR) − Is(H
cBc

R, HZcBR)

= Is(H
cBR, Z) + Is(H

cBc
R, Z) = Is(Z, Hc) .

(This argument actually shows that (6.9) is equivalent to (6.10).) We now want to generalize (6.9) to the case

when an open set Ω takes the place of the half-space H . The idea is that on sets of sufficiently small diameter,

if the boundary Ω is regular enough to be locally close to a half-space at each of its boundary points, then an

inequality like (6.9) should hold true with some error terms.

Lemma 6.4. Given n > 2, s ∈ (0, 1), and ε > 0 there exist positive constants C? and η0 (depending on n
and s, and with C? η0 < 1) with the following property. If A is an open set, Ω is an open set with C1-boundary

in A, η ∈ (0, η0),

r? := min
{%A(η,Ω)

4 C?
,

ε

2 C?

}

(6.11)

and

G ⊂ Ω ∩ Br?(x) for some x ∈ R
n (6.12)

then

Iε
s (G, GcΩ) > (1 − C? η) Iε

s (G, Ωc) − C?

rs
?

|G| , (6.13)

Proof. Let us fix η ∈ (0, η0), assume without loss of generality that %A(η,Ω) > 0, define r? by (6.11), and

directly consider the case |G| > 0. The idea is that when Br?(x) is sufficiently close to ∂Ω, then one can first

“flatten” the boundary and then exploit the local minimality of half-spaces expressed in (6.9) in order to obtain

(6.13). If, instead, Br?(x) is away from ∂Ω then (6.13) follows by the isoperimetric inequality (for the fractional

perimeter Ps).

Step one: We prove that if, in addition to (6.12), we have BC?r?(x) ⊂ Ω, then

Iε
s (G, GcΩ) > Iε

s (G, Ωc) . (6.14)

First we notice that, trivially,

|z − y| >
C? − 1

C?
|z − x| ∀y ∈ Br?(x) , z ∈ BC? r?(x)c . (6.15)

(We definitely assume that C? > 1.) By assumption we have G ⊂ Br?(x) and Ωc ⊂ BC? r?(x)c, so that

(6.15) and Kε
s = 1Bε Ks give us

Iε
s (G, Ωc) 6 Iε

s (G, BC?r?(x)c) 6

(

C?

C? − 1

)n+s ∫

G
dy

∫

BC?r? (x)c

dz

|z − x|n+s

6 n ωn

(

C?

C? − 1

)n+s

|G|
∫ +∞

C?r?

%−1−s d% =
n ωn

s

(

C?

C? − 1

)n+s |G|
(C?r)s

(6.16)

where ωn is the volume of the unit ball. At the same time, by the fractional isoperimetric inequality (see [FLS08,

CV11]) we have that

Ps(G) >
Ps(B1)

ω
(n−s)/n
n

|G|(n−s)/n . (6.17)

Since (C? + 1) r? 6 2 C?r? < ε and G ⊂ Br?(x) we have that

|y − z| 6 ε ∀y ∈ G , z ∈ BC?r?(x) ,

so that by Kε
s = 1BεKs and by BC?r?(x) ⊂ Ω we find

Iε
s (G, GcΩ) > Iε

s (G, GcBC?r?(x)) > Is(G, GcBC?r?(x)) =
(

Ps(G) − Is(G; BC?r?(x)c)
)

.
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Hence, by (6.17) and (6.16), we have

Iε
s (G, GcΩ)

Iε
s (G, Ωc)

>

Ps(B1)

ω
(n−s)/n
n

|G|(n−s)/n − n ωn
s

(

C?
C?−1

)n+s
|G|

(C?r)s

n ωn
s

(

C?
C?−1

)n+s
|G|

(C?r)s

=
s

n
Ps(B1)

(C? − 1

C?

)n+s
Cs

?

( |Br?(x)|
|G|

)s/n
− 1

>
s

n
Ps(B1)

(C? − 1

C?

)n+s
Cs

? − 1 > 1 ,

where the last inequality holds provided C? is large enough depending on n and s.

Step two: We now complete the proof of the lemma. We first notice that

|Ks(ζ1) − Ks(ζ1)| 6 C(n, s)
Ks(ζ1)

|ζ1|
|ζ1 − ζ2| (6.18)

whenever |ζ1 − ζ2| 6 |ζ1|/2. Indeed, if t ∈ [0, 1], then

|tζ2 + (1 − t)ζ1| > |ζ1| − |ζ2 − ζ1| >
|ζ1|
2

.

and thus

|Ks(ζ2) − Ks(ζ1)| 6 sup
t∈[0,1]

|∇Ks(tζ2 + (1 − t)ζ1)| |ζ2 − ζ1|

6 sup
t∈(0,1)

|ζ2 − ζ1|
|tζ2 + (1 − t)ζ1|n+s+1

6 C(n, s)
Ks(ζ1)

|ζ1|
|ζ2 − ζ1| .

This proves (6.18), which we are going to use now in the proof of (6.13).

Given step one, we may directly assume that there exists p ∈ BC?r?(x)∩∂Ω (as well as that Br?(x)∩Ω 6= ∅,

otherwise (6.12) would give G = ∅). The existence of p gives

B2 r?(x) ⊂ B%(p) , for some % < %(η,Ω) . (6.19)

Indeed, if q ∈ B2 r?(x) and we pick C? > 2, then we find

|q − p| 6 |q − x| + |x − p| 6 2 r? + C?r? < 2C?r? < %(η,Ω)

by definition of r?. By definition of %A(η,Ω) there exists a C1-diffeomorphisms Tp : R
n → R

n such that

(6.1)–(6.4) hold with % as in (6.19). In particular (6.4) gives that
∣

∣

(

Tp(z) − Tp(y)
)

− (z − y)
∣

∣ 6 η |z − y| , ∀z, y ∈ R
n ,

so that, provided η0 < 1/2, in view of (6.18),
∣

∣

∣
Ks

(

Tp(z) − Tp(y)
)

− Ks(z − y)
∣

∣

∣
6 C(n, s)Ks(z − y) η , if |z − y| < ε .

At the same time (6.4) implies
∣

∣

∣
JTp(z)JTp(y) − 1

∣

∣

∣
6 C(n) η ∀z, y ∈ R

n ,

so that in conclusion, for every z, y ∈ R we have
∣

∣

∣
JTp(z)JTp(y)Ks

(

Tp(z) − Tp(y)
)

− Ks(z − y)
∣

∣

∣
6 C? η Ks(z − y) .

By the area formula, for every pair of disjoint sets A1, A2 ⊂ R
n one has that Is(A1, A2) if finite if and only if

Is(Tp(A1), Tp(A2)) is finite, with

(1 − C? η)Is(A1, A2) 6 Is(Tp(A1), Tp(A2)) 6 (1 + C? η) Is(A1, A2) . (6.20)

We are now in the position to conclude our argument. By G ⊂ Br?(x) ∩ Ω and (6.19) we find Tp(G) ⊂
H ∩ B%(p), where H = Hp is the affine tangent half-space to Ω at p (see Definition 6.1). Thus we can apply

(6.9) to Z = Tp(G) and find

Is(Tp(G), Tp(G)cH) > Is(Tp(G), Hc) , (6.21)
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which is equivalently written (by using Tp(G)c ∩ B%(p)c = B%(p)c) as

Is(Tp(G), Tp(G)cHB%(p)) + Is(Tp(G), HB%(p)c)

> Is(Tp(G), HcB%(p)) + Is(Tp(G), HcB%(p)c) .

Since H ∩ B%(p) = Tp(Ω ∩ B%(p)) and Hc ∩ B%(p) = Tp(Ω
c ∩ B%(p)), by exploiting (6.20) we obtain

(1 + C? η) Is(G, GcΩB%(p)) + Is(Tp(G), HB%(p)c) (6.22)

> (1 − C? η) Is(G, ΩcB%(p)) + Is(Tp(G), HcB%(p)c) .

Again by (6.20) one finds

|Is(Tp(G), HB%(p)c) − Is(G, ΩB%(p)c)|
6 |Is(Tp(G), Tp(ΩB%(p)c)) − Is(G, ΩB%(p)c)|

+|Is(Tp(G), Tp(ΩB%(p)c)) − Is(Tp(G), HB%(p)c)|
6 C?ηIs(G, ΩB%(p)c) + Is(Tp(G), B%(p)c)

6 C?ηIs(G, ΩB%(p)c) + (1 + C? η) Is(G, B%(p)c) ,

so that (6.22) gives

(1 + C? η)
(

Is(G, GcΩ) + Is(G, B%(p)c)
)

(6.23)

> (1 − C? η) Is(G, ΩcB%(p)) + Is(Tp(G), HcB%(p)c) .

Similarly, by using (6.20) one more time,

|Is(Tp(G), HcB%(p)c) − Is(G, ΩcB%(p)c)|
6 |Is(Tp(G), Tp(Ω

cB%(p)c)) − Is(G, ΩcB%(p)c)|
+|Is(Tp(G), Tp(Ω

cB%(p)c)) − Is(Tp(G), HcB%(p)c)|
6 C? ηIs(G, ΩcB%(p)c) + Is(Tp(G), B%(p)c)

6 C? ηIs(G, ΩcB%(p)c) + (1 + C? η) Is(G, B%(p)c) ,

which plugged into (6.23) gives, as C?η0 < 1,

(1 + C? η) Is(G, GcΩ) > (1 − C? η) Is(G, Ωc) − 4 Is(G, B%(p)c) . (6.24)

Since G ⊂ Br?(x) with B2 r?(x) ⊂ B%(p), recalling (1.10) we have

Is(G, B%(p)c) 6

∫

G
dz

∫

B2 r? (x)c

dy

|z − y|n+s
=

nωn

s 2s rs
?

|G| ,

and thus (6.24) implies

(1 + C? η) Is(G, GcΩ) > (1 − C? η) Iε
s (G, Ωc) − 4 Is(G, B%(p)c) (6.25)

> (1 − C? η) Iε
s (G, Ωc) − C(n, s)

|G|
rs
?

. (6.26)

Now

Is(G, GcΩ) = Iε
s (G, GcΩ) +

∫

G
dz

∫

Bε(z)∩Gc∩Ω

dy

|z − y|n+s
6 Iε

s (G, GcΩ) + C(n, s)
|G|
εs

and so we deduce (6.13) from (6.25) and r? 6 ε/C(n, s). �

We are now ready for the proof of Theorem 6.3.

Proof of Theorem 6.3. Let E be a (Λ, r0, σ, Kε
σ)-minimizer in (A, Ω), so that

Iε
s (EA, EcΩ) + Iε

s (EAc, EcΩA) + σ Iε
s (EA, Ωc) (6.27)

6 Iε
s (FA, F cΩ) + Iε

s (FAc, F cΩA) + σ Iε
s (FA, Ωc) + Λ |E∆F | ,

whenever F ⊂ Ω with diam(F∆E) < 2 r0 and F ∩ Ac = E ∩ Ac.

Let us fix Br(x) ⊂ A with r < r0 and test (6.27) with F = E ∩ Br(x)c. Since F ∩ A = E ∩ Br(x)c ∩ A
and F c = Ec ∪ (E ∩ Br(x)) one has

Iε
s (FA, F cΩ) − Iε

s (EA, EcΩ) = −Iε
s (EBr(x), EcΩ) + Iε

s (EBr(x)cA, EBr(x)) .
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Similarly, by F ∩ Ac = E ∩ Ac,

Iε
s (FAc, F cΩA) − Iε

s (EAc, EcΩA) = Iε
s (EAc, EBr(x)) ,

Iε
s (FA, Ωc) − Iε

s (EA, Ωc) = −Iε
s (EBr(x), Ωc) ,

so that (6.27) gives

Iε
s (EBr(x), EcΩ) + σ Iε

s (EBr(x), Ωc)

6 Iε
s (EBr(x)cA, EBr(x)) + Iε

s (EAc, EBr(x)) + Λ u(r) ,
(6.28)

provided u(r) = |E ∩ Br(x)|. By Ac ⊂ Br(x)c one finds

Iε
s (EBr(x)cA, EBr(x)) + Iε

s (EAc, EBr(x)) 6 2 Iε
s (EBr(x), EBr(x)c) ,

so that, by adding Iε
s (EBr(x), EBr(x)c) to both sides of (6.28), one gets

Iε
s (EBr(x), (EcΩ) ∪ (EBr(x)c)) + σ Iε

s (EBr(x), Ωc) (6.29)

6 3 Iε
s (EBr(x), EBr(x)c) + Λ u(r) .

Now let C? and η0 be as in Lemma 6.4 and fix η1 ∈ (0, η0) depending on n, s, and σ so that

(1 − C? η1)
2 − |σ| > η1 .

We are going to apply Lemma 6.4 with η = η1, so that (6.11) gives

r? = min
{%A(η1, Ω)

4 C?
,

ε

2 C?

}

6 c∗ min
{

%A(η1, Ω), ε
}

for a constant c∗ depending on n and s. If we set G = E ∩ Br(x), then G ⊂ Ω ∩ Br?(x) provided r < r?.

In particular, by (6.13) we find

Iε
s (G, GcΩ) > (1 − C? η1) Iε

s (G, Ωc) − C?

rs
?

|G| . (6.30)

Moreover,

Gc ∩ Ω = (Ec ∩ Ω) ∪ (Br(x)c ∩ Ω) = (Ec ∩ Ω) ∪ (E ∩ Br(x)c) ,

so that (6.29) gives

3 Iε
s (EBr(x), EBr(x)c) + Λ u(r) > Iε

s (G, GcΩ) + σ Iε
s (G, Ωc).

By (6.13),

3 Iε
s (EBr(x), EBr(x)c) + Λ u(r)

> C? η1 Iε
s (G, GcΩ) + (1 − C? η1)I

ε
s (G, GcΩ) − |σ| Iε

s (G, Ωc)

> C? η1 Iε
s (G, GcΩ) + [(1 − C? η1)

2 − |σ|] Iε
s (G, Ωc) − (1 − C? η1)

C?

rs
?

u(r)

> η1

(

Iε
s (G, GcΩ) + Iε

s (G, Ωc)
)

− C?

rs
?

u(r) = η1 P ε
s (G) − C?

rs
?

u(r) .

Summarizing, if Br(x) ⊂ A with r < min{r0, r?}, then

3 Iε
s (EBr(x), EBr(x)c) +

(

Λ +
C?

rs
?

)

u(r) > η1 P ε
s (G) , G = E ∩ Br(x) . (6.31)

Since Iε
s (EBr(x), EBr(x)c) 6 P ε

s (Br(x)) 6 C(n, s)rn−s and u(r) 6 ωnrn, we see that (6.31) immedi-

ately implies (6.6). Next, we apply the fractional isoperimetric inequality (6.17) to bound from below P ε
s (G) in

(6.31). More precisely, we notice that

Ps(G) = P ε
s (G) +

∫

G
dz

∫

Gc∩Bε(z)c

dy

|z − y|n+s
6 P ε

s (G) + C(n, s)
|G|
εs

6 P ε
s (G) + C(n, s)

|G|
rs
?

so that, up to increasing the value of C?, (6.17) gives

3 Iε
s (EBr(x), EBr(x)c) +

(

Λ +
C?

rs
?

)

u(r) >
P (B1)

ω
(n−s)/n
n

η1 u(r)(n−s)/n . (6.32)
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By exploiting u(r) 6 (ωn rn)s/nu(r)(n−s)/n we find that if

(

Λ +
C?

rs
?

)

(ωn rn)s/n
6

P (B1) η1

2 ω
(n−s)/n
n

, (6.33)

then (6.32) implies

u(r)(n−s)/n
6 C(n, s,Λ, σ) Iε

s (EBr(x), EBr(x)c) . (6.34)

We notice that (6.33) is equivalent to
( r

r?

)s
6

P (B1) η1

2ωn(rs
?Λ + C?)

which, by rs
?Λ 6 Λ, is in turn implied by

r 6 c(n, s) r?

and thus by r 6 c∗(n, s)min{%A(η1, Ω), ε}. We have thus proved the validity of (6.34) provided r 6 r0

and r 6 c∗(n, s)min{%A(η1, Ω), ε}. Arguing as in [CRS10, Lemma 4.2], we conclude that if Br(x) ⊂ A,

x ∈ Ω ∩ ∂E, and r satisfies the above constraints, then u(r) > c0 rn for some c0 = c0(n, s, σ, Λ). By

Remark 5.2, Ω ∩ Ec is a (Λ, r0,−σ)-minimizer in (A, Ω), and since Ω ∩ ∂(Ω ∩ Ec) = Ω ∩ ∂E one can

repeat the above argument with Ω ∩ Ec in place of E to find the upper volume density estimate in (6.7). �

APPENDIX A. CLOSURE THEOREM FOR ALMOST-MINIMIZERS AND BLOW-UP LIMITS

In this appendix we prove a closure theorem for sequences of (Λ, r0, σ, K)-minimizers (Theorem A.1). As an

application, we then show that blow-up limits exists and are in turn minimizers (Theorem A.2). In the following,

given an interaction kernel K ∈ K(n, sλ), we set

wF (x) := 1F (x)

∫

F c

K(x − y) dy F ⊂ R
n

(A.1)

so that

wF belongs to L1(A) if (and only if) I(AF, F c) < +∞. (A.2)

Theorem A.1. Let n > 2, s ∈ (0, 1), σ ∈ (−1, 1), λ > 1, Λ > 0, r0 > 0, K ∈ K(n, s, λ) and A
be an open set. Consider a sequence {Ej}j∈N of (Λ, r0, σ, K)-minimizers in (A, Ωj), where {Ωj}j∈N is a

sequence of open sets. If there exists an open set Ω with P (Ω) < ∞ such that

Ej → E and Ωj → Ω in L1
loc(A) (A.3)

and

wΩj converges to wΩ weakly in L1
loc(A) (A.4)

then E is a (Λ, r0, σ, K)-minimizer in (A, Ω).

Moreover, in the case when K = Kε
s and Ωj = Ω is an open set with C1-boundary such that %(η,Ω) > 0 for

every η > 0, one has that:

(i) if xj ∈ A ∩ Ω ∩ ∂Ej and xj → x for some x ∈ A, then x ∈ ∂E;

(ii) if x ∈ Ω ∩ ∂E then there exists xj ∈ ∂Ej such that xj → x.

Proof. Step one: We want to prove that (5.2) holds whenever F ⊂ Ω, diam(F∆E) < 2r0 and F ∩ Ac =
E ∩ Ac. Of course, without loss of generality, we may assume that

I(FA, F cΩ) + I(FAc, F cΩA) + σ I(FA, Ωc) < ∞ .

Since I(FA, Ωc) 6 I(ΩA, Ωc) < ∞, this implies

I(FA, F cΩ) + I(FAc, F cΩA) < ∞ (A.5)

and hence
∫

A
wF = I(AF, F c) = I(AF, F cΩ) + I(AF, Ωc) 6 I(AF, F cΩ) + P (Ω) < ∞ .
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Similarly,
∫

A
wF c = I(AF c, F ) = I(AF c, AF ) + I(AF c, AcF )

6 I(AF c, AF ) + I(AF cΩc, AcF ) + I(AF cΩ, AcF )

where I(AF c, AF ) 6
∫

A wF < ∞, I(AF cΩc, AcF ) 6 P (Ω) < ∞, and I(AF cΩ, AcF ) < ∞ by (A.5).

We have thus proved that in showing (5.2) for a given F ⊂ Ω with diam(F∆E) < 2r0 and F ∩Ac = E∩Ac,

we can directly assume that

wF , wF c ∈ L1(A) . (A.6)

Now we fix a bounded set W with wW , wW c ∈ L1(Rn) such that F∆E ⊂⊂ W ⊂⊂ A and diam(W ) <
2r0 (we can achieve this by taking W in the form of a finite union of balls, say). Our goal is thus proving that

I(EW, EcΩW ) + I(EW, EcΩW c) + I(EW c, EcΩW ) + σ I(EW, Ωc) (A.7)

6 I(FW, F cΩW ) + I(FW, EcΩW c) + I(EW c, F cΩW ) + σ I(FW, Ωc) + Λ |E∆F | .
To this end we set Fj = (F ∩Ωj ∩W )∪ (Ej ∩W c), and test the minimality inequality of Ej (see (1.27)) on

Fj . In this way we find

I(EjW, Ec
jΩjW ) + I(EjW, Ec

jΩjW
c) + I(EjW

c, Ec
jΩjW ) + σ I(EjW, Ωc

j) (A.8)

6 I(FΩjW, F cΩjW ) + I(FΩjW, Ec
jΩjW

c) + I(EjW
c, F cΩjW ) + σ I(FΩjW, Ωc

j)

+Λ |Ej∆Fj |.
We claim that in the limit j → ∞, (A.8) implies (A.7). By Fatou’s lemma and (A.3), the inferior limit as j → ∞
of the sum of first three terms on the left-hand side of (A.8) is bounded from below by the corresponding sum

on the left-hand side of (A.7). We thus have to address the behavior of the two σ-terms in (A.8), and of the first

three terms appearing on its right-hand side. We start with the first of these terms, and find by (1.10) and (A.1)

that

|I(FΩjW, F cΩjW ) − I(FΩW, F cΩW )| 6
∣

∣I(FΩjW, F cΩjW ) − I(FΩjW, F cΩW )
∣

∣

+
∣

∣I(FΩjW, F cΩW ) − I(FΩW, F cΩW )
∣

∣

6

∫

(Ωj∆Ω)∩W
wF c +

∫

(Ωj∆Ω)∩W
wF .

By (A.3) and (A.6) we thus find

lim
j→+∞

I(FΩjW, F cΩjW ) = I(FΩW, F cΩW ) . (A.9)

Now we claim that if Gj ⊂ Ωj and Gj → G in L1
loc(A), then

lim
j→+∞

I(GjW, Ωc
j) = I(GW, Ωc). (A.10)

To this end, we recall that (A.4) implies

lim
j→∞

∫

Uj

wΩj = 0 whenever lim
j→∞

|Uj | = 0 ,

see [AFP00, Theorem 1.38]. Since, by definition, (A.4) gives us
∫

Rn u wΩj →
∫

Rn u wΩ for every u ∈ L∞
loc(A),

we conclude that

|I(GjW, Ωc
j) − I(GjW, Ωc)| =

∣

∣

∣

∣

∫

Rn

1Gj∩W (x)
(

wΩj (x) − wΩ(x)
)

dx

∣

∣

∣

∣

6

∣

∣

∣

∣

∫

Rn

1GW (x)
(

wΩj (x) − wΩ(x)
)

dx

∣

∣

∣

∣

+

∫

(Gj∆G)∩W

(

wΩj (x) + wΩ(x)
)

dx −→ 0

as j → +∞. From this last fact and thanks to wΩ ∈ L1(Rn) we have

|I(GjW, Ωc
j) − I(GW, Ωc)|

6 |I(GjW, Ωc
j) − I(GjW, Ωc)| + |I(GjW, Ωc) − I(GW, Ωc)|

6 |I(GjW, Ωc
j) − I(GjW, Ωc)| +

∫

(Gj∆G)W
wΩ(x) dx −→ 0
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as j → +∞, which proves (A.10). We now exploit (A.10) with Gj = Ej and with Gj = F ∩ Ωj to take care

of the σ-terms in (A.8) and find

lim
j→+∞

I(EjW, Ωc
j) = I(EW, Ωc) lim

j→+∞
I(FΩjW, Ωc

j) = I(FΩW, Ωc) . (A.11)

We are left to take care of the second and third terms on the right-hand side of (A.8). To this end we notice that

since wW , wW c ∈ L1(Rn), if Gj , Lj ⊂ Ωj with Gj → G and Lj → L in L1
loc(A), then

|I(GjW, LjW
c) − I(GW, LW c)|

6 |I(GjW, LjW
c) − I(GjW, LW c)| + |I(GjW, LW c) − I(GW, LW c)|

6

∫

Lj∆L
wW c(x) dx +

∫

Gj∆G
wW (x) dx −→ 0

as j → +∞. By using this observation first with Gj := F ∩Ωj and Lj := Ec
jΩj , and then with Gj := F cΩj

and Lj := Ej , we finally obtain that

lim
j→+∞

I(FΩjW, Ec
jΩjW

c) = I(FΩW, EcΩW c)

lim
j→+∞

I(EjΩjW
c, F cΩjW ) = I(EΩjW

c, F cΩW ).
(A.12)

We have thus completed the proof of (A.7).

Step two: Let us now assume that K = Kε
s and that Ωj = Ω for an open set Ω with C1-boundary such that

%(η,Ω) > 0 for every η > 0, so that the density estimates of Theorem 6.3 hold. Let us pick xj ∈ A∩Ω ∩ ∂Ej

and xj → x for some x ∈ A, then x ∈ ∂E. By (6.7)

1

C0
6

|Ej ∩ Br(xj)|
rn

6 1 − 1

C0
,

for every r < min{dist(xj , ∂A), r0, c∗%(η1, Ω), c∗ ε} where C0 = C0(n, s, σ, Λ) and c∗ = c∗(n, s). As

j → ∞ we find

1

C0
6

|E ∩ Br(x)|
rn

6 1 − 1

C0
,

for every r < min{dist(x, ∂A), r0, c∗%(η1, Ω), c∗ ε}, that is x ∈ ∂E. Now let us consider x ∈ Ω ∩ ∂E,

and assume that for some τ > 0 and for infinitely many values of j we have Bτ (x) ∩ ∂Ej = ∅. Without loss

of generality we may assume that either |Ej ∩ Bτ (x)| = 0 or |Ec
j ∩ Bτ (x)| = 0 for infinitely many j. In this

way, by Fatou’s lemma,

0 = lim
j→∞

Iε
s (EjBτ (x), Ec

jBτ (x)) > Iε
s (EBτ (x), EcBτ (x))

so that either |E ∩ Bτ (x)| = 0 or |Ec ∩ Bτ (x)| = 0, against the fact that x ∈ Ω ∩ ∂E and thus the density

estimates (6.7) hold for E at x, being E a (Λ, r0, σ, Kε
s)-minimizer. �

As an application of Theorem A.1 we obtain the following compactness result for blow-ups. For the sake of

simplicity, we limit our analysis to the case K = Ks.

Theorem A.2. Let n > 2, s ∈ (0, 1), σ ∈ (−1, 1), Λ > 0, r0 > 0, and let A be an open set. Let E be a

(Λ, r0, σ, Ks)-minimizer in (A, Ω) where Ω is an open set with C1-boundary in A and with %A(η,Ω) > 0 for

every η > 0, let x0 ∈ A ∩ Ω ∩ ∂E, and given a positive vanishing sequence {rj}j∈N, set

Ej = Ex0,rj =
E − x0

rj
Ωj = Ωx0,rj .

Then there exists an half-space H with 0 ∈ ∂H and a set E ⊂ H with 0 ∈ ∂E such that, up to extracting a

subsequence, Ej → E and Ωj → Ω in L1
loc(R

n) as j → ∞ and E is a (0,∞, σ, Ks)-minimizer in (Rn, H).

We shall need the following simple lemma.

Lemma A.3. If f : R
n → R

n iw a bi-Lipschitz diffeomorphism and Ω ⊂ R
n, then

wf(Ω)(x) 6 C wΩ(f−1(x)) ∀x ∈ R
n ,

with a constant C depending only on the Lipschitz constants of f and f−1, and converging to 1 when these

Lipschitz constants converge to 1.
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Proof of Lemma A.3. Setting ỹ = f−1(y) and x̃ = f−1(x) the area formula gives

wf(Ω)(x) = 1f(Ω)(x)

∫

f(Ωc)

dy

|x − y|n+s
= 1Ω(x̃)

∫

Ωc

Jf(ỹ) dỹ

|f(x̃) − f(ỹ)|n+s
.

We conclude as ‖Jf‖L∞(Rn) 6 1 + C(n) |Lip(f) − 1| and |f(x̃) − f(ỹ)| > Lip(f−1) |x̃ − ỹ|. �

Proof of Theorem A.2. By regularity of ∂Ω we have that Ωj → H in L1
loc(R

n), while if we set Aj = (A −
x0)/rj , then Aj → R

n in L1
loc(R

n) as x0 ∈ A. By Remark 5.1, Ej is a (Λ rs
j , r0/rj , σ, Ks)-minimizer in

(Aj , Ωj). Let us fix τ > 0 and R > 0 and notice that for j large enough we certainly have that Ej ∩B2R is a

(τ, τ−1, σ, Ks)-minimizer in (BR, Ωj ∩ B2R). Let us also notice that by (6.2) we can certainly assume that

%BR
(η,Ωj ∩ B2R) = %(BRrj

(x0))x0,rj

(

η, (Ω ∩ B2 R rj (x0))
x0,rj

)

=
1

rj
%BRrj

(x0)

(

η,Ω ∩ B2 R rj (x0)
)

>
%A(Ω, η)

rj

In particular, for η1 = η1(n, s, σ) as in Theorem 6.3 we have

θ := inf
j∈N

%BR
(η,Ωj ∩ B2R) > 0 .

Now we show that, up to extracting a subsequence, Ej → E in L1
loc(B2R) for some set E ⊂ H . Indeed, by

(6.6) we have

Is(EjBr(x), (EjBr(x))c) 6 C0 rn−s ,

whenever Br(x) ⊂ BR and r < min{τ−1, c∗ θ} where C0 = C0(n, s, σ, Λ), c∗ = c∗(n, s) and θ > 0 is

as above. By a covering argument we see that

sup
j∈N

Is(EjW, Ec
j ) < ∞

for every W ⊂⊂ B2R. In particular, Ej → E in L1
loc(B2R) for some set E, and the fact that E ⊂ H follows

immediately from Ej ⊂ Ωj and Ωj → H in L1
loc(R

n).

We claim that wΩj∩B2R
converges weakly in L1(BR) to wH∩B2R

. Indeed, there exists a bi-Lipschitz family of

diffeomorphisms fj : R
n → R

n such that fj(0) = 0, fj(Ωj ∩ B2R) = H ∩ B2R and

(1 − δj) |x − y| 6 |fj(x) − fj(y)| 6 (1 + δj) |x − y| ∀x, y ∈ R
n

where δj → 0. In particular, by Lemma A.3,

(1 − C(n) δj)wH∩B2R
6 wΩj∩B2R

6 (1 + C(n) δj)wH∩B2R
on R

n .

This proves our claim.

Since Ps(H ∩B2R) < ∞ we can apply Theorem A.1 to conclude that, for every τ > 0, E is (τ, τ−1, σ, Ks)-

minimizer in (BR, H ∩ B2R). By the arbitrariness of τ , E is (0,∞, σ, Ks)-minimizer in (BR, H ∩ B2R). By

the arbitrariness of R, E is (0,∞, σ, Ks)-minimizer in (Rn, H). Again by Theorem A.1, since 0 ∈ Ωj ∩ ∂Ej

for every j, it follows that 0 ∈ ∂E. �
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