WeierstraB-Institut
fur Angewandte Analysis und Stochastik

Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 2198-5855

Displacement and pressure reconstruction from magnetic
resonance elastography images: application to an in silico brain
model

Felipe Galarce', Karsten Tabelow', Jérg Polzehl', Christos Panagiotis Papanikas?,

Vasileios Vavourakis?, Ledia Lilaj*, Ingolf Sack®, Alfonso Caiazzo'

submitted: April 28, 2022

! Weierstrass Institute 2 University of Cyprus
Mohrenstr. 39 Kallipoleos 75
10117 Berlin, Germany 1678 Nicosia, Cyprus
E-Mail: felipe.galarce@wias-berlin.de E-Mail: papanikas.christos-panagiotis@ucy.ac.cy
karsten.tabelow@wias-berlin.de vavourakis.vasileios@ucy.ac.cy

joerg.polzehl@wias-berlin.de
alfonso.caiazzo@wias-berlin.de

% Charité-Universitatsmedizin Berlin
Charitéplatz. 1
10117 Berlin, Germany
E-Mail: ledia.lilaj@charite.de
ingolf.sack@charite.de

No. 2933
Berlin 2022

\

NS

2020 Mathematics Subject Classification. 35R30, 65N21, 74115, 92-08.
Key words and phrases. Data assimilation, state estimation, finite element method, poroelasticity, reduced-order modeling.

This research is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's
Excellence Strategy - MATH+: The Berlin Mathematics Research Center [EXC-2046/1 - project ID: 390685689]. V.V. wishes
to acknowledge the financial support of the Cyprus Cancer Research Institute through the Bridges in research excellence
CCRI_2020_FUN_001, Project “PROTEAS" [grant ID: CCRI_2021_FA_LE_105] .



Edited by
WeierstraB-Institut fir Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.

Mohrenstra3e 39

10117 Berlin

Germany

Fax: +493020372-303

E-Mail: preprint@wias-berlin.de

World Wide Web: http://www.wias-berlin.de/



Displacement and pressure reconstruction from magnetic
resonance elastography images: application to an in silico brain
model

Felipe Galarce, Karsten Tabelow, Jérg Polzehl, Christos Panagiotis Papanikas, Vasileios Vavourakis,
Ledia Lilaj, Ingolf Sack, Alfonso Caiazzo

1 Abstract

Magnetic resonance elastography is a motion sensitive image modality that allows to measure in vivo
tissue displacement fields in response to mechanical excitations. This paper investigates a data assim-
ilation approach for reconstructing tissue displacement and pressure fields in an in silico brain model
from partial elastography data. The data assimilation is based on a parametrized-background data
weak methodology, in which the state of the physical system — tissue displacements and pressure
fields — is reconstructed from the available data assuming an underlying poroelastic biomechanics
model. For this purpose, a physics-informed manifold is built by sampling the space of parameters
describing the tissue model close to their physiological ranges, to simulate the corresponding poroe-
lastic problem, and compute a reduced basis. Displacements and pressure reconstruction is sought
in a reduced space after solving a minimization problem that encompasses both the structure of the
reduced-order model and the available measurements. The proposed pipeline is validated using syn-
thetic data obtained after simulating the poroelastic mechanics on a physiological brain. The numer-
ical experiments demonstrate that the framework can exhibit accurate joint reconstructions of both
displacement and pressure fields. The methodology can be formulated for an arbitrary resolution of
available displacement data from pertinent images. It can also inherently handle uncertainty on the
physical parameters of the mechanical model by enlarging the physics-informed manifold accordingly.
Moreover, the framework can be used to characterize, in silico, biomarkers for pathological conditions,
by appropriately training the reduced-order model. A first application for the non-invasive estimation of
ventricular pressure as an indicator of abnormal intracranial pressure is shown in this contribution.
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2 Introduction

Medical imaging, combined with in silico models and computer simulations, has an enormous potential
to provide clinically valuable insights into the mechanics of complex biological tissues and to support
non invasive diagnostic. In this context, data assimilation methods are being developed to complement
the available data with physical models, advanced numerical simulations, and mathematical methods.
This paper focuses on the assimilation of internal displacement data, as those acquired via magnetic
resonance elastography (MRE) imaging, into a human brain in silico model.

MRE is a tissue imaging modality designed to measure mechanical properties of biological tissues.
It combines phase-contrast MRI with the propagation of harmonic mechanical waves (10-100 Hz)
induced by actuators placed externally on the patient body surface [1]. The mechanical response of
the tissue is recorded as a three-dimensional internal displacement field. Combined with physical
tissue models and different inversion methods, these displacement data allow to obtain quantitative
information on tissue mechanical properties, e.g., in terms of mechanical parameters (see [2, 3, 4]).

The clinical potential of elastography has been constantly increasing in the last decades [5]. It has
been proven to be an effective approach for the quantitative estimation of biomarkers (such as elas-
tic parameters, tissue fluidity, viscoelasticity) related to different tissue pathologies. Relevant clinical
applications of MRE include diagnosis and staging of diseases that have a direct influence on tissue
stiffness, such as cancer and fibrosis [6, 7, 8]. Focusing on the brain, elastography has been used
for the characterization of cancer tissue [9] and for the early stage diagnosis of neurological diseases
characterized by alteration of microstructure properties of brain tissue (see, e.g., [10]).

This work is motivated by the applicability of elastography in monitoring and quantifying the increase of
intracranial pressure (ICP). Intracranial hypertension might be responsible of different neurological dis-
eases, such as ischemia, tumors, and hydrocephalus [11], as well as of neurological disturbances and
cerebral damages. Recent research focused on the correlation between hydrocephalus and changes
in the elastic behavior (see [12] or the recent review [13]). In [14] a novel method based on ultrasound
time-harmonic elastography has been described, in which the quantification of shear wave speed is
used as indirect biomarker for elevated ICP. This paper presents a data assimilation pipeline to infer
the interplay between an increase in ICP and the mechanical response of brain tissue to harmonic
waves. The goal of this paper is to propose, for the first time, a computational method for non-invasive
quantification of elevated ICP from partial displacement data as those acquired in a typical MRE ex-
amination. Currently, precise measurement of ventricular pressure and ICP is based on invasive pro-
cedures such as catheterization or perforation and, hence, not suited for early stage risk quantification
and constant monitoring. Non-invasive alternatives for the estimation of relevant pressure gradients
would consequently drastically enhance the possibilities for early-stage diagnosis and patient monitor-
ing. In order to characterize the fluid pressure field within the brain tissue, it is necessary to consider
a biphasic tissue model describing both the solid and the fluid (i.e., the ICP) mechanics.

Recent experimental results suggested that, accounting for the fluid phase, MRE can be utilized to infer
the presence of pathological pressure conditions, by measuring the effect of the increase in interstitial
pressure on tissue mechanics [15, 16, 17]. More recent studies address different applications of MRE
with a biphasic model of the tissue, e.g., a poroelastic medium, in which the solid and interstitial fluid
interactions have been investigated [18, 19, 20, 21, 18, 22].

Computational modeling of brain biomechanics is a challenging problem, due to the structural com-
plexity of the brain, and to the lack of suitable experimental data for model parametrization. Biome-
chanical models of the human brain based on in vitro mechanical experiments have been recently
studied in [23], while a detailed discussion of suitable constitutive models for brain tissue based on in
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silico experiments has been presented in [24]. Focusing on hydrocephalus, the mechanics of ventricle
growth has been computationally investigated in [25] using a realistic three-dimensional single-phase
brain model based on hyperelastic constitutive law. Biphasic (poro-viscoelastic) models have been
investigated in [26], performing load experiments in silico to computationally investigate the response
of the tissue. The choice of the brain mechanical model shall be dictated by the regime of dynamics
of interest and by the targeted application [27]. While hyperelastic laws are suited for capturing long-
term dynamics, this paper focuses on a linear poroelastic description, which is assumed to be able to
describe fast phenomena such as the vibration induced by MRE, e.g., [28].

Despite the linearity of the model, this problem is extremely demanding for two major reasons: (i) the
high dimension of the unknowns (the pressure field, defined at each point of a suitable discretization of
the brain) and, (ii) the limited availability and resolution of images. In fact, MRE acquisition is practically
constrained by the length of examination time, and displacement data are typically available only
on a sub-region of the tissue of interest. In addition, MRE measurement are only available for the
displacement field.

A finite element method for reconstructing poroelastic parameters from MRE (MR poroelastography)
was first presented in [29, 30], by considering a synthetic phantom. A numerical framework for the
estimation of poroelastic interstitial pressure from MRE data has been recently proposed in [31]. The
method is based on solving Biot problems locally in different patches located in the region where MRE
data are available. To overcome the lack of pressure boundary conditions in the measurement regions,
the displacement data are used to derive suitable expressions for the pressure on the boundary.
The results of Tan et al. [31] are limited to a numerical phantom (cubic tissue sample with a single
inclusion). However, their approach still faces several challenges related to robustness (noisy data) and
due to the high number of unknown parameters, including the internal pressure boundary conditions
between the patches. A different approach for the estimation of the pressure field in the context of MRE
has been recently proposed by Fovargue and colleagues [32, 33], combining a stiffness reconstruction
approach (also for large strains) with an analytic model of an inflating sphere to relate it to the pressure
field.

The overarching goal of this paper is to assimilate MRE data of poroelastic biological tissues into
in silico modeling from the perspective that in clinical applications only partial measurements — few
slices, and with limited resolution — are available. Thus, focusing here on brain elastography, ‘recon-
struction’ of a poroelastic solution (both displacement and pressure fields) over the whole computa-
tional domain, the brain organ, is put in challenge. Full organ reconstruction is vital to infer pressure-
dependent biomarkers, if the regions of interests are not fully contained in the imaged subdomain. This
is the case, for instance, of the ventricular CSF pressure, which can be considered as an indicator of
hydrocephalus.

The considered reconstruction algorithm addresses the state estimation problem based on the parametrized-
background data-weak (PBDW) method [34]. Originally introduced for wave equations, the PBDW

has been recently extended in the context of ultrasound imaging and PC-MRI images of blood flow

[35, 36, 37]. This approach is designed to reconstruct a physical solution over the whole domain
given only partial displacements information. The reconstruction algorithm is based on full anatomi-

cal information, in order to create a finite element model, and a background parametrized PDE. The
underlying physics is then exploited to extend the available measurement to a function defined in the
whole three-dimensional brain model (Figure 1).

To solve the problem one generates a manifold of suitable solutions, a training set, of the underlying
PDE sampling the parameter space. Hence, the method avoids the issue of setting internal pressure
boundaries and can naturally take into account a small variability in the physical and mechanical
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Figure 1: The purpose of the considered data assimilation algorithm is to map partially available MRE
measurements acquired on few slices onto a displacement field defined on a three-dimensional brain
model. As an example, a typical wave image on a slice is shown in the bottom sketch. The mapping
requires anatomical data to construct the brain model and it is based on assuming an underlying tissue
model (encoded in a PDE), which is numerically solved via a finite elements to construct a suitable
space for the reconstruction (top sketch).

parameters. Then, the state reconstruction is sought on a low-dimensional subspace of this PDE-
informed manifold, solving an optimization problem depending on which the available observations
are included via linear constraints. The method can be interpreted as a predictor-corrector scheme, in
which a solution belonging to the low-dimensional subspace of the training set is improved by adding
a correction, orthogonal to the subspace, that accounts for the model bias [35, 34].

The main contribution of this work is twofold: First, a detailed validation of PBDW in the context of brain
elastography is presented. The validation is based on a pipeline with multidisciplinary components, en-
tailing multi-modal image acquisition, data processing and image segmentation, in silico model gener-
ation, numerical solution, and data assimilation. In this paper, the assimilated displacement data are
limited to synthetic images. However, the computational setup considers a physiological brain model,
and the synthetic data have been defined in such a way to mimic a realistic experimental setup used in
recent clinical research works [19]. Second, the framework is used for the characterization of pressure-
dependent biomarkers such as the ventricular pressure, to characterize pathological ICP gradients. In
particular, this characterization is done using only elastography data on a subset of the domain, not
necessarily including the ventricles. For the present application demonstration, two populations of syn-
thetic patients are created, classified into a healthy and an unhealthy group. The pathological states
are characterized by a pressure increase in the ventricle by 10% with respect to the healthy ones. For
both cases, forward numerical simulations are performed, sampling displacement data on few slices
at the level of the eyes. By properly constructing the training set for the reconstruction, the data assim-
ilation algorithm is able to correctly classify all cases in the corresponding group. The application of
the proposed framework to in vivo displacement data is currently under investigation, combined with
novel pre-processing techniques to estimate tissue properties from MRI data [19, 38].
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The rest of the paper is organized as follows. Section 3 introduces the PBDW data assimilation frame-
work from a general perspective, while Section 4 describes the considered poroelastic model and the
numerical method used for the solution. The application of the PBDW to the particular context is de-
tailed in Section 5. The validation in the case of synthetic MRE measurements and the application to
hydrocephalus classification are shown in Section 6, while the conclusions are drawn in Section 7.

3 A framework for data assimilation

The proposed numerical framework is based on the Parametrized Background Data-Weak (PBDW)
method for state estimation, originally proposed in [39], and recently applied also in the context of
cardiovascular imaging [35, 40].

Let us consider a physical domain 2 C R? (d = 2, 3), and let us assume that tissue biomechanics is
described by a parameter-dependent partial differential equation P of the form

P(u,0) =0, (3.1)

which will be referred thereafter as the forward model. In (3.1), u € V denotes the state, and § € R”
stands for an array of parameters.

The rest of this section is dedicated to the description of the pipeline for the data assimilation of
a general forward model and general observations, introducing the main notations and the different
computational steps. In Section 4, it will be shown how to apply the framework to the particular case
of a forward model based on the Biot equations — the state w consists of displacement and pressure
fields — and to the case of observations defined by MRE data.

3.1 PBDW preliminaries

The space V' (also called the ambient space) is a functional space suitable for well-posing the forward
problem (3.1). It will be assumed to be a Hilbert space, endowed with an inner product (denoted by
(-, -)) and with the induced norm || - || = \/{(-, -). Depending on the PDE under consideration, typical
choices for V' are subspaces of L%(£2) or H*(2) (or product spaces of those), with the corresponding
standard inner products.

Moreover, let us consider an appropriate discretization of the forward model (3.1) using the finite
element method. As such, let us introduce a computational mesh 7}, of the domain € of characteristic
size h, and let us denote with 1/, a finite element space defined on 7},. The dimension of the discrete
space V), is denoted by JV, i.e., the number of degrees of freedom per discrete (nodal) point of the
finite element mesh. Moreover, it is also assumed that 1}, satisfies suitable approximation properties
with respect to the ambient space V.

In what follows, (-, -) will denote the inner product for the particular case of L?(£2). Moreover, I1;;
will denote the orthogonal projector on a subspace U C Vj,. Finally, £;, 7 = 1..., N will denote
the basis functions of the finite element space, while M € RNV will stand for the mass matrix that
defines the Hilbertian setting of the considered finite element space and the corresponding norm, i.e.,
for the L2-setting:
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JLJ = /ﬁf, Ejdif . {32)

3.2 The space of observations

The first step to formalize the data assimilation problem consists in the construction of a functional
space of observations. To this purpose, let [, ..., [,, be a set of m independent observations, as-
sumed to be modeled by m independent linear functionals ¢; : V;, — R (i = 1,...,m) applied to
an underlying true solution e € V3, i.e., l; = {;(Uire)- This might be the case, for instance, of
image voxels (or, more in general, any sensor data).

These assumptions allows to define a finite dimensional space of observations W' = Span(w;;, . .., w,, ),

with W' C V},, spanned by the unique Riesz representer of the observation functionals /;,i.e., so that
it holds

Ci(typge) = (e, wy), fori=1,...,m. (3.3)

Without loss of of generality, we assume that ||w;|| = 1 fori = 1,...,m, and that (w;, w;) = 0
for any ¢ # j (orthonormality can otherwise be imposed in a post-processing step). Thus, the input
data (i.e., the set of available measurement) is modeled via a function w € W that is defined by
the projection of the true solution onto W: w = >, #;(te )w; = Iy tye. The data assimilation
problem under investigation can be formalized as finding a measure-to-state operator A : W — V},,
which, given a set of observation w € W, finds a suitable state u* € V/}, that approximates e, in
the sense ||u* — e || is small.

3.3 Data assimilation as a minimization problem

The problem of estimating u* € V/}, solely relying on the data w € W is ill-posed. To overcome this
issue, information about the dynamics of the state wy,, encoded in the forward problem (3.1) shall
be incorporated. Namely, a manifold of solutions (the ‘parametrized background’) of the underlying
dynamics (3.1) is introduced

M={ueV,; P(u,6)=0, 006}, (3.4)

encompassing a range of governing dynamics as broad as the dimension of the parameter space
© C R?. The dimension of the manifold M depends on the size of the discretization A/ employed to
solve numerically the underlying dynamics.

Remark 3.1 (Parameter space). The parameter space © used to define the manifold (3.4) can be
chosen a subset of the suitable parameter space for the forward model (see Section 3.4). Therefore,
one can incorporate in the data assimilation framework any additional knowledge on the problem
parameters such as, e.g., initial estimates or variability relevant for the problem of interest.

Under the assumption that the resulting dynamics has a fast decaying Kolmogorov n-width and, there-
fore, that the dynamics can be well approximated with a suitable reduced-order model, we introduce
a reduced-order space V,, C M with dimension n < dim M, such that max,e ||y, u — ul| <
€(V,,) for some (small) (V) > 0.
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Displacement and pressure reconstruction from MRE images 7

The methodology is formalized by the following constrained minimization problem [39]:

Problem 3.2 (PBDW). Findu* € V,v* € V,, andn* € V such thatinf, , ||n(u,v)|| and

(m.2) = (w,2) = (v,2) VzeV

(u,q) = (Upe,q) YgEW (3.5)

Detailed analysis of problem 3.2, including its convergence properties for increasing m (i.e., the num-
ber of available observations), can be found in [39]. However, an overview of the relevant aspects for
the application to the case of MRE data is briefly given below.

Remark 3.3. Notice the test space in (3.5), introduces the constraint on the available measurements
through the coefficients in the basis (w1, . . . , w,,) of W. Namely, taking ¢ = w;, from (3.5) it follows
that fi(u*) = (wiv utme) = fi('u'rrue)-

In addition, for the variational approximation via (3.5) the following a priori error estimation holds (see

[41]):

||'U.-* - U‘lrue” S 3“"{;“ H';)_lf-n (I/;:.) s (36)

where

) H U
B(V,,W) = inf Mol (3.7)

veV, ||?.,'||
is an inf-sup stability constant that can be interpreted geometrically as the angle between spaces V,
(reduced space of solutions) and T/ (observations).

Otherwise stated, 3(V},, W) measures the observability of the reduced space V,, based on the type of
available measurements. Namely, for a fixed number of observations, m, the richer the reduced space
is (i.e., the larger its dimension 7), the more likely will be to find elements that are hardly observable
with the given set of measurement — or, equivalently, which lie orthogonal to 11" — hence deteriorating
the algorithm stability according to (3.6).

Estimate (3.7) introduces therefore a trade-off between the approximation quality of the reduced-order
model, €(V},), and the observability, 3(V},, W). This relation is typically used to choose the dimension
of the space V/,. For instance, in [41], a so-called nested space strategy is followed to select the
dimension of the reduced-order model such that the a priori bound (3.7) is minimized.

It can be shown [39] that, for the optimal state, it holds u* € V;, & (W N V). In addition, Problem
3.2 can be reformulated as: Find

u* = arg min ||[TTy cul|®, such that (w;, u) = £;(u), i=1,...,m. (3.8)
uely,

In Section 3.5 we will derive the algebraic formulation of the optimal condition for (3.8), and discuss
in detail the practical construction of the linear space V,, from discrete samples of the background
governing dynamics.

Definition 1 (Measure-to-state operator). In view of (3.8), we define the operator A : W — V}, by

A(w) = arg min ||IIy.u|®, such that (w;,u) = (w;, 1) =1;, i=1,....m. (3.9)

V h
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3.4 Training phase

Let us consider /X samples from the parameter set, denoted as v, ..., yx € Y. Also, and let us in-
troduce a set M"™"" C M containing ‘snapshots’ of the governing dynamics, defined by M9 —
{u',... uf suchthat P(u',y;) =0, i=1,...,K},ie.bythesnapshotsu',... u® u' €V},

which are finite element solutions for the considered parameter samples.

The high-dimensional dataset above will be compressed into a reduced-order model of a smaller
dimension that can still approximate the governing dynamics. The reduced space V" C V,, is con-
structed by means of a principal component analysis (PCA; also called proper orthogonal decomposi-
tion, see [42]). The basis of this space is computed by introducing the covariance matrix C' € R¥*K
whose entries are given by C;; = (u', u’), and computing an eigenvalue decomposition C' = VAV’
for A € RE*K and V' € RE*X The reduced basis that spans V;, can be then obtained from the first
n columns, ordered according to the eigenvalues (from highest to lowest), of the matrix U = S 1AV,
where S? = A, fori = 1,... min{ K, N'}, and A is the so-called snapshots matrix, whose columns
corresponds to the snapshots u,i = 1,..., K.

Remark 3.4. The approach described above to compute the reduced basis is computationally favor-
able if K < N —this is the case for numerical experiments presented in the following sections. When

K > N the PCA is typically performed with the covariance matrix C' = Ef‘:l u; ® u;, which has
dimension N' x N

Assuming that the eigenvalues are numbered according to decreasing order A > Ay > ... >
;\m.dx{ kN > 0, anormalized version of the model error in the a priori bound (3.7) is given by

—-1/2 1/2
max{N K} / max{N K} /

E” = Z Ai Z A-; . (3.1 0)

i=1 i=n+1

In principle, (3.10) serves to assert the quality of the reduced model.

3.5 Optimality conditions of the PBDW

Let® = (py]...|p,) € RN*" be the matrix whose columns contains the reduced basis. The matrix
representation of the operator ITy : V}, — V}, can be characterized as

Myru = P Mu, Vu e V. (3.11)

Similarly, introducing the matrix W € RV >*™ whose columns are the Riesz representers of the mea-
surements, w1, . . ., w,,, the projection onto Wh can be expressed via

Mynu = WWT Mu, Yu €V, . (3.12)

Let! == (/i(utrue) )i be the vector of available measurements. Using (3.11) and (3.12), the Lagrangian
for the minimization problem (3.8) can be now written as follows:
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L(u; ) = [Ju —ynul|* = NT(W Mu —1)
= (1 — @™ M) u)" M ((I - D" M) u) — A" (W u— 1)
=u'M (I —®"M)u— N (W' Mu—1) . (3.13)

The last equality holds since the projector operator onto V-, i.e., (I — &7 M), is both symmetric
and idempotent.

The following results show that the minimization problem defining the operator .A (3.9) can be formu-
lated using the language of filtering approaches.

Proposition 3.5. Problem (3.8) admits a solution of the form u* = v™ + n*, with
v = |(G"6) 6" (3.14)
where the cross-Gramian G € R™*" js defined by G; = (w, p;), or G = WT M ®, and
= WW'Mv* —w, (3.15)

with w = WI.

Proof. The Euler-Lagrange (EL) equations for (3.13) reads

[—®®TM —W\ (u) _ (0
(w0 6) =) 019

with A € R™. An alternative could be to solve directly for (u, A) this saddle point problem. Nonethe-
less, is much more convenient to consider the orthogonal decomposition « = v + 7, with v € V" and
neVvht= Ker(Hw). Since II,,». 1 u = 7, from (3.16) we obtain

(I—=D"M)u—MWA=n—WA=0=WTn=2]\. (3.17)
Multiplying by ® M leads to:

OTM (n—WA) = DTMWA=0. (3.18)

aT
where we have introduced the definition G = W' M ®.

Letnow ¢ = (¢, ..., ¢,) € R" be the coordinates of v in the basis @, i.e. v = ® ¢. From (3.16) we
obtain

WIMOce+Winp=1. (3.19)

Multiplication by G yields

G'l=G"Ge+ G W'y = G"Ge+ G\ = G"Ge. (3.20)

(3.17) 3.18)

Solving for cin (3.20) and using v = @ c yields (3.14), while Equation (3.15) follows from (3.19). O
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The operator A(w) sought can be thus decomposed in a prediction, v* € V,,, and a correction,
n* € V.- & W, component respectively. The former belongs to the considered reduced-order model
of the parametric dynamics, while the latter depends on the discrepancy between the prediction and
the data.

4 Poroelastic mechanics

This paper targets the application of the data assimilation framework described in Section 3 to the case
of brain elastography. To this purpose, we model the brain tissue as a poroelastic media, composed of
a biphasic mixture of solid gray matter, solid white matters and cerebro-spinal fluid. The brain biome-
chanics is assumed to obey Biot's equations of poroelasticity [29], the theory of which describes the
behavior of the tissue at the mesoscale considering the interaction between biphasic material strains
and increments in fluid volume.

4.1 Brain poroelastic model

Derivation of the poroelasticity equations is briefly outlined in this paragraph. Let 2 C R? denote the
computational domain, whose boundary ¢ is decomposed into disjoint sets: 92 = I ceic UT ventrices U
['vire. ['heck denotes the portion of the boundary where the displacement vector field is zero, ['yrE is
the boundary where a harmonic pulse (to replicate an MRE pulse) is prescribed, and I' qnyicies Stands
for the internal boundary between brain tissue and ventricles (see Figure 2).

Fventric]es

Figure 2: Working domain {2 and the boundary decomposition.

Let T" denote the length of the considered time interval. Soft tissue biomechanics is described by the
solid displacements u : 2 x [0, T| — R?, the interstitial fluid pressure p : Q2 x [0, T] — R, and the
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Displacement and pressure reconstruction from MRE images 11

filtration velocity z : €2 x [0, T] — R? fields. The governing equations of poroelasticity are derived
from conservation laws for mass and momentum, taking into account the interplay between (solid and
fluid) material strains and local increments in fluid volume. The balance equations of linear momentum
read

poyu—V-ou)+aVp=0 inQx|[0,T]. (4.1)

In (4.1), p stands for the solid mass density, and the stress (second-order symmetric) tensor o (u) is
related to the corresponding strain tensor by Hooke’s law

_F o Ev
14w (1+v)(1—2v)

o(u)

tr(e)l, (4.2)

where E and v are Young's modulus and Poisson ratio of the tissue respectively. Moreover, I is the
identity matrix in R?, and & denotes the symmetric strain deformation tensor, i.e., e(u) = 2 (Vu + (VU)T).
Parameter «v in (4.1) is the Biot-Willis parameter which quantifies the coupling between the stress due

to the increment of interstitial pressure and the wave propagation stress in the solid matrix. In Equa-

tion (4.1) we neglected the contribution of the fluid inertia, assuming that during MRE the relative
displacement of the fluid is negligible.

Biofluid flow dynamics in the porous medium is modeled using Darcy’s law
z+—-Vp=0 inQx][0,T], (4.3)
,U-

where k is the mixture permeability and p is the fluid viscosity. The system of PDEs (4.1)—(4.3) is
closed by a mass balance equation that accounts for the increment in fluid content and for fluid- and
solid-phase velocities:

S.ohp+V-0u+V-2z=0 inQx|[0,7]. (4.4)

The mass storage parameter is described through: S. = 3a(1 — aB)(1 — 2v)(BE)™!, as a func-
tion of the Biot-Willis parameter, the elastic parameters, £ and v, and Skemptom’s parameter, 3. For
brain tissue described as a saturated medium, we choose to set « = 1. and B = (.99 [43].

Taking the divergence of (4.3) and inserting the result into (4.4) leads to the elimination of the fluid
velocity z. Together with (4.1), one obtains the following system of PDEs for the displacement and the
pressure fields:

pOuu—V-ou)+aVp=0 inQx|[0,T]

S.Op+aV-0u—"Vp=0 inQx[0,T] (4.5)
’u’.

The system is closed by homogeneous initial conditions and by the following boundary conditions
o-nh= gl\IRE on I‘MHE

p — 'p\.rentricles on rventricles , {46)
u=0 on rneck

P = Dost  ON I'yre
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with Pest and Puentricies denoting the CSF pressure imposed on the outer CSF and on the ventricles,
respectively, while the load gyrr imposed for a Neumann boundary condition on I'yre has been
defined with the purpose of mimicking the forces on the brain tissue in a MRE examination. Thus,
the forcing term has been modeled via: gyge (0, t) = € sin (2rwt) s(x), i.e., a mono-harmonic pulse
(with a given cyclic frequency w and amplitude &) multiplied by a space-depending function s(a) equal
to unity where the pulse is applied (back of the brain) and linearly decreasing towards the front of the
brain (see Figure 3), i.e.: s(z,y,2z) = (1 — ¥/L), where L = 16.86 cm is the geometry length along
the y-axis (frontal axis). This model is motivated by the need of accounting for the effect of the rigid
skull on the propagation of the mechanical force over the whole brain surface.

v 10,01

Figure 3: Sketch of the model used for boundary conditions. To mimic the MRE setting, a harmonic
force with given amplitude and frequency has been multiplied by a linearly decreasing function s(x)
whose values (blue sketch on top) range from one — where the mechanical pulse is applied — to zero,
along the direction of the pulse force.

The model parameters applicable for all simulations setup are summarized in Table 1.

Parameter Description Value [Unit] Reference

o Biot-Willis parameter 1.0 [43]
i Fluid viscosity 102 P [43]
p Solid matrix density 1.0 gricm?® [43]
K Tissue permeability (1072, 107%] cm? [43]
E Solid matrix Young Modulus [10°, 10°] dyn/cm? [43]
v Solid matrix Poisson'’s ratio 0.40, 0.45] [43]
W\RE MRE frequency 50 Hz [44]
Dest CSF pressure 10* dyn/cm? [45]
Dyentricles Ventricular pressure (1.0, 1.1] x 10* dyn/cm? [45]
B Skemptom parameter 0.99 [43]

13 Pulse magnitude —500 dyn *

Table 1: Parameters used in the poroelastic model and manifold generation.
(*) The value of the pulse excitation magnitude, £, has been tuned so that brain tissue deformation
simulation outputs are physiologically realistic.
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4.2 FE discretization and numerical solution

The system of equations (4.5) is numerically solved using the finite element method (FEM). To this
purpose, let 7, denote a tetrahedral unstructured mesh that discretizes the computational domain 2
— the characteristic size of the mesh is expressed through .. We introduce the functional spaces

U=H' Q) ={ve H(Q) |v="00nTpeq}

. ) T 4.7
P=H (), Q = {q € H(Q) | ¢ = 0 on Tyenticies U Tire - - } 4-7)

and their discrete approximation by linear FE spaces

U, ={veU|vlreP(T)VT € Tp},
P, ={q€ P|qlr e P\(T).VT € Tp.} . (4.8)
Qn={q€Q|qlr e P1(T),VT € T} .

Then, we consider the following discrete weak formulation of (4.5): Find (uy,,py) € Vi, == Uy x P,
such that:

P (attuh-.- vh) + 2F (s(uhjs E(vh)) + A (V uy, V vh) +a (Vphs vh) — (gMRE-:v)

(Sc at'ph: Qh) + (QV atuh_-. Q!;) + (EV}M, Vq.ﬁ) — (]

[vre

(4.9)

for all (vy,, pr) € U, x Q.. Discretizing the time derivatives with an implicit Euler scheme and denoting
with 7 the time step, the time-discrete formulation can be written as

n—1

1+ T+ 2""7:. —u v 7L T
‘/_1((11 +l:p +1), (V_._ Q)) =p (}’Tig} vh) + (Se Ph: Qh) + (CEV uj . Qh) ) (4.10)

where the form

A((u,p), (v,q)) = (%uh,vh) +2F (e(up), e(vy)) + A (V-uy, Vo)

KT
+ (VP}” vh) + (Scph: Q!;) + (CEV up, Qh) + (vah: Vq}a) 1
(4.11)
has been obtained by multiplying the second equation by the time step, 7. Integrating by parts the

term « (Vpy,, vy,) and testing the resulting formulation by (uy,, pj,) one obtains the following stability
results.

Proposition 4.1. It holds
A((u.p). (up)) = l(u.p)II, .

with the norm

P . . " KT
(v}, = 5 IvI? + 2E[e()])* + Scllpll* + —[IVpl*.
2T Iz
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Two remarks are important. First, it should be noted that the time derivative of the pressure and the
diffusive term, (=7/uVpr, V1), act as a stabilizer of the spatial discretization. Second, the resulting
stability of A((u, p), (v, q)) strongly depends on the physical parameters, and it can indeed deteriorate
— especially concerning the pressure regularity — if the mass storage coefficient S or the medium
permeability « are very small. This issue has been also investigated in [46] for the steady poroelastic
case in presence of strong discontinuities in the permeability. In that setting, it has been proposed to
include a stabilization term of the form 3 (Vpy, V), where 5 = 5(E, A, h). In the physical regime
relevant for this work, we did not observe stability issues related to spatial discretization. Additional
numerical tests have been performed considering the stabilization proposed in [46] showing, however,
only negligible differences.

Additionally, for the numerical simulations presented in this paper, we used a Newmark algorithm [47]
for the discretization of the second-order time derivative in the equations, whereas a backward Euler
algorithm is used for the first-order time derivatives.

5 PDE-informed MRE data assimilation

This section is devoted to the application of the data assimilation framework (outlined in Section 3
from a general perspective) to the case of brain elastography. In particular, it is presented how the
displacement obtained via MRE will be assimilated into the poroelastic model detailed in Section 4
and all the practical implementation aspects of the PBDW for a joint reconstruction of displacements
and pressure fields are presented in detail. Further results concerning the validation and application
of the framework are presented in Section 6.

The computation presented in these Sections have been performed using the software MAD [36,
Chapter 5], which is based on the linear algebra library PETSc [48].

5.1 Image acquisition and model generation

The data assimilation pipeline employs different sources of data:

(a) The computational model has been generated using full brain anatomical, high-resolution MPRAGE
MRI images (isotropic voxel size 1 mm®). The anatomical image data were collected from a
healthy volunteer, after having their signed consent to use these for the present study. Using
the raw DICOM data, the image data were segmented using open-source software 3D Slicer
[49] to produce a triangulated representation of the brain and ventricles surface (exported in an
STL formatted file). Subsequently, the surface mesh was loaded into Mmg [50] to generate an
unstructured mesh consisting of 12,345 4-node tetrahedral finite elements.

(b) The reconstruction is based on displacement data over a few slices of the three-dimensional
brain, located as those acquired in an MRE examination. However, no assumptions on the
spatial resolution of the displacement data, i.e., of the image voxels, are required.

The results shown in Section 6 are restricted to synthetic data, i.e., displacement fields generated from
forward simulations on the physiological brain geometry. However, in the context of clinical routine,
this type of data can be acquired via MRE. During this examination the tissue is subject to a harmonic
mechanical vibration (frequency 10-50 Hz) imposed by actuators, and the tissue response is recorded
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via phase-contrast MRI. The internal displacement field can then be extracted from the complex phase
of the acquired images.

The data assimilation algorithm, and in particular the definition of the space of measurements (Sec-
tion 3.2), requires the displacement data to be registered to the anatomical brain data. Hence, the
MPRAGE used for the definition of the computational mesh, and the MRE data to be assimilated, shall
be acquired, on each patient, in a single examination, to minimize additional efforts for image regis-
tration. This acquisition protocol has been recently used in the framework of inversion recovery MRE
(IRMRE), to estimate biophysical parameters of the gray and white matter [19]. The application of the
PBDW to in vivo data, especially within IRMRE, is subject of ongoing work.

5.2 Characterization of measures

The available data is assumed to represent the three-dimensional displacement field on N, voxels in
the upper part of the brain. Thus, each image contains 3 x N, measurements (scalars), i.e., one 3D
vector per imaged voxel (Figure 4).

In what follows, these voxels are denoted as 2, C R3fori = 1, ..., N,. The 3 x N, linear functionals
describing the observations are defined by taking the average component of the displacement vector,
v, on each voxel. Namely, the basis of the space 11" can be then computed after solving the following
set of problems: Find ’wf € V}, such that

(wf_._-v) = (f(t) = /{ vejdr VoeVyfori=1,... Nyandj=1,23, (5.1)
Jo,

where ¢; the j-th component of the unit direction vector. Equations (5.1) are solved using [P in the
FEM. A modified Gram-Schmidt algorithm is used for the ortho-normalization of the reduced basis.

Remark 5.1 (Computation of ). Space W depends on the location of the voxels, €);, but not on
the particular value of the measurements. Therefore, the computation of the basis for W does not
depend on the particular patient, but only on the setting of the magnetic resonance image data ac-
quisition device (i.e., the location of the acquired data). The space W can be therefore computed
‘offline,’ i.e. before the remaining steps of the data assimilation algorithm (training, model reduction,
and reconstruction) are carried out.

Remark 5.2 (Resolution of MRE data). The procedure for constructing the measurement space W
can be analogously defined for arbitrary image resolution, regardless on the size of the finite element
mesh elements.

Remark 5.3. Notice that the form of the systems to solve depends on the underlying Hilbert structure
that defines the scalar product — this is encoded in matrix M defined in equation (3.2).

A snapshot of the considered synthetic measures is shown in Figure 4. The results shown in this
work employ synthetic data, calculated computing a forward solution (Section 4.2) for a selected set
of parameters and evaluating local displacement averages on a voxel of 1x1x1 cm? in size. This
procedure leads to an image containing 600 independent observations.

Remark 5.4. Using the formalism introduced in Section 3, for a given set of physical parameters these
observations define the projection of the true state onto W, e.g.: w = Iy tyye.
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Figure 4: Figures (a), (b), and (c): Snapshot of the synthetic displacement images considered for the
data assimilation problem (time instant: 15 ms after the pulse begins). Figure (d): Location of the
measured slice with respect to the brain model.

5.3 Training set and order reduction of the model

The training manifold MM s computed sampling uniformly the parameter space in the intervals
(see also Table 1):

ke [107°,1078] , E e [10°,10°] , v € [0.4,0.45] , Puomoes € [1,1.1] x 10*.  (5.2)
[

Note the quantities are expressed in CGS units. The parameter ranges for «, F, and v used in (5.2)
are based on physiological parameter values obtained from relevant brain biomechanics modeling
works from the literature. All remaining parameters are assumed to be given, and equal to the values
specified in Table 1. For easiness of notation, in what follows the vector § = (k, E, V. Dyentricles) Will
denote a generic element of the parameter space.

The pressure field is introduced through the forward PDE model as a boundary condition. The consid-
ered range serves to be able to capture, within the training manifold, the variability of the ventricular
CSF pressure between the two selected ranges (more details will be presented in Section 6.3). The
training manifold is computed numerically by solving together equations (4.10)—(4.11) using the finite
element method presented in Section 4.2.

The training set manifold is defined by the outputs of 512 simulations, each one including a time series
of 40 time-steps (per pulse cycle). Thus, the training manifold composes in total of X' = 20, 480
snapshots, each one being a finite element functions of dimension N' ~ 131.5K, four (degrees-
of-freedom per nodal point) times the number of nodes of the FE mesh. As an example, one of the
snapshots in M""" js shown in Figure 5. The computations were carried out in parallel on machines
with 768 GB of RAM memory and up to 72 threads.

Subsequently, the snapshots are stored in a data matrix: A € RV*X_ The reduced basis defining the
space V/, is then computed using the PCA of the snapshot matrix, as described in Section 3.4. The
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(a) Displacement field (magnitude) on the external (b) View of the displacement field on a horizontal
cross section

surface
Displacements [cm)] Pressure [dyn/em?
| 2.6e-03 ' 1.2e404
I I 6.5e403
0.0e+00
f4 o £
Py o« "
(d) View of the pressure field

(c) View of the displacement field on a vertical
cross section

Figure 5: Snapshot of the numerical solution of (4.6) for v = 0.4, E = 10° dyn/cm? and x = 10~®

cm?, 15 ms after pulse is initiated.
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first four modes of both displacement and pressure fields are depicted in Figure 6

(b) View of the first four pressure modes

Figure 6: Basis functions (non-dimensional) of the reduced space V;, for displacement and pressure.
The functions are normalized in the L2-norm.
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Figure 7: Left. Behavior of the PCA approximation error €,, (3.10) as a function of the reduced space
dimension. Center. Orientation 3(V},, W) (3.7) (stability constant) between model and measures, as
a function of the reduced space dimension 7. Right. Normalized a priori error bound (Figure (7)) as a
function of the dimension of the reduced space dimension n.

En

The model error (Equation (3.10); Figure 7, left) can be computed from the singular values of the
snapshot matrix. Also, constant 3(1V, V) (3.7) (Figure 7, center) that defines the observability of the
reduced model can be computed from the observation space W as a function of the dimension of the
reduced-order space. The curve for the resulting error bound (3.6) as a function of the dimension of
V., is shown in Figure 7 (right). Based on this curve, the dimension of the reduced space n is then

chosen as the value that minimizes the quantity ﬁ(éﬂw) (n = 41 in the considered case).

6 Results
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6.1 Joint reconstruction of displacements and pressure

As underlined above, the purpose of the proposed data assimilation approach is the characterization
of pathological pressure gradients through MRE. To facilitate inferring pressure-dependent quantities,
it is necessary to apply the PBDW method for the reconstruction of both the displacement and the
pressure fields.

Remark 6.1. The main challenge of this joint reconstruction strategy is a consequence of the fact that
the only the displacement data are available and the pressure state is thus completely invisible to the
data assimilation algorithm. Formally, it holds TTyy, g = 0, V(v, q) € M9,

Thus, the joint reconstruction of the MRE data is approached by considering a modified inner product
on the solution space Vi, = Up, X Qn:

((w,p), (v, Q) = (w,v) +C(p,q) (6.1)

where constant ( is a free parameter that is tuned to weigh equally the norms of both components.
This step enhances the stability of the computation of the reduced-order model, as well as the quality
of the inf-sup constant 5(V;,, ,,,). In the practical computation, this parameter is defined via

- ]_na,X.uEJ.V!training ||'U.||Lz!

- nlaXpEJ.\/[training ||p||Lz .

(6.2)

The reconstruction is based on the L?-product, i.e., considering the ambient space V), as a subspace
of [L#(Q)]* x L*(12). In the present work, the choice of an L*-product is dictated by the fact that
the primary targets are the displacement and pressure fields, but not necessarily their corresponding
gradient quantities. Alternatively, it is also possible to seek the reconstruction [H*(€2)]* x H*(2), by
modifying accordingly the inner product used throughout the algorithm.

6.2 Validation

The proposed MRE data assimilation algorithm is validated by reconstructing the poroelastic solution
in a set of 18 physical parameters (x, E, V/, Pyentricies )» NOt included in those used for generating the
training manifold. The test parameters have been sampled from a uniformly random distribution within
the range of equation (5.2), but not included in the set of the training parameters. For each test case,
the displacement field on the selected plane has been observed from the forward solution to generate
the synthetic measurements. Next, the overall displacement and pressure fields have been recon-
structed using the reduced trained manifold space. Finally, the reconstruction errors are evaluated as
defined by

||'U'6‘-,true - ’U,;‘_ L2 ”pﬂg,true - p;x L2
Cuf; = p.o; =
| 'U'G‘-,trueHLz i
where i = 1,..., 18, wiwe and piwe stand for the numerical solution of the forward problem for

parameters 0; (ground truth), and u_and pj_are the corresponding PBDW reconstructions.

The joint reconstruction errors for all samples, using the metric introduced by the inner product (6.1),
are shown in Figure 8. The reconstruction errors for each field considered (displacements and pres-

DOI 10.20347/WIAS.PREPRINT.2933 Berlin 2022



F. Galarce, K. Tabelow, |. Sack, A. Caiazzo, et al. 20

sure) are shown separately in Figure 9 (left and right, respectively). In particular, it shows that the
displacements are well reconstructed in all cases.

0.006 1
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0.000 1. ; . : :
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Figure 8: Joint relative L? reconstruction error for the 18 different test cases used for validation. The
blue curve shows the average error over the 18 samples.

Moreover, we also observe that the pressure is reconstructed with satisfactory accuracy (peak errors
mostly below 10% over the whole cycle), with one single case showing a peak error of the order of
15% (average error below the 5%). No correlation is observed in the quality of the approximation of
the displacement when compared to that of the pressure.
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(a) Displacements (b) Pressure

Figure 9: Relative L? reconstruction errors for displacement (left) and pressure (right) for the 18 sam-
ples used for validation.The blue curve shows the average error over the 18 cases.

A snapshot of the results in the scenario with the largest values for the model error (Equation (3.10))
is visualized in Figure 10 — it visually compares the reference solution, the PBDW reconstruction, and

the corresponding relative difference.

6.3 Non-invasive characterization of pressure-dependent biomarkers

In this paragraph, the characterization of elevated pressure gradients from displacement data of the
data assimilation algorithm is interrogated. For this purpose, the following guantity is introduced:

DOI 10.20347/WIAS.PREPRINT.2933 Berlin 2022



Displacement and pressure reconstruction from MRE images 21

Ground Truth [cm] Reconstruction [em] Error Field [cm]
0.0e+00 7.4e-03 0.0e+00 7.4e-03 0.0e+00 2.0e-05

(a) Displacement field

Ground Truth [dyn/cm?] Reconstruction [dyn/cm?] Error Field [dyn/cm?]
8.1e+03 1.1e+04 5.7e+03 1.0e+04 -2.9e+02  2.0e+03
h o - | - e

(b) Pressure field

Figure 10: Reconstruction at ¢ = 10 ms after the pulse start, of displacement (top) and pressure
(bottom) fields for the scenario with the largest reconstruction error among the 18 samples used for
the validation.

(6.3)

1 T
p\f@) = ?/Uw J"Pmmmhs dP

which represents the average, with respect to time and over the whole surface of the ventricular CSF
pressure. This indicator is important to evaluate the presence of abnormal ICP in the brain, as well as
characterize increased ventricle volume.

Jroopla,t) dF] i,

The purpose of this numerical experiment is to test the accuracy of the ventricular pressure recon-
struction (see Equation (6.3)), and interrogate the capability of the framework to stratify intracranial
pressure (physiologic or pathological) by solely relying on limited displacement observations. The nu-
merical experiment has been designed as follows. Two sets of synthetic individuals have been created,
each set containing 8 individuals (16 in total). For each individual, the parameters x, E, and v have
been sampled within the range specified in (5.2). The differentiation between physiological levels (nor-
mal) and pathological levels (increased) of ICP has been modeled by sampling the pressure boundary
condition parameter within the aforementioned ranges.

I)\fen{ricles E []_? 1.02] X 104 dyn;cmz, (6.4)

for the first group (normal intracranial pressure), and

_pventrides < [1.08} ].].] X ].Oﬁl dynfcmz, (6-5)
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for the second group (increased intracranial pressure).

Hence, since the value of the outer CSF pressure is set to 10 dyn/cm?, the pathological cases (those
with an increased pressure) are characterized by an ICP gradient between 800 and 1000 dyn/cm?
(0.8 to 1 cm-H,0), while the pressure difference for healthy scenarios (normal pressure) is up to
200 dyn/cm? (0.2 cm-H,0), in line with the range of values obtained in the numerical experiments
shown in [51]. For each of these 16 synthetic patients the background PDE problem (4.10)—(4.11) has
been solved numerically, sampling the displacement data on a set of slices (see Figure 4). Then, the
reduced-order model trained as discussed in Section 6.2 is used to reconstruct the pressure field and
compute the ventricular pressure evaluating (6.3).

Physiclogical Range Increased Range

108001

10600 1

10400 1

pv(ptrue)

10200 1

10000 1

10000 10200 10400 10600 10800 11000 11200
Pv(.ﬂ‘}

Figure 11: Reconstructed ventricular pressure (6.3) versus the values computed using the reference
values for the synthetic patients. Each scenario has been labeled as "normalér increased", depending
on the value of p,enicie- The green dots correspond to the scenarios originally sampled from the normal
range (6.4), whilst the orange dots corresponds to the simulations with elevated pressures in the range
(6.5). The picture show that the algorithm is capable of separating the two regimes correctly. The blue
line corresponds to the line p* = pirue, and the distance on the x-axis between each point and the
blue line shows the absolute reconstruction error. In particular, the largest error obtained among the
normal-pressure scenario is of 300 dyn/cm? (less 2% of of the ventricular pressure in that particular
case), while the largest error among the simulations with increased pressures is of 370 dyn/cm? (about
3%).

The results for the ventricular pressure reconstruction simulations are shown in Figure 11 As such,
ventricular pressure can be evidently classified between normal and increased levels of pressure
based on the reconstructed values. Furthermore, the illustration confirms the accuracy of the recon-
struction algorithm by comparing the estimated ventricular pressure with the one computed from the
true ventricular pressure solution, pirue- The relative errors reported here are below 2% for the sce-
narios with normal pressure levels, and about 3% for the scenarios with increased pressure levels.

7 Conclusions

This contribution presents a novel in silico procedure of the Parametrized-Background Data-Weak
(PBDW) method for the assimilation of medical imaging data. In this contribution, we focused assim-
ilating pertinent displacement data produced through magnetic resonance elastography of the hu-
man brain. The main contribution of the proposed approach is the possibility of characterizing non-
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invasively intracranial pressure from partially available displacement data. PBDW data assimilation is
used to reconstruct, from the available observations, displacement and pressure fields in the whole
domain. The procedure is based on anatomical images — used to generate a personalised computa-
tional model of the brain organ — a finite element method for solving the underlying tissue poroelastic
mechanics, and a range for the values of the mechanical parameters. From the reconstructed pressure
field, it is then possible to extract clinically relevant biomarkers. The method naturally handles partially
available data and uncertainty in the physical parameters, and it can therefore overcome challenges
due to missing information (e.g., pressure boundary conditions), and cope with image acquisition
constraints (e.g., location of data, typically limited to one or few slices in the case of elastography).
Moreover, since the physical solution is reconstructed in the whole domain, the proposed approach
can estimate quantity of interests also when the region of interest is not observed directly.

The accuracy of the data assimilation for the joint state reconstruction (for both displacement and
pressure) has been investigated in detail. The algorithm has been validated considering 18 cases
sampled within a parameter space including mechanical parameters (Young modulus, Poisson modu-
lus, tissue permeability), and CSF pressure. The simulation experiments demonstrated that including
the CSF ventricular pressure in the training step, in which the manifold and the corresponding reduced
space are computed, is capable to identify patients with increased ventricular pressure based solely
on partially available displacement data.

With the purpose of validating the data assimilation framework, this work considers synthetic displace-
ment data. However, the elastography data acquisition is part of a recent protocol used in medical
imaging research in combination of inversion recovery (IR) protocols for the identification of tissue
porosity maps [19, 38]. The validation for the available in vivo data is planned for a follow-up work.
However, further improvements of the proposed data assimilation algorithm that will be addressed
in future research efforts include the use of a nonlinear tissue biomechanics (e.g., viscoelasticity),
anisotropic constitutive models, or by enhancing the modeling through multiscale formulations (e.g.,
[52, 53]). Also, other challenging extensions of the presented research concerns the possibility of
tackle the reconstruction of the ICP gradient, instead of the whole pressure field. Including mea-
surements from tomo-elastography [54] or ultrasound elastography [14] into the training phase will
considerably improve the proposed data assimilation approach and help towards clinical translation.
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