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Abstra
tThis paper deals with the analysis of a 
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1 Introdu
tionLet B be a separable Bana
h spa
e and T a positive number; let us 
onsider twoproper fun
tionals Ψ : B → (−∞,∞] and E : [0, T ] × B → (−∞,∞], su
h that
Ψ is 
onvex and l.s.
., Ψ(v) ≥ Ψ(0) = 0 ∀v ∈ B,

E(t, ·) : B → (−∞,∞] is l.s.
. for a.e. t ∈ (0, T ).Hereafter, we shall denote by ‖ · ‖ the norm on B and by ‖ · ‖∗ the norm on the dualspa
e B′. We 
onsider the abstra
t doubly nonlinear evolution equation
∂Ψ(u′(t)) + ∂E(t, u(t)) ∋ 0 in B′ a.e. in (0, T ), (DNE)where ∂Ψ denotes the subdi�erential in the sense of 
onvex analysis of Ψ, while weprovisionally denote by ∂E is a suitable version of the subdi�erential of E w.r.t. these
ond variable (in fa
t, we take ∂E to be the 
onvex subdi�erential of E w.r.t. thevariable u if the fun
tional u 7→ E(t, u) is 
onvex). Clearly, in the quadrati
 
ase

Ψ(u) := 1
2
‖u‖2

B for all u ∈ B, (DNE) redu
es to a gradient �ow equation.This di�erential in
lusion in fa
t arises in several appli
ative 
ontexts, ranging,among others, from thermome
hani
s (where it may be understood as a generalizedbalan
e relation, see e.g. [25, 42℄), to the modeling of rate-independent evolutions.Without going into details, we point out that, within the realm of these appli
a-tions, the fun
tional Ψ may be interpreted as a dissipation potential, while E is anenergy fun
tional. Indeed, there is nowadays a quite wide literature on the analysisof (DNE), whi
h we brie�y review distinguishing the 
ase in whi
h the fun
tional
Ψ has a superlinear growth at in�nity from the linear-growth 
ase.The most general well-posedness results (earlier ones were obtained in [13, 6, 45℄),for the Cau
hy problem asso
iated with (DNE) in the superlinear 
ase for Ψ dateba
k to the papers [15, 16℄, along with appli
ations to a broad 
lass of PDE modelsfor phase transition phenomena whi
h 
an be re
ast in the general form (DNE). Inthe setting of a Hilbert spa
e in [15℄, and of a re�exive Bana
h spa
e in [16℄, theexisten
e of solutions to (DNE) is proved via approximation by time dis
retization,and passage to the limit by 
ompa
tness and monotoni
ity te
hniques. In [15, 16℄,the fun
tional E takes the form E(t, u) := Φ(u) − 〈ℓ(t), u〉 for all (t, u) ∈ (0, T ) ×
B, Φ being a 
onvex fun
tional, so that the 
onvex subdi�erential in (DNE) isgiven by ∂E = ∂Φ − ℓ. In fa
t, this 
ru
ial 
onvexity assumption allows to exploitmaximal monotone operator te
hniques. We re
all that, in the same setting, long-time behavior results for (DNE) have re
ently been obtained in [47, 46℄.In the linear-growth 
ase, equation (DNE) arises in 
onne
tion with rate-inde-pendent problems. Indeed, in su
h 
ases the dissipation fun
tional Ψ is positivelyhomogeneous of degree 1, when
e ∂Ψ(λv) = ∂Ψ(v) for all λ ≥ 0 and v ∈ B.Therefore, a solution to (DNE) remains a solution if the time variable is res
aled,thus modeling phenomena insensitive to 
hanges in the time s
ale. Rate-independentmodels indeed o

ur, for instan
e, in elastoplasti
ity [29, 30, 31, 32, 19, 20, 24℄,in damage [38℄, in the quasistati
 evolution of fra
tures [21, 28℄, in shape memoryalloys [39, 40, 37℄, and in several other 
ontexts, see the survey [33℄ and the referen
es2



therein. Existen
e, approximation, uniqueness, and regularity of solutions to theCau
hy problem for (DNE) in the rate-independent 
ase have been proved in [41,35℄, again the setting of a re�exive Bana
h spa
e and of a smooth, 
onvex energyfun
tional E . However, the aforementioned appli
ations to 
ontinuum me
hani
sproblems lead to possibly non smooth and (highly) non 
onvex energy fun
tionals,as well as to ambient spa
es whi
h are neither re�exive, nor dual of separable spa
es(for example, L1 spa
es for shape memory alloys), or even la
k a linear stru
ture(like in the appli
ations to fra
tures). In fa
t, the non 
onvexity of E may be a
ounterpart of the latter feature, as shown in Se
tion 3.3 later on by the example ofa non 
onvex fun
tional de�ned on a Bana
h manifold. These 
onsiderations haveindeed motivated the development of an abstra
t, energeti
 formulation of rate-independent problems in [41℄, whi
h 
an be in fa
t given in a purely topologi
alframework, see [28℄. We may mention that, in the same spirit, global variationalprin
iples for doubly nonlinear evolution equations (both in the superlinear and inthe rate-independent 
ase), have been re
ently proposed in [50, 34, 48℄.However, the analysis of the doubly nonlinear equation (DNE) in the 
ase of anon 
onvex, non smooth energy fun
tional and of a more general ambient spa
e stillremains open. In the fully general 
ase, one may indeed fa
e the problem of givingmeaning to the pointwise formulation (DNE) itself. For example, if the spa
e B doesnot enjoy the Radon-Nikodým property (like in the 
ase of L1 spa
es), absolutely
ontinuous 
urves with values in B need not be a.e. di�erentiable w.r.t. the variable
t, so that the pointwise time derivative appearing in (DNE) may not be de�ned.Furthermore, in the absen
e of a linear stru
ture on the ambient spa
e, the notionof (Gâteaux)-derivative/subdi�erential of a fun
tional does not make sense anymore.These drawba
ks 
an be over
ome by resorting to suitable surrogates of derivativenotions, whi
h have been introdu
ed in the realm of Analysis in Metri
 Spa
es. Inparti
ular, we refer to the notions proposed within the theory of Curves of MaximalSlope for gradient �ows in metri
 spa
es, whi
h was initiated in a seminal paper [18℄by E. De Giorgi and has been subsequently developed in [27, 3, 4℄ and in there
ent monograph [5℄.The goal of this paper is to analyze (DNE) in the framework of a general metri
spa
e. Indeed, we shall provide a suitable purely metri
 formulation of (DNE), infa
t adapting to the doubly nonlinear 
ase the notion of Curve of Maximal Slope.Then, we shall prove an existen
e and approximation result for the related Cau
hyproblem in the 
ase of a superlinear dissipation fun
tional.In the forth
oming paper [36℄, we shall instead develop the analysis of rate-independent problems in a metri
 framework. More pre
isely, we shall study rate-independent metri
 evolutions as the vanishing vis
osity limit of doubly nonlinearmetri
 evolutions driven by a superlinear dissipation. Let us point out that thisasymptoti
 analysis has been re
ently addressed in the paper [22℄, for general rate-independent problems in a �nite-dimensional framework, as well as in [20℄, in themore spe
i�
 
ase of quasistati
 evolutions in plasti
ity with softening.The metri
 formulation. For simpli
ity, we introdu
e the metri
 formulation ofequation (DNE) when the fun
tional E is independent of the t variable, postponing3



the general dis
ussion to Se
tion 2.4. In order to give some insight into the metri
approa
h, we �rst develop some heuristi
 
al
ulations in a smooth 
ase and with anambient Bana
h spa
e.Hen
e, we suppose that Ψ ∈ C1(B), that its Fen
hel-Moreau 
onjugate Ψ∗ is in
C1(B′) too, and that E ∈ C1(B) (nevertheless, we do not require E to be 
onvex).Under these smoothness assumptions,
∂Ψ(u) = {DΨ(u)}, ∂E(u) = {DE(u)} for u ∈ B, ∂Ψ∗(v) = {DΨ∗(v)} for v ∈ B′.Thus, the doubly nonlinear equation (DNE) turns out to be

DΨ(u′(t)) + DE(u(t)) = 0 for a.e. t ∈ (0, T ) . (1.1)By a 
onvex analysis argument, (1.1) is equivalent to
Ψ(u′(t)) + Ψ∗(−DE(u(t))) ≤ 〈−DE(u(t)), u′(t)〉 for a.e. t ∈ (0, T ) , (1.2)(where 〈·, ·〉 denotes the duality pairing between B′ and B). Let us point outthat (1.2) in fa
t holds as an equality, as the 
onverse inequality is true thanksto the de�nition of Ψ∗; however, in view of the metri
 formulation we are going tointrodu
e later on, we prefer to state (1.2) in this form. Now, taking into a

ountthe 
hain rule formula

〈DE(u(t)), u′(t)〉 =
d

dt
E(u(t)) for a.e. t ∈ (0, T ) , (1.3)we 
an equivalently rephrase (1.1) as

d

dt
E(u(t)) ≤ −Ψ(u′(t)) − Ψ∗(−DE(u(t))) for a.e. t ∈ (0, T ) , (1.4)whi
h again in fa
t holds as an equality. To �x ideas, let us 
hoose

Ψ(u) :=
1

p
‖u‖p ∀u ∈ B, so that Ψ∗(v) :=

1

q
‖v‖q∗ ∀ v ∈ B′, 1 < p <∞,

1

p
+

1

q
= 1.Then, (1.4) be
omes

d

dt
E(u(t)) ≤ −

1

p
‖u′(t)‖p −

1

q
‖ − DE(u(t))‖q∗ for a.e. t ∈ (0, T ) .Let us point out that the above formulation highlights the role of the norms ofthe derivatives u′(t) and −DE(t, u(t)), rather than of the derivatives themselves.That is why, (1.4) appears to be a suitable formulation for going over to a purelymetri
 framework, where one may (only) dispose of notions surrogating the normof the pointwise derivative of a 
urves, and the norm of the Gâteaux derivative of afun
tional.We now brie�y re
all su
h notions (referring to [3, 4℄, [5, Chap. 1℄, and to thenext se
tions for further details), in the 
ontext of a (separable) metri
 spa
e (X, d).In this framework, it is possible to de�ne the notion of absolute 
ontinuity of a 
urve4



with values in X, and to prove that, if u : (0, T ) → X is absolutely 
ontinuous, thelimit
|u′|(t) := lim

h→0

d(u(t), u(t+ h))

h
exists for a.e. t ∈ (0, T ), (1.5)de�ning the metri
 derivative of the 
urve u. It 
an be readily 
he
ked that, if Xis a Bana
h spa
e B and if the absolutely 
ontinuous 
urve u : (0, T ) → B is a.e.di�erentiable on (0, T ), then

|u′|(t) = ‖u′(t)‖ for a.e. t ∈ (0, T ). (1.6)Nevertheless, as we are going to see in Se
tion 7, the notion of metri
 derivative issigni�
ant even in spa
es like L1, in whi
h the link (1.6) between the metri
 and thepointwise derivatives is no longer available for general absolutely 
ontinuous 
urves.In the same way, given a fun
tional E : X → (−∞,+∞] and a point u ∈ dom(E),following [18℄ we de�ne the (lo
al) slope of E at u as
|∂E| (u) := lim sup

v→u

(E(u) − E(v))+

d(u, v)
. (1.7)Again, it 
an be shown that, in the Bana
h spa
e 
ase,if E : B → (−∞,+∞] is (Fré
het) di�erentiable at u ∈ dom(E),then |∂E| (u) = ‖DE(u)‖∗. (1.8)More in general, if E is 
onvex, then |∂E| is related to the (
onvex) subdi�erential

∂E of E by
|∂E| (u) = min {‖ξ‖∗ : ξ ∈ ∂E(u)} ∀u ∈ dom(∂E) . (1.9)The 
hain rule formula (1.3) now translates in the metri
 setting as
d

dt
E(u(t)) ≥ −|u′|(t) · |∂E| (u(t)) for a.e. t ∈ (0, T )for any absolutely 
ontinuous 
urve u : (0, T ) → X. (1.10)We remark that, in the 
ase of a smooth fun
tional E : B → (−∞,+∞], the above
hain rule inequality results from (1.3), (1.8), and the Cau
hy-S
hwarz inequality;we have the same interpretation in the 
ase of a 
onvex fun
tional as well, dueto (1.9) and the well-known 
hain rule for the subdi�erential in the sense of 
onvexanalysis. We refer to Se
tion 2.4 for a detailed dis
ussion of the 
hain rule (1.10) inthe 
ase of a time-dependent fun
tional.We are now in the position of stating the metri
 analog of (1.4), of 
ourse repla
-ing the derivatives of the 
urve and of the fun
tional with the metri
 derivative (1.5)and the lo
al slope (1.7). Sin
e we are now dealing with s
alar notions, the role ofthe dissipation Ψ shall be played by a fun
tion

ψ : [0,∞) → [0,∞), 
onvex and l.s.
., ψ(0) = 0 and lim
x→+∞

ψ(x)

x
= ∞. (1.11)5



Hen
e, supposing that the fun
tional E : X → (−∞,∞] 
omplies with the 
hainrule (1.10), we say that an absolutely 
ontinuous 
urve
u : (0, T ) → X satis�es the metri
 formulation of (DNE) ifthe map t ∈ (0, T ) 7→ E(u(t)) is absolutely 
ontinuous and
d

dt
E(u(t)) ≤ −ψ

(
|u′|(t)

)
− ψ∗

(
|∂E| (u(t))

) for a.e. t ∈ (0, T ).

(1.12)It 
an be easily 
he
ked that, when ψ(x) = 1
2
x2 for all x ∈ [0,∞), the aboveformulation 
oin
ides with the metri
 formulation of gradient �ows, see [18, 4, 5℄.The main result of this paper (Theorem 3.5 later on) states the existen
e abso-lutely 
ontinuous 
urves 
omplying with the above metri
 formulation, supplementedby an initial 
ondition. The proof is performed by passing to the limit in an ap-proximation s
heme based on time dis
retization (see Se
tion 3.1). The variationals
heme yielding the approximate solutions is indeed the metri
 analog of the im-pli
it Euler s
heme used for doubly nonlinear evolution equations in Bana
h spa
es(see [15, 16, 41℄). As a matter of fa
t, su
h a s
heme has been proposed in [17, 4℄as a possible way to approximate gradient �ows in metri
 spa
es, in the frameworkof the theory of Minimizing Movements. Exploiting some te
hni
al tools of thistheory, we have been able to show that the approximate solutions 
onverge a 
urvesolving the Cau
hy problem for (1.12). Without going into many details, let uspoint out that the whole pro
edure works out under some lower semi
ontinuity and
oer
ivity assumptions on E (whi
h substantially enable to 
arry on the approxi-mation s
heme and to obtain 
ompa
tness of the approximate solutions), joint withthe lower semi
ontinuity of the map u 7→ |∂E| (u) and the 
hain rule (1.10).Appli
ations: the re�exive 
ase. The main appli
ations of our metri
 ap-proa
h are to (a 
lass of) doubly nonlinear evolution equations of the form

∂Ψ(u(t), u′(t)) + ∂E(t, u(t)) ∋ 0 in B′ for a.e. t ∈ (0, T ) , (1.13)in the setting of a separable re�exive Bana
h spa
e B,the fun
tional Ψ having a superlinear growth w.r.t. the se
ond variable. Existen
eresults for a 
lass of equations of the type (1.13) (whi
h are often 
alled quasivaria-tional due to the dependen
e of the dissipation fun
tional on the state variable u),have been re
ently obtained in the papers [7, 8℄ for a superlinear dissipation, whilethe quasivariational rate-independent 
ase has been analyzed in [35℄. In fa
t, in thispaper we are able to deal with dissipation fun
tionals in (1.13) of the form
Ψ(u, v) := ψ(‖v‖u) ∀u, v ∈ B ,where ψ is as in (1.11) and

{‖ · ‖u}u∈B is a family of norms on B, indu
ing the Finsler distan
e
d(v, w) := inf

{∫ 1

0

‖u′(t)‖u(t) dt : u : [0, 1] → B, u(0) = v, u(1) = w

}
∀v, w ∈ B.(1.14)6



In the setting of the metri
 spa
e (B, d), it is possible to prove that relation (1.6)between the metri
 and the pointwise derivative of an absolutely 
ontinuous 
urvestill holds in a suitable form (see Se
tion 6). Likewise, relations (1.8)�(1.9) betweenthe slope and the (sub-)di�erential of E 
arry over to this Finsler setting if E is,for instan
e, a λ-
onvex or a C1 perturbation of a 
onvex fun
tional. As a result,every absolutely 
ontinuous 
urve ful�lling the metri
 formulation (1.12) is in fa
t asolution of the pointwise di�erential in
lusion (1.13). Thus, our main metri
 result,Theorem 3.5, yields the existen
e of absolutely 
ontinuous 
urves solving the Cau
hyproblem related to (1.13), 
f. Theorem 8.3 later on. A typi
al paraboli
 evolutionequation whi
h 
an be rephrased in the abstra
t form (1.13), with B = Lp(Ω), isthe following generalized Allen-Cahn equation
α(u, ut) |ut|

p−2ut − ∆u+ u3 − u = h a.e. inΩ × (0, T ), (1.15)
ut denoting the partial time derivative of u. Here, p ≥ 1, Ω is a bounded domain in
R
d, d ≥ 1, α : R

2 → (0,∞) a 
ontinuous fun
tion, bounded from below and fromabove, ∆ is the Lapla
e operator, and h : Ω × (0, T ) → R some sour
e term. Infa
t, (1.15) is the prototype of the paraboli
 doubly nonlinear equations we shalladdress in Se
tion 8.2. More pre
isely, we shall dedu
e from Theorem 8.3 the exis-ten
e of solutions to a suitable initial-boundary value problem for (a generalizationof) (1.15).Appli
ations: the L1 
ase. We shall also apply our metri
 approa
h to theanalysis of (doubly nonlinear) metri
 evolutions in the metri
 spa
e L1(Ω), with thedistan
e indu
ed by the L1(Ω)-norm. As already mentioned, absolutely 
ontinuous
urves on a time interval (0, T ) with values in L1(Ω) are not, in general, a.e. di�er-entiable on (0, T ), so that the metri
 formulation (1.12) does not lead to a pointwiseformulation any more. Hen
e, in Se
tion 7 we shall fo
us on purely metri
 evolutionsonly, in the 
ase the dissipation fun
tional
ψ(x) :=

1

2
x2 ∀x ≥ 0. (1.16)In fa
t, in Se
tion 7.2 we shall analyze the evolution driven in L1(Ω) (), by ψ (1.16)and an energy fun
tional of Ginzburg-Landau type, and prove an existen
e result(Theorem 7.3). However, in Se
tion 7.1 we shall preliminarily 
ompare the metri
and the pointwise formulations on some simpler examples. For instan
e, we shall
onsider, in the 
ase Ω = (0, 1), the quadrati
 energy fun
tional E : L1(0, 1) → [0,∞]

E(u) :=

{
1
2

∫ 1

0
u2(x) dx if u ∈ L2(0, 1)

∞ otherwise ∀u ∈ L1(0, 1) . (1.17)It 
an be 
he
ked that the lo
al slope of E in the metri
 spa
e L1(0, 1) is
|∂E| (u) =

{
‖u‖L∞(0,1) if u ∈ L∞(0, 1) ,
+∞ otherwise ∀u ∈ L2(0, 1) .7



Hen
e, an absolutely 
ontinuous 
urve u : (0, T ) → L1(0, 1) ful�lls the metri
 for-mulation (1.12) in L1(0, 1), with the 
hoi
es (1.16)�(1.17), ifthe map t ∈ (0, T ) 7→
1

2

∫ 1

0

u2(x, t) dx is absolutely 
ontinuous and
d

dt

(∫ 1

0

u2(x, t) dx

)
≤ −|u′|(t)2 − ‖u(t)‖2

L∞(0,1) for a.e. t ∈ (0, T ).

(1.18)On the other hand, the evolution equation 
orresponding to (1.18) is (DNE) drivenby the dissipation potential
Ψ(u) :=

1

2
‖u‖2

1 ∀u ∈ L1(Ω) (1.19)and by the energy fun
tional E (1.17), namely
‖ut(t)‖1Sign(ut(x, t)) + u(x, t) ∋ 0 for a.e. (x, t) ∈ (0, 1) × (0, T ) , (1.20)where we denote by Sign is the multivalued operatorSign(r) :=





1 if r > 0,
[−1, 1] if r = 0,
−1 if r < 0.In fa
t, in Se
tion 7.1, we shall 
al
ulate an expli
it solution of (the Cau
hy problemfor) (1.20) and show that it also ful�lls the metri
 formulation (1.18).Plan of the paper. In Se
tion 2 we �x the metri
 setup in whi
h we are go-ing to develop our theory, and a

ordingly give the preliminary de�nitions of metri
derivative, slope, 
hain rule 
ondition. In fa
t, we extend these notions to the frame-work of a non-symmetri
 distan
e ∆ on the spa
e X, and we also allow ∆ to takevalue ∞. Further, besides the topology indu
ed by ∆, we are also going to dealwith another topology σ on X, possibly weaker, whi
h mimi
s the role of the weaktopology in the Bana
h spa
e 
ase. Se
tion 3 is devoted to the 
onstru
tion of theapproximation s
heme for (the Cau
hy problem related to) (1.12), and to the state-ment of our existen
e and approximation Theorem 3.5. Subsequently, we illustratesu
h result on the simple example of a time-independent fun
tional de�ned on anin�nite dimensional Bana
h manifold. The proof of Theorem 3.5 is 
arried out inseveral steps in Se
tion 4. Starting from Se
tion 5, we develop the main appli
ationsof our results to the Bana
h spa
e setting. Indeed, Se
tions 5 and 6 are devotedto preliminaries, the former in the setting of a separable Bana
h spa
e, and thelatter for a separable re�exive Bana
h spa
e, endowed with a Finsler (asymmetri
)distan
e indu
ed by a family of sublinear fun
tionals (in fa
t, a generalization of thesetup (1.14)). Throughout these se
tions, we investigate the link between slopes andsubdi�erentials, and prove (a version of) formula (1.9) for a broad 
lass of fun
tion-als, en
ompassing λ-
onvex fun
tionals and C1-perturbations of 
onvex fun
tionals.8



We show that these fun
tionals also 
omply with the 
hain rule (1.10) in the gen-eral Bana
h 
ase. Moreover, we provide all the te
hni
al results enabling to swit
hfrom the metri
 formulation (1.12) ba
k to the pointwise formulation (1.13) in theFinsler, re�exive 
ase. Building on the material developed in Se
tion 5, in Se
tion 7we investigate metri
 evolutions in L1 spa
es and also provide some examples withexpli
it 
omputations of the metri
 solution. Finally, on the basis of Se
tion 6, inSe
tion 8 we develop the aforementioned appli
ations �rst in the setting of a generalre�exive Bana
h spa
e, with a Finsler asymmetri
 distan
e, se
ondly in the spa
e
Lp(Ω), 1 < p <∞.Part I: the metri
 theory2 The metri
 setup2.1 Asymmetri
 distan
es and metri
 derivativesGeneral assumptions. In theHausdor� topologi
al spa
e (X, σ), (2.1)we are given a referen
e point xo ∈ X anda possibly non symmetri
 (asymmetri
) distan
e ∆ : X ×X → [0,∞] ful�lling

∆(u, v) = 0 ⇔ u = v ∀u, v ∈ X,

∆(u, v) ≤ ∆(u, w) + ∆(w, v) ∀u, v, w ∈ X, (2.2)We set
δ(u, v) := min

[
∆(u, v),∆(v, u)

]
, Xu :=

{
v ∈ X : ∆(u, v) <∞

}
, X0 := Xxo

. (2.3)Observe that we 
ould always assume that ∆ is �nite, by restri
ting our dis
ussionto the spa
e X0; nevertheless, sometimes it 
ould be useful to allow a more �exible
hoi
e of the referen
e point xo.Remark 2.1 A typi
al non-symmetri
 distan
e ∆ allowed to take the value ∞ isde�ned on the spa
e X = L1(Ω), Ω being a measurable subset of Rd, by
∆(u, v) =

{
‖u− v‖L1 if u ≥ v a.e. in Ω,
∞ else ∀u, v ∈ L1(Ω).Indeed, this example is relevant within appli
ations to damage problems, see [38℄.Metri
 ∆-derivatives. It is easy to extend the notion of metri
 derivative (see[3℄) of an absolutely 
ontinuous 
urve in X to a possibly nonsymmetri
 setting.9



First, for 1 ≤ p ≤ ∞ we de�ne
ACp(a, b;X) :=

{
v : (a, b) → X : ∃m ∈ Lp(a, b) s.t. ∆(v(s), v(t)) ≤

∫ t

s

m(r)dr

}
,(2.4)denoting by AC(a, b;X) the spa
e AC1(a, b;X). Note that, if disposes of a distan
e

d on the ambient spa
e X ful�lling
∃κ1, κ2 > 0 : κ1 d(u, v) ≤ δ(u, v) ≤ κ2d(u, v) ∀u, v ,∈ X.then ACp(a, b;X) is in
luded in the usual spa
e of absolutely 
ontinuous 
urves inthe metri
 spa
e (X, d) (see [3℄). The following result is the natural extension of [5,Thm. 1.1.2℄.Proposition 2.2 For any v ∈ ACp(a, b;X), 1 ≤ p ≤ ∞, the limits

|v′|(t) := lim
h↓0

∆(v(t), v(t+ h))

h
= lim

h↓0

∆(v(t− h), v(t))

h
(2.5)exist and are equal for a.e. t ∈ (a, b); the fun
tion |v′| is in Lp(a, b) and ful�lls

∆(v(s), v(t)) ≤

∫ t

s

|v′|(r)dr ∀a < s ≤ t < b. (2.6)Furthermore,
|v′|(t) ≤ m(t) for a.e. t ∈ (a, b) (2.7)for any fun
tion m ∈ Lp(a, b) ful�lling

∆(v(s), v(t)) ≤

∫ t

s

m(r)dr ∀a < s ≤ t < b. (2.8)Proof. Let us �x v ∈ ACp(a, b;X) and let m ∈ Lp(a, b) ful�ll (2.8). Let us introdu
efor any s ∈ (a, b) the fun
tion ls : (a, b) → [0,∞) by
ls(t) := ∆(v(s), v(t)) ∀t ∈ (a, b).By the de�nition (2.4) of ACp(a, b;X), we get the following inequality

(
ls(t2) − ls(t1)

)+
≤ ∆(v(t1), v(t2)) ≤

∫ t2

t1

m(r) dr ∀ a < t1 ≤ t2 < b, (2.9)when
e we dedu
e that the map t 7→ gs(t) := ls(t)−
∫ t
a
m(r) dr is non in
reasing on

(a, b), in parti
ular a.e. di�erentiable. Moreover, from (2.9) we get
(
l′s(t)

)+
≤ ℓ(t) := lim inf

h↓0

∆(v(t), v(t+ h))

h
for a.e. t ∈ (a, b). (2.10)Note that ℓ is a measurable positive fun
tion on (a, b), ful�lling

0 ≤ ℓ(t) ≤ lim inf
h↓0

1

h

∫ t+h

t

m(r) dr = m(t) for a.e. t ∈ (a, b). (2.11)10



Thus, ℓ ∈ Lp(a, b); moreover, sin
e ls(t) =
∫ t
a
m(r) dr+gs(t) and g is non in
reasing,the singular part of the distributional derivative of ls is a non positive measure andtherefore (2.10) yields

∆(v(s), v(t)) = ls(t) ≤

∫ t

s

(l′s(r))
+ dr ≤

∫ t

s

ℓ(r) dr ∀a < s ≤ t < b. (2.12)Further, let us 
onsider the measurable fun
tion ℓ̃ : (a, b) → [0,∞) de�ned by
ℓ̃(t) := lim sup

h↓0

∆(v(t), v(t+ h))

h
, t ∈ (a, b).Arguing as in (2.10), we dedu
e from (2.8) that

ℓ̃(t) ≤ m̃(t) for a.e. t ∈ (a, b) (2.13)for any m̃ ∈ Lp(a, b) for whi
h the inequality (2.8) holds. Thus, due to (2.12) we�nd
ℓ̃(t) ≤ ℓ(t), hen
e ∃|v′|(t) := lim

h↓0

∆(v(t), v(t+ h))

h
for a.e. t ∈ (a, b),and |v′|(t) ∈ Lp(a, b) by (2.11). Moreover, (2.12) yields (2.6). We have thus provedthe �rst part of the statement. The se
ond one follows from (2.13).Finally, the existen
e of the se
ond limit of (2.5) follows by the same argument,applied to the reversed 
urve v̂(t) := v(a + b − t) and to the reversed distan
e

∆̂(u, v) := ∆(v, u). In parti
ular
∆(v(s), v(t)) = ∆̂(v̂(a+b−t), v̂(a+b−s)) ≤

∫ a+b−s

a+b−t

|v̂′|(r) dr =

∫ t

s

|v̂′|(a+b−r) dr.(2.14)By the minimality property (2.7) (applied to v and v̂) we get
|v′|(t) = |v̂′|(a+ b− t) for a.e. t ∈ (a, b), (2.15)whi
h yields the identity between the two limits in (2.5).2.2 ∆-slopesIn the setup spe
i�ed by (2.1)-(2.2), let E : X → (−∞,∞] shall be a fun
tional withproper domain E = dom(E) =

{
u ∈ X : E(u) < ∞

}
. Hereafter, we shall supposethat

E is σ-sequentially lower semi
ontinuous. (2.16)We now introdu
e the notion of lo
al and relaxed slope in the framework of theasymmetri
 distan
e ∆: the following de�nition mimi
s in an obvious way the usualde�nitions of slope given in the setting of a symmetri
 distan
e, for whi
h we referto [3, 5℄. 11



De�nition 2.3 The ∆−lo
al slope of the fun
tional E at a point u ∈ dom(E) is
|∂E|(u) := lim sup

∆(u,v)→0

(E(u) − E(v))+

∆(u, v)
. (2.17)The ∆-relaxed slope |∂−E| of E at a point u ∈ dom(E) ∩X0 is de�ned by

|∂−E|(u) := inf
{

lim inf
n↑∞

|∂E|(un) : un
σ
⇀ u, sup{∆(xo, un), E(un)} <∞

}
. (2.18)Note that if D∩Xu = {u} then |∂E|(u) = 0; |∂−E| is (a version of) the (sequential)lower semi
ontinuous envelope of |∂E| w.r.t. to the topology σ, along sequen
es in

X0 of bounded energy and bounded distan
e w.r.t. xo.2.3 Time dependent families of energy fun
tionalsIn this paper we deal with families of time-dependent fun
tionals Et : X → (−∞,∞],
t ∈ [0, T ]. In order to avoid further te
hni
al di�
ulties, we will only 
onsider a quite�regular� dependen
e w.r.t. time: we thus assume that the proper domain of Et is�xed, i.e.

D := dom(Et) ∀ t ∈ [0, T ], and we set D0 := D ∩X0 . (2.19a)We also suppose that the fun
tionals are uniformly bounded from below, letting
−C0 := inf

t∈[0,T ],v∈D
Et(v) > −∞ , (2.19b)and that

∀ v ∈ D the fun
tion t 7→ Et(v) is di�. on [0, T ] with derivative ∂tEt(v) (2.19
)whi
h satis�es
|∂tEt(v)| ≤ C1(Et(v) + ∆(xo, v) + 2C0) ∀ t ∈ [0, T ], v ∈ D0 (2.19d)for a suitable 
onstant C1 ≥ 0.Remark 2.4 Let us point out that (2.19d) (whi
h has been proposed in [33, �3℄),and the Gronwall Lemma yield the following estimate

Et(v) ≤ (Es(v)+2C0C1|t−s|+C1∆(xo, v)|t−s|)e
C1|t−s| ∀t, s ∈ [0, T ], v ∈ D0. (2.20)We will often impose some lower semi
ontinuity-
ompa
tness 
onditions on sequen
esof equibounded energy Et; thanks to the previous remark, the parti
ular 
hoi
e ofthe time t is not relevant, so that we 
an state our assumptions for an arbitrary�xed time. We thus introdu
e the auxiliary quantity

F(v) := 2C0 + ∆(xo, v) + E0(v) (2.21)and note that we have for a suitable 
onstant C > 0

1

C
sup
t∈[0,T ]

(
2C0+∆(xo, v)+Et(v)

)
≤ F(v) ≤ C inf

t∈[0,T ]

(
2C0+∆(xo, v)+Et(v)

)
∀ v ∈ D0.(2.22)Therefore, the t-energy Et(un) of a ∆-bounded sequen
e {un} ⊂ D0 remains boundedif and only if supnF(un) <∞: in this 
ase supn∈N,s∈[0,T ] Es(un) <∞.12



2.4 The purely metri
 formulation of the Cau
hy Problem(DNE).Chain rule and 
urves of maximal slope. It is not di�
ult to 
he
k that if
v : [0, T ] → D is a 
urve and t̄ ∈ (0, T ) is a point su
h that there exists the metri

∆-derivative |v′|(t̄), the map t 7→ Et(v(t)) is 
ontinuously di�erentiable at t̄, and
|∂Et̄|(v(t̄)) <∞, then

d

dt
Et(v(t))

∣∣∣
t=t̄

≥ ∂tEt̄(v(t̄)) − |v′|(t̄) · |∂Et̄|(v(t̄)). (2.23)In this paper we are interested to �nd 
urves of maximal slope, i.e. attaining theequality in (2.23):
d

dt
Et(v(t))

∣∣∣
t=t̄

= ∂tEt̄(v(t̄)) − |v′|(t̄) · |∂Et̄|(v(t̄)). (2.24)In a linear Eu
lidean framework, this would be equivalent to imposing that thevelo
ity ve
tor and the gradient of the fun
tional Et have opposite dire
tions at ea
htime. Of 
ourse, we should 
omplement this 
ondition with a relation between theirmoduli of the type
|∂Et̄|(v(t̄)) = h

(
|v′|(t̄)

)
, (2.25)

h : [0,∞) → [0,∞) being a 
ontinuous, surje
tive, and in
reasing map. By intro-du
ing its 
onvex primitive fun
tion and its Legendre-Fen
hel-Moreau transform
ψ(x) :=

∫ x

0

h(r) dr, ψ∗(y) = sup
x≥0

xy − ψ(x), (2.26)and re
alling that for arbitrary 
ouples of nonnegative real numbers x, y ≥ 0

xy ≤ ψ(x) + ψ∗(y), y = h(x) = ψ′(x) ⇔ xy = ψ(x) + ψ∗(y), (2.27)we thus end up with the di�erential 
hara
terization
d

dt
Et(v(t)) = ∂tEt(v(t)) − ψ

(
|v′|(t)

)
− ψ∗

(
|∂Et|(v(t))

)
t ∈ (0, T ). (2.28)We may further 
onsider a relaxed version of (2.28): �rst of all, we would like torepla
e the slope |∂Et| with its lower semi
ontinuous envelope |∂−Et| (2.18), whi
henjoys better 
onvergen
e properties. This is meaningful only if |∂−Et| is strongenough to 
ontrol the time derivative of the energies Et along absolutely 
ontinuous
urves. We �x this property in the following de�nition:De�nition 2.5 (Chain rule for the relaxed slope) Let Et, t ∈ [0, T ], be a fam-ily of fun
tionals ful�lling (2.19a,b,
,d). We say that |∂−Et| satis�es the 
hain rule
ondition if for any 
urve v ∈ AC(0, T ;X0) with

∫ T

0

|v′|(t) · |∂−Et|(v(t))dt <∞, sup
t∈(0,T )

Et(v(t)) <∞, (2.29)the map t 7→ Et(v(t)) is absolutely 
ontinuous, and
d

dt
Et(v(t)) ≥ ∂tE(t, v(t)) − |v′|(t) · |∂−Et|(v(t)) for a.e. t ∈ (0, T ). (2.30)13



We may also drop the 
ontinuity assumption on h, by 
onsidering monotone surje
-tive graphs instead of maps: in this 
ase we simply repla
e the relation h = ψ′ withthe subdi�erential 
ondition h = ∂ψ and (2.25) by
|∂Et|(v(t)) ∈ h

(
|v′|(t)

)
. (2.31)We 
an therefore 
onsider an arbitrary real fun
tion

ψ : [0,∞) → [0,∞], 
onvex and l.s.
.,with ψ(0) = 0, superlinear growth lim
x↑+∞

ψ(x)

x
= ∞and non empty int

(dom(ψ)
)

= (0, a) a ∈ (0,∞].

(2.32)Finally, on
e the 
hain rule holds, one 
he
ks by an elementary 
onvex analysisargument that imposing an inequality ≤ instead of the identity in (2.28) gives riseto an equivalent 
ondition.Colle
ting all the above remarks, we 
an now state our metri
 formulation of(the Cau
hy Problem related to) (DNE).Problem 2.6 (Metri
 formulation of (DNE)) Suppose that the 
hain rule 
on-dition stated in De�nition 2.5 holds. Given u0 ∈ D0, �nd a 
urve u ∈ AC(0, T ;X0)su
h that
u(0) = u0, the map t 7→ Et(u(t)) is absolutely 
ontinuous on (0, T ), and (2.33)
d

dt
Et(u(t)) ≤ ∂tEt(u(t)) − ψ

(
|u′|(t)

)
− ψ∗

(
|∂−Et|(u(t))

) for a.e. t ∈ (0, T ). (2.34)For instan
e, the 
hoi
e ψ(x) := xp/p, x ∈ [0,∞), p ≥ 1, with 
onjugate ψ∗(x) =
xp

′

/p′, 1/p+ 1/p′ = 1, of 
ourse �ts in this framework. In this 
ase, (2.34) redu
esto
d

dt
Et(u(t)) ≤ ∂tEt(u(t)) −

|u′|p(t)

p
−

|∂−Et|
q(u(t))

q
.In general, let us point out for later 
onvenien
e that, by an elementary 
onvexanalysis argument, if the 
hain rule of De�nition 2.5 is satis�ed, then any absolutely
ontinuous 
urve ful�lling (2.34) indeed ful�lls for a.e. t ∈ (0, T )

d

dt
Et(u(t)) − ∂tEt(u(t)) = −|u′|(t)|∂−Et|(u(t)) = −ψ

(
|u′|(t)

)
− ψ∗

(
|∂−Et|(u(t))

)
.(2.35)Remark 2.7 (Link with the metri
 theory of gradient �ows.) Let us pointout that our metri
 approa
h to (DNE) is tightly linked to the general theory de-veloped in [5℄ (see also the referen
es therein) for gradient �ow equations in metri
spa
es. More pre
isely, following the terminology of [5, Chap. 1℄, the 
hain ruleproperty of De�nition 2.5 is (with slight 
hanges) equivalent to requiring |∂−E| tobe an upper gradient, whereas the metri
 analog of our de�nition of solution is thenotion of 
urve of maximal slope. 14



2.5 Topologi
al assumptionsLet us 
olle
t here all the topologi
al assumptions relating the asymmetri
 distan
e
∆ and the fun
tionals ψ and Et, t ∈ [0, T ], to the topology σ of X.Sequential semi
ontinuity. If {un}, {vn}, u, v ∈ X0 satisfy

sup
n

(F(un) + F(vn)) <∞, and (un, vn)
σ
⇀ (u, v)then

lim inf
n↑∞

∆(un, vn) ≥ ∆(u, v), lim inf
n↑∞

Et(un) ≥ Et(u) ∀ t ∈ [0, T ], (2.36)
lim sup
n↑∞

∂tEt(un) ≤ ∂tEt(u) ∀ t ∈ [0, T ]. (2.37)Strengthened sequential semi
ontinuity. Further, in the 
ase in whi
h ∂ψ isnot single valued (this means that ψ is not di�erentiable in the interior of itsdomain, or that (
f. (2.32)) a < ∞, ψ(a) < ∞ and ψ′
−(a) < ∞), we alsoassume that for every sequen
e tn ∈ [0, T ], un ∈ D0 su
h that

sup
n

(F(un) + |∂Etn |(un)) <∞, ∆(u, un) → 0, tn ↓ twe have
lim sup
n↑∞

Etn(un) − Et(un)

tn − t
≤ ∂tEt(u) (2.38)Note that (2.38) surely holds if the following slightly stronger version of (2.37)is satis�ed

sup
n

F(un) <∞, ∆(u, un) → 0 for tn ↓ t ⇒ lim sup
n↑∞

∂tEtn(un) ≤ ∂tEt(u).(2.39)Sequential 
ompa
tness. If a sequen
e {un} ⊂ X0 satis�es sup
n∈N

F(un) <∞, then
∃u ∈ X and a subsequen
e {unk

} σ-
onverging to u. (2.40)A few remarks on the above assumptions are in order.Remark 2.8 (Topology 
omparison.) Due to (2.36) and (2.40), we have
sup
n

F(un) <∞, δ(un, u) → 0 ⇒ un
σ
⇀ u. (2.41)In fa
t, any σ-sequential limit point v of un (whose existen
e follows from the 
om-pa
tness assumption) satis�es δ(u, v) ≤ lim infn↑∞ δ(u, un) = limn↑∞ δ(u, un) = 0,by (2.36). Thus, v 
oin
ides with u.Remark 2.9 (d-
ompleteness of the sublevels of E .) It is not di�
ult to 
he
kthat the sublevels of E satis�es the following 
ompleteness property with respe
t tothe asymmetri
 distan
e ∆: any sequen
e un ∈ X0 satis�es

lim
n→∞

sup
m>0

∆(un, un+m) = 0, sup
n

E(un) <∞ ⇒ ∃ ! u : un
σ
⇀ u, lim

n→∞
∆(un, u) = 0.(2.42)15



3 The main resultWe shall 
onstru
t a solution u ∈ AC(0, T ;X) to Problem 2.6 by passing to thelimit in a suitable approximation s
heme by time dis
retization.In the sequel, we adopt the 
onvention of denoting by the symbols C and C ′ allthe a

essory positive 
onstants o

urring in the estimates.3.1 ApproximationWe �x a time step τ > 0, to whi
h there 
orresponds a partition
Pτ := {t0 = 0 < t1 < . . . < tn < . . . < tN−1 < T ≤ tN}, tn := nτ, N ∈ N, (3.1)of the interval (0, T ). We 
onsider the following re
ursive minimization s
hemeProblem 3.1 (Variational approximation s
heme) Given U0

τ := u0, �nd
U1
τ , . . . , U

N
τ ∈ X ful�lling
Un
τ ∈ Jτ (tn, U

n−1
τ ) := Argmin

u∈X

{
τψ

(
∆(Un−1

τ , u)

τ

)
+ Etn(u)

}
, (3.2)for n = 1, . . . , N.Lemma 3.2 Under the lower semi
ontinuity-
ompa
tness assumptions (2.19a)�(2.19b)and (2.36)�(2.40) on E , and the growth-
onvexity 
onditions (2.32) on ψ, for all

τ > 0 and u0 ∈ D Problem 3.1 admits at least one solution {Un
τ }

N
n=1. Further, if

u0 ∈ D0 then Un
τ ∈ D0 for all n = 1, . . . , N .The proof is a standard appli
ation of the well known dire
t method in the Cal
ulusof Variations.Approximate solutions. Let Uτ and Uτ be, respe
tively, the left-
ontinuousand right-
ontinuous pie
ewise 
onstant interpolants of the values {Un

τ }
N
n=1 ful�lling

Uτ (tn) = Uτ (tn) = Un
τ for all n = 1, . . . , N , i.e.,

Uτ (t) = Un
τ ∀t ∈ (tn−1, tn], Uτ (t) = Un−1

τ ∀ t ∈ [tn−1, tn), n = 1, . . . , N. (3.3)Finally, let tτ , tτ : [0, T ] → [0, T ] be de�ned by
tτ (0) = tτ (0) := 0, tτ (t) := tk for t ∈ (tk−1, tk], tτ (t) := tk−1 for t ∈ [tk−1, tk). (3.4)Of 
ourse, for every t ∈ [0, T ] we have tτ (t) ↓ t and tτ (t) ↑ t as τ ↓ 0.We introdu
e another family of interpolants, due to E. De Giorgi, between thedis
rete values Un

τ .De�nition 3.3 (De Giorgi variational interpolants) We denote by Ũτ any in-terpolant of the dis
rete values {Un
τ }

N
n=0 obtained by solving the problem






Ũτ (0) = u0, and, for t = tn−1 + r ∈ (tn−1, tn],

Ũτ (t) ∈ Jr(t, U
n−1
τ ) := Argminu∈X

{
rψ
(

∆(Un−1
τ ,u)
r

)
+ Et(u)

}
,

(3.5)su
h that the map t 7→ Ũτ (t) is Lebesgue measurable in (0, T ).16



Remark 3.4 (Measurability of Ũτ) Sin
e the map s 7→ Js(tn−1, U
n−1
τ ) is σ-
om-pa
tly valued and upper semi
ontinuous, the existen
e of a measurable sele
tion

Ũτ (tn−1 + r) ∈ Jr(tn−1 + r, Un−1
τ ), r ∈ (tn−1, tn], is ensured by [14, Cor. III.3, Thm.III.6℄.Note that when t = tn, the minimization s
heme in (3.5) 
oin
ides with the one in(3.2), so that we 
an always assume that

Ũτ (tn) = Uτ (tn) = Uτ (tn) = Un
τ , for every n = 1, . . . , N. (3.6)3.2 Statement of the main result.Theorem 3.5 (Main existen
e and approximation result) In the metri
 frame-work dis
ussed in Se
tions 2.1 and 2.2, let us suppose that ψ 
omplies with (2.32) andthat the family of fun
tionals Et, t ∈ [0, T ], satis�es (2.19a)�(2.19d), the topologi
alassumptions (2.36)-(2.40) of Se
tion 2.5, and the 
hain rule 
ondition of De�nition2.5.Then, for any u0 ∈ D0 and any sequen
e τn ↓ 0 as n ↑ ∞, there exists asubsequen
e (still labeled τn) and a 
urve u ∈ AC(0, T ;X0) su
h that

Uτn(t)
σ
⇀ u(t), Uτn(t)

σ
⇀ u(t), Ũτn(t)

σ
⇀ u(t) ∀t ∈ [0, T ], (3.7)where

u is a solution to Problem 2.6, thus satisfying also (2.35), (3.8)and the energy identity
∫ t

s

ψ(|u′|(r)) dr+

∫ t

s

ψ∗
(
|∂−Er|

(
u(r)

))
dr+ Et

(
u(t)

)
= Es

(
u(s)

)
+

∫ t

s

∂tEr
(
u(r)

)
dr(3.9)for every s, t ∈ [0, T ]. In addition, the following 
onvergen
es hold as n ↑ ∞

∫ t

0

ψ

(
∆(Uτn(r), Uτn(r))

τn

)
dr −→

∫ t

0

ψ(|u′|(r)) dr ∀t ∈ [0, T ], (3.10)
∫ t

0

ψ∗
(
|∂Er|(Ũτn(r))

)
dr −→

∫ t

0

ψ∗
(
|∂−Er|(u(r))

)
dr ∀t ∈ [0, T ], (3.11)

Etτn (t)

(
Uτn(t)

)
→ Et

(
u(t)

)
, Et

(
Ũτn(t)

)
→ Et(u(t)) ∀t ∈ [0, T ] (3.12)and for a.e. t ∈ (0, T )

{
lim infn↑∞ |∂Et|(Ũτn(t)) = |∂−Et|(u(t)) if |u′|(t) 6= 0,
lim infn↑∞ ψ∗

(
|∂Et|(Ũτn(t))

)
= ψ∗ (|∂−Et|(u(t))) = 0 if |u′|(t) = 0. (3.13)Finally, let

I := {t ∈ (0, T ) : |u′|(t) 6= 0} . (3.14)Then, 17



i). if ψ∗ as well has superlinear growth, i.e. limx↑∞
ψ∗(x)
x

= ∞, we have the further
onvergen
e
|∂Et|(Ũτn) → |∂−Et|(u) in L1(I ) as n ↑ ∞; (3.15)ii). in the general 
ase, there exists a non in
reasing sequen
e {On}n of Borel subsetsof (0, T ) su
h that ∩nOn = ∅ and, denoting by In the indi
ator fun
tion of theset (0, T ) \On, there holds

In · |∂Et|(Ũτn) → |∂−Et|(u) in L1(I ) as n ↑ ∞. (3.16)3.3 An example on an in�nite Bana
h manifoldWe 
onsider two Hilbert spa
es V and H , su
h that V is densely and 
ompa
tlyembedded in H (we identify H ≡ H ′ ⊂ V ′), and we denote by (·, ·) and ‖ · ‖ thes
alar produ
t and the norm in H and by ‖·‖V the norm in V . We de�ne the metri
spa
e (X,∆) via
X = {u ∈ H : ‖u‖ = 1} ∆(u1, u2) := ‖u1 − u2‖ ∀u1, u2 ∈ X ,and take as σ the topology indu
ed by the distan
e ∆. We 
onsider a fun
tional

Ê ∈ C1(V ) ful�lling
Ê is 
onvex and ∃Λ1 Λ2 > 0 s.t. Ê(v) ≥ Λ1‖v‖

2
V − Λ2 ∀ v ∈ V , (3.17)and we de�ne E : X → (−∞,∞] by

E(u) :=

{
Ê(u) for u ∈ V ∩X,
+∞ otherwise, ∀u ∈ X. (3.18)The following results shed light on the lo
al slope of E and on its 
hain rule proper-ties.Lemma 3.6 Under the above assumptions, we have for all u ∈ dom(E)

|∂E| (u) < +∞ ⇔ DÊ(u) ∈ H , and in this 
ase
|∂−E|(u) = |∂E| (u) = ‖DÊ(u) − (DÊ(u), u)u‖ .

(3.19)Proof. We �x u ∈ dom(E) and note that for all w ∈ V \ {0} su
h that (w, u) = 0there exists a 
urve γ : [−ρ, ρ] → X with γ ∈ C1([−ρ, ρ];V ) and γ′(0) = w. Then,
E(u) − E(γ(r))

∆(u, γ(r))
→

DÊ(u)[w]

‖w‖
as r → 0.Being w arbitrary, we infer that

|∂E| (u) ≥ sup
w∈V \{0}, (w,u)=0

DÊ(u)[w]

‖w‖
≥ sup

v∈V \{0}

DÊ(u)[v] − (DÊ(u), u)(v, u)

‖v‖

= ‖DÊ(u) − (DÊ(u), u)u‖ .

(3.20)
18



On the other hand, we note that for u ∈ dom(E) and v ∈ X (E(u) − E(v))+ > 0 ifand only if v ∈ X ∩ V , so that we estimate
(E(u) − E(v))+

‖v − u‖
≤

(
DÊ(u)[v − u]

)+

‖v − u‖

≤

(
DÊ(u)[v − u] − (DÊ(u), u)(u, v− u)

)+

‖v − u‖
+

(
(DÊ(u), u)(u, v− u)

)+

‖v − u‖

≤ ‖DÊ(u) − (DÊ(u), u)u‖+ (DÊ(u), u)+ 1 − (u, v)√
2(1 − (u, v))

,

(3.21)
the �rst inequality due to the 
onvexity of Ê and the last one to the identity ‖v −
u‖2 = 2(1−(u, v)), sin
e ‖u‖ = ‖v‖ = 1. We take the lim sup of (3.21) as ‖v−u‖ → 0and 
on
lude the 
onverse inequality of (3.20). Hen
e, the formula for |∂E| ensues.Using this it is easy to 
he
k that the map u 7→ |∂E| (u) is lower semi
ontinuous,when
e (3.19).Lemma 3.7 Under the above assumptions, the fun
tional E de�ned by (3.18) 
om-plies with the 
hain rule of De�nition 2.5.Proof. Let us point out that any 
urve u ∈ AC(0, T ;X) is a.e. di�erentiable withvalues in H , so that

|u′|(t) = ‖u′(t)‖ for a.e. t ∈ (0, T ). (3.22)Now, if u ful�lls (2.29), ne
essarily u(t) ∈ V (when
e E(u(t)) = Ê(u(t))) for all
t ∈ [0, T ]. Besides, |∂E| (u(t)) < +∞ for a.e. t ∈ (0, T ) yields by Lemma 3.6 that
DÊ(u(t)) ∈ H for a.e. t ∈ (0, T ). Sin
e Ê is smooth on H , it satis�es the 
hainrule

d

dt
E(u(t)) =

d

dt
Ê(u(t)) = (u′(t),DÊ(u(t))) for a.e. t ∈ (0, T ). (3.23)The 
onstraint ‖u(t)‖ = 1 for all t ∈ [0, T ] implies that
(u′(t), u(t)) = 0 for a.e. t ∈ (0, T ). (3.24)Hen
e, re
alling (3.19) and (3.22), we dedu
e that

d

dt
Ê(u(t)) = (u′(t),DÊ(u(t)) − (DÊ(u(t)), u(t))u(t)) ≥ −‖u′(t)‖ |∂E| (u(t))for a.e. t ∈ (0, T ), namely the 
hain rule inequality (2.30).Hen
e, the metri
 formulation (2.33)�(2.34) asso
iated with the energy fun
tional

E (3.18) and with the quadrati
 dissipation ψ(r) := 1
2
r2 for all r ≥ 0 reads�nd u ∈ AC(0, T ;X) s.t. t ∈ (0, T ) 7→ E(u(t)) is absolutely 
ontinuous, and

d

dt
E(u(t)) ≤ −

1

2
‖u′(t)‖2 −

1

2
‖DÊ(u(t)) − (DÊ(u(t)), u(t))u(t)‖2 for a.e. t ∈ (0, T ).(3.25)19



In view of (3.17), E 
omplies with the assumptions of our main Theorem 3.5, pro-viding existen
e and approximation of a solution u ∈ AC(0, T ;X) to the Cau
hyproblem for (3.25) for any initial datum u0 ∈ V ∩ X. It follows from the relatedenergy identity (3.9) that u has the further regularity u ∈ H1(0, T ;H)∩L∞(0, T ;V ).In fa
t, using the 
hain rule (3.23), (3.24), the energy identity (3.9) and the Cau
hy-S
hwarz inequality we dedu
e that u solves the gradient �ow equation
{
u′(t) = −(DÊ(u(t)) − (DÊ(u(t)), u(t))u(t)) for a.e. t ∈ (0, T ) ,

‖u(t)‖ = 1 ∀ t ∈ [0, T ].4 Proof of the main result4.1 Estimates for the (ψ)-Moreau-Yosida approximationIn this se
tion we 
olle
t some general properties of the time-in
remental problem(3.2). Namely, given r > 0, t ∈ (0, T ), and u ∈ X, we study the minimizationproblem
inf
v∈X

{
rψ

(
∆(u, v)

r

)
+ Et+r(v)

}
. (4.1)Note that, in the 
ase ∆ is a distan
e on X, ψ(x) := x2/2, and the fun
tional Edoes not depend on t, (4.1) a
tually redu
es to

inf
v∈X

{
d2(v, u)

r
+ E(v)

}
, (4.2)whi
h is related to the Moreau-Yosida approximation of E . The properties of theminimization problem (4.2) have been thoroughly studied in [5℄ (see also [44℄). Infa
t Lemmas 4.4 and 4.5 below are an extension to our framework of analogousresults 
ontained in [5, Chap. 3℄. Besides the time dependen
e of the energy fun
-tionals, one of the main di�
ulties here is given by the general 
hoi
e of the fun
tion

ψ: indeed, we neither assume that ψ is stri
tly 
onvex, nor that it is everywheredi�erentiable or even everywhere �nite on [0,∞).De�nition 4.1 (ψ-Moreau-Yosida approximation) For r > 0, we 
onsider
Et,r(u; v) := rψ

(
∆(u, v)

r

)
+ Et+r(v),and de�ne the ψ-Moreau-Yosida approximation Er of the fun
tionals E by

Et,r(u) := inf
v∈X

Et,r(u; v). (4.3)We also denote by Jr(t, u) the set where the in�mum in (4.3) is attained, i.e.
Jt,r(u) := Argmin

v∈X
Et,r(u; v). (4.4)20



Remark 4.2 (Simplifying assumptions.) By adding a positive 
onstant to Et,we 
an always assume that C0 = −1 in (2.19b), i.e.
inf

t∈[0,T ], v∈D
Et(v) ≥ 1; (4.5)we 
an therefore set

F(v) := ∆(xo, v) + E0(v) (4.6)with
1

A
sup
t∈[0,T ]

(
∆(xo, v) + Et(v)

)
≤ F(v) ≤ A inf

t∈[0,T ]

(
∆(xo, v) + Et(v)

)
∀ v ∈ D, (4.7)

|∂tEt(v)| ≤ AF(v) ∀ v ∈ D, (4.8)
Et(v) ≤ (Es(v) + C1∆(xo, v)|t− s|) exp(C1|t− s|) ∀t, s ∈ [0, T ], v ∈ D. (4.9)for a suitable 
onstant A > 0 (all inequalities being trivial if v ∈ D \D0).Remark 4.3 (Elementary properties of ψ) Being 0 a minimum point for ψ, itis immediate to 
he
k that ψ is non de
reasing on dom(ψ). We denote by ψ′

− and
ψ′

+ respe
tively the (non de
reasing) left and right derivatives of ψ on D(ψ) (we set
ψ′

+(a) = ∞), whi
h satisfy
ψ′
−(x) ≤ ψ′

+(x), ∂ψ(x) = [ψ′
−(x), ψ′

+(x)] ∀x ∈ dom(ψ). (4.10)Sin
e ψ has a superlinear growth, the 
onjugate fun
tion ψ∗ is �nite at ea
h y ∈
[0,∞), non de
reasing, and satis�es ψ∗(0) = 0.The following result 
olle
ts some properties of Er.Lemma 4.4 Under the same assumptions of Theorem 3.5 and Remark 4.2, thereexists a 
onstant C > 0 su
h that for every t ∈ [0, T ], u ∈ D0, there holds

F(ur) ≤ CF(u) ∀ 0 < r ≤ min
(
1, T − t

)
, ur ∈ Jt,r(u), (4.11)and

Et,r2(u) − CF(u)r2 ≤ Et,r1(u) − CF(u)r1 ≤ Et(u) ∀ 0 < r1 < r2 ≤ min
(
1, T−t

)
;(4.12)in parti
ular, the map r 7→ Et,r(u) is a linear perturbation of a non in
reasingfun
tion and has bounded variation. Moreover,

lim
r↓0

sup
ur∈Jt,r(u)

∆(u, ur) = 0, lim
r↓0

Et,r(u) = Et(u) (4.13)and
|∂Et+r|(ur) ≤ ψ′

+

(
∆(u, ur)

r

) if ur ∈ Jt,r(u) and 0 ≤
∆(u, ur)

r
< a. (4.14)21



Proof. Step 1: proof of (4.11). First of all, let us point out that the minimalityof ur and (4.7) yield
rψ

(
∆(u, ur)

r

)
≤ Et+r(u) ≤ AF(u) ∀ur ∈ Jt,r(u). (4.15)Let us now �x ρ > 0 so that ψ∗(ρ) < 1/2 and therefore, being r ≤ 1,

rψ

(
∆(u, ur)

r

)
≥ ρ∆(u, ur) − rψ∗(ρ) ≥ ρ∆(u, ur) − 1/2;by the minimality ur we thus get for C := 2A(1 + ρ−1)

F(ur) ≤ C
(
ρ∆(u, ur) − 1/2 + Et+r(ur)

)
≤ C

(
rψ

(
∆(u, ur)

r

)
+ Et+r(ur)

)

≤ CEt+r(u) ≤ CAF(u),the two latter passages following from (4.15).Step 2: proof of (4.12). We �rst observe that, for every 0 < r1 < r2

Et,r2(u; v) − Et,r1(u; v) ≤ r2ψ
(

∆(u,v)
r2

)
− r1ψ

(
∆(u,v)
r1

)
+
∫ r2
r1
∂tEt+θ(v) dθ (4.16)

≤ A(r2 − r1)F(v) ∀ v ∈ D, (4.17)the last passage following from (4.8) and the fa
t that the map r 7→ rψ(x/r) is nonin
reasing. Choosing v = ur1 and re
alling Et,r2(u) ≤ Et,r2(u; ur1) we get by (4.11)
Et,r2(u) − Et,r1(u) ≤ A(r2 − r1)F(ur1) ≤ CA(r2 − r1)F(u).Step 3: proof of (4.13). From (4.15) and the de�nition of ψ∗ we get

M∆(u, ur) ≤ AF(u) + rψ∗(M) ∀M > 0, ∀ r ≤ T − t, ∀ur ∈ Jt,r(u).Taking the supremum with respe
t to ur and the lim sup as r ↓ 0 we get
M lim sup

r↓0
sup

ur∈Jt,r(u)

∆(u, ur) ≤ AF(u) ∀M > 0,yielding the �rst limit in (4.13).To 
he
k the se
ond one, we note that, by (4.12), (4.13), (2.20) the lower semi-
ontinuity of the fun
tional u 7→ Et(u),

Et(u) ≥ lim sup
r↓0

Et,r(u) ≥ lim inf
r↓0

Et+r(ur) ≥ Et(u).Step 4: proof of (4.14). We may assume a < ∞, the 
ase a = ∞ being easier tohandle. Hen
e, we �x r > 0, ur ∈ Jr(t, u) su
h that ∆(u, ur) < a, and for simpli
itywe set E(u) := Et+r(u). We also suppose that |∂E|(ur) > 0: otherwise, the inequalitywould be trivial. Note that,
|∂E|(ur) = lim sup

∆(ur ,v)→0

(E(ur) − E(v))+

∆(ur, v)
= lim sup

∆(ur ,v)→0,∆(u,v)>∆(u,ur)

(E(ur) − E(v))+

∆(ur, v)
.22



Indeed, sin
e |∂E|(ur) > 0, there exists a sequen
e {vk} with ∆(ur, vk) → 0 as k ↑ ∞and k̄ ∈ N su
h that
|∂E|(ur) = lim

k↑∞

(E(ur) − E(vk))
+

∆(ur, vk)
, with E(vk) < E(ur),

∆(u, vk)

r
< a, (4.18)for k ≥ k̄, the latter inequality following from the fa
t that ∆(u, ur) < a and

∆(ur, vk) → 0. Hen
e, ∆(u, vk) > ∆(u, ur) for all k ≥ k̄: otherwise, if ∆(u, vk) ≤
∆(u, ur), the minimization (4.1) would yield, by the monotoni
ity of ψ:

E(ur) + rψ

(
∆(u, ur)

r

)
≤ E(vk) + rψ

(
∆(u, vk)

r

)
≤ E(vk) + rψ

(
∆(u, ur)

r

)
,
ontrary to (4.18). Furthermore, for every k ≥ k̄

E(ur) − E(vk)

∆(ur, vk)
≤ r

ψ
(

∆(u,vk)
r

)
− ψ

(
∆(u,ur)

r

)

∆(ur, vk)
≤
ψ
(

∆(u,vk)
r

)
− ψ

(
∆(u,ur)

r

)

∆(u,vk)
r

− ∆(u,ur)
r

,the �rst inequality following from (4.1), and the se
ond one by the triangle inequality.Therefore, noting that 0 < ∆(u, vk) − ∆(u, ur) ≤ ∆(ur, vk) → 0, we have
|∂E|(ur) = lim sup

∆(ur ,vk)→0

(E(ur) − E(vk))
+

∆(ur, vk)
≤ lim inf

∆(ur ,vk)→0

ψ
(

∆(u,vk)
r

)
− ψ

(
∆(u,ur)

r

)

∆(u,vk)
r

− ∆(u,ur)
r

≤ lim sup
h↓0

ψ
(

∆(u,ur)
r

+ h
)
− ψ

(
∆(u,ur)

r

)

h
= ψ′

+

(
∆(u, ur)

r

)
.Before proving the following lemma, whi
h will play a 
ru
ial role later on, were
all for the reader's 
onvenien
e the well-known duality formula relating ψ and ψ∗

ψ∗(y) = yx− ψ(x) ∀y ∈ [ψ′
−(x), ψ′

+(x)]. (4.19)Moreover, in the 
ase in whi
h D(ψ) = [0, a], with a < ∞, and ℓ := ψ′
−(a) < ∞,there holds

ψ∗(y) ≤ ψ∗(ℓ) = ℓa−ψ(a) ∀y ≤ ℓ, ψ∗(y) = ya−ψ(a) = ψ∗(ℓ)+(y−ℓ)a ∀y > ℓ.(4.20)Indeed, the �rst inequality follows from the monotoni
ity of ψ∗; on the other hand,re
alling that ∂ψ(a) = [ℓ,∞) and that ∂ψ∗ = (∂ψ)−1, we 
on
lude that ∂ψ∗(y) =
{a} for y > ℓ, when
e the se
ond of (4.20).Lemma 4.5 Under the same assumptions of Theorem 3.5, for every t ∈ [0, T ),
u ∈ D0, and for a.e. r > 0the map r 7→ Et,r(u) is di�erentiable, ψ′

−

(
∆(u, ur)/r

)
<∞ at ur ∈ Jt,r(u), (4.21)23



and
d

dr
Er(t, u) ≤ ∂tEt+r(ur) − ψ∗

(
ψ−

′

(
∆(u, ur)

r

))
, (4.22)

d

dr
Er(t, u) ≤ ∂tEt+r(ur) − ψ∗ (|∂Et+r|(ur)) (4.23)where we adopt the 
onvention of writing ψ′

−(0) = 0. In parti
ular, we have
r0ψ

(
∆(u, ur0)

r0

)
+

∫ r0

0

ψ∗ (|∂Et+r|(ur)) dr + Et+r0(ur0) ≤ Et(u) +

∫ r0

0

∂tEt+r(ur) dr,(4.24)for every 0 < r0 ≤ T − t and ur0 ∈ Jt,r0(u).Proof. Preliminarily, let us point out that (4.16) yields for any r1, r2 > 0

Et,r2(u)−Et,r1(u) ≤ r2ψ
(

∆(u,ur1
)

r2

)
−r1ψ

(
∆(u,ur1

)

r1

)
+
(
Et+r2(ur1)−Et+r1(ur1)

)
, (4.25)Step 1: proof of (4.22). Sin
e by (4.12) the map r 7→ Et,r(u) is a linear perturba-tion of a monotone map, it is also almost everywhere di�erentiable on (0,∞); let rbe a point of di�erentiability and let us 
hoose r1 := r and r2 := r + h, h > 0, (sothat ∆(u, ur)/(r + h) ∈ D(ψ) as well) in (4.25); we also set

G(h) := Et,r+h(u) − Et+r+h(ur) so that d

ds
Et,s(u)

∣∣∣
s=r

=
d

dh
G(h)

∣∣∣
h=0

− ∂tEt+r(ur).When ∆(u, ur) > 0 (4.25) yields, with easy 
al
ulations,
G(h) −G(0)

h
≤

1

h

(
(r + h)ψ

(
∆(u, ur)

r + h

)
− rψ

(
∆(u, ur)

r

))

≤ ψ

(
∆(u, ur)

r + h

)
−

∆(u, ur)

r + h



ψ
(

∆(u,ur)
r+h

)
− ψ

(
∆(u,ur)

r

)

∆(u,ur)
r+h

− ∆(u,ur)
r


 . (4.26)Letting h ↓ 0, also taking into a

ount that ψ is 
ontinuous on int(dom(ψ)) we have

ψ
(

∆(u,ur)
r+h

)
− ψ

(
∆(u,ur)

r

)

∆(u,ur)
r+h

− ∆(u,ur)
r

↑ ψ′
−

(
∆(u, ur)

r

) as h ↓ 0.Therefore, we infer that
G′(0) ≤ ψ

(
∆(u, ur)

r

)
−

∆(u, ur)

r
ψ′
−

(
∆(u, ur)

r

)
= −ψ∗

(
ψ−

′

(
∆(u, ur)

r

))and the same relation holds even when ∆(u, ur) = 0, by the 
onvention ψ′
−(0) = 0.Step 2: proof of (4.23). If ∆(u, ur) = 0, then we may note that ψ∗(ψ′

+(∆(u, ur)/r)) =
ψ∗(ψ′

+(0)) = −ψ(0) = 0, so that (4.23) follows from (4.14) and (4.22).24



The same argument shows that (4.23) is an immediate 
onsequen
e of (4.14) and(4.22) when ∂ψ is single valued, sin
e in that 
ase ψ′
− = ψ′

+.In order to prove (4.23) in the general 
ase, we 
an assume without loss ofgenerality that |∂Et+r|(ur) > 0, and that
|∂Et+r|(ur) ≥ ψ′

−

(
∆(u, ur)

r

)
.If not, we would trivially 
on
lude (4.23) in view of (4.22) and the monotoni
ity of

ψ∗. On the other hand, by (4.14)
|∂Et+r|(ur) ≤ ψ′

+

(
∆(u, ur)

r

)
, thus |∂Et+r|(ur) ∈ ∂ψ

(
∆(u, ur)

r

)
. (4.27)Let us denote by x the number ∆(u,ur)

r
: arguing as in the proof of Lemma 4.4, we
an sele
t a sequen
e {vk} ful�lling

∆(ur, vk) → 0 as k ↑ ∞, ∆(u, ur) < ∆(u, vk), |∂Et+r|(ur) = lim
k↑∞

Et+r(ur) − Et+r(vk)

∆(ur, vk)
.(4.28)We also set

rk :=
∆(u, vk)

x
>

∆(u, ur)

x
= r,noting that

rk ↓ r as k ↑ ∞ and lim sup
k↑∞

Et+r(ur) − Et+r(vk)

∆(ur, vk)
≤ lim sup

∆(ur,vk)→0

Et+r(ur) − Et+r(vk)

x(rk − r)(4.29)by the triangle inequality. Therefore,
d

ds
Et,s(u)

∣∣∣
s=r

= lim
k↑∞

Et,rk(u) − Et,r(u)

rk − r

≤ lim inf
k↑∞

1

rk − r

(
Et+rk(vk) + rkψ

(∆(u, vk)

rk

)
− Et+r(ur) − rψ

(∆(u, ur)

r

))

= lim inf
k↑∞

1

rk − r

(
ψ(x)(rk − r) +

(
Et+rk(vk) − Et+r(vk)

)
+
(
Et+r(vk) − Et+r(ur)

))

≤ ψ(x) + lim sup
k↑∞

Et+rk(vk) − Et+r(vk)

rk − r
− lim

k↑∞

Et+r(ur) − Et+r(vk)

rk − r

≤ ∂tEt+r(ur) + ψ(x) − x|∂Et+r|(ur) = ∂tEt+r(ur) − ψ∗ (|∂Et+r|(ur)) , (4.30)where the �fth passage follows from (2.38), (4.28), and (4.29), whereas the lastidentity is due to (4.19) and (4.27).We argue analogously in the 
ase ∆(u, ur)/r = a, i.e. repeating (4.28)-(4.30):the only di�eren
e being that the �nal identity in (4.30) follows now from (4.20).Step 3: proof of (4.24). We note that for every r0 > 0 and every (measurable)25



sele
tion ur ∈ Jr(t, u), r ∈ (0, r0],

ψ

(
∆(u, ur0)

r0

)
+ Et+r0(ur0) − Et(u) = Et,r0(u) − lim

r↓0
Et,r(u) ≤

∫ r0

0

d

dr
Et,r(u) dr

≤

∫ r0

0

(
∂tEt+r(ur) − ψ∗ (|∂Et+r|(ur))

)
dr,where we have used (4.13) in the �rst passage, the monotoni
ity (up to a linearperturbation) of r 7→ Et,r(u) in the se
ond passage and, �nally, (4.23).4.2 Estimates for the approximate solutionsA priori estimates. Preliminarily, we re
all the following well-known Dis
reteGronwall Lemma:Lemma 4.6 Let B, b, and κ be positive 
onstants with 1 − b ≥ 1

κ
> 0 and let

{an} ⊂ [0,∞) be a sequen
e satisfying
an ≤ B + b

n∑

k=1

ak ∀n ∈ N.Then, {an} 
an be bounded by
an ≤ κBeκ bn ∀n ∈ N. (4.31)Proposition 4.7 (A priori estimates) Under the assumptions of Theorem 3.5,for τ > 0 let {Un

τ }
N
n=1 be a family of solutions to (3.2), and let Uτ , Uτ , and Ũτ bethe interpolants de�ned by (3.3) and (3.5). Then, the dis
rete energy inequality

∫
tτ

sτ

ψ

(
∆(Uτ (r), Uτ (r))

τ

)
dr +

∫
tτ

sτ

ψ∗
(
|∂Er|(Ũτ(r))

)
dr + Etτ

(Uτ (tτ ))

≤ Esτ
(Uτ (sτ )) +

∫
tτ

sτ

∂tEr(Ũτ (r)) dr

(4.32)holds for every pair of nodes sτ < tτ ∈ Pτ . Moreover, there exists a positive 
onstant
C su
h that the following estimates hold for every τ > 0:

∫ T

0

ψ

(
∆(Uτ (r), Uτ (r))

τ

)
dr ≤ C,

∫ T

0

ψ∗
(
|∂Er|(Ũτ(r))

)
dr ≤ C, (4.33)

F(Uτ (t)) ≤ C, F(Ũτ (t)) ≤ C ∀t ∈ (0, T ), (4.34)
sup
t∈(0,T )

∆(Uτ (t), Ũτ (t)) = o(1), sup
t∈(0,T )

∆(Uτ (t), Uτ (t)) = o(1) as τ ↓ 0. (4.35)Proof. Let tj−1, tj be two 
onse
utive nodes of the partition Pτ (
f. (3.1)), and let
t ∈ (tj−1, tj ] : referring to the de�nition (4.3) of the Moreau-Yosida approximation
Er, let us apply inequality (4.24) with the 
hoi
es t = tj−1, u = U j−1

τ , r0 = t− tj−1,26



ur0 = Ũτ (t), ur = Ũτ (r) for r ∈ (tj−1, t). Thus, after 
hanging variable in the twointegrals we obtain
(t− tj−1)ψ

(
∆(U j−1

τ , Ũτ (t))

t− tj−1

)
+

∫ t

tj−1

ψ∗
(
|∂Er|(Ũτ(r))

)
dr + Et(Ũτ (t))

≤ Etj−1
(U j−1

τ ) +

∫ t

tj−1

∂tEr(Ũτ (r)) dr ∀ t ∈ (tj−1, tj].

(4.36)Writing (4.36) for t = tj , we obtain
∫ tj

tj−1

ψ

(
∆(Uτ (r), Uτ (r))

τ

)
dr +

∫ tj

tj−1

ψ∗
(
|∂Er|(Ũτ(r))

)
dr + Etj(U

j
τ )

≤ Etj−1
(U j−1

τ ) +

∫ tj

tj−1

∂tEr(Ũτ (r)) dr.

(4.37)Hen
e, (4.32) follows by adding up the 
ontributions (4.37) on the subintervals ofthe partition. It follows from the superlinear growth of ψ that there exists a positive
onstant C su
h that
∫ tj

tj−1

ψ

(
∆(Uτ (r), Uτ (r))

τ

)
dr ≥ ∆(U j−1

τ , U j
τ ) − Cτ

≥ ∆(xo, U
j
τ ) − ∆(xo, U

j−1
τ ) − Cτ,

(4.38)the last passage following from the triangle inequality. Combining (4.37) and (4.38),re
alling that ψ∗ is positive (
f. Remark 4.3), summing over the index j, and us-ing (4.7), we obtain
1

A
F(U j

τ ) ≤ ∆(xo, U
j
τ )+Etj (U

j
τ ) ≤ CT+∆(xo, u0)+E0(u0)+

∫ tj
0
∂tEr(Ũτ (r)) dr

≤ CT + ∆(xo, u0) + E0(u0) + A

∫ tj

0

F(Ũτ(r)) dr

≤ CT + ∆(xo, u0) + E0(u0) + AC

∫ tj

0

F(Uτ (r)) dr, (4.39)the third inequality following from (4.8) and the fourth one from (4.11). Therefore,we dedu
e that
F(U j

τ ) ≤ c0 + C

j∑

k=1

τF(Uk
τ ) ∀j = 1, . . . , N,where the 
onstant c0 only depends on the initial data and the data of the problem.Then, the dis
rete Gronwall Lemma 4.6 yields the �rst estimate in (4.34), and these
ond one readily follows thanks to (4.11). Re
alling (4.8), we also infer that

∫ tj

0

∣∣∣∂tEr(Ũτ (r))
∣∣∣ dr ≤ C for all τ > 0. (4.40)27



Therefore, summing up over the index j and arguing by 
omparison in (4.37) we
on
lude the estimates of (4.33).Finally, in order to 
he
k the �rst limit in (4.35) (in fa
t, the se
ond estimatein (4.35) 
an be proved in the same way), we start by noting that, from (4.36), thepositivity of ψ∗ and the previous estimates
(t− tj−1)ψ

(
∆(U j−1

τ , Ũτ (t))

t− tj−1

)
≤ C ∀t ∈ (tj−1, tj ], j = 1, . . . N.Combining this with the superlinear growth of ψ we obtain that for any M ≥ 0there exists S ≥ 0 ful�lling

∆(Uτ (t), Ũτ (t)) ≤
C

M
+ (t− tj−1)

S

M
≤

C

M
+ τ

S

M
∀ t ∈ (tj−1, tj ], ∀ j = 1, . . . , N.Thus, we easily dedu
e that for any ε > 0 there exist τ0 > 0 su
h that for 0 < τ < τ0

∆(Uτ (t), Ũτ (t)) ≤ ε ∀t ∈ (0, T ),when
e the desired 
on
lusion.4.3 Passage to the limit and proof of existen
eThe proof of the ensuing Proposition 4.9 is an adaptation of the argument devel-oped for [5, Cor. 3.3.4℄, and is based on the following version of the As
oli-Arzelà
ompa
tness theorem, proved in [5, Prop. 3.3.1℄, whi
h we re
all here (in a slightlysimpli�ed form) for 
onvenien
e.Proposition 4.8 Under assumptions (2.1)�(2.2) on the spa
e X, let K be a σ-sequentially 
ompa
t subset of X with the following property: for all {un}, {vn}, u, v ∈
K,

(un, vn)
σ
⇀ (u, v) ⇒ lim inf

n↑∞
∆(un, vn) ≥ ∆(u, v). (4.41)Let {un} be a sequen
e of 
urves un : [0, T ] → X ful�lling

un(t) ∈ K ∀n ∈ N, ∀t ∈ [0, T ], (4.42)
lim sup
n↑∞

∆(un(s), un(t)) ≤ ω(s, t) ∀s, t ∈ [0, T ], s < t, (4.43)where ω : [0, T ] × [0, T ] → [0,∞) is a fun
tion su
h that
lim

s↑r, t↑r s<t
ω(s, t) = 0 ∀r ∈ [0, T ].Then, there exist an in
reasing subsequen
e k 7→ nk and a σ-
ontinuous 
urve u :

[0, T ] → X su
h that
unk

(t)
σ
⇀ u(t) ∀t ∈ [0, T ],and the limit 
urve u satis�es

lim
r↑s

∆(u(r), u(s)) = lim
t↓s

∆(u(s), u(t)) = 0 ∀ s ∈ (0, T ). (4.44)28



Proposition 4.9 (Compa
tness of the approximate solutions) Under the as-sumptions of Theorem 3.5, given any vanishing sequen
e τn ↓ 0 of time steps, thereexist a subsequen
e (still labeled τn), a limit 
urve u ∈ AC(0, T ;X0), and a fun
tion
L ∈ L1(0, T ) su
h that the following 
onvergen
es hold as n ↑ ∞

Uτn(t)
σ
⇀ u(t), Uτn(t)

σ
⇀ u(t), Ũτn(t)

σ
⇀ u(t) ∀t ∈ [0, T ], (4.45)

lim inf
n↑∞

Et(Ũτn(t)) ≥ Et(u(t)), lim inf
n↑∞

Etτn (t)(Uτn(t)) ≥ Et(u(t)) ∀t ∈ [0, T ], (4.46)
∆(Uτn , Uτn)

τn
⇀ L in L1(0, T ), L(t) ≥ |u′|(t) for a.e. t ∈ (0, T ), (4.47)
lim inf
n↑∞

|∂Et|(Ũτn(t)) ≥ |∂−Et|(u(t)) ∀t ∈ [0, T ]. (4.48)Proof. It is easy to see that estimate (4.33) and the superlinear growth of ψ entailthat the sequen
e
{

∆(Uτ (r), Uτ (r))

τ

} is bounded and uniformly integrable in L1(0, T ).Therefore, the Dunford-Pettis 
riterion ensures that {∆(Uτ (r),Uτ (r))

τ
} is weakly rela-tively 
ompa
t in L1(0, T ), when
e the �rst of (4.47).Exploiting (4.34) and assumption (2.40) on the sublevels of F , we 
an applyProposition 4.8 to the sequen
e {Uτn}, of 
ourse with K as a suitable sublevel of

F (note that (4.41) is then a 
onsequen
e of (2.36)). Moreover, in order to 
he
k(4.43), let us note that, by the triangle inequality,
∆(Uτn(s), Uτn(t)) ≤

∫
tτn(t)

tτn(s)

∆(Uτn(r), Uτn(r))

τn
dr ∀ 0 ≤ s ≤ t ≤ T.Therefore, passing to the limit as n ↑ ∞ and re
alling (2.36), (3.4) and (4.47), weinfer

∆(u(s), u(t)) ≤ lim sup
n↑∞

∆(Uτn(s), Uτn(t)) ≤

∫ t

s

L(r) dr ∀ 0 ≤ s ≤ t ≤ T, (4.49)when
e (4.43). Thus, thanks to Proposition 4.8 we �nd a limit 
urve u ∈ C0([0, T ];X)and a subsequen
e along whi
h
Uτn(t)

σ
⇀ u(t) ∀t ∈ [0, T ].The 
onvergen
es (4.45) for Uτn and Ũτn then follow from (4.35) and (2.41); further,

u ∈ AC(0, T ;X0) by (4.49). The se
ond inequality in (4.47) also follows from (4.49)and Proposition 2.2.As far as (4.46) is 
on
erned, the �rst lim inf inequality ensues from (4.45),estimate (4.34) and the lower semi
ontinuity assumption (2.36); in the same way,from (2.37) we dedu
e that
lim sup
n↑∞

∂tEt(Ũτn(t)) ≤ ∂tEt(u(t)) ∀ t ∈ [0, T ]. (4.50)29



Finally, in order to prove the se
ond of (4.46), we 
ombine the estimate
∣∣Etτn (t)(Uτn(t)) − Et(Uτn(t))

∣∣ ≤
∫

tτn (t)

t

∂tEr(Uτn(t)) dr

≤ A

∫
tτn (t)

t

F(Uτn(t)) dr

≤ C(tτn(t) − t) ∀ t ∈ [0, T ]with the lower semi
ontinuity inequality (again due to (2.36))
lim sup
n↑∞

Et(Uτn(t)) ≤ Et(u(t)) ∀ t ∈ [0, T ].In the end, (4.48) follows from (4.45) and the de�nition (2.18) of |∂−E|.We may now 
omplete the proof of Theorem 3.5.Proof of Theorem 3.5. By (4.45), u(0) = u0. Let us �x t ∈ (0, T ] and 
onsiderthe inequality (4.32) for the nodes tτn(t) and s = 0:
∫

tτn(t)

0
ψ
(

∆(Uτn
(r),Uτn(r))

τn

)
dr +

∫
tτn(t)

0
ψ∗
(
|∂Er|(Ũτn(r))

)
dr + Etτn (t)(Uτn(t))

≤ E0(u0) +

∫
tτn(t)

0

∂tEr(Ũτn(r)) dr.
(4.51)We have

lim inf
n↑∞

(∫
tτn (t)

0
ψ
(

∆(Uτn
(r),Uτn (r))

τn

)
dr
)
≥
∫ t
0
ψ(L(r)) dr ≥

∫ t
0
ψ(|u′|(r)) dr, (4.52)the �rst inequality due to the �rst of (4.47) and the 
onvexity of ψ, while the se
ondinequality follows from the se
ond of (4.47) and the monotoni
ity of ψ. Now, forlater 
onvenien
e let us set A(t) := lim infn↑∞ |∂Et|(Ũτn(t)) for a.e. t ∈ (0, T ). ByFatou's lemma and the monotoni
ity of ψ∗ we have

lim inf
n↑∞

(∫
tτn(t)

0

ψ∗
(
|∂Er|(Ũτn(r))

)
dr

)
≥

∫
tτn (t)

0

lim inf
n↑∞

ψ∗
(
|∂Er|(Ũτn(r))

)
dr

≥

∫ t

0

ψ∗ (A(r)) dr ≥

∫ t

0

ψ∗
(
|∂−Er|(u(r))

)
dr. (4.53)Furthermore, (4.52), (4.53), and the a priori estimates (4.33) also entail

∫ T

0

|u′|(r)|∂−Er|(u(r)) dr ≤

∫ T

0

ψ(|u′|(r)) dr +

∫ T

0

ψ∗
(
|∂−Er|(u(r))

)
dr ≤ C.(4.54)In the same way, we �nd that

Et(u(t)) +

∫ T

0

|∂tEt(u(t))| dt ≤ C ∀ t ∈ [0, T ]. (4.55)30



Now, 
ombining (4.45), (4.46), (4.52)-(4.53), and (4.50) with the Fatou Lemma,we manage to pass to the limit in (4.51) and obtain
∫ t

0

ψ(|u′|(r)) dr +

∫ t

0

ψ∗
(
|∂−Er|(u(r))

)
dr + Et(u(t)) ≤ E0(u0) +

∫ t

0

∂tEr(u(r)) dr.(4.56)On the other hand, note that, thanks to (4.54) and (4.55), we may apply the 
hainrule of De�nition 2.5 to the limit 
urve u ∈ AC(0, T ;X0). Upon integration, we get
E0(u0) − Et(u(t)) +

∫ t

0

∂tEr(u(r)) dr ≤

∫ t

0

|u′|(r)|∂−Er|(u(r)) dr

≤

∫ t

0

ψ (|u′|(r)) dr +

∫ t

0

ψ∗
(
|∂−Er|(u(r))

)
dr.Thus, (4.56) yields

∫ t

0

(
ψ (|u′|(r)) + ψ∗

(
|∂−Er|(u(r))

)
+

d

dr
Er(u(r)) − ∂tEr(u(r))

)
dr = 0.Sin
e the integrand is non negative by inequality (2.30) and t ∈ (0, T ) is arbitrary,we dedu
e

ψ (|u′|(t))+ψ∗
(
|∂−Et|(u(t))

)
+
d

dt
Et(u(t))−∂tEt(u(t)) = 0 for a.e. t ∈ (0, T ), (4.57)i.e., (3.8), when
e (2.35) as well. The above relation yields the energy identity (3.9)upon integration.Finally, taking the lim sup as n ↑ ∞ of (4.51) and again using the identity justproved, we dedu
e

lim sup
n↑∞

(
tτn (t)∫

0

ψ
(

∆(Uτn
(r),Uτn (r))

τn

)
dr +

tτn (t)∫
0

ψ∗
(
|∂Er|(Ũτn(r))

)
dr + Etτn(t)(Uτn(t))

)

≤ E0(u0) +
∫ t
0
∂tEr(u(r)) dr =

∫ t
0
ψ (|u′|(r)) dr +

∫ t
0
ψ∗ (|∂−Er|(u(r))) dr + Et(u(t)).So, taking into a

ount (4.46), (4.52), and (4.53) and arguing by 
omparison, wededu
e the 
onvergen
es (3.10)�(3.11) and the �rst of (3.12). We also 
on
lude these
ond of (3.12) by taking the lim sup as n ↑ ∞ of the following inequality

∫
tτn

(t)

0

ψ

(
∆(Uτn(r), Uτn(r))

τn

)
dr +

∫ t

0

ψ∗
(
|∂Er|(Ũτn(r))

)
dr + Et(Ũτn(t))

≤ E0(u0) +

∫
tτn (t)

0

∂tEr(Ũτn(r)) dr(whi
h is obtained by summing up (4.32) and (4.36)), and arguing as in the abovelines. 31



In order to prove (3.13), we note that, 
ombining (4.53) with (3.11) leads to
lim
n↑∞

∫ t

0

ψ∗
(
|∂Er|(Ũτn(r))

)
dr =

∫ t

0

lim inf
n↑∞

ψ∗
(
|∂Er|(Ũτn(r))

)
dr

=

∫ t

0

ψ∗ (A(r)) dr =

∫ t

0

ψ∗
(
|∂−Er|(u(r))

)
dr ∀t ∈ [0, T ],

(4.58)when
e
lim inf
n↑∞

ψ∗
(
|∂Et|(Ũτn(t))

)
= ψ∗(A(t)) = ψ∗(|∂−Et|(u(t))) for a.e. t ∈ (0, T ).Re
alling (2.35), we 
on
lude that for a.e. t ∈ (0, T )

|u′|(t) · A(t) ≤ ψ
(
|u′|(t)

)
+ ψ∗

(
A(t)) = |u′|(t) · |∂−Et|(u(t)) ≤ |u′|(t) · A(t) (4.59)so that all the above inequalities hold as equalities and, if |u′|(t) 6= 0, we 
on
lude

A(t) = |∂−Et|(u(t)), while |u′|(t) = 0 leads to the se
ond of (3.13).Finally, suppose �rst that ψ∗ has superlinear growth at in�nity: it follows fromthe a priori estimate (4.33) that the sequen
e {|∂Et|(Ũτn)} is uniformly integrable in
L1(0, T ). Hen
e, the fundamental 
ompa
tness theorem of Young measures theory(see [10, Thm. 1℄ and also [12℄) ensures that {|∂Et|(Ũτn)} admits a subsequen
e(whi
h we do not relabel) and a limit Young measure ν = {νt}t∈(0,T ) (νt being aprobability measure on R for a.e. t ∈ (0, T )) su
h that

νt is 
on
entrated on the set L (t) of the limit pointsof {|∂Et|(Ũτn)(t)} for a.e. t ∈ (0, T ),
(4.60)

|∂Et|(Ũτn) ⇀ Σ(t) :=

∫

R

ξ dνt(ξ) in L1((0, T )), (4.61)
lim inf
n↑∞

∫ T

0

ψ∗(|∂Er|(Ũτn)(r)) dr ≥

∫ T

0

(∫

R

ψ∗(ξ) dνr(ξ)

)
dr. (4.62)Now, the de�nition of |∂−E| gives for a.e. t ∈ (0, T )

|∂−Et|(u(t)) ≤ ξ, when
e ψ∗(|∂−Et|(u(t))) ≤ ψ∗(ξ) ∀ ξ ∈ L (t). (4.63)Combining the above inequality, (4.58), (4.60), and (4.62), we dedu
e that
∫ T

0

(∫

R

ψ∗(ξ) dνr(ξ)

)
dr =

∫ T

0

ψ∗(|∂−Er|(u(r))) dr,when
e, again by (4.63),
ψ∗(ξ) = ψ∗(|∂−Et|(u(t))) for a.e. ξ ∈ L (t) for a.e. t ∈ (0, T ). (4.64)Taking into a

ount the above identity, (2.35) and the �rst of (4.63) we thus 
on
ludethe following 
hain of inequalities

|u′|(t) ξ ≤ ψ(|u′|(t)) + ψ∗(ξ) = ψ(|u′|(t)) + ψ∗(|∂−Et|(u(t)))

= |u′|(t) |∂−Et|(u(t)) ≤ |u′|(t) ξ ∀ ξ ∈ L (t) for a.e. t ∈ (0, T ).
(4.65)32



Then, re
alling the de�nition (3.14) of the set I , we 
on
lude that
ξ = |∂−Et|(u(t)) ∀ ξ ∈ L (t) for a.e. t ∈ I . (4.66)Therefore, the limit Young measure ν ful�lls νt = δ|∂−Et|(u(t)) for a.e. t ∈ I . Sin
ethe sequen
e {|∂Et|(Ũτn)} is uniformly integrable, we 
on
lude (3.15).Without the superlinear growth assumption on ψ∗, using a version of the BitingLemma (see e.g. [49, Thm. 13℄) we dedu
e that there is a sequen
e of Borel subsets

On ⊂ (0, T ), de
reasing to ∅, su
h that, denoting by In the indi
ator fun
tion of theset (0, T ) \ On the sequen
e ωn := In |∂Et|(Ũτn) is uniformly integrable in L1(0, T ).Thus, we apply [10, Thm. 1℄ to the sequen
e {ωn}, �nd an asso
iated limit Youngmeasure µ = {µt}t∈(0,T ), and 
on
lude relations (4.60)�(4.62) for a (not relabeled)subsequen
e {ωn}. Sin
e the sequen
e On ↓ ∅, we may 
he
k that for a.e. t ∈ (0, T )the set of the limit points of {ωn(t)} 
oin
ides with the set of the limit points of
{|∂Et|(Ũτn)(t)}, hen
e relations (4.63) hold as well. On the other hand,
lim inf
n↑∞

∫ T

0

ψ∗(ωn(r)) dr ≤ lim inf
n↑∞

∫ T

0

ψ∗(|∂Er|(Ũτn)(r)) dr =

∫ T

0

ψ∗(|∂−Er|(u(r))) drso that we similarly 
on
lude that (4.64) for the Young measure µ. Arguing exa
tlyin the same way as above, we infer (3.16).Hen
e, the proof is done.Part II: appli
ations in Bana
h spa
es5 Preliminaries in Bana
h spa
esIn this part we fo
us our attention on the 
ase in whi
h the ambient spa
e X (
f.(2.1)) is a separable Bana
h spa
e: to stress this assumption, we shall indi
ate itwith the letter B. We shall denote by ‖ · ‖ the norm of B, by ‖ · ‖∗ the norm on thedual spa
e B′ and by 〈·, ·〉 the duality pairing between B′ and B.For simpli
ity, in the sequel we shall work with non symmetri
 distan
es ∆ on
B taking values in [0,∞). Furthermore, to �x ideas we shall suppose that

σ is the strong topology of B.5.1 Sublinear fun
tionalsLet us re
all that a sublinear fun
tional is a 
onvex and positively homogeneous map
η : B → [0,∞), thus satisfying the following 
onditions:

η(λv) = λη(v) ∀λ ≥ 0 ∀ v ∈ B (5.1a)
η(v + w) ≤ η(v) + η(w) ∀ v, w ∈ B. (5.1b)33



It is easy to 
he
k that η(0) = 0 and it is well-known that, among all the positivelyhomogenous maps satisfying (5.1a), 
ondition (5.1b) is equivalent to the 
onvexityof η. We also assume that there exists a positive 
onstant K su
h that
K−1‖v‖ ≤ η(v) ≤ K‖v‖ ∀v ∈ B. (5.1
)The 
hoi
e
∆(u, v) := η(v − u) ∀u, v ∈ B (5.2)indu
es an asymmetri
 distan
e on B whi
h satis�es the properties of Se
tion 2.1and is metri
ally equivalent to the distan
e indu
ed by the norm of B. Therefore,given a proper fun
tional E : B → (−∞,∞] and a point u ∈ dom(E), we shall usethe notation

|∂E| (u) = lim sup
v→u

(E(u) − E(v))+

∆(u, v)
. (5.3)Duality. For any u ∈ B we also introdu
e the dual fun
tional η∗ := B′ → [0,∞)de�ned by

η∗(σ) := sup
v∈B\{0}

〈σ, v〉

η(v)
= sup

{
〈σ, v〉 : η(v) = 1

}
∀σ ∈ B′ ∀u ∈ B. (5.4)Note that if η is a norm, then the related fun
tional η∗ 
oin
ides with the 
orre-sponding dual norm of B′. Further, (5.1
) implies, respe
tively,

K−1‖y‖∗ ≤ η∗(y) ≤ K‖y‖∗ ∀ y ∈ B′. (5.5)Let ψ : [0,∞) → [0,∞) be a positive, 
onvex, and lower semi
ontinuous fun
tion.We de�ne the fun
tional Ψ : B → [0,∞) by
Ψ(v) := ψ(η(v)) ∀ v ∈ B, (5.6)and denote by ∂Ψ its subdi�erential and by Ψ∗ its Fen
hel-Moreau 
onjugate
Ψ∗(σ) := sup

v∈B
〈σ, v〉 − Ψ(v).In the sequel, we shall need the following duality result.Lemma 5.1 The 
onjugate of Ψ is given by

Ψ∗(σ) := ψ∗(η∗(σ)) ∀σ ∈ B′. (5.7)Moreover, we have the following 
hara
terization of the subdi�erential ∂Ψ: for all
v ∈ B

σ ∈ ∂Ψ(v) ⇐⇒
(
η∗(σ) ∈ ∂ψ(η(v)) and η∗(σ) · η(v) = 〈σ, v〉

)
. (5.8)
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Proof. It follows from the de�nition of η∗ that 〈σ, v〉 ≤ η(v) η∗(σ) for all v ∈ B and
σ ∈ B′. Hen
e, by the de�nition of Ψ∗ we have

Ψ∗(σ) ≤ sup
v∈B

(
η(v) · η∗(σ) − ψ(η(v))

)
= sup

r≥0

(
r η∗(σ) − ψ(r)

)
= ψ∗(η∗(σ)).On the other hand, for any σ ∈ B′ we 
an �nd a sequen
e {vn} ful�lling η(vn) =

1, η∗(σ) = limn↑∞〈σ, vn〉. Then, for any r ≥ 0

rη∗(σ) − ψ(r) = lim
n↑∞

(〈σ, rvn〉 − ψ (r η(vn))) = lim
n↑∞

(〈σ, rvn〉 − ψ (η (rvn)))

≤ sup
v∈B

(
〈σ, v〉 − ψ(η(v))

)
= Ψ∗(σ),and (5.7) ensues.Thanks to (5.7), it is straightforward to 
he
k that

(
Ψ(v) + Ψ∗(σ) = 〈σ, v〉

)
⇔

(
ψ(η(v)) + ψ∗(η∗(σ)) = η(v) · η∗(σ) = 〈σ, v〉

)
.On the other hand, the standard 
onvex analysis 
hara
terization of the subdi�er-ential in terms of the Legendre-Fen
hel-Moreau transform yields

σ ∈ ∂vΨ(v) ⇔ Ψ(v) + Ψ∗(σ) = 〈σ, v〉,

η∗(σ) ∈ ∂ψ(η(v)) ⇔ ψ(η(v)) + ψ∗(η∗(σ)) = η(v) · η∗(σ).Combining the above relations, we readily dedu
e (5.8).5.2 Subdi�erential and slopes for admissible fun
tionalsDe�nition 5.2 (Fré
het subdi�erential) Let E : B → (−∞,∞] be a properfun
tional; the Fré
het subdi�erential ∂E(u) ⊂ B′ of E at a point u ∈ dom(E) isde�ned by
ξ ∈ ∂E(u) ⇔ lim inf

w→u

E(w) − E(u) − 〈ξ, w− u〉

‖w − u‖
≥ 0. (5.9)It is well-known that the subdi�erential is single-valued and 
oin
ides with the usualdi�erential DE when it exists, e.g. if E is a fun
tional of 
lass C1. If E is 
onvex,then ∂E 
an be equivalently 
hara
terized by

ξ ∈ ∂E(u) ⇔ E(w) − E(u) ≥ 〈ξ, w − u〉 ∀w ∈ B,i.e. the Fré
het subdi�erential 
oin
ides with the subdi�erential in the sense of
onvex analysis. In fa
t, in the sequel we shall 
onsider a more general 
onvexityproperty.
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λ-
onvexity. We re
all that a proper fun
tional E : B → (−∞,∞] is λ-
onvex forsome λ ∈ R if
E(uθ) ≤ (1 − θ)E(u0) + θE(u1) −

1

2
λθ(1 − θ)‖u0 − u1‖

2 ∀ θ ∈ [0, 1] ∀u0, u1 ∈ B ,(5.10)where we have set uθ = (1−θ)u0 + θu1. The following result extends [5, Prop. 1.4.4,Thm. 2.4.9℄ to the asymmetri
 setting and to λ-
onvex fun
tionals.Lemma 5.3 Let E : B → (−∞,∞] be proper, lower semi
ontinuous, and λ-
onvexfor some λ ∈ R. Then,1. for all u ∈ dom(E) the Fré
het subdi�erential ∂E(u) is a 
onvex weakly∗-
losedset, it 
an be 
hara
terized by
ξ ∈ ∂E(u) ⇔ E(w)−E(u) ≥ 〈ξ, w−u〉+

λ

2
‖w−u‖2 ∀w ∈ B , (5.11)and the graph of the operator ∂E is strongly-weakly∗ 
losed, namely

un → u, ξn⇀
∗ξ, ξn ∈ ∂E(un) ⇒ ξ ∈ ∂E(u). (5.12)2. Let η be a positively homogenous fun
tional ful�lling (5.1a,b,
) and indu
ingthe asymmetri
 distan
e ∆ (5.2); let |∂E| be the ∆-lo
al slope of E . Then,

|∂E| (u) = sup
v 6=u

(
E(u) − E(v)

η(v − u)
−

1

2
|λ|K2η(v − u)

)+

∀u ∈ dom(E) , (5.13)
|∂E| (u) = min

ξ∈∂E(u)
η∗(−ξ) ∀u ∈ dom(E) , (5.14)the map u 7→ |∂E| (u) is lower semi
ontinuous. (5.15)Proof. Easy 
omputations lead to (5.11), whi
h in turn yields (5.12). Further, wenote that (5.1
) and (5.10) yield that

E(uθ) ≤ (1−θ)E(u0)+θE(u1)+
|λ|

2
K2θ(1−θ)η2(u1−u0) ∀ θ ∈ [0, 1] ∀u0, u1 ∈ B .Moving from the above inequality and repeating the very same 
omputations as inthe proof of [5, Thm. 2.4.9℄, one 
he
ks (5.13). Finally, (5.11) and (5.1
) again yieldthat for all u ∈ dom(E)

E(u) − E(u+ w) −
1

2
|λ|K2η2(w) ≤ 〈−ξ, w〉 ∀w ∈ B ∀ ξ ∈ ∂E(u).Taking into a

ount (5.13), we dedu
e that
|∂E| (u) ≤ min

ξ∈∂E(u)
η∗(−ξ) .To prove the 
onverse inequality, we introdu
e the quantity

δE(u;w) := lim sup
ε↓0

E(u+ εw) − E(u)

ε
for u ∈ dom(E), w ∈ B.36



Using the λ-
onvexity inequality (5.10) and the de�nition of |∂−E| it is not di�
ultto 
he
k thatthe map w 7→ δE(u;w) is 
onvex for all u ∈ dom(E) ,
{
E(u+ w) − E(u) ≥ δE(u;w) + λ

2
‖w‖2

δE(u;w) ≥ −|∂E| (u) η(w)
∀u ∈ dom(E), w ∈ B .

(5.16)Now, mimi
king the proof of [5, Prop. 1.4.4℄, we 
onsider the epigraph
K+ = {(w, r) ∈ B × R : r ≥ δE(u;w)}of the fun
tion w 7→ δE(u;w) and the open hypograph

K− = {(w, r) ∈ B × R : r < −|∂E| (u) η(w)}of w 7→ −|∂E| (u) η(w). Sin
e K+ and K− are disjoint by (5.16), a version of theHahn-Bana
h theorem yields that there exists ξ ∈ B′ and α ∈ R su
h that
−|∂E| (u) η(w) ≤ 〈ξ, w〉+ α ≤ δE(u;w) ∀w ∈ B. (5.17)A standard argument shows that α = 0. Hen
e, from the �rst inequality in (5.17)and the arbitrariness of w we dedu
e that η∗(−ξ) ≤ |∂E| (u). The se
ond of (5.17),
ombined with (5.16), gives that ξ ful�lls (5.11). Thus, ξ ∈ ∂E(u), and (5.14)ensues. Finally, in order to 
he
k (5.15) we �x a sequen
e un → u with Λ :=

lim infn↑∞ |∂E| (un) < ∞. For any ε > 0 there exists a subsequen
e {un′} anda

ordingly a sequen
e {ξn′} ⊂ B′, with ξn′ ∈ ∂E(un′) for all n′, ful�lling
lim
n′↑∞

η∗(−ξn′) = lim
n′↑∞

min
ξ∈∂E(un′ )

η∗(−ξ) = lim
n′↑∞

|∂E| (un′) ≤ Λ + ε.Due to (5.1
), {ξn′} is bounded in B′, hen
e, up to a subsequen
e, we dedu
e that
ξn′⇀∗ξ, with ξ ∈ ∂E(u) by (5.12). Thus, thanks to (5.14) and the weak∗-lowersemi
ontinuity of η∗ we dedu
e

|∂E| (u) ≤ η∗(−ξ) ≤ lim
n′↑∞

|∂E| (un′) ≤ lim inf
n↑∞

|∂E| (un) + ε.Being ε arbitrary, (5.15) follows.Admissible fun
tionals. We are now in the position of introdu
ing the broadest
lass of (energy) fun
tionals whi
h we are going to ta
kle in the framework of ourmetri
 approa
h to doubly nonlinear evolution equations.De�nition 5.4 (Admissible fun
tionals) We say that a proper and lower semi
ontinuous fun
tional E : B → (−∞,∞] is admissible if it 
an be de
omposed into
37



the sum E = E1 + E2, the fun
tionals E1 and E2 satisfying the following 
onditions
E1 is proper, λ-
onvex for some λ ∈ R, l.s.
., and bounded from below,
E2 is proper, and
∀{un} ⊂ B, (un → u, sup

n
E1(un) <∞) ⇒ lim inf

n↑∞
E2(un) ≥ E2(u) ;

(5.18)
∀M > 0 ∃ 0 < K1 < 1, K2 > 0 s.t.E2(u) ≥ −K1E1(u) −K2 ∀u ∈ B with ‖u‖ ≤ M,(5.19)
∀u ∈ dom(E) ∃! ξ =: D̃E2(u) ∈ B′ s.t. ∀{un} ⊂ B, with un → u, sup

n
E1(un) <∞

lim
n↑∞

E2(un) − E2(u) − 〈ξ, un − u〉

‖un − u‖
= 0, (5.20)

∀M > 0 ∃K3 > 0 s.t. ‖D̃E2(u)‖∗ ≤ K3 ∀u ∈ B with max (‖u‖, E1(u)) ≤M.(5.21)
∀ {un} ⊂ B, un → u, sup

n
E1(un) <∞ ⇒ D̃E2(un)⇀

∗D̃E2(u). (5.22)Remark 5.5 Let us point out that with (5.18) and (5.20) we require E2 to be lowersemi
ontinuous and (Fré
het) di�erentiable along sequen
es with bounded E1-energyand ; further, (5.21) states that D̃E2 is estimated by the fun
tional E1 and (5.22)that D̃E2 is 
ontinuous again along sequen
es with bounded E1-energy. In otherwords, the fun
tional E2 is a dominated perturbation of the (λ)-
onvex fun
tional E1.In [44℄ a similar 
lass of dominated 
on
ave perturbations of 
onvex fun
tionals was
onsidered.The following result 
olle
ts some properties of the Fré
het subdi�erential and ofthe slopes of admissible fun
tionals, extending Lemma 5.3.Proposition 5.6 Let E : B → (−∞,∞] be an admissible fun
tional ( with E =
E1+E2 in the sense of De�nition 5.4), and let η be a positively homogenous fun
tionalful�lling (5.1a,b,
) and indu
ing the asymmetri
 distan
e ∆ (5.2). Then,1. for all u ∈ dom(E) the Fré
het subdi�erential ∂E(u) is a 
onvex and weakly∗
losed set,

∂E(u) = ∂E1(u) + D̃E2(u) ∀u ∈ dom(∂E), (5.23)and ∂E satis�es the strong-weak∗ 
losedness property along sequen
es withbounded energy
un → u, ξn⇀

∗ξ, ξn ∈ ∂E(un) sup
n

|E(un)| <∞ ⇒ ξ ∈ ∂E(u) ;(5.24)2. for all u ∈ dom(E)

∂E(u) 6= ∅ ⇔ |∂E| (u) <∞ and |∂E| (u) = min
ξ∈∂E(u)

η∗(−ξ) ,

|∂−E|(u) = |∂E| (u) ∀u ∈ dom(∂E).
(5.25)38



Proof. First of all, we show that
∂E(u) − D̃E2(u) ⊂ ∂E1(u) ∀u ∈ dom(∂E).Indeed, let us �x any ζ ∈ ∂E(u): sin
e E1 is 
onvex, in order to show that ζ−D̃E2(u) ∈

∂E1(u) it is su�
ient to 
he
k that for all sequen
e {wn} with wn → u we have
lim inf
n↑∞

E1(wn) − E1(u) − 〈ξ − D̃E2(u), wn − u〉

‖wn − u‖

= lim inf
n↑∞

(
E(wn) − E(u) − 〈ξ, wn − u〉

‖wn − u‖
−

E2(wn) − E2(u) − 〈D̃E2(u), wn − u〉

‖wn − u‖

)
≥ 0.(5.26)Now, we may suppose that supn E1(wn) <∞, hen
e (5.26) trivially ensues from thefa
t that ζ ∈ ∂E(u) and from the de�nition of D̃E2(u). The proof of the 
onversein
lusion ∂E1(u) + D̃E2(u) ⊂ ∂E(u) for all u ∈ dom(∂E) follows the same lines.Thanks to (5.23) and to Lemma 5.3, we immediately have that ∂E(u) is a 
onvexand weakly∗ 
losed subset of B′. Further, (5.24) is a 
onsequen
e of (5.12) and of(5.22).In order to show the �rst of (5.25) at a point u ∈ dom(E), we may supposewithout loss of generality that D̃E2(u) = 0 and that |∂E| (u) > 0. Then, using (5.19)one easily 
he
ks that there exists some 
onstant C > 0 su
h that

|∂E| (u) = lim sup
v→u, E1(v)≤C

(E1(u) − E1(v) + E2(u) − E2(v))
+

η(v − u)
.Using that

lim
v→u, E1(v)≤C

(E2(u) − E2(v))
+

η(v − u)
= 0,we 
on
lude

|∂E| (u) = lim sup
v→u, E1(v)≤C

(E1(u) − E1(v))
+

η(v − u)
= min

ξ∈∂E1(u)
η∗(−ξ) = min

ξ∈∂E(u)
η∗(−ξ),the se
ond identity due to (5.14) for the λ-
onvex fun
tional E1 and the third oneto (5.23). As for the se
ond of (5.25), one 
learly has |∂−E|(u) ≤ |∂E| (u); in orderto prove the 
onverse inequality, we argue in the same way as for proving (5.15).Remark 5.7 Combining (5.23) with the representation (5.25) of the slope of thefun
tionals E and E1, one dedu
es that

|∂E1| (u) = min
ξ∈∂E(u)−eDE2(u)

η∗(−ξ) ≤ min
ξ∈∂E(u)

η∗(−ξ) + η∗(D̃E2(u))

≤ |∂E| (u) +K‖D̃E2(u)‖∗ ∀u ∈ B,

(5.27)where the �rst inequality follows from the sublinearity of η∗ and the se
ond one from(5.5). 39



For later 
onvenien
e, we also state a version of the mean-value theorem for thefun
tional E2 whi
h 
an be proved exa
tly in the same way as [2, Chap. 1, Thm. 1.8℄,to whi
h we refer the reader.Lemma 5.8 Let E : B → (−∞,+∞] be an admissible fun
tional. Then, for all
u, v ∈ dom(E) su
h that the segment [u, v] ⊂ dom(E) one has

|E2(u) − E2(v)| ≤ sup
z∈[u,v]

‖D̃E2(z)‖∗ ‖u− v‖. (5.28)We 
on
lude the se
tion with a te
hni
al result, whi
h will turn out to be useful inthe sequel.Lemma 5.9 (Sele
tion of optimal dire
tions) Let us suppose that
B is re�exive, (5.29)let E be an admissible fun
tional and let ξ ∈ ∂E(u) with 0 < η∗(−ξ) = |∂E| (u) <∞.Then, there exist a sequen
e of dire
tions {vn}, v ∈ B and a positive vanishingsequen
e hn ∈ (0,∞) su
h that

η(vn) = η(v) = 1, 〈−ξ, v〉 = η∗(−ξ), vn ⇀ v, (5.30)and the sequen
e un := u+ hnvn satis�es
lim
n↑∞

E(u) − E(un)

η(un − u)
= lim

n↑∞

E(u) − E(u+ hnvn)

hn
= |∂E| (u) = η∗(−ξ). (5.31)Proof. By the de�nition of slope and by (5.25), we 
an �nd a sequen
e un 6= ustrongly 
onverging to u su
h that

lim
n↑∞

E(u) − E(un)

η(un − u)
= |∂E| (u) = η∗(−ξ) > 0.We thus set

hn := η(un − u), vn :=
un − u

hn
,and, owing to the re�exivity of B, we 
an extra
t a subsequen
e (still labeled vn)weakly 
onverging to v ∈ B with η(v) ≤ 1. By the subdi�erentiability assumption,we have

E(un) − E(u) ≥ 〈ξ, un − u〉 + o(hn) as n ↑ ∞;dividing by hn and inverting the dire
tion of the inequality, we 
an pass to the limitas n ↑ ∞ obtaining
η∗(−ξ) ≤ 〈−ξ, v〉 ≤ η∗(−ξ) · η(v),thus proving η(v) = 1 and the se
ond identity of (5.30).
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5.3 Chain rule for admissible families of time-dependent fun
-tionalsIn this se
tion we shall establish a general 
hain-rule formula for a family of time-dependent fun
tionals Et(·), t ∈ [0, T ]. The natural assumptions 
ombine the ad-missibility 
onditions given in De�nition 5.4, the 
onditions on the time-dependen
edis
ussed in Se
tion 2.3, and some of the topologi
al assumptions of Se
tion 2.5. Were
all them in a unique de�nition.De�nition 5.10 (Admissible family of time-dependent fun
tionals) We saythat a family of (proper, l.s.
.) fun
tionals Et : B → (−∞,∞], t ∈ [0, T ], is ad-missible if ea
h fun
tional Et is admissible a

ording to De�nition 5.4, with thede
omposition Et = E1
t + E2

t for all t ∈ [0, T ], and1. dom(Et) ≡ D does not depend on time,2. the fun
tionals E1
t are uniformly bounded from below w.r.t. t and λ-uniformly
onvex, namely

∃λ ∈ R ∀ t ∈ [0, T ] ∀u0, u1 ∈ B ∀ θ ∈ [0, 1] :

E1
t ((1 − θ)u0 + θu0) ≤ (1 − θ)E1

t (u0) + θE1
t (u1) −

1

2
λθ(1 − θ)‖u0 − u1‖

2
(5.32)3. 
onditions (5.19) and (5.21) hold with 
onstants K1, K2, and K3 independentof t,4. for every sequen
es vn, v ∈ D, tn, t ∈ [0, T ]

vn → v, tn → t, sup
n

Etn(v) <∞ ⇒ ∃ lim
n→∞

Etn(vn) − Et(vn)

tn − t
=: ∂tEt(v), (5.33)whi
h satis�es

|∂tEt(v)| ≤ K4(Et(v) + ‖v‖ + 2K0) ∀ t ∈ [0, T ], v ∈ D (5.34)for a suitable 
onstant K4 ≥ 0.Note that these 
onditions yield that the fun
tionals Et are uniformly bounded frombelow (w.r.t. t); we set
−K0 := inf

t∈[0,T ],v∈D
Et(v) > −∞. (5.35)In the following formula we 
hoose a positively homogeneous and 
onvex fun
tional

η satisfying (5.1a,b,
) and, given an absolutely 
ontinuous 
urve v, we denote by
|v′|(t) the metri
 derivative with respe
t to the asymmetri
 distan
e ∆ (5.2) indu
edby η.
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Proposition 5.11 (Chain rule) Let E : [0, T ] × B → (−∞,∞] be an admissiblefamily of fun
tionals a

ording to De�nition 5.10, let η be a positively homogeneousfun
tional ful�lling (5.1a,b,
) indu
ing the asymmetri
 distan
e ∆ (5.2), and let
v ∈ AC(0, T ;B) be an absolutely 
ontinuous 
urve satisfying

sup
t∈[0,T ]

Et(v(t)) <∞,

∫ T

0

|v′|(t) · |∂Et| (v(t)) dt <∞. (5.36)Then, the map t 7→ Et(v(t)) is absolutely 
ontinuous and
d

dt
Et(v(t)) ≥ ∂tEt(v(t)) − |∂Et|(v(t)) · |v

′|(t) for a.e. t ∈ (0, T ). (5.37)Moreover, if v is (weakly) di�erentiable a.e., we have
d

dt
Et(v(t)) = ∂tEt(v(t)) + 〈ξ, v′(t)〉 ∀ξ ∈ ∂Et(v(t)), for a.e. t ∈ (0, T ). (5.38)Proof. Up to a suitable reparametrization (see [5, Lemma 1.1.4℄), it is possible toassume that the 
urve is 1-Lips
hitz (with respe
t to the norm of B) and

|v′|(t) ≤ K for a.e. t ∈ (0, T ) . (5.39)Sin
e v is uniformly bounded and the energies Et(v(t)) are uniformly bounded, using(5.19) we get
sup
t∈[0,T ]

E1
t (v(t)) < +∞, (5.40)as well as

F(v(s)) + |∂tFt(v(s))| ≤ S <∞ ∀ s, t ∈ [0, T ], (5.41)where F is de�ned as in (2.21). In order to show the absolute 
ontinuity of theenergy map t 7→ Et(v(t)), we need to estimate
Et(v(t)) − Es(v(s)) = (Et(v(t)) − Et(v(s))) + (Et(v(s)) − Es(v(s))) (5.42)for 0 ≤ s < t ≤ T . Thanks to (5.41), we have

Et(v(s)) − Es(v(s)) ≤ S|t− s|. (5.43)In order to estimate the �rst summand on the right-hand side of (5.42), we noti
ethat, thanks to (5.40), the 
onvexity of E1
t , and (5.21),

sup
z∈[v(s),v(t)]

E1
t (z) <∞, when
e sup

z∈[v(s),v(t)]

‖D̃E2
t (z)‖∗ ≤ S1 <∞, (5.44)for a positive 
onstant S1. Hen
e, Lemma 5.8 and Lips
hitz 
ontinuity of v yield

E2
t (v(t)) − E2

t (v(s)) ≤ sup
z∈[v(s),v(t)]

‖D̃E2
t (z)‖∗‖v(t) − v(s)‖ ≤ S1|t− s| (5.45)
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for 0 ≤ s < t ≤ T . On the other hand, thanks to (5.13)
E1
t (v(t)) − E1

t (v(s)) ≤ |∂E1
t |(v(t))η(v(s)− v(t)) +

1

2
λ−K2η2(v(s) − v(t))

≤

(
K|∂Et|(v(t)) +K2S1 +

1

2
λ−K4

)
|t− s|

(5.46)the latter inequality due to (5.27), (5.39) and again (5.44). Combining (5.42), (5.43),(5.45), and (5.46), and inverting the role of s and t we easily get the followingestimate
|Et(v(t)) − Es(v(s))| ≤

(
K|∂Et|(v(t)) +K|∂Es|(v(s)) + C

)
|t− s| (5.47)for some suitable 
onstant C. Arguing as in Theorem [5, Thm. 1.2.5℄, we get theabsolute 
ontinuity of the energy.Let us now �x a point s ∈ (0, T ) su
h that |v′|(s) and d

dt
Es(v(s)) exist, and

|∂Es|(v(s)) <∞. Equality (5.42) and the de�nition of slope yield when t→ s

Et(v(t)) − Es(v(s)) ≥ −|∂Es|(v(s))η(v(t) − v(s)) + ∂tEs(vs) + o(|t− s|)so that, dividing the inequality by t− s > 0, we get (5.37). When v is also weaklydi�erentiable at s, we 
an use the de�nition of Fré
het subdi�erential to obtain
Et(v(t)) − Es(v(s)) ≥ 〈ξ, v(t) − v(s)〉 + ∂tEs(vs) + o(|t− s|) ∀ ξ ∈ ∂Es(v(s)).Dividing by t−s and passing to the limit �rst as t ↓ s and then as t ↑ s we 
on
lude.6 Finsler metri
sIn this se
tion we want to extend some of the previous results to the 
ase in whi
h ∆is an nondegenerate asymmetri
 Finsler distan
e indu
ed by a family of 
onvex andpositively homogeneous (sublinear) fun
tionals ηu depending on u ∈ B (and againwe take as σ the norm topology of B).We 
onsider the 
ase in whi
h

B is a separable and re�exive Bana
h spa
e, (6.1)endowed with a family of fun
tionals
ηu : B → [0,∞), u ∈ B, satisfying 
onditions (5.1a,b,
) with K independent of u.(6.2)We are assuming the dependen
e of η with respe
t to u is 
ontinuous in the senseof Mos
o (see, e.g., [9, � 3.3, p. 295℄), i.e. whenever a sequen
e un is strongly
onvergent to u in B as n ↑ ∞, the 
orresponding sequen
e of fun
tionals ηunMos
o-
onverges to ηu. This means two 
onditions:

un → u, vn ⇀ v in B ⇒ lim inf
n→∞

ηun
(vn) ≥ ηu(v), (6.3)43



and
un → u, v ∈ B ⇒ ∃ vn → v : lim

n→∞
ηun

(vn) = ηu(v). (6.4)Let us re
all a well-known 
onsequen
e of this assumption:Theorem 6.1 (Duality for Mos
o-
onvergen
e) If un → u in B and ξn⇀∗ξ in
B′, then

lim inf
n→∞

ηun∗(ξn) ≥ ηu∗(ξ). (6.5)Proof. We �x v ∈ B with ηu(v) = 1 and we take a sequen
e vn satisfying (6.4). Wehave
lim inf
n↑∞

ηun∗(ξn) ≥ lim inf
n↑∞

〈ξn, vn〉

ηun
(vn)

= 〈ξ, v〉.Sin
e v 
an be arbitrarily 
hosen with ηu(v) = 1, taking the supremum of the lastduality with respe
t to v we 
on
lude.The indu
ed asymmetri
 Finsler distan
e. For u, v ∈ B we introdu
e ∆through the formula
∆(v, w) := inf

{∫ 1

0

ηu(t)(u
′(t)) dt : u ∈ AC(0, 1;B), u(0) = v, u(1) = w

}
. (6.6)Note that (6.6) makes sense (the map t 7→ ηu(t)(u

′(t)) is integrable for all u ∈
AC(0, 1;B)) and de�nes a (possibly non-symmetri
) distan
e (in the sense of (2.2))on B asso
iated with the family {ηu}u∈B. Sin
e (5.1
) holds uniformly w.r.t. u ∈ B,we have

K−1‖v − w‖ ≤ ∆(v, w) ≤ K‖v − w‖ ∀v, w ∈ B. (6.7)and therefore the 
lass of absolutely 
ontinuous 
urves with respe
t to ∆ 
oin
ideswith the usual one (i.e. with respe
t to the norm of B). Again, we shall use thenotation (5.3) for slopes w.r.t. ∆.The main problem is to 
hara
terize the metri
 velo
ity asso
iated with ∆; hereis the main result:Theorem 6.2 (Metri
 velo
ity) Assume (6.1)�(6.4), and let ∆ be as in (6.6);let u ∈ AC(a, b;B) and let |u′| be its (a.e. de�ned) metri
 velo
ity indu
ed by theasymmetri
 distan
e ∆ (6.6). We have
|u′|(t) = ηu(t)(u

′(t)) for a.e. t ∈ (a, b). (6.8)More pre
isely, the identity of (6.8) holds at ea
h point t̄ ful�lling the following three
onditions:i) u is di�erentiable at t̄.ii) t̄ is a Lebesgue point for the map t 7→ ηu(t)(u
′(t))iii) ∃ lim

h↓0

∆(u(t̄), u(t̄+ h))

h
=: |u′|(t̄). 44



We split the proof in various steps.Lemma 6.3 Under the same assumption of Theorem 6.2, let t̄ be satisfying 
ondi-tions i)· · · iii). We have
|u′|(t̄) ≤ ηu(t̄)(u

′(t̄)). (6.9)Proof. For h > 0 let us 
onsider the 
urve r ∈ [0, 1] 7→ γ(r) := u(t̄+ rh) 
onne
ting
u(t̄) and u(t̄+ h). By de�nition of ∆ and a trivial 
hange of variables, we obtain

∆(u(t̄), u(t̄+ h)) ≤

∫ t̄+h

t̄

ηu(r)(u
′(r)) dr.Dividing by h > 0 we obtain (6.9), being t̄ a Lebesgue point of the map r 7→

ηu(r)(u
′(r)).The next lemma provides the 
ru
ial te
hni
al result, whi
h will also be useful lateron.Lemma 6.4 Let u, un ∈ B and hn > 0 su
h that as n ↑ ∞

un → u,
un − u

hn
⇀ v 6= 0,

ηu(un − u)

hn
→ ηu(v). (6.10)Then,

lim inf
n↑∞

∆(u, un)

hn
≥ ηu(v), lim inf

n↑∞

∆(u, un)

ηu(un − u)
≥ 1. (6.11)Proof. By the de�nition (6.5) of ∆ and a standard reparametrization argument, we�nd Lips
hitz 
ontinuous 
urves γn : [0, 1] → B 
onne
ting u to un and a vanishingpositive sequen
e εn ∈ (0, 1/2) su
h that

∆(u, un) ≥ (1 − εn)

∫ 1

0

ηγn(t)(γ
′
n(t)) dt, ‖γ′n(t)‖ ≤ 4K∆(u, un) for a.e. t ∈ (0, T ).(6.12)Dividing by hn, we 
an assume that h−1

n ∆(u, un) ≤ A < ∞; by introdu
ing the
urve
γ̂n(t) := u+

γn(t) − u

hn
, with γ̂′n(t) = h−1

n γ′n(t),we get
∆(u, un)

hn
≥ (1 − εn)

∫ 1

0

ηγn(t)(γ̂
′
n(t)) dt, ‖γ̂′n(t)‖ ≤ 4K

∆(u, un)

hn
≤ 4KAfor a.e. t ∈ (0, T ), so that

lim inf
n↑∞

∆(u, un)

hn
≥ lim inf

n↑∞

∫ 1

0

ηγn(t)(γ̂
′
n(t)) dt. (6.13)After the extra
tion of a suitable subsequen
e (not relabeled), we 
an assume thatthe last lim inf is in fa
t a limit and, sin
e γ̂′n is uniformly bounded, that γ̂′n ⇀ z45



weakly in L2(0, 1;B), whi
h is still a re�exive and separable Bana
h spa
e. Sin
e
γn(t) → u uniformly as n → ∞, general lower semi
ontinuity results for normalintegrands applied to the strongly-weakly lower semi
ontinuous fun
tional (u, v) 7→
ηu(v) (see [11, Thm. 3.2℄, as well as [44, Thm. 3.2℄ and [35, Thm. B.1℄) yield

lim inf
n↑∞

∫ 1

0

ηγn(t)(γ̂
′
n(t)) dt ≥

∫ 1

0

ηu(z(t)) dt ≥ ηu(Z), Z :=

∫ 1

0

z(t) dt, (6.14)where the last inequality follows by the 
onvexity of ηu and Jensen inequality.On the other hand, we have
∫ 1

0

γ̂′n(t) dt = γ̂n(1) − γ̂n(0) =
un − u

hn
(6.15)and therefore for every y ∈ B′

〈y, Z〉 =

∫ 1

0

〈y, z(t)〉 dt = lim
n→∞

∫ 1

0

〈y, γ̂′n(t)〉 dt = lim
n→∞

〈y, h−1
n (un − u)〉 = 〈y, v〉(6.16)whi
h yields Z = v and by (6.13)

lim inf
n↑∞

∆(u, un)

hn
≥ ηu(v). (6.17)We 
on
lude that

lim inf
n↑∞

∆(u, un)

ηu(un − u)
= lim inf

n↑∞

∆(u, un)

hn
·

hn
ηu(un − u)

≥ ηu(v)
1

ηu(v)
= 1.Proof of Theorem 6.2. We 
an 
on
lude now the proof of Theorem 6.2, byproving the opposite inequality

|u′|(t̄) ≥ ηu(t̄)(u
′(t̄)) (6.18)at ea
h point t̄ satisfying 
onditions i)· · · iii).It is obviously not restri
tive to assume u′(t̄) 6= 0: we 
an thus apply the previouslemma, 
hoosing a positive vanishing sequen
e hn ↓ 0 and u := u(t̄), un := u(t̄+hn),

v = u′(t̄).We apply now Lemma 6.4 to prove a useful property of the ∆-slope of an admis-sible fun
tional.Theorem 6.5 Let E be an admissible fun
tional in the sense of De�nition 5.4, let
|∂E| be the slope asso
iated with the asymmetri
 distan
e (6.6), and let ∂E be itsFré
het subdi�erential. Then for every u ∈ dom(E)

|∂E| (u) <∞ ⇔ ∂E(u) 6= ∅,

|∂E| (u) ≤ K‖ξ‖ ∀ ξ ∈ ∂E(u),
(6.19)and in this 
ase

|∂E| (u) ≥ min
ξ∈∂E(u)

ηu∗(−ξ). (6.20)46



Proof. Sin
e the asymmetri
 distan
e ∆ satis�es the uniform bound (6.7), it isimmediate to 
he
k that the ∆-slope of a fun
tional E is �nite if and only if the slopeof E w.r.t. the norm of B is �nite: (5.25) thus yields (6.19), the se
ond estimatefollowing from (6.2).In order to 
he
k (6.20) we �x u ∈ dom(∂E), we 
hoose an element ξ0 ∈ ∂E(u)whi
h attains the minimum in (6.20) (it is not restri
tive to assume ξ0 6= 0) and weapply Lemma 5.9: we then �nd a sequen
e un ∈ dom(E) su
h that
hn := ηu(un−u) → 0,

un − u

hn
⇀ v, ηu(v) = 1, lim

n↑∞

E(u) − E(un)

hn
= ηu∗(−ξ0) > 0.On the other hand Lemma 6.4 yields

|∂E| (u) ≥ lim sup
n→∞

E(u) − E(un)

∆(u, un)
= lim

n↑∞

E(u) − E(un)

hn
· lim sup

n↑∞

hn
∆(u, un)

≥ ηu∗(−ξ0) · ηu(v) = ηu∗(−ξ0).Taking into a

ount Theorem 6.1 and the strong-weak 
losedness of ∂E (
f. (5.24)),we easily getCorollary 6.6 Let E be an admissible fun
tional and let |∂−E| be the relaxed slopeasso
iated with the asymmetri
 distan
e (6.6), i.e.
|∂−E|(u) := inf

{
lim inf
n↑∞

|∂E| (un) : un → u, sup
n

E(un) <∞
}
. (6.21)Then for every u ∈ dom(E)

|∂−E|(u) <∞ ⇔ ∂E(u) 6= ∅, (6.22)and in this 
ase
|∂−E|(u) ≥ min

ξ∈∂E(u)
ηu∗(−ξ). (6.23)Theorem 6.7 (Relaxed slope and 
hain rule for admissible fun
tionals) Let

Et : B → (−∞,∞], t ∈ [0, T ], be an admissible family of fun
tionals a

ording toDe�nition 5.10, and let ∆ be the asymmetri
 Finsler distan
e indu
ed by (6.6) underthe assumption of Se
tion 6. Then, the relaxed slope |∂−Et| satis�es the 
hain rule
ondition of De�nition 2.5: for any 
urve v ∈ AC(0, T ;B) with
∫ T

0

|v′|(t) · |∂−Et|(v(t)) dt <∞, sup
t∈(0,T )

Et(v(t)) <∞, (6.24)the map t 7→ Et(v(t)) is absolutely 
ontinuous, and
d

dt
Et(v(t)) ≥ ∂tE(t, v(t)) − |v′|(t) · |∂−Et|(v(t)) for a.e. t ∈ (0, T ). (6.25)47



Proof. Sin
e the asymmetri
 distan
e ∆ is metri
ally equivalent to the distan
eindu
ed by the norm, (6.24) yields (5.36) and we may apply Proposition 5.11. Being
B re�exive, v is di�erentiable a.e., and therefore (5.38) yields for a.e. t ∈ (0, T ) andevery ξ ∈ ∂Et(v(t))

d

dt
Et(v(t)) = ∂tEt(v(t)) + 〈ξ, v′(t)〉

≥ ∂tEt(v(t)) − ηv(t)(v
′(t)) · min

ξ∈∂Et(v(t))
ηv(t)∗(−ξ) (6.26)

≥ ∂tEt(v(t)) − |v′|(t) · |∂−Et|(v(t)),the last inequality being a 
onsequen
e of (6.8) and (6.23).7 Metri
 evolutions in L1(Ω)Notation. In this se
tion and in the next one, we shall denote by Ω a boundeddomain of R
d, d ≥ 1, by ‖ · ‖r the norm of the spa
e Lr(Ω), 1 ≤ r ≤ ∞, and by 〈·, ·〉the duality pairing between H−1(Ω) and H1

0(Ω).Setup. Throughout this se
tion we shall drop the re�exivity assumption 6.1 andwe shall fo
us on the prototypi
al 
ase in whi
hthe ambient Bana
h spa
e B is L1(Ω), and η is the norm fun
tional ‖ · ‖1. (7.1)As we already mentioned in the Introdu
tion, L1(Ω) does not enjoy the Radon�Nikodým property. A simple example of an absolutely 
ontinuous 
urve u : [0, T ] →
L1(Ω) whi
h is not a.e. di�erentiable 
an be 
onstru
ted, in the 
ase Ω = (0, 1), inthe following way: we take an absolutely 
ontinuous map s : [0, T ] → [0, 1] and afun
tion a ∈ L1(0, 1), and we let

u(x, t) :=

{
0 if x ∈ [0, s(t)]

a(x) if x ∈ (s(t), 1]
∀ (x, t) ∈ [0, 1] × [0, T ] .However, we may 
ompute the metri
 derivative

|u′|1(t) := lim
h→0

‖u(t+ h) − u(t)‖1

h
for a.e. t ∈ (0, T ), (7.2)of the above 
urve, obtaining |u′|1(t) = |a(s(t))s′(t)| for a.e. t ∈ (0, T ).Throughout this se
tion, we shall analyze the metri
 Problem 2.6 for a givenlower semi
ontinuous fun
tional E : [0, T ] × L1(Ω) → (−∞,∞] in the gradient �ow
ase, namely with the quadrati
 dissipation fun
tional (1.16).We shall start with some simple examples of (time-independent) energy fun
-tionals E in whi
h it is possible to 
al
ulate expli
itly a solution of the (Cau
hyproblem for the) asso
iated di�erential in
lusion (DNE) (driven by the energy Eand the dissipation Ψ (1.19)). Indeed, we shall show that the 
onstru
ted solutionalso 
omplies with the metri
 formulation 2.6.48



Next, in Se
tion 7.2 we shall fo
us on the sole metri
 evolution of a more general
lass of energy fun
tionals (
f. (7.19)). Exploiting the preliminary results obtainedin Se
tions 5.2�5.3, we shall dedu
e from Theorem 3.5 the existen
e of a solution ofthe asso
iated metri
 formulation, see Theorem 7.3 later on.7.1 ExamplesExample 1 We 
onsider Ω = (0, 1) and the quadrati
 energy fun
tional E (1.17).We re
all that the asso
iated di�erential in
lusion is (1.20), whi
h we supplementwith the initial datum
u0(x) := 1 − x ∀x ∈ [0, 1] . (7.3)We look for a solution of the Cau
hy problem (1.20, 7.3) of the form

u(x, t) :=

{
u0(ζ(t)) if x ∈ [0, ζ(t)],
u0(x) if x ∈ (ζ(t), 1], ∀ (x, t) ∈ [0, 1] × [0, T ] , (7.4)where we require of the �free boundary� ζ : [0, T ] → [0, 1] that

ζ ∈ C1(0, T ) and is stri
tly in
reasing, with ζ(0) = 0. (7.5)In fa
t, we have u ∈W 1,1(0, T ;L1(0, 1)), with
ut(x, t) :=

{
−ζ ′(t) if x ∈ (0, ζ(t)),
0 if x ∈ (ζ(t), 1), for a.e. (x, t) ∈ (0, 1) × (0, T ) ,so that ‖ut(·, t)‖1 = ζ(t)ζ ′(t) for a.e. t ∈ (0, T ). Now, (1.20) is trivially ful�lled for

x ∈ (ζ(t), 1), t ∈ (0, T ), hen
e it redu
es to
−ζ(t)ζ ′(t) + 1 − ζ(t) = 0 t ∈ (0, T ).Namely, the fun
tion u (7.4) solves the Cau
hy problem (1.20, 7.3) if and only if ζful�lls

ζ ′(t) =
1

ζ(t)
− 1 t ∈ (0, T ), ζ(0) = 0. (7.6)On the other hand, we may interpret the fun
tion u as a 
urve u : (0, T ) →

L1(0, 1): in this setting, its metri
 derivative is 
omputed via (7.2). Taking intoa

ount that
|u(x, t+ h) − u(x, t)| =





ζ(t+ h) − ζ(t) for x ∈ [0, ζ(t)] ,
ζ(t+ h) − x for x ∈ (ζ(t), ζ(t+ h)] ,
0 for x ∈ (ζ(t+ h), 1],for all (x, t) ∈ [0, 1] × [0, T ], (7.2) yields

|u′|1(t) = ζ(t)ζ ′(t) for a.e. t ∈ (0, T ). (7.7)49



(indeed, in this 
ase |u′|1(t) 
oin
ides with the L1-norm of the fun
tion ut(·, t) for a.e. t ∈ (0, T )). Now, we 
al
ulate the energy E (1.17) along the 
urve u and �nd
E(u(t)) =

(1 − ζ(t))2

6
(2ζ(t) − 1) ∀ t ∈ [0, T ], (7.8)while, also thanks to the representation formula (5.13) in Lemma 5.3,

|∂−E|(u(t)) = |∂E| (u(t)) =
1

2
sup

w∈L1(0,1) ,w 6=0

(∫
Ω
(u2(x, t) − (u(x, t) + w(x))2 dx

)+

‖w‖1

= ‖u(·, t)‖∞ = 1 − ζ(t) ∀ t ∈ [0, T ] . (7.9)In view of (7.7)�(7.9), with elementary 
al
ulations it is possible to see that, if (7.6)holds, the 
urve u ful�lls the metri
 formulation (2.33)�(2.34), the latter in fa
t withan equality sign.Example 2 We let Ω = (−1, 1) and 
hoose as energy fun
tional E : L1(−1, 1) →
[0,∞] the Diri
hlet integral

E(u) :=

{
1
2

∫ 1

0
|u′(x)|2 dx if u ∈ H1

0 (−1, 1)

∞ otherwise ∀u ∈ L1(−1, 1) . (7.10)In fa
t, the above fun
tional is a parti
ular 
ase of fun
tional (7.19) below. The
orresponding evolution equation is
‖ut(t)‖1Sign(ut(x, t)) − uxx(x, t) ∋ 0 for a.e. (x, t) ∈ (−1, 1) × (0, T ) , (7.11)(where we denote by ux, uxx the partial derivatives of u w.r.t. the variable x), whi
hwe supplement with the initial datum

u0(x) := 1 − |x| ∀x ∈ [−1, 1]. (7.12)We now look for a solution of the Cau
hy problem (7.11)�(7.12) of the form
u(x, t) :=

{
α(t) + c(t)x

2

2
if |x| ≤ ζ(t),

u0(x) if ζ(t) < |x| ≤ 1, ∀ (x, t) ∈ [−1, 1]×[0, T ] , (7.13)under the requirements that ζ : [0, T ] → [0, 1] 
omplies with (7.5), the fun
tions
α, c ∈ C1(0, T ), c takes stri
tly negative values and is stri
tly in
reasing, and for all
t ∈ (0, T )the maps x 7→ u(x, t) , x 7→ ut(x, t) , x 7→ ux(x, t) are 
ontinuous on [−1, 1].(7.14)Sin
e for a.e. (x, t) ∈ (−1, 1) × (0, T ) we have
ut(x, t) =

{
α′(t) + c′(t)x

2

2
if |x| < ζ(t),

0 if ζ(t) < |x| < 1, ux(x, t) =

{
c(t)x if |x| < ζ(t),
−Sign(x) else,50



(7.14) leads to the 
onditions
α(t) + c(t)

ζ2(t)

2
= 1 − ζ(t), c(t) = −

1

ζ(t)
∀ t ∈ (0, T ). (7.15)Hen
e, we 
ompute

‖ut(·, t)‖1 =
c′(t)

2

∫ ζ(t)

−ζ(t)

(ζ2(t) − x2) dx =
2c′(t)

3
ζ3(t) for a.e. t ∈ (0, T ). (7.16)Being

uxx(x, t) :=

{
c(t) if |x| < ζ(t),
0 if ζ(t) < |x| < 1, for a.e. (x, t) ∈ (−1, 1) × (0, T ) ,and taking into a

ount the se
ond of (7.15), we 
on
lude that u solves (7.11) if andonly if c solves the Cau
hy problem

c(t) =
3

2
c4(t) ∀ t ∈ (0, T ), with lim

tց0
c(t) = −∞ , (7.17)so that

c(t) = −
9

2
t−1/3, ζ(t) =

2

9
t1/3, α(t) = 1 −

1

9
t1/3 ∀ t ∈ (0, T ).From the metri
 viewpoint, the existen
e of a solution to the (Cau
hy problemfor) the metri
 formulation follows from Theorem 7.3 later on. Nonetheless, we maydire
tly 
he
k that the fun
tion u (7.13) (seen as a 
urve on (0, T ) with values in

L1(−1, 1)) 
omplies with (2.33)�(2.34). Indeed, using (7.15) one easily 
he
ks thatthe metri
 derivative of u again 
oin
ides with the L1(−1, 1)-norm of ut(·, t) for a.e.
t ∈ (0, T ), and it is thus given by (7.16). On the other hand, thanks to Lemma 7.1below we have that

|∂−E|(u(t)) = |∂E| (u(t)) = ‖uxx(·, t)‖∞ for a.e. t ∈ (0, T ) . (7.18)Then, we 
al
ulate the energy (7.10) along the 
urve u and, using (7.15) and (7.17)as well, we easily 
on
lude that (2.34) holds, again as an equality.7.2 An existen
e resultWe 
onsider the following energy fun
tional E : [0, T ] × L1(Ω) → (−∞,∞] de�nedfor all (t, u) ∈ [0, T ] × L1(Ω) by
Et(u) :=

{∫
Ω

1
2
|∇u(x)|2 +W (u(x))dx− 〈ℓ(t), u〉 if u ∈ H1

0 (Ω), W (u) ∈ L1(Ω),
∞ else, (7.19)Here, we suppose that

ℓ ∈ C1([0, T ];H−1(Ω)). (7.20)51



and that the fun
tion W ful�lls
W ∈ C2(R) and ∃CW > 0 s.t. ∀ r ∈ R W ′′(r) ≥ −CW ; (7.21)for instan
e, one may think of the double-well potential

W (u) :=
1

4
(u2 − 1)2 ∀u ∈ R. (7.22)Note that fun
tional E (7.19) is in fa
t a parti
ular 
ase of the 
lass of fun
tion-als (8.22) whi
h shall be ta
kled in Se
tion 8.2 later on. The following result is
ru
ial for understanding to whi
h equation the metri
 formulation of Problem 2.6(with the quadrati
 dissipation (1.16) and the energy (7.19)) leads.Lemma 7.1 1. The fun
tional E is λ-uniformly 
onvex on L1(Ω) for some λ < 0.2. For every (t, u) ∈ dom(E)

|∂Et|(u), |∂
−Et|(u) <∞ if and only if − ∆u+W ′(u) − ℓ(t) ∈ L∞(Ω).In this 
ase, |∂Et|(u) = |∂−Et|(u) = ‖ − ∆u+W ′(u) − ℓ(t)‖∞. (7.23)Proof. Proof of Claim 1. In order to 
he
k the 
onvexity inequality (5.32), we�x u0, u1 ∈ dom(E), θ ∈ [0, 1], and 
al
ulate

Et(uθ) =

∫

Ω

(
1

2
|∇uθ|

2 +W (uθ)

)
− 〈ℓ(t), uθ〉

≤
1 − θ

2

∫

Ω

|∇u0|
2 +

θ

2

∫

Ω

|∇u1|
2 −

θ(1 − θ)

2

∫

Ω

|∇(u0 − u1)|
2 + (1 − θ)

∫

Ω

W (u0)

+θ

∫

Ω

W (u0) +
CWθ(1 − θ)

2

∫

Ω

|u0 − u1|
2 − (1 − θ)〈ℓ(t), u0〉 − θ〈ℓ(t), u1〉

= (1 − θ)Et(u0) + θEt(u1) +
θ(1 − θ)

2

∫

Ω

(
−|∇(u0 − u1)|

2 + CW |u0 − u1|
2
)
, (7.24)the �rst inequality following from the fa
t thatW itself is (−CW )-
onvex (
f. (7.21)).In order to estimate the remainder term on the right-hand side of (7.24), we applythe Gagliardo-Nirenberg inequality (see [43℄)

‖v‖2 ≤ CGN‖v‖
2/(d+2)
1 ‖∇v‖d/(d+2)

2 ∀ v ∈ H1
0 (Ω), (7.25)where CGN is a positive 
onstant only depending on Ω. Hen
e,

CW‖u0 − u1‖
2
2 − ‖∇(u0 − u1)‖

2
2

≤ CWC
2
GN‖u0 − u1‖

4/(d+2)
1 ‖∇(u0 − u1)‖

2d/(d+2)
2 − ‖∇(u0 − u1)‖

2
2

≤ Cd
(
CWC

2
GN

)(d+2)/2
‖u0 − u1‖

2
1 ,for a positive 
onstant Cd only depending on d, the latter passage following fromthe Young inequality. Combining this estimate with (7.24), we dedu
e that the
onvexity inequality (5.32) holds with λ = −Cd (CWC

2
GN)

(d+2)/2
.52



Proof of Claim 2. Thanks to Claim 1. and to (5.14), it is su�
ient to provethat for every (t, u) ∈ dom(E)

|∂Et|(u) <∞ ⇔ −∆u +W ′(u) − ℓ(t) ∈ L∞(Ω), and
|∂Et|(u) = ‖ − ∆u+W ′(u) − ℓ(t)‖∞

(7.26)Indeed, we set
D(u, w) :=

(Et(u) − Et(u+ w))+

‖w‖1
for u, w ∈ H1

0 (Ω)and note that for all w ∈ H1
0 (Ω)

D(u, rw) → H(u, w) :=

( ∫
Ω

(−∇u · ∇w −W ′(u)w) + 〈ℓ(t), w〉
)+

‖w‖1
as r ց 0.Then, integrating by parts we �nd

|∂Et|(u) ≥ lim sup
rց0

D(u, rw) ≥
〈∆u−W ′(u) + ℓ(t), w〉

‖w‖1

,so that, being w arbitrary,
|∂Et|(u) ≥ sup

w∈H1

0
(Ω)

〈∆u−W ′(u) + ℓ(t), w〉

‖w‖1

= ‖∆u−W ′(u) + ℓ(t)‖∞ , (7.27)the latter identity by the density of H1
0 (Ω) in L1(Ω). On the other hand, we set

G(x, y) := W (x+ y) −W (x) −W ′(x)y for x, y ∈ Rand note that, by (7.21),
−G(x, y) ≤

CW
2
y2 ∀x, y ∈ R. (7.28)Now, trivial 
omputations yield that

|∂Et|(u) = lim sup
‖w‖1→0

D(u, w) ≤ lim sup
‖w‖1→0

H(u, w)+lim sup
‖w‖1→0

(
−1

2

∫
Ω
|∇w|2 −

∫
Ω
G(u, w)

)+

‖w‖1
.(7.29)We have

lim sup
‖w‖1→0

(
−1

2

∫
Ω
|∇w|2 −

∫
Ω
G(u, w)

)+

‖w‖1
≤

1

2
lim sup
‖w‖1→0

(−‖∇w‖2
2 + CW‖w‖2

2)
+

‖w‖1

≤
1

2
lim sup
‖w‖1→0

(
−‖∇w‖2

2 + CWCGN‖w‖
4/(d+2)
1 ‖∇w‖2d/(d+2)

2

)+

‖w‖1
≤ C̃ lim sup

‖w‖1→0

‖w‖2
1

‖w‖1
= 0 ,the �rst passage following from (7.28), the se
ond one from the Gagliardo-Nirenberginequality (7.25) and the last one by trivial 
al
ulations. Combining (7.29) and theabove inequality, and again integrating by parts, we readily dedu
e the reverseinequality of (7.27), so that (7.26) follows.53



Remark 7.2 In fa
t, the same argument as in the proof of Lemma 7.1 allows toprove that the Fré
het subdi�erential of E has the following stru
ture
u ∈ dom(∂Et) ⇔ −∆u+W ′(u) − ℓ(t) ∈ L∞(Ω)and in this 
ase ∂Et(u) = {−∆u +W ′(u) − ℓ(t)}.

(7.30)We are now in the position of proving the following existen
e result.Theorem 7.3 Assume (7.21), (7.20), and that
W is bounded from below on R. (7.31)Then, for every u0 ∈ H1
0 (Ω) with W (u0) ∈ L1(Ω) there exists a solution u ∈

AC(0, T ;L1(Ω)) of Problem 2.6 ful�lling u(0) = u0, when
e we have the energyidentity
1

2

∫ t

s

|u′|21(r) dr +
1

2

∫ t

s

‖ − ∆u(r) +W ′(u(r)) − ℓ(r)‖2
∞ dr + Et(u(t))

= Es(u(s)) +

∫ t

s

〈ℓ′(r), u(r)〉 dr ∀ 0 ≤ s ≤ t ≤ T.

(7.32)Proof. It follows from Lemma 7.1 that the fun
tional E (7.19) is admissible in thesense of De�nition 5.10. Hen
e, thanks to Proposition 5.11 E 
omplies with the
hain rule (5.37). Using (7.31) and arguing as in the proof of Lemma 8.10 later on,it is possible to 
he
k that the other assumptions on E (2.19a)�(2.19b), and (2.36)-(2.40) of Theorem 3.5 are satis�ed. Then, the statement is a dire
t 
onsequen
e ofTheorem 3.5.Remark 7.4 In fa
t, 
ondition (7.31) on W 
ould be weakened, but here we preferto keep the presentation as simple as possible, leaving to Se
tion 8.2 the dis
ussionof a more general example. In the parti
ular 
ase of the double well potential (7.22),we 
an infer some further regularity of the 
urve u from (7.32). For instan
e, if ℓ ∈
L2(0, T ;Lp(Ω)) for some 1 ≤ p <∞, we dedu
e that −∆u+u3−u ∈ L2(0, T ;Lp(Ω)),hen
e by ellipti
 regularity u ∈ L2(0, T ;W 2,p

0 (Ω)).8 Quasivariational doubly nonlinear evolutionequations in re�exive Bana
h spa
esIn this se
tion, we dedu
e from our main Theorem 3.5 an existen
e result (Theo-rem 8.3 below) for a family of abstra
t quasivariational doubly nonlinear equationsin the Bana
h spa
e setup of Se
tion 6. In parti
ular, hereafter we shall assume that
B is a re�exive and separable Bana
h spa
e. (8.1)As an appli
ation, in Se
tion 8.2 we prove the existen
e of solutions to initial-boundary value problems for a 
lass of doubly nonlinear paraboli
 evolution equa-tions. 54



8.1 A general existen
e resultThroughout this se
tion, besides (8.1) we assume that
ηu : B → [0,∞) is a family of 
onvex, positively homogenous fun
tionals,
omplying with (6.2), (6.3), (6.4),and indu
ing the Finsler asymmetri
 distan
e ∆ (6.6) (N)

Et : B → (−∞,∞] is an admissible family of fun
tionalsa

ording to De�nition 5.10 with sublevels lo
ally 
ompa
t w.r.t.the strong topology of B (
f. (2.40))and the time derivative ∂tEt ful�ls (2.39) w.r.t. ∆; (E)
ψ : [0,∞) → [0,∞] is 
onvex, lower semi
ontinuous, ful�lls (2.32),and indu
es the family of fun
tionals Ψu(v) := ψ

(
ηu(v)

)
∈ [0,∞].

(Ψ)Statement of the problem. We fo
us on the Cau
hy problem
∂Ψu(t)(u

′(t)) + ∂Et(u(t)) ∋ 0 for a.e. t ∈ (0, T ), u(0) = u0, (8.2)where u0 ∈ D is some initial datum and u ∈ AC(0, T ;B).This problem admits the following metri
 formulation, where |u′| and |∂−Et|(u)respe
tively denote the metri
 velo
ity and the (relaxed) metri
 slope indu
ed bythe asymmetri
 distan
e ∆:Problem 8.1 Find a 
urve u ∈ AC(0, T ;B) su
h that
u(0) = u0, the map t 7→ Et(u(t)) is absolutely 
ontinuous on (0, T ), and

d

dt
Et(u(t)) − ∂tEt(u(t)) ≤ −ψ(|u′|(t)) − ψ∗(|∂−Et|(u(t))) for a.e. t ∈ (0, T ).

(8.3)In the sequel, we shall �rst of all investigate to whi
h extent a solution u to Problem8.1 turns out to be a solution of the Cau
hy problem (8.2). Se
ondly, we shall dedu
efrom the �metri
ëxisten
e Theorem 3.5 an existen
e result for (8.2).Links between the metri
 and the Bana
h spa
e formulation. We havethe following result, whi
h extends [5, Prop. 1.4.1℄ to the doubly nonlinear setting.Proposition 8.2 Let u0 ∈ D and u ∈ AC(0, T ;B) ful�ll (8.3). Then, u solves theCau
hy problem (8.2). In parti
ular, we have
∂Ψu(t)(u

′(t)) ⊃ Argmin
{
ηu(t)∗(−ξ) : ξ ∈ ∂Et(u(t))

} for a.e. t ∈ (0, T ). (8.4)Conversely, if u solves (8.2) and if the map t 7→ Et(u(t)) is absolutely 
ontinuous on
(0, T ), then u also ful�lls (8.3).
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Proof. Suppose that u ∈ AC(0, T ;B) ful�lls (8.3): then, there exists a negligi-ble set N ⊂ (0, T ) su
h that for all t ∈ (0, T ) \ N the derivatives d
dt
Et(u(t)) and

|u′|(t) = ηu(t)(u
′(t)) (see Theorem 6.2) exist, |∂−Et|(u(t)) ≥ minξ∈∂Et(u(t)) ηu(t)∗(−ξ)by Corollary 6.6. Hen
e, (8.3) yields

d

dt
Et(u(t)) − ∂tEt(u(t)) ≤ −ψ(ηu(t)(u

′(t))) − ψ∗(ηu(t)∗(−ξ))

∀ ξ ∈ Argmin
{
ηu(t)∗(−ξ) : ξ ∈ ∂Et(u(t))

}
∀ t ∈ (0, T ) \ N .Combining this inequality with (6.26), we dedu
e that for a.e. t ∈ (0, T )

ηu(t)(u
′(t)) · ηu(t)∗(−ξ) = ψ(ηu(t)(u

′(t)) + ψ∗(ηu(t)∗(−ξ)), when
e
ηu(t)∗(−ξ) ∈ ∂ψ(ηu(t)(u

′(t))) ∀ξ ∈ Argmin
{
ηu(t)∗(−ξ) : ξ ∈ ∂Et(u(t))

}
.Thanks to Lemma 5.1, we 
on
lude (8.4).The se
ond part of the statement follows by the same argument.An existen
e result. The following Theorem 8.3 extends [5, Thm. 2.3.7℄, of whi
hwe 
losely follow the proof.Theorem 8.3 Under assumptions (8.1), (N), (E), and (Ψ), for every u0 ∈ D thereexists a 
urve u ∈ AC(0, T ;B), with u(0) = u0, satisfying the di�erential in
lusion(8.4). Moreover, u ful�ls the energy identity

∫ t

s

Ψu(r)(u
′(r)) dr +

∫ t

s

ψ∗
(
|∂−Er|(u(r))

)
dr + Et(u(t))

= Es(u(s)) +

∫ t

s

∂tEr(u(r)) dr ∀ 0 ≤ s ≤ t ≤ T.

(8.5)Proof. It is straightforward to 
he
k that the fun
tionals E and ψ 
omply with allthe assumptions of Theorem 3.5 (in parti
ular, the 
hain rule of De�nition 2.5 holdsthanks to Theorem 6.7). Then, there exists a solution u ∈ AC(0, T ;B) to (8.3),ful�lling the energy identity (3.9). By Proposition 8.2, u solves (8.4), while, in viewof (6.8), (3.9) yields (8.5).8.2 Appli
ations to doubly nonlinear paraboli
 evolutionsSetup of the problem. In the sequel, we shall examine the following evolutionequation (
f. with (1.15))
ρsign(ut)(u) |ut|

p−2ut − div(β(∇u)) +W ′(u) = h in Ω × (0, T ), (8.6)Here, 1 < p < ∞, Ω ⊂ R
d, d ≥ 1, is a bounded domain with su�
iently smoothboundary and exterior unit normal n. Further, we are given two fun
tions ρ+, ρ− :

R → (0,∞), and we adopt the following notation
ρsign(v)(u) =

{
ρ+(u) if v ≥ 0,
ρ−(u) if v < 0, ∀u, v ∈ R. (8.7)56



Moreover, β : R
d → R

d is the gradient of some smooth fun
tion j on R
d, W : R → Ra di�erentiable fun
tion and h : Ω × (0, T ) → R some sour
e term. In parti
ular,when β(ζ) = |ζ |q−2ζ for some q > 1, the ellipti
 operator in (8.6) is indeed the

q-Lapla
ian and we re
over (1.15). We 
onsider the following initial-boundary valueproblem for (8.6).Problem 8.4 Given u0 ∈ Lp(Ω), �nd a fun
tion u ∈ W 1,p(0, T ;Lp(Ω)) satisfying(8.6) a.e. on Ω × (0, T ), the homogeneous Diri
hlet boundary 
ondition
u = 0 a.e. in ∂Ω × (0, T ), (8.8)and the initial 
ondition

u(x, 0) = u0(x) for a.e.x ∈ Ω. (8.9)Further notation. Before stating our existen
e result for Problem 8.4, let us �xsome notation. For a �xed q ∈ (1,∞) we set
q⋆ :=

{
dq
d−q

if q ∈ (1, d),
∞ if q ≥ d.Hen
eforth, we shall 
onsider on the spa
e W 1,q

0 (Ω) the norm ‖u‖1,q := ‖∇u‖q for all
u ∈W 1,q

0 (Ω) (equivalent to the usual Sobolev norm by the Poin
aré inequality); weshall denote by ‖·‖−1,q′ the norm of the dual spa
eW−1,q′(Ω) (q′ being the 
onjugateexponent of q), and by 〈·, ·〉 the duality pairing between W−1,q′(Ω) and W 1,q
0 (Ω). Itis well-known (see, e.g., [1℄) that

W 1,q
0 (Ω) ⊂ Lq

⋆

(Ω) and 




W 1,q
0 (Ω) ⊂⊂ Lq

⋆−ε(Ω) ∀ ε > 0 if d > q,
W 1,q

0 (Ω) ⊂⊂ Lr(Ω) ∀ 1 ≤ r <∞ if d = q,
W 1,q

0 (Ω) ⊂⊂ L∞(Ω) if d < q.(8.10)Finally, we shall denote by C0w([0, T ];W 1,q
0 (Ω)) the spa
e of weakly 
ontinuous fun
-tions with values in W 1,q

0 (Ω).An existen
e result. Let us enlist our main assumptions on the data of Prob-lem 8.4: the fun
tions ρ+, ρ− : R → (0,∞) are 
ontinuous, and
∃R0, R1 > 0 : R0 ≤ ρ−(x), ρ+(x) ≤ R1 ∀x ∈ R;

(8.11)there exists a fun
tion j ∈ C1(Rd) su
h that β = ∇j : R
d → R

d and
∃ q > 1 with p < q⋆ ∃M1,M2,M3 > 0 ∀ ζ ∈ R

d:

{
j(ζ) ≥M1|ζ |q −M2,

|β(ζ)| ≤M3(1+|ζ |q−1).
(8.12)Further, we have

W = Wc + g, where
Wc is a 
onvex and di�erentiable fun
tion, and
g ∈ C1(R) satis�es the growth 
onditions:

∃α > 0 with αp′ < q⋆, ∃M4 > 0 : |g′(u)| ≤M4(|u|
α + 1) ∀u ∈ R.

(8.13)
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Finally, we require that
h ∈ C1([0, T ];W−1,q′(Ω)), u0 ∈W 1,q

0 (Ω), and Wc(u0) ∈ L1(Ω). (8.14)Theorem 8.5 Assume (8.11)�(8.13). Then, Problem 8.4 admits a solution
u ∈ W 1,p(0, T ;Lp(Ω)) ∩ L∞(0, T ;W 1,q

0 (Ω)) ⊂ C0w([0, T ];W 1,q
0 (Ω)),with g′(u) ∈ L∞(0, T ;Lp

′

(Ω)).
(8.15)Furthermore, if h ∈ Lp

′

(0, T ;Lp
′

(Ω)) as well, then u has the further regularity
− div(β(∇u)) +W ′

c(u) ∈ Lp
′

(0, T ;Lp
′

(Ω)). (8.16)Remark 8.6 Let us point out that, if q ≥ d, 
ondition (8.13) allows the non 
onvexpart of the potential g to have any polynomial growth at in�nity. Furthermore, notethat, in the 
ase d = 3 and p = q = 2, the double well potentialW (u) := (u2−1)2/4�ts in this framework. In fa
t, in that 
ase the non 
onvex fun
tion g is allowed tohave a polynomial growth of order 4 − ε for all ε > 0.Remark 8.7 Slight modi�
ations in the assumptions, whi
h we are not going todetail, would also allow us to prove an existen
e result for Problem 8.4 with homo-geneous Neumann boundary 
onditions on u.We shall prove Theorem 8.5 by going over to the formulation of Problem (8.4) asa doubly nonlinear evolution in
lusion of the type (8.2) in the (re�exive) Bana
hspa
e
B = Lp(Ω), 1 < p <∞,endowed with a suitable Finsler metri
.The Bana
h spa
e formulation. In order to introdu
e the formulation of Prob-lem 8.4 as a doubly nonlinear equation in Lp(Ω), we 
onsider the fun
tion R : R

2 →
[0,∞) given by

R(w, z) :=

{
ρ+(w) zp if z ≥ 0

ρ−(w) |z|p if z < 0
= ρsign(z)(w) |z|p ∀(w, z) ∈ R

2. (8.17)We asso
iate with R the following family of positive fun
tionals on Lp(Ω):
ηu(v) :=

(∫

Ω

R(u(x), v(x)) dx

)1/p

∀u, v ∈ Lp(Ω). (8.18)Further, let us 
onsider the fun
tion ψ(x) := xp

p
, x ≥ 0, indu
ing (see (Ψ)) thefun
tionals

Ψu(v) :=
1

p
(ηu(v))

p =
1

p

∫

Ω

R(u(x), v(x)) dx ∀u, v ∈ Lp(Ω). (8.19)58



Finally, let us de�ne E1 : [0, T ] × Lp(Ω) → (−∞,∞] by
E1
t (u) :=

{∫
Ω

(j(∇u(x)) +Wc(u(x))) dx− 〈h(t), u〉 if u ∈W 1,q
0 (Ω), Wc(u) ∈ L1(Ω),

∞ else, (8.20)for all (t, u) ∈ [0, T ] × Lp(Ω), and E2 : [0, T ] × Lp(Ω) → (−∞,∞] by
E2
t (u) :=

{∫
Ω
g(u(x)) dx if g(u) ∈ L1(Ω),

∞ otherwise, ∀ (t, u) ∈ [0, T ] × Lp(Ω), (8.21)and let us set
Et(u) := E1

t (u) + E2
t (u) ∀ (t, u) ∈ [0, T ] × Lp(Ω). (8.22)We have the followingProposition 8.8 Assume (8.11)�(8.14). Then, every solution u ∈ AC(0, T ;Lp(Ω))of the Cau
hy problem (8.2) asso
iated with the fun
tionals {Ψu}u∈Lp(Ω) and Et :

Lp(Ω) → (−∞,+∞], t ∈ [0, T ], respe
tively given by (8.19) and (8.22) is a solutionof Problem 8.4.The proof of Proposition 8.8 ensues from the following results, whi
h shed light onthe properties of the fun
tionals {ηu}u∈Lp(Ω) (8.18) and Et (8.22).Lemma 8.9 Under assumption (8.11), {ηu}u∈Lp(Ω) is a family of sublinear fun
-tionals 
omplying with (6.2), (6.3), (6.4), and for all u ∈ Lp(Ω) we have
ηu∗(ξ) =

(∫

Ω

R∗(u(x), ξ(x)) dx

)1/p′

∀ ξ ∈ Lp
′

(Ω) (8.23)where R∗ : R
2 → (0,∞) is de�ned by

R∗(w, z) :=

{
ρ+(w)−p

′/p zp
′ if z ≥ 0

ρ−(w)−p
′/p |z|p

′ if z < 0
= ρ

−p′/psign(z)(w) |z|p
′

∀(w, z) ∈ R
2.Further, for all u ∈ Lp(Ω) and v ∈ dom (∂Ψu) we have

ξ ∈ ∂Ψu(v) (⊂ Lp
′

(Ω)) ⇔ ξ(x) = ρsign(v(x))(u(x))v(x)
p−1 for a.e.x ∈ Ω. (8.24)Note that, thanks to (8.11),

R
−p′/p
1 |z|p

′

≤ R∗(w, z) ≤ R
−p′/p
0 |z|p

′

∀ (w, z) ∈ R
2. (8.25)Proof of Lemma 8.9. Conditions (5.1a) and (5.1
) (with K independent of u) aretrivial to 
he
k. Con
erning (5.1b), let us �rst note that

R(s, t1 + t2) ≤ (R(s, t1 + t2))
(p−1)/p ·

(
R(s, t1)

1/p + R(s, t2)
1/p
)

∀ s, t1, t2 ∈ R.(8.26)59



Indeed, to �x ideas let us suppose that t1 + t2 ≥ 0 (the other 
ase 
an be treatedexa
tly in the same way). Then,
R(s, t1 + t2) = ρ+(s) (t1 + t2)

p

= ρ+(s)1/p t1 ·
(
ρ+(s)(p−1)/p · (t1 + t2)

p−1
)

+ ρ+(s)1/p t2
(
ρ+(s)(p−1)/p · (t1 + t2)

p−1
)
.If t1, t2 ≥ 0, (8.26) follows. If, e.g., t1 ≥ 0 and t2 ≤ 0, using that ρ+(s)1/p t2 ≤ 0 ≤

ρ−(s)1/p|t2| we again dedu
e (8.26). Therefore, by the Hölder inequality we have forall u, v1, v2 ∈ Lp(Ω):
ηu(v1 + v2)

p =

∫

Ω

R(u(x), v1(x) + v2(x)) dx

≤

∫

Ω

R(u(x), v1(x))
1/p · (R(u(x), v1(x) + v2(x)))

(p−1)/p dx

+

∫

Ω

R(u(x), v2(x))
1/p · (R(u(x), v1(x) + v2(x)))

(p−1)/p dx

≤ ηu(v1) · ηu(v1 + v2)
(p−1)/p + ηu(v2) · ηu(v1 + v2)

(p−1)/p,when
e (5.1b).We shall now prove that for all {un}, {vn} ⊂ Lp(Ω)

(
un → u, vn → v in Lp(Ω)

)
⇒ ηun

(vn) → ηu(v) as n ↑ ∞, (8.27)whi
h 
learly implies (6.4). Indeed, there exist two subsequen
es {unk
} and {vnk

}su
h that unk
→ u and vnk

→ v a.e. on Ω. Then it 
an be easily 
he
ked that
R(unk

(x), vnk
(x)) → R(u(x), v(x)) for a.e. x ∈ Ω.From (8.11) we infer that

R(unk
(x), vnk

(x)) ≤ Rp
1|vnk

(x)|p ≤ 2p−1Rp
1 (|vnk

(x) − v(x)|p + |v(x)|p) for a.e. x ∈ Ω.Using a generalized version of the Lebesgue theorem (see e.g. [23, referenza?℄), wededu
e that ηunk
(vnk

) → ηu(v) as k ↑ ∞. As the limit does not depend on theextra
ted subsequen
e, (8.27) follows.Further, let {un} and {vn} ful�ll un → u and vn ⇀ v in Lp(Ω). Again applyingthe aforementioned lower semi
ontinuity results [11, Thm. 3.2℄ or [35, Thm. B.1℄ tothe fun
tional (u, v) 7→ R(u, v), we dedu
e that
lim inf
n↑∞

∫

Ω

R(un(x), vn(x)) dx ≥

∫

Ω

R(u(x), v(x)) dx,when
e the lower-semi
ontinuity property (6.3).Finally, (8.23) follows from trivial 
omputations and in order to 
he
k (8.24)we �x u ∈ Lp(Ω) and v ∈ dom(∂Ψu), supposing without loss of generality that
60



ηu(v) 6= 0 (if ηu(v) = 0, ne
essarily v = 0 and the 
he
k of (8.24) simpli�es). ByLemma 5.1 and the de�nition (8.19) of Ψu, we have
ξ ∈ ∂Ψu(v) ⇔ ηu∗(ξ) = ηu(v)

p−1 and ηu∗(ξ) =

∫
Ω
ξ(x)v(x) dx

ηu(v)

⇔

(∫

Ω

R(u(x), v(x)) dx

)(p−1)p

= ηu∗(ξ) =

∫
Ω
ξ(x)v(x) dx

(∫
Ω
R(u(x), v(x)) dx

)1/p

⇔ ξ(x) = ρsign(v(x))(u(x))|v(x)|
p−2v(x) for a.e. x ∈ ΩLemma 8.10 Assume (8.12)�(8.14). Then, the fun
tional E : [0, T ]×Lp(Ω) de�nedby (8.22) yields an admissible family of fun
tionals (a

ording to De�nition 5.10),ful�lling 
ondition (E) of Se
tion 8.1. Furthermore, for all t ∈ [0, T ] the Fré
hetsubdi�erential ∂Et(u) 6= ∅ if and only if − div(β(∇(u)))+W ′(u)−h(t) ∈ Lp

′

(Ω) andin that 
ase
∂Et(u) := {− div(β(∇(u))) +W ′(u) − h(t)} . (8.28)Proof. Hereafter, we fo
us on the 
ase in whi
h q < d, as the proof in the other
ase is analogous and slightly simpler. Note thatdom(Et) = D =

{
u ∈ W 1,q

0 (Ω) : Wc(u) ∈ L1(Ω)
}

∀ t ∈ [0, T ].It follows from [26, Thm. 2.5, p. 22℄ that for all t ∈ [0, T ] the fun
tional E1
t is 
onvexand lower semi
ontinuous. Moreover, re
alling that

∃l1, l2 > 0 : Wc(u) ≥ −l1u− l2 ∀u ∈ R,we �nd that
E1
t (u) ≥M1‖∇u‖

q
q − l1‖u‖1 − ‖h(t)‖−1,q′‖u‖1,q − C

≥
M1

2
‖u‖q1,q − C‖h‖q

′

L∞(0,T ;W−1,q′(Ω))
− C ′

(8.29)for all (t, u) ∈ [0, T ] ×W 1,q
0 (Ω) due to (8.12) and a trivial appli
ation of the Younginequality. Hen
e, the fun
tionals E1

t are uniformly bounded from below w.r.t. t.Arguing as in [46℄, it 
an be readily 
he
ked that for all (t, u) ∈ [0, T ] ×W 1,q
0 (Ω)

∂E1
t (u) =

{
{− div(∇β(u)) +W ′

c(u) − h(t)} if div(∇β(u))−W ′
c(u)+h(t) ∈ Lp

′

(Ω),
∅ otherwise. (8.30)On the other way, one trivially sees that the fun
tional E2 is lower semi
ontinuous;further, using the growth 
ondition (8.13), the Sobolev embedding (8.10), as well asthe Hölder and the Young inequalities, one has for all ν > 0

|E2
t (u)| ≤M4

∫

Ω

|u(x)|α+1 dx+ C ≤M4‖|u|
α‖p′‖u‖p + C

≤ C ′‖u‖q⋆‖u‖p + C ≤ ν‖u‖qq⋆ + Cν‖u‖
q′

p + C,61



so that (5.19) follows by 
ombining the above estimate with (8.29) and 
hoosing νin su
h a way that 2ν/M1 < 1. Moreover, (8.29) yields that the sublevels of Et(·)are bounded in W 1,q
0 (Ω) (whi
h is 
ompa
tly embedded in Lp(Ω)) uniformly withrespe
t to t ∈ [0, T ], hen
e (2.40) is ful�lled.Let us now 
he
k that E2

t ful�lls the �di�erentiabilityproperty (5.20) with
D̃E2

t (u) = g′(u) ∀u ∈W 1,q
0 (Ω) ∀ t ∈ [0, T ]. (8.31)Indeed, arguing as above we see that by (8.13) and (8.29) there exists a positive
onstant M5 su
h that for all u ∈W 1,q

0 (Ω)

g′(u) ∈ Lp
′

(Ω) and ‖g′(u)‖p′ ≤ C
(
‖u‖q

⋆

q⋆ + 1
)1/p′

≤ M5

(
E1
t (u)

q⋆/qp′ + 1
)
. (8.32)In order to 
he
k (5.20), let us �x a sequen
e {un} ⊂ W 1,q

0 (Ω) ful�lling supn Et(un)and 
onverging to u in Lp(Ω): it follows from (8.29) and from (8.10) that
un → u in Lq⋆−ε(Ω) for all ε > 0. (8.33)By the mean value theorem, for a.e. x ∈ Ω

g(un(x)) − g(u(x)) =

(∫ 1

0

g′((1 − t)un(x) + tu(x)) dt

)
(un(x) − u(x)). (8.34)Therefore,

lim
n↑∞

∣∣∫
Ω
g(un(x)) − g(u(x)) − g′(u(x))(un(x) − u(x)) dx

∣∣
‖un − u‖p

≤ lim
n↑∞

∫
Ω

∣∣∣
∫ 1

0
(g′((1 − t)un(x) + tu(x)) − g′(u(x))) dt

∣∣∣ |un(x) − u(x)| dx

‖un − u‖p

≤ lim
n↑∞

∫ 1

0

‖g′((1 − t)un + tu) − g′(u)‖p′ dt.the �rst inequality following from (8.34) and the se
ond one from the Hölder in-equality. Using the growth 
ondition (8.13), (8.33) and a version of the DominatedConvergen
e theorem (see [23℄), we infer that
∫ 1

0

‖g′((1 − t)un + tu) − g′(u)‖p′ dt→ 0 as n ↑ ∞,hen
e (8.31) follows. Then, (5.21) follows from (8.32). Noting that ∂tEt(u) =
−〈h′(t), u〉 for every u ∈ W 1,q

0 (Ω), we readily 
on
lude from the previous 
omputa-tions that (5.34) holds. Hen
e, (2.39) follows from the fa
t that the sublevels of Etare weakly 
ompa
t in W 1,q
0 (Ω) and that h′ ∈ C0([0, T ];W−1,q′(Ω)). Finally, (8.28)follows from the representation formula (5.23) of the Fré
het subdi�erential of ad-missible fun
tionals, from (8.30) and (8.31).62



Proof of Theorem 8.5. It follows from Lemma 8.9 and Lemma 8.10 that forany u0 ∈ W 1,q
0 (Ω) every solution u ∈ AC(0, T ;Lp(Ω)) of the Cau
hy problem (8.2)asso
iated with the fun
tionals (8.19) and (8.22) is indeed a solution to Problem 8.4.Sin
e 
onditions (N)�(Ψ) of Se
tion 8.1 are ful�lled, Theorem 8.3 thus yields theexisten
e of a solution u to the latter initial-boundary value problem. As a 
onse-quen
e of the energy identity (8.5), of (8.19), (8.23), (6.23), and (8.28), u ful�ls theenergy inequality

1

p′

∫ t

s

∫

Ω

R∗(u(x, r), div(β(∇u(x, r))) −W ′(u(x, r)) + h(x, r)) dx dr

+
1

p

∫ t

s

∫

Ω

R(u(x, r), ut(x, r))dx dr + Et(u(t))

= Es(u(s)) +

∫ t

s

〈h′(r), u(r)〉 dr ∀ 0 ≤ s ≤ t ≤ T.

(8.35)
In parti
ular, thanks to (8.11) we 
on
lude that u ∈ W 1,p(0, T ;Lp(Ω)), while es-timates (8.29), (8.32) and supt∈[0,T ] Et(u(t)) < +∞ yield (8.15). Finally, re
alling(8.25) we also dedu
e an estimate for − div(β(∇u))+W ′

c(u)−h in Lp′(0, T ;Lp
′

(Ω)),and (8.16) ensues.A
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