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Hierarchical adaptive sparse grids and quasi Monte Carlo for
option pricing under the rough Bergomi model

Christian Bayer, Chiheb Ben Hammouda, Raúl F. Tempone

Abstract

The rough Bergomi (rBergomi) model, introduced recently in [4], is a promising rough volatility
model in quantitative finance. It is a parsimonious model depending on only three parameters,
and yet exhibits remarkable fit to empirical implied volatility surfaces. In the absence of analytical
European option pricing methods for the model, and due to the non-Markovian nature of the
fractional driver, the prevalent option is to use the Monte Carlo (MC) simulation for pricing. Despite
recent advances in the MC method in this context, pricing under the rBergomi model is still a time-
consuming task. To overcome this issue, we design a novel, hierarchical approach, based on i)
adaptive sparse grids quadrature (ASGQ), and ii) quasi Monte Carlo (QMC). Both techniques
are coupled with Brownian bridge construction and Richardson extrapolation. By uncovering the
available regularity, our hierarchical methods demonstrate substantial computational gains with
respect to the standard MC method, when reaching a sufficiently small relative error tolerance in
the price estimates across different parameter constellations, even for very small values of the
Hurst parameter. Our work opens a new research direction in this field, i.e., to investigate the
performance of methods other than Monte Carlo for pricing and calibrating under the rBergomi
model.

1 Introduction

Modeling volatility to be stochastic, rather than deterministic as in the Black-Scholes model, enables
quantitative analysts to explain certain phenomena observed in option price data, in particular the
implied volatility smile. However, this family of models has a main drawback in failing to capture the true
steepness of the implied volatility smile close to maturity. Jumps can be added to stock price models to
overcome this undesired feature, for instance by modeling the stock price process as an exponential
Lévy process. However, the addition of jumps to stock price processes remains controversial [14, 3].

Motivated by the statistical analysis of realized volatility by Gatheral, Jaisson and Rosenbaum [20] and
the theoretical results on implied volatility [2, 18], rough stochastic volatility has emerged as a new
paradigm in quantitative finance, overcoming the observed limitations of diffusive stochastic volatility
models. In these models, the trajectories of the volatility have lower Hölder regularity than the trajecto-
ries of standard Brownian motion [4, 20]. In fact, they are based on fractional Brownian motion (fBm),
which is a centered Gaussian process, whose covariance structure depends on the so-called Hurst
parameter, H (we refer to [26, 16, 11] for more details regarding the fBm processes). In the rough
volatility case, where 0 < H < 1/2, the fBm has negatively correlated increments and rough sam-
ple paths. Gatheral, Jaisson, and Rosenbaum [20] empirically demonstrated the advantages of such
models. For instance, they showed that the log-volatility in practice has a similar behavior to fBm with
the Hurst exponent H ≈ 0.1 at any reasonable time scale (see also [19]). These results were con-
firmed by Bennedsen, Lunde and Pakkanen [8], who studied over a thousand individual US equities
and showed that H lies in (0, 1/2) for each equity. Other works [8, 4, 20] showed further benefits of
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such rough volatility models over standard stochastic volatility models, in terms of explaining crucial
phenomena observed in financial markets.

The rough Bergomi (rBergomi) model, proposed by Bayer, Friz and Gatheral [4], was one of the first
developed rough volatility models. This model, depending on only three parameters, shows remarkable
fit to empirical implied volatility surfaces. The construction of the rBergomi model was performed by
moving from a physical to a pricing measure and by simulating prices under that model to fit the implied
volatility surface well in the case of the S&P 500 index with few parameters. The model may be seen
as a non-Markovian extension of the Bergomi variance curve model [10].

Despite the promising features of the rBergomi model, pricing and hedging under such a model still
constitutes a challenging and time-consuming task due to the non-Markovian nature of the fractional
driver. In fact, the standard numerical pricing methods, such as PDE discretization schemes, asymp-
totic expansions and transform methods, although efficient in the case of diffusion, are not easily
carried over to the rough setting. Furthermore, due to the lack of Markovianity and affine structure,
conventional analytical pricing methods do not apply. To the best of our knowledge, the only prevalent
method for pricing options under such models is Monte Carlo (MC) simulation. In particular, recent ad-
vances in simulation methods for the rBergomi model and different variants of pricing methods based
on MC under such a model have been proposed in [4, 5, 9, 28, 24]. For instance, in [28], the authors
employ a novel composition of variance reduction methods. When pricing under the rBergomi model,
they achieved substantial computational gains over the standard MC method. Greater analytical under-
standing of option pricing and implied volatility under this model has been achieved in [25, 17, 6]. It is
crucial to note that hierarchical variance reduction methods, such as Multi-level Monte Carlo (MLMC),
are inefficient in this context, because of the poor behavior of the strong error, that is of the order of H
[31].

Despite recent advances in the MC method, pricing under the rBergomi model is still computationally
expensive. To overcome this issue, we design novel fast option pricers for options whose underlyings
follow the rBergomi model, based on i) adaptive sparse grids quadrature (ASGQ), and ii) quasi Monte
Carlo (QMC). Both techniques are coupled with Brownian bridge construction and Richardson extrap-
olation. To use these two deterministic quadrature techniques (ASGQ and QMC) for our purposes, we
solve two main issues that constitute the two stages of our newly designed method. In the first stage,
we smoothen the integrand by using the conditional expectation, as was proposed in [34] in the context
of Markovian stochastic volatility models, and in [7] in the context of basket options. In a second stage,
we apply the deterministic quadrature method, to solve the integration problem. In this stage, we apply
two hierarchical representations before using the ASGQ or QMC method, to overcome the issue of
facing a high-dimensional integrand due to the discretization scheme used for simulating the rBer-
gomi dynamics. Given that ASGQ and QMC benefit from anisotropy, the first representation consists
of applying a hierarchical path generation method, based on Brownian bridge (Bb) construction, with
the aim of reducing the effective dimension. The second technique consists of applying Richardson
extrapolation to reduce the bias, which in turn reduces the number of time steps needed in the coars-
est level to achieve a certain error tolerance and consequently the maximum number of dimensions
needed for the integration problem. We emphasize that we are interested in the pre-asymptotic regime
(corresponding to a small number of time steps), and the use of Richardson extrapolation is justified by
conjecture 3.1 and our observed experimental results in that regime, which suggest, in particular, that
we have convergence of order one for the weak error and that the pre-asymptotic regime is enough
to achieve sufficiently accurate estimates for the option prices. Furthermore, we emphasize that no
proper weak error analysis has been performed in the rough volatility context.

Our first contribution is that we design a novel alternative approach based on a deterministic quadra-
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ture, in contrast to the aforementioned studies such as [28]. Given that the only prevalent option in this
context is to use different variants of the MC method, our work opens a new research direction in this
field, i.e., to investigate the performance of methods other than MC for pricing and calibrating under
the rBergomi model. Our second contribution is that we reduce the computational cost through bias
reduction by using Richardson extrapolation. Finally, assuming one targets price estimates with a suf-
ficiently small relative error tolerance, our proposed method demonstrates substantial computational
gains over the standard MC method, even for very small values of H . We show these gains through
our numerical experiments for different parameter constellations. However, we do not claim that these
gains will hold in the asymptotic regime, which requires higher accuracy. Furthermore, in this work, we
limit ourselves to comparing our novel proposed methods against the standard MC. A more systematic
comparison with the variant of MC proposed in [28] is left for future research.

The outline of this paper is as follows: We begin in Section 2 by introducing the pricing framework that
we are considering in this study. We provide some details about the rBergomi model, option pricing
under this model and the simulation schemes used to simulate asset prices following the rBergomi
dynamics. We also explain how we choose the optimal simulation scheme for an optimal performance
of our approach. In Section 3, we discuss the weak error in the context of the rBergomi. Then, in
Section 4 we explain the different building blocks that constitute our proposed methods, which are
basically ASGQ, QMC, Brownian bridge construction, and Richardson extrapolation. Finally, in Section
5 we show the results obtained through the different numerical experiments conducted across different
parameter constellations for the rBergomi model. The reported results show the promising potential of
our proposed methods in this context.

2 Problem setting

In this section, we introduce the pricing framework that we consider in this work. We start by giving
some details on the rBergomi model proposed in [4]. We then derive the formula of the price of a
European call option under the rBergomi model in Section 2.2. Finally, we explain some details about
the schemes that we use to simulate the dynamics of asset prices under the rBergomi model.

2.1 The rBergomi model

We consider the rBergomi model for the price process St as defined in [4], normalized to r = 0 (r is
the interest rate), which is defined by

dSt =
√
vtStdZt,

vt = ξ0(t) exp

(
ηW̃H

t −
1

2
η2t2H

)
,(2.1)

where the Hurst parameter 0 < H < 1/2 and η > 0. We refer to vt as the variance process, and

ξ0(t) = E [vt] is the forward variance curve. Here, W̃H is a certain Riemann-Liouville fBm process
[27, 33], defined by

W̃H
t =

∫ t

0

KH(t− s)dW 1
s , t ≥ 0,(2.2)
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where the kernel KH : R+ → R+ is

KH(t− s) =
√

2H(t− s)H−1/2, ∀ 0 ≤ s ≤ t.

By construction, W̃H is a centered, locally (H − ε)- Hölder continuous Gaussian process with

Var
[
W̃H
t

]
= t2H , and a dependence structure defined by

E
[
W̃H
u W̃

H
v

]
= u2HG

(v
u

)
, v > u,

where for x ≥ 1 and γ = 1
2
−H

G(x) = 2H

∫ 1

0

ds

(1− s)γ(x− s)γ
.

In (2.1) and (2.2), W 1, Z denote two correlated standard Brownian motions with correlation ρ ∈
]− 1, 0], so that we can represent Z in terms of W 1 as

Z = ρW 1 + ρW⊥ = ρW 1 +
√

1− ρ2W⊥,

where (W 1,W⊥) are two independent standard Brownian motions. Therefore, the solution to (2.1),
with S(0) = S0, can be written as

St = S0 exp

(∫ t

0

√
v(s)dZ(s)− 1

2

∫ t

0

v(s)ds

)
, S0 > 0

vu = ξ0(u) exp

(
ηW̃H

u −
η2

2
u2H

)
, ξ0 > 0.(2.3)

Remark 2.1. The rBergomi model is non-Markovian in the instantaneous variance vt, that isE [vu | Ft] 6=
E [vu | vt]. However, it is Markovian in the state vector by definition, that is E [vu | Ft] = ξt(u).

2.2 Option pricing under the rBergomi model

We are interested in pricing European call options under the rBergomi model. Assuming S0 = 1, and
using the conditioning argument on the σ-algebra generated by W 1 (an argument first used by [34] in
the context of Markovian stochastic volatility models), we can show that the call price is given by

CRB (T,K) = E
[
(ST −K)+]

= E
[
E
[
(ST −K)+ | σ(W 1(t), t ≤ T )

]]
= E

[
CBS

(
S0 = exp

(
ρ

∫ T

0

√
vtdW

1
t −

1

2
ρ2

∫ T

0

vtdt

)
, k = K, σ2 = (1− ρ2)

∫ T

0

vtdt

)]
,

(2.4)

where CBS(S0, k, σ
2) denotes the Black-Scholes call price, for initial spot price S0, strike price k and

volatility σ2.

We point out that the analytical smoothing, based on conditioning, performed in (2.4) enables us to
uncover the available regularity, and hence get a smooth, analytic integrand inside the expectation.
Therefore, applying a deterministic quadrature technique such as ASGQ or QMC becomes an ade-
quate option for computing the call price, as we will investigate later. A similar conditioning was used
in [28] but for variance reduction purposes only.
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2.3 Simulation of the rBergomi model

One of the numerical challenges encountered in the simulation of rBergomi dynamics is the compu-
tation of

∫ T
0

√
vtdW

1
t and V =

∫ T
0
vtdt in (2.4), mainly because of the singularity of the Volterra

kernelKH(s− t) at the diagonal s = t. In fact, one needs to jointly simulate two Gaussian processes

(W 1
t , W̃

H
t : 0 ≤ t ≤ T ), resulting in W 1

t1
, . . . ,W 1

tN
and W̃H

t1
, . . . , W̃H

tN
along a given time grid

t1 < · · · < tN . In the literature, there are essentially two suggested ways to achieve this:

i) Covariance based approach (exact simulation) [4, 6]: W 1
t1
, . . . ,W 1

tN
, W̃H

t1
, . . . , W̃tN to-

gether form a (2N )-dimensional Gaussian random vector with a computable covariance matrix,
and therefore one can use Cholesky decomposition of the covariance matrix to produce exact
samples of W 1

t1
, . . . ,W 1

tN
, W̃H

t1
, . . . , W̃tN from 2N -dimensional Gaussian random vector as

input. This method is exact but slow. The simulation requiresO (N2) flops. Note that the offline
cost isO (N3) flops.

ii) The hybrid scheme of [9]: This scheme uses a different approach, which is essentially based
on Euler discretization but is crucially improved by moment matching for the singular term in the
left point rule. It is also inexact in the sense that samples produced here do not exactly have
the distribution of W 1

t1
, . . . ,W 1

tN
, W̃H

t1
, . . . , W̃tN . However they are much more accurate than

the samples produced from simple Euler discretization, but much faster than method (i). As in
method (i), in this case, we need a 2N -dimensional Gaussian random input vector to produce

one sample of W 1
t1
, . . . ,W 1

tN
, W̃H

t1
, . . . , W̃tN .

2.3.1 On the choice of the simulation scheme in our approach

The choice of the simulation scheme in our approach was based on the observed behavior of the
weak rates. Through our numerical experiments (see Table 5.1 for the tested examples), we observe
that although the hybrid and exact schemes seem to converge asymptotically with weak error of order
O (∆t), the pre-asymptotic behavior of the weak rate is different for both schemes (we provide a short
discussion of the weak error in Section 3). As an illustration, from Figure 2.1 for Set 1 parameter in
Table 5.1, the hybrid scheme has a consistent convergence behavior in the sense that it behaves in
an asymptotic manner basically right from the beginning, whereas the exact scheme does not. On the
other hand, the constant seems to be considerably smaller for the exact scheme. These two features
make the hybrid scheme the better choice to work with in our context since our approach is based on
hierarchical representations involving the use of Richardson extrapolation (see Section 4.4).
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10-3 10-2 10-1 100
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10-2
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100
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|E
[g
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∆
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−
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X
)]
|

weak_error
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rate= 1.00

(a)
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|E
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(X

∆
t)
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X
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|

weak_error
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Ub
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rate= 1.00

(b)

Figure 2.1: The convergence of the weak error EB , defined in (3.1), using MC with 6× 106 samples,
for Set 1 parameter in Table 5.1. We refer to CRB (as in (2.4)) for E [g(X)], and to CN

RB (as in (4.1)) for
E [g(X∆t)]. The upper and lower bounds are 95% confidence intervals. a) With the hybrid scheme b)
With the exact scheme.

2.3.2 The hybrid scheme

As motivated in Section 2.3.1, in this work we use the hybrid scheme, which, on an equidistant grid
{0, 1

N
, 2
N
, . . . , NT

N
}, is given by the following,

W̃H
i
N
≈ W

H
i
N

=
√

2H

min(i,κ)∑
k=1

∫ i
N
− k

N
+ 1

N

i
N
− k

N

(
i

N
− s
)H−1/2

dW 1
s +

i∑
k=κ+1

(
bk
N

)H−1/2 ∫ i
N
− k

N
+ 1

N

i
N
− k

N

dW 1
s

 ,

(2.5)

which results for κ = 1 in (2.6).

W̃H
i
N
≈ W

H
i
N

=
√

2H

(
W 2
i +

i∑
k=2

(
bk
N

)H− 1
2 (
W 1

i−(k−1)
N

−W 1
i−k
N

))
,(2.6)

where N is the number of time steps and

bk =

(
kH+ 1

2 − (k − 1)H+ 1
2

H + 1
2

) 1

H− 1
2

.

The sum in (2.6) requires the most computational effort in the simulation. Given that (2.6) can be seen
as discrete convolution (see [9]), we employ the fast Fourier transform to evaluate it, which results in
O (N logN) floating point operations.

We note that the variates W
H

0 ,W
H

1 , . . . ,W
H
[Nt]
N

are generated by sampling [Nt] i.i.d draws from a

(κ + 1)-dimensional Gaussian distribution and computing a discrete convolution. We denote these
pairs of Gaussian random variables from now on by (W(1),W(2)).

3 Weak error discussion

To the best of our knowledge, no proper weak error analysis has been done in the rough volatility
context. However, we try in this Section to shortly discuss it in the context of the rBergomi model.
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Sparse grids and QMC for rBergomi 7

In this work, we are interested in approximating E [g(XT )], where g is some smooth function and X

is the asset price under the rBergomi dynamics such that Xt = Xt(W
(1)
[0,t], W̃[0,t]), where W (1) is

standard Brownian motion and W̃ is the fractional Brownian motion as given by (2.2). Then we can
express the approximation of E [g(XT )] using the hybrid and exact schemes as the following

E
[
g
(
XT

(
W

(1)
[0,T ], W̃[0,T ]

))]
≈ E

[
g
(
XN

(
W

(1)
1 , . . . ,W

(1)
N ,W 1, . . . ,WN

))]
(Hybrid scheme),

E
[
g
(
XT

(
W

(1)
[0,T ], W̃[0,T ]

))]
≈ E

[
g
(
XN

(
W

(1)
1 , . . . ,W

(1)
N , W̃1, . . . , W̃N

))]
(Exact scheme),

where W is the approximation of W̃ as given by (2.5) and XN is the approximation of X using N
time steps. In the following, to simplify notation, let W = (W 1, . . . ,WN), W1 = (W

(1)
1 , . . . ,W

(1)
N )

and W̃ = (W̃1, . . . , W̃N). Then, the use of Richardson extrapolation in our methodology presented
in Section 4 is mainly justified by the conjecture 3.1.

Conjecture 3.1. If we denote by EHyb
B and EChol

B the weak errors produced by the hybrid and Cholesky
scheme respectively, then we have

EHyb
B =

∣∣∣E [g (XT

(
W

(1)
[0,T ], W̃[0,T ]

))]
− E

[
g
(
XN

(
W1,W

))]∣∣∣
≤
∣∣∣E [g (XT

(
W

(1)
[0,T ], W̃[0,T ]

))]
− E

[
g
(
XN

(
W1,W̃

))]∣∣∣+
+
∣∣∣E [g (XN

(
W1,W

))]
− E

[
g
(
XN

(
W1,W̃

))]∣∣∣
≤ EChol

B +
∣∣∣E [g (XN

(
W1,W

))]
− E

[
g
(
XN

(
W1,W̃

))]∣∣∣ .(3.1)

From the construction of the Cholesky scheme, we expect that the weak error is purely the discretiza-
tion error, that is

EChol
B = O (∆t) ,

as it was observed by our numerical experiments (for illustration see Figure 2.1b for the case of Set 1
in Table 5.1). The second term in the right-hand side of (3.1) is basically related to approximating the
integral (2.2) by (2.6). From our numerical experiments it seems that this term is at least of order ∆t
and its rate of convergence is independent of H (for illustration see Figure 2.1a for the case of Set 1
in Table 5.1).

4 Details of our hierarchical methods

We recall that our goal is to compute the expectation in (2.4). In fact, as seen in Section 2.3, we need
2N -dimensional Gaussian inputs for the used hybrid scheme (N is the number of time steps in the
time grid), namely

� W(1) = {W (1)
i }Ni=1: The N Gaussian random variables that are defined in Section 2.1.

� W(2) = {W (2)
j }Nj=1: An artificially introduced N Gaussian random variables that are used for

left-rule points in the hybrid scheme, as explained in Section 2.3.
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We can rewrite (2.4) as

CRB (T,K) = E

[
CBS

(
S0 = exp

(
ρ

∫ T

0

√
vtdW

1
t −

1

2
ρ2

∫ T

0

vtdt

)
, k = K, σ2 = (1− ρ2)

∫ T

0

vtdt

)]
≈
∫
R2N

CBS
(
G(w(1),w(2))

)
ρN(w(1))ρN(w(2))dw(1)dw(2)

:= CN
RB,

(4.1)

where G maps 2N independent standard Gaussian random inputs to the parameters fed to Black-
Scholes formula, and ρN is the multivariate Gaussian density, given by

ρN(z) =
1

(2π)N/2
e−

1
2
zT z.

Therefore, the initial integration problem that we are solving lives in 2N -dimensional space, which
becomes very large as the number of time steps N , used in the hybrid scheme, increases.

Our approach of approximating the expectation in (4.1) is based on hierarchical deterministic quadra-
tures, namely i) ASGQ using the same construction in [22] and ii) randomized QMC based on lattice
rules. We describe the ASGQ method in our context in Section 4.1, and in Section 4.2 we provide
details on the implented QMC method. To make an effective use of either the ASGQ or the QMC
method, we apply two techniques to overcome the issue of facing a high dimensional integrand due
to the discretization scheme used for simulating the rBergomi dynamics. The first consists of apply-
ing a hierarchical path generation method, based on Brownian bridge (Bb) construction, with the aim
of reducing the effective dimension, as described in Section 4.3. The second technique consists of
applying Richardson extrapolation to reduce the bias, resulting in reducing the maximum number of
dimensions needed for the integration problem. Details about Richardson extrapolation are provided
in Section 4.4.

If we denote by Etot the total error of approximating the expectation in (2.4) using the ASGQ estimator,
QN , then we have a natural error decomposition

Etot ≤
∣∣CRB − CN

RB

∣∣+
∣∣CN

RB −QN

∣∣ ≤ EB(N) + EQ(TOLASGQ, N),(4.2)

where EQ is the quadrature error, EB is the bias, TOLASGQ is a user selected tolerance for the ASGQ
method, and CN

RB is the biased price computed with N time steps as given by (4.1).

On the other hand, the total error of approximating the expectation in (2.4) using the randomized QMC
or MC estimator, QMC(QMC)

N can be bounded by

Etot ≤
∣∣CRB − CN

RB

∣∣+
∣∣CN

RB −Q
MC (QMC)
N

∣∣ ≤ EB(N) + ES(M,N),(4.3)

where ES is the statistical error1, M is the number of samples used for the MC or the randomized
QMC method.

1The statistical error estimate of MC or randomized QMC is Cα
σM√
M

, where M is the number of samples and Cα =

1.96 for 95% confidence interval.
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4.1 Adaptive sparse grids quadrature (ASGQ)

We assume that we want to approximate the expected value E[f(Y )] of an analytic function f : Γ→
R using a tensorization of quadrature formulas over Γ.

To introduce simplified notations, we start with the one-dimensional case. Let us denote by β a non-
negative integer, referred to as a “stochastic discretization level", and by m : N → N a strictly
increasing function with m(0) = 0 and m(1) = 1, that we call “level-to-nodes function". At level

β, we consider a set of m(β) distinct quadrature points in R, Hm(β) = {y1
β, y

2
β, . . . , y

m(β)
β } ⊂ R,

and a set of quadrature weights, ωm(β) = {ω1
β, ω

2
β, . . . , ω

m(β)
β }. We also let C0(R) be the set of

real-valued continuous functions over R. We then define the quadrature operator as

Qm(β) : C0(R)→ R, Qm(β)[f ] =

m(β)∑
j=1

f(yjβ)ωjβ.

In our case, we have in (4.1) a multi-variate integration problem with, f = CBS◦G,Y = (W(1),W(2)),
and Γ = R2N , in the previous notations. Furthermore, since we are dealing with Gaussian densities,
using Gauss-Hermite quadrature points is the appropriate choice.

We define for any multi-index β ∈ N2N

Qm(β) : C0(R2N)→ R, Qm(β) =
2N⊗
n=1

Qm(βn),

where the n-th quadrature operator is understood to act only on the n-th variable of f . Practically, we
obtain the value of Qm(β)[f ] by using the grid T m(β) =

∏2N
n=1Hm(βn), with cardinality #T m(β) =∏2N

n=1 m(βn), and computing

Qm(β)[f ] =

#T m(β)∑
j=1

f(ŷj)ωj,

where ŷj ∈ T m(β) and ωj are products of weights of the univariate quadrature rules. To simplify
notation, hereafter, we replace Qm(β) by Qβ.

A direct approximation E [f [Y]] ≈ Qβ[f ] is not an appropriate option due to the well-known “curse
of dimensionality". We use a hierarchical ASGQ2 strategy, specifically using the same construction as
in [22], and which uses stochastic discretizations and a classic sparsification approach to obtain an
effective approximation scheme for E [f ].

To be concrete, in our setting, we are left with a 2N -dimensional Gaussian random input, which is
chosen independently, resulting in 2N numerical parameters for ASGQ, which we use as the basis
of the multi-index construction. For a multi-index β = (βn)2N

n=1 ∈ N2N , we denote by Qβ
N the result

of approximating (4.1) with a number of quadrature points in the i-th dimension equal to m(βi). We
further define the set of differences ∆Qβ

N as follows: for a single index 1 ≤ i ≤ 2N , let

∆iQ
β
N =

{
Qβ
N −Q

β′

N , with β′ = β − ei, if βi > 0,

Qβ
N , otherwise,

where ei denotes the ith 2N -dimensional unit vector. Then, ∆Qβ
N is defined as

∆Qβ
N =

(
2N∏
i=1

∆i

)
Qβ
N .

2More details about sparse grids can be found in [12].
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For instance, when N = 1, then

∆Qβ
1 = ∆2∆1Q

(β1,β2)
1 = ∆2

(
Q

(β1,β2)
1 −Q(β1−1,β2)

1

)
= ∆2Q

(β1,β2)
1 −∆2Q

(β1−1,β2)
1

= Q
(β1,β2)
1 −Q(β1,β2−1)

1 −Q(β1−1,β2)
1 +Q

(β1−1,β2−1)
1 .

Given the definition of CN
RB by (4.1), we have the telescoping property

CN
RB = Q∞N =

∞∑
β1=0

· · ·
∞∑

β2N=0

∆Q
(β1,...,β2N )
N =

∑
β∈N2N

∆Qβ
N .

The ASGQ estimator used for approximating (4.1), and using a set of multi-indices I ⊂ N2N is given
by

(4.4) QIN =
∑
β∈I

∆Qβ
N .

The quadrature error in this case is given by

(4.5) EQ(TOLASGQ, N) =
∣∣Q∞N −QIN ∣∣ ≤ ∑

β∈N2N\I

∣∣∣∆Qβ
N

∣∣∣ .
We define the work contribution, ∆Wβ, to be the computational cost required to add ∆Qβ

N to QIN ,
and the error contribution, ∆Eβ, to be a measure of how much the quadrature error, defined in (4.5),
would decrease once ∆Qβ

N has been added to QIN , that is

∆Eβ =
∣∣∣QI∪{β}N −QIN

∣∣∣(4.6)

∆Wβ = Work[Q
I∪{β}
N ]−Work[QIN ].(4.7)

The construction of the optimal I is done by profit thresholding (see Figure 4.1 for illustration), that is,
for a certain threshold value T , and a profit of a hierarchical surplus defined by

Pβ =
|∆Eβ|
∆Wβ

,

the optimal index set I for our ASGQ is given by I = {β : Pβ ≥ T}.

(a) (b) (c) (d) (e) (f)

Figure 4.1: Construction of the index set for ASGQ method. A posteriori, adaptive construction: Given
an index set Ik, compute the profits of the neighbor indices and select the most profitable one.
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Remark 4.1. The choice of the hierarchy of quadrature points,m(β), is flexible in the ASGQ algorithm
and can be fixed by the user, depending on the convergence properties of the problem at hand. For
instance, for the sake of reproducibility, in our numerical experiments we used a linear hierarchy:
m(β) = 4(β − 1) + 1, 1 ≤ β, for results of parameter set 1 in Table 5.1. For the remaining
parameter sets in Table 5.1, we used a geometric hierarchy: m(β) = 2β−1 + 1, 1 ≤ β.

Remark 4.2. As emphasized in [22], one important requirement to achieve the optimal performance of
the ASGQ is to check the error convergence, defined by (4.6), of first and mixed difference operators.
We checked this requirement in all our numerical experiments, and for illustration we show in Figures
4.2 and 4.3 the error convergence of first and second order differences for the case of parameter set
2 in Table 5.1. These plots show that: i) ∆Eβ decreases exponentially fast with respect to βi, and ii)
∆Eβ has a product structure since we observe a faster error decay for second differences compared
to corresponding first difference operators.
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rate=̄-8.74

̄β= ̄[0̄0̄0̄0̄0̄0̄0̄1]
rate=̄-9.49

(b)

Figure 4.2: The rate of error convergence of first order differences |∆Eβ|, defined by (4.6), (β =
1 + kβ) with respect to W(1) (a) and with respect to W(2) (b), for parameter set 2 in Table 5.1. The
number of quadrature points used in the i-th dimension is Ni = 2βi−1 + 1.
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Figure 4.3: The rate of error convergence of second order differences |∆Eβ|, defined by (4.6), (β =
1 + kβ) with respect to W(1) (a) and with respect to W(2) (b), for parameter set 2 in Table 5.1. The
number of quadrature points used in the i-th dimension is Ni = 2βi−1 + 1.

Remark 4.3. The analiticity assumption, stated in the beginning of Section 4.1, is crucial for the op-
timal performance of our proposed method. In fact, although we face the issue of the “curse of di-
mensionality"when increasing N , the analiticity of f implies a spectral convergence for sparse grids
quadrature.
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4.2 Quasi Monte Carlo (QMC)

A second type of deterministic quadrature that we test in this work is the randomized QMC method.
Specifically, we use the lattice rules family of QMC [35, 15, 32]. The main input for the lattice rule is
one integer vector with d component (d dimension of the integration problem).

In fact, given an integer vector z = (z1, . . . , zd) known as the generating vector, a (rank-1) lattice rule
with n points takes the form

(4.8) Qn(f) :=
1

n

n−1∑
k=0

f

(
kz mod n

n

)
.

The quality of the lattice rule depends on the choice of the generating vector. Due to the modulo
operation, it suffices to consider the values from 1 up to n− 1. Furthermore, we restrict the values to
those relatively prime to n, to ensure that every one-dimensional projection of the n points yields n
distinct values. Thus, we write z ∈ Ud

n, with Un := {z ∈ Z : 1 ≤ z ≤ n − 1 and gcd(z, n) = 1}.
For practical purposes, we choose n to be a power of 2. The total number of possible choices for the
generating vector is then (n/2)d.

To get an unbiased approximation of the integral, we use a randomly shifted lattice rule, which also
allows us to obtain a practical error estimate in the same way as the MC method. It works as follows.
We generate q independent random shifts ∆(i) for i = 0, . . . , q − 1 from the uniform distribution of
[0, 1]d . For the same fixed lattice generating vector z, we compute the q different shifted lattice rule

approximations and denote them by Q(i)
n (f) for i = 0, . . . , q − 1.We then take the average

Qn,q(f) =
1

q

q−1∑
i=0

Q(i)
n (f) =

1

q

q−1∑
i=0

(
1

n

n−1∑
k=0

f

(
kz + ∆(i) mod n

n

))
(4.9)

as our final approximation to the integral and the total number of samples of the randomized QMC
method is MQMC = q × n.

We note that since we are dealing with Gaussian randomness and with integrals in infinite support,
we use the inverse of the standard normal cumulative distribution function as a pre-transformation to
map the problem to [0, 1] and then use the randomized QMC. Furthermore, in our numerical test, we
use a pre-made point generator using latticeseq_b2.py in python from https://people.cs.
kuleuven.be/~dirk.nuyens/qmc-generators/.

4.3 Brownian bridge (Bb) construction

In the literature of ASGQ and QMC, several hierarchical path generation methods (PGMs) have been
proposed to reduce the effective dimension. Among these techniques, we mention Bb construction
[29, 30, 13], principal component analysis (PCA) [1] and linear transformation (LT) [23].

In our context, the Brownian motion on a time discretization can be constructed either sequentially
using a standard random walk construction, or hierarchically using other PGMs, as listed above. For
our purposes, to make an effective use of ASGQ or QMC methods, which benefit from anisotropy, we
use the Bb construction since it produces dimensions with different importance, contrary to a random
walk procedure for which all the dimensions of the stochastic space have equal importance. In fact, Bb
uses the first several coordinates of the low-discrepancy points to determine the general shape of the
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Brownian path, and the last few coordinates influence only the fine detail of the path. Consequently,
this representation reduces the effective dimension of the problem, which results in accelerating the
ASGQ and QMC methods by reducing the computational cost.

Let us denote {ti}Ni=0 as the grid of time steps. Then the Bb construction [21] consists of the following:
given a past value Bti and a future value Btk , the value Btj (with ti < tj < tk) can be generated
according to

Btj = (1− ρ)Bti + ρBtk +
√
ρ(1− ρ)(k − i)∆tz, z ∼ N (0, 1),

where ρ = j−i
k−i .

4.4 Richardson extrapolation

Another representation that we couple with the ASGQ and QMC methods is Richardson extrapolation
[36]. In fact, applying levelKR (level of extrapolation) of Richardson extrapolation dramatically reduces
the bias, and as a consequence reduces the number of time steps N needed in the coarsest level to
achieve a certain error tolerance. As a consequence, Richardson extrapolation directly reduces the
total dimension of the integration problem for achieving some error tolerance.

Let us denote by (Xt)0≤t≤T a certain stochastic process and by (X̂h
ti

)0≤ti≤T its approximation using
a suitable scheme with a time step h. Then, for sufficiently small h, and a suitable smooth function f ,
we assume that

E
[
f(X̂h

T )
]

= E [f(XT )] + ch+O
(
h2
)
.(4.10)

Applying (4.10) with discretization step 2h, we obtain

E
[
f(X̂2h

T )
]

= E [f(XT )] + 2ch+O
(
h2
)
,

implying

2E
[
f(X̂2h

T )
]
− E

[
f(X̂h

T )
]

= E [f(XT )] +O
(
h2
)
.

For higher levels of extrapolations, we use the following: Let us denote by hJ = h02−J the grid sizes
(where h0 is the coarsest grid size), by KR the level of the Richardson extrapolation, and by I(J,KR)
the approximation of E [f(XT )] by terms up to level KR (leading to a weak error of order KR), then
we have the following recursion

I(J,KR) =
2KRI(J,KR − 1)− I(J − 1, KR − 1)

2KR − 1
, J = 1, 2, . . . , KR = 1, 2, . . .

Remark 4.4. We emphasize that throughout our work, we are interested in the pre-asymptotic regime
(a small number of time steps), and the use of Richardson extrapolation is justified by conjecture 3.1
and our observed experimental results in that regime (see Section 5.1), which suggest a convergence
of order one for the weak error.

5 Numerical experiments

In this section, we show the results obtained through the different numerical experiments, conducted
across different parameter constellations for the rBergomi model. Details about these examples are
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presented in Table 5.1. The first set is the one that is closest to the empirical findings [8, 20], which
suggest that H ≈ 0.1. The choice of parameter values of ν = 1.9 and ρ = −0.9 is justified by [4],
where it is shown that these values are remarkably consistent with the SPX market on 4th February
2010. For the remaining three sets in Table 5.1, we wanted to test the potential of our method for a very
rough case, that is H = 0.02, for three different scenarios of moneyness, S0/K . In fact, hierarchical
variance reduction methods, such as Multi-level Monte Carlo (MLMC), are inefficient in this context
because of the poor behavior of the strong error, that is of the order of H [31]. We emphasize that
we checked the robustness of our method for other parameter sets, but for illustrative purposes, we
only show results for the parameters sets presented in Table 5.1. For all our numerical experiments,
we consider a number of time steps N ∈ {2, 4, 8, 16}, and all reported errors are relative errors,
normalized by the reference solutions provided in Table 5.1.

Parameters Reference solution
Set 1: H = 0.07,K = 1, S0 = 1, T = 1, ρ = −0.9, η = 1.9, ξ0 = 0.2352 0.0791

(5.6e−05)

Set 2: H = 0.02,K = 1, S0 = 1, T = 1, ρ = −0.7, η = 0.4, ξ0 = 0.1 0.1246
(9.0e−05)

Set 3: H = 0.02,K = 0.8, S0 = 1, T = 1, ρ = −0.7, η = 0.4, ξ0 = 0.1 0.2412
(5.4e−05)

Set 4: H = 0.02,K = 1.2, S0 = 1, T = 1, ρ = −0.7, η = 0.4, ξ0 = 0.1 0.0570
(8.0e−05)

Table 5.1: Reference solution, which is the approximation of the call option price under the rBergomi
model, defined in (2.4), using MC with 500 time steps and number of samples, M = 8 × 106, for
different parameter constellations. The numbers between parentheses correspond to the statistical
errors estimates.

5.1 Weak error

We start our numerical experiments by accurately estimating the weak error (bias), discussed in Sec-
tion 3, for the different parameter sets in Table 5.1, with and without Richardson extrapolation. For
illustrative purposes, we only show the weak errors related to set 1 in Table 5.1 (see Figure 5.1). We
note that we observed similar behavior for the other parameter sets, with slightly worse rates for some
cases. We emphasize that the reported weak rates correspond to the pre-asymptotic regime that we
are interested in. We are not interested in estimating the rates specifically but rather obtaining a suffi-
ciently precise estimate of the weak error (bias), EB(N), for different numbers of time steps N . For a
fixed discretization, the corresponding estimated biased solution will be set as a reference solution to
the ASGQ method in order to estimate the quadrature error EQ(TOLASGQ, N).
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Figure 5.1: The convergence of the weak error EB(N), defined in (3.1), using MC, for set 1 parameter
in Table 5.1. We refer to CRB as E [g(X)], and to CN

RB as E [g(X∆t)]. The upper and lower bounds
are 95% confidence intervals. a) without Richardson extrapolation. b) with Richardson extrapolation
(level 1).

5.2 Comparing the errors and computational time for MC, QMC and ASGQ

In this section, we conduct a comparison between MC, QMC and ASGQ in terms of errors and com-
putational time. We show tables and plots reporting the different relative errors involved in the MC
and QMC methods (bias and statistical error estimates), and in ASGQ (bias and quadrature error es-
timates). While fixing a sufficiently small relative error tolerance in the price estimates, we compare
the computational time needed for all methods to meet the desired error tolerance. We note that in all
cases the actual work (runtime) is obtained using an Intel(R) Xeon(R) CPU E5-268 architecture.

Through our conducted numerical experiments for each parameter set, we follow these steps to
achieve our reported results:

i) For a fixed number of time steps, N , we compute an accurate estimate, using a large number
of samples, M , of the biased MC solution, CN

RB . This step also provides us with an estimate of
the bias error, EB(N), defined by (4.2).

ii) The estimated biased solution, CN
RB , is used as a reference solution to the ASGQ method to

compute the quadrature error, EQ(TOLASGQ, N), defined by (4.5).

iii) In order to compare the different methods, the number of samples,MQMC andMMC, are chosen
so that the statistical errors of randomized QMC, ES,QMC(MQMC), and MC, ES,MC(MMC), satisfy

ES,QMC(MQMC) = ES,MC(MMC) = EB(N) =
Etot

2
,(5.1)

where EB(N) is the bias as defined in (4.2) and Etot is the total error.

We show the summary of our numerical findings in Table 5.2, which highlights the computational
gains achieved by ASGQ and QMC over the MC method to meet a certain error tolerance, which
we set approximately to 1%. We note that the results are reported using the best configuration with
Richardson extrapolation for each method. More detailed results for each case of parameter set, as in
Table 5.1, are provided in Sections 5.2.1, 5.2.2, 5.2.3 and 5.2.4.

DOI 10.20347/WIAS.PREPRINT.2652 Berlin 2019



C. Bayer, C. Ben Hammouda, R. Tempone 16

Parameter set Total relative error CPU time ratio (ASGQ/MC) CPU time ratio (QMC/MC)
Set 1 1% 6.7% 10%

Set 2 0.2% 4.7% 1.4%

Set 3 0.4% 3.8% 4.7%

Set 4 2% 20% 10%

Table 5.2: Summary of relative errors and computational gains, achieved by the different methods. In
this table, we highlight the computational gains achieved by ASGQ and QMC over the MC method to
meet a certain error tolerance. We note that the ratios are computed for the best configuration with
Richardson extrapolation for each method. We provide details about the way we compute these gains
for each case in the following sections.

5.2.1 Case of parameters in Set 1 in Table 5.1

In this section, we conduct our numerical experiments for three different scenarios: i) without Richard-
son extrapolation, ii) with (level 1) Richardson extrapolation, and iii) with (level 2) Richardson extrap-
olation. Figure 5.2 shows a comparison of the numerical complexity for each method under the three
different scenarios. From this Figure, we conclude that to achieve a relative error of 1%, level 1 of
Richardson extrapolation is the optimal configuration for both the MC and the randomized QMC meth-
ods, and level 2 of Richardson extrapolation is the optimal configuration for the ASGQ method.
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Figure 5.2: Comparing the numerical complexity of the different methods with the different configura-
tions in terms of the level of Richardson extrapolation. a) MC methods. b) QMC methods. d) ASGQ
methods.

We compare these optimal configurations for each method in Figure 5.3, and we show that both
ASGQ and QMC outperform MC, in terms of numerical complexity. In particular, to achieve a total
relative error of 1%, ASGQ coupled with level 2 of Richardson extrapolation requires approximately
6.7% of the work of MC coupled with level 1 of Richardson extrapolation, and QMC coupled with level
1 of Richardson extrapolation requires approximately 10% of the work of MC coupled with level 1 of
Richardson extrapolation. We show more detailed outputs for the methods compared in Figure 5.3 in
Appendix A.1.
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Figure 5.3: Computational work comparison for the different methods with the best configurations, as
concluded from Figure 5.2, for the case of parameter set 1 in Table 5.1. This plot shows that to achieve
a relative error below 1%, ASGQ coupled with level 2 of Richardson extrapolation and QMC coupled
with level 1 of Richardson extrapolation have the same performance. Furthermore, they outperform
significantly the MC method coupled with level 1 of Richardson extrapolation.

5.2.2 Case of parameters in Set 2 in Table 5.1

In this section, we only conduct our numerical experiments for the case without Richardson extrapola-
tion, since the results show that we meet a small enough relative error tolerance without the need to
apply Richardson extrapolation. We compare the different methods in Figure 5.4, and we determine
that both ASGQ and QMC outperform MC, in terms of numerical complexity. In particular, to achieve
a total relative error of about 0.2%, ASGQ requires approximately 4.7% of the work of MC, and QMC
requires approximately 1.4% of the work of MC. We show more detailed outputs for the methods
compared in Figure 5.4 in Appendix A.2.
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Figure 5.4: Computational work comparison for the different methods, for the case of parameter set 2
in Table 5.1. This plot shows that to achieve a relative error below 1%, ASGQ and QMC have similar
performance and they outperform the MC method significantly in terms of computational time.

5.2.3 Case of parameters in Set 3 in Table 5.1

In this section, we only conduct our numerical experiments for the case without Richardson extrapola-
tion, since the results show that we meet a small enough relative error tolerance without the need to
apply Richardson extrapolation. We compare the different methods in Figure 5.5, and we determine
that both ASGQ and QMC outperform MC, in terms of numerical complexity. In particular, to achieve
a total relative error of about 0.4%, ASGQ requires approximately 3.8% of the work of MC, and QMC
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requires approximately 4.7% of the work of MC. We show more detailed outputs for the methods
compared in Figure 5.5 in Appendix A.3.

10−22 × 10−3 3 × 10−3 4 × 10−3 6 × 10−3

Error

10−1

100

101

102

CP
U 

tim
e

MC
slope= -4.00
ASGQ
slope= -4.88
QMC
slope= -1.89

Figure 5.5: Comparison of computational work for the different methods, for the case of parameter set
3 in Table 5.1.

5.2.4 Case of parameters in Set 4 in Table 5.1

In this section, we only conduct our numerical experiments for the case without Richardson extrapo-
lation. We compare the different methods in Figure 5.6, and we determine that both ASGQ and QMC
outperform MC, in terms of numerical complexity. In particular, to achieve a total relative error of about
2%, ASGQ requires approximately 20% of the work of MC, and QMC requires approximately 10% of
the work of MC. We show more detailed outputs for the methods compared in Figure 5.6 in Appendix
A.4. Similar to the case of set 1 parameters, illustrated in section 5.2.1, we believe that Richardson
extrapolation will improve the performance of the ASGQ and QMC methods. We should also point out
that, since we are in the out of the money regime in this case, a fairer comparison of the methods may
be done after coupling them with an importance sampling method, so that more points are sampled in
the right region of the payoff function.

10−12 × 10−2 3 × 10−2 4 × 10−2 6 × 10−2

Error

10−2

10−1

100

101

CP
U 

tim
e

MC
slope= -3.25
ASGQ
slope= -3.27
QMC
slope= -1.62

Figure 5.6: Comparison of computational work for the different methods, for the case of parameter set
4 in Table 5.1.

6 Conclusions and future work

In this work, we propose novel, fast option pricers, for options whose underlyings follow the rBergomi
model as in [4]. The new methods are based on hierarchical deterministic quadrature methods: i)
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ASGQ using the same construction as in [22], and ii) the QMC method. Both techniques are coupled
with Brownian bridge construction and Richardson extrapolation.

Given that the only prevalent option, in this context, is to use different variants of the MC method,
which is computationally expensive, our first contribution is that we uncover the available regularity in
the rBergomi model and design novel approaches based on an ASGQ and QMC. These approaches
open a new research direction in this field to investigate the performance of other methods besides
MC, for pricing and calibrating under the rBergomi model. Our second contribution is that we reduce
the computational cost through bias reduction by using Richardson extrapolation. Finally, assuming
one targets price estimates with a sufficiently small relative error tolerance, our proposed method
demonstrates substantial computational gains over the standard MC method, when pricing under the
rBergomi model, even for very small values of the Hurst parameter. We show these gains through
our numerical experiments for different parameter constellations. We clarify that we do not claim that
these gains will hold in the asymptotic regime, i.e., for higher accuracy requirements. Furthermore,
the use of Richardson extrapolation is justified in the pre-asymptotic regime, in which our observed
experimental results suggest a convergence of order one for the weak error. We emphasize that, to
the best of our knowledge, no proper weak error analysis has been done in the rough volatility context.

In this work, we limit ourselves to compare our novel proposed method against the standard MC. A
more systematic comparison against the variant of MC proposed in [28] can be carried out but this re-
mains for a future study. Another future research direction is to provide a reliable method for controlling
the quadrature error for ASGQ which is, to the best of our knowledge, still an open research problem.
This is even more challenging in our context, especially for low values of H . We emphasize that the
main aim of this work is to illustrate the high potential of deterministic quadrature, when coupled with
hierarchical representations, for pricing options under the rBergomi model. Finally, accelerating our
novel methods can be achieved by using better versions of the ASGQ or QMC methods.
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A Appendix

A.1 Case of set 1 parameters in table 5.1
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Method Steps
1− 2 2− 4 4− 8 8− 16

QMC + level 1 of Richardson extrapolation 1.87
(0.96,0.91)

0.16
(0.07,0.09)

0.033
(0.015,0.018)

0.0044
(0.002,0.002)

M(# QMC samples) 128 8192 131072 2097152

MC + level 1 of Richardson extrapolation 1.88
(0.96,0.92)

0.14
(0.07,0.07)

0.03
(0.015,0.015)

0.0044
(0.002,0.0024)

M(# MC samples) 4× 10 8× 103 16× 104 5× 105

Table A.1: Total relative error of MC and randomized QMC coupled with Richardson extrapolation
(level 1), to compute the call option price for different numbers of time steps. The values between
parentheses correspond to the different errors contributing to the total relative error: the bias and the
statistical errors. The number of MC and QMC samples, M , are chosen to satisfy (5.1).

Method Steps
1− 2 2− 4 4− 8 8− 16

QMC + level 1 of Richardson extrapolation 0.018 2 18 333
MC + level 1 of Richardson extrapolation 0.0012 12 152 4400

Table A.2: Comparison of the computational time (in seconds) of MC and randomized QMC coupled
with Richardson extrapolation (level 1) to compute the call option price of the rBergomi model for
different numbers of time steps. The average MC CPU time is computed over 100 runs.

Method Steps
1− 2− 4 2− 4− 8

ASGQ + level 2 of Richardson extrapolation (TOLASGQ = 10−1) 0.54
(0.24,0.30)

0.113
(0.006,0.107)

ASGQ + level 2 of Richardson extrapolation (TOLASGQ = 5.10−2) 0.49
(0.24,0.25)

0.009
(0.006,0.003)

Table A.3: Total relative error of ASGQ, coupled with Richardson extrapolation (level 2), to compute
the call option price for different numbers of time steps. The values between parentheses correspond
to the different errors contributing to the total relative error: the bias and quadrature errors.

Method Steps
1− 2− 4 2− 4− 8

ASGQ + level 2 of Richardson extrapolation (TOLASGQ = 10−1) 0.2 2
ASGQ + level 2 of Richardson extrapolation (TOLASGQ = 5.10−2) 0.5 74

Table A.4: Comparison of the computational time (in seconds) of ASGQ coupled with Richardson
extrapolation (level 2) to compute the call option price of the rBergomi model for different numbers of
time steps.

A.2 Case of set 2 parameters in table 5.1
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Method Steps
2 4 8 16

ASGQ (TOLASGQ = 10−1) 0.03
(0.02,0.01)

0.022
(0.008,0.014)

0.022
(0.004,0.018)

0.017
(0.001,0.016)

ASGQ (TOLASGQ = 10−2) 0.03
(0.02,0.01)

0.017
(0.008,0.009)

0.008
(0.004,0.004)

0.001
(0.001,4e−04)

QMC 0.04
(0.02,0.02)

0.017
(0.008,0.009)

0.008
(0.004,0.004)

0.002
(0.001,0.001)

M(# QMC samples) 4096 8192 32768 262144

MC 0.04
(0.02,0.02)

0.016
(0.008,0.008)

0.007
(0.004,0.003)

0.002
(0.001,0.001)

M(# MC samples) 16× 103 8× 104 4× 105 4× 106

Table A.5: Total relative error of the different methods without Richardson extrapolation, to compute the
call option price for different numbers of time steps. The values between parentheses correspond to
the different errors contributing to the total relative error; for ASGQ we report the bias and quadrature
errors and for MC and QMC we report the bias and the statistical errors estimates. The number of MC
and QMC samples, M , are chosen to satisfy (5.1).

Method Steps
2 4 8 16

ASGQ (TOLASGQ = 10−1) 0.1 0.1 0.2 0.8
ASGQ (TOLASGQ = 10−2) 0.1 0.5 8 92
QMC method 0.3 0.7 3.25 27
MC method 0.6 6.4 66 1976

Table A.6: Comparison of the computational time (in seconds) of the different methods to compute the
call option price of the rBergomi model for different numbers of time steps. The average MC CPU time
is computed over 100 runs.

A.3 Case of set 3 parameters in table 5.1
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Method Steps
2 4 8 16

ASGQ (TOLASGQ = 10−1) 0.008
(0.006,0.002)

0.009
(0.004,0.005)

0.008
(0.003,0.005)

0.009
(0.002,0.007)

ASGQ (TOLASGQ = 10−2) 0.008
(0.006,0.002)

0.009
(0.004,0.005)

0.005
(0.003,0.002)

0.002
(0.002,1e−04)

ASGQ (TOLASGQ = 10−3) 0.008
(0.006,0.002)

0.006
(0.004,0.002)

0.003
(0.003,1e−04)

0.002
(0.002,1e−04)

ASGQ (TOLASGQ = 10−4) 0.006
(0.006,4e−04)

0.004
(0.004,2e−04)

0.003
(0.003,1e−04)

−

QMC 0.015
(0.006,0.009)

0.008
(0.004,0.004)

0.0066
(0.003,0.0036)

0.004
(0.002,0.002)

M(# QMC samples) 23 × 210 = 8192 23 × 211 = 16384 23 × 212 = 32768 23 × 213 = 65536

MC 0.01
(0.006,0.005)

0.008
(0.004,0.004)

0.006
(0.003,0.003)

0.004
(0.002,0.002)

M(# MC samples) 8× 104 16× 104 24× 104 32× 104

Table A.7: Total relative error of the different methods without Richardson extrapolation, to compute the
call option price for different numbers of time steps. The values between parentheses correspond to
the different errors contributing to the total relative error; for ASGQ we report the bias and quadrature
errors and for MC and QMC we report the bias and the statistical errors estimates. The number of MC
and QMC samples, M , are chosen to satisfy (5.1).

Method Steps
2 4 8 16

ASGQ (TOLASGQ = 10−1) 0.1 0.1 0.1 1
ASGQ (TOLASGQ = 10−2) 0.1 0.15 9 112
ASGQ (TOLASGQ = 10−3) 0.2 2 27 2226
ASGQ (TOLASGQ = 10−4) 1 6 136 −
QMC method 0.65 1.4 3.25 7.5
MC method 4 12 40 160

Table A.8: Comparison of the computational time (in seconds) of the different methods to compute the
call option price of the rBergomi model for different numbers of time steps. The average MC CPU time
is computed over 100 runs.

A.4 Case of set 4 parameters in table 5.1
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Method Steps
2 4 8 16

ASGQ (TOLASGQ = 10−1) 0.09
(0.07,0.05)

0.07
(0.03,0.04)

0.07
(0.02,0.05)

0.06
(0.01,2e−04)

ASGQ (TOLASGQ = 10−2) 0.09
(0.07,5e−04)

0.07
(0.03,0.04)

0.02
(0.02,3e−04)

0.02
(0.01,2e−04)

ASGQ (TOLASGQ = 10−3) 0.07
(0.07,5e−04)

0.03
(0.03,4e−04)

0.02
(0.02,3e−04)

0.01
(0.01,2e−04)

QMC 0.155
(0.07,0.085)

0.07
(0.03,0.04)

0.039
(0.02,0.019)

0.02
(0.01,0.01)

M(# QMC samples) 23 × 28 = 2048 23 × 29 = 4096 23 × 211 = 16384 23 × 212 = 32768

MC 0.14
(0.07,0.07)

0.07
(0.03,0.04)

0.04
(0.02,0.02)

0.02
(0.01,0.01)

M(# MC samples) 24× 102 8× 103 32× 103 8× 104

Table A.9: Total relative error of the different methods without Richardson extrapolation, to compute the
call option price for different numbers of time steps. The values between parentheses correspond to
the different errors contributing to the total relative error; for ASGQ we report the bias and quadrature
errors and for MC and QMC we report the bias and the statistical errors estimates. The number of MC
and QMC samples, M , are chosen to satisfy (5.1).

Method Steps
2 4 8 16

ASGQ (TOLASGQ = 10−1) 0.1 0.1 0.2 0.5
ASGQ (TOLASGQ = 10−2) 0.1 0.1 8 97
ASGQ (TOLASGQ = 10−3) 0.7 4 26 1984
QMC method 0.17 0.35 1.6 4
MC method 0.08 0.6 5.6 40

Table A.10: Comparison of the computational time (in seconds) of the different methods to compute
the call option price of rBergomi model for different numbers of time steps. The average MC CPU time
is computed over 100 runs.
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