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Cahn–Hilliard–Brinkman model for tumor growth with possibly
singular potentials

Pierluigi Colli, Gianni Gilardi, Andrea Signori, Jürgen Sprekels

Abstract

We analyze a phase field model for tumor growth consisting of a Cahn–Hilliard–Brinkman sys-
tem, ruling the evolution of the tumor mass, coupled with an advection-reaction-diffusion equation
for a chemical species acting as a nutrient. The main novelty of the paper concerns the discus-
sion of the existence of weak solutions to the system covering all the meaningful cases for the
nonlinear potentials; in particular, the typical choices given by the regular, the logarithmic, and the
double obstacle potentials are admitted in our treatise. Compared to previous results related to
similar models, we suggest, instead of the classical no-flux condition, a Dirichlet boundary con-
dition for the chemical potential appearing in the Cahn–Hilliard-type equation. Besides, abstract
growth conditions for the source terms that may depend on the solution variables are postulated.

1 Introduction

Cancer is nowadays still one of the main diseases causing death worldwide. Beyond doubt, the un-
derstanding of the development of solid tumor growth is one of the major challenges scientists have
to face in the current century. Moreover, it is now, more than ever, apparent that only interdisciplinary
efforts may enable us to gain deeper insights into cancer development mechanisms. In this scenario,
mathematics could play a crucial role, since multiscale mathematical modeling provides a quantitative
tool that may help in diagnostic and prognostic applications (see, e.g., the seminal book [7]). Among
others, mathematics has two decisive advantages: the first one is that of being able to select particular
mechanisms that may be more relevant than others, while the second one is that of being able to fore-
see and make predictions that may be precious for medical practitioners, without inflicting any harm to
the patients. Furthermore, the extremely fast development of computational methods for the solution
of nonlinear PDEs opens the doors for a direct interaction between the experimental methods used by
physicians and the more theoretical mathematical ones: indeed, advanced numerical solvers may be
implemented as a supporting tool in clinical therapies. Recently, lots of phase field models modeling
tumor growth have been proposed: a brief description of the state of the art will be provided later on.
As biological materials like tumor agglomerates exhibit viscoelastic properties, we prescribe a velocity
equation of Brinkman type.

Let Ω ⊂ R3 be a spatial domain in which the tumor is located, T > 0 be a fixed final time, and set
Q := Ω × (0, T ), and Σ := ∂Ω × (0, T ). Then the system under investigation in this paper is a
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P. Colli, G. Gilardi, A. Signori, J. Sprekels 2

Cahn–Hilliard–Brinkman model related to tumor growth and reads as follows:

− divT(v, p) + νv = µ∇ϕ+
(
σ + χ(1− ϕ)

)
∇σ in Q, (1.1)

div v = g in Q, (1.2)

∂tϕ+ div(ϕv)− div(m(ϕ)∇µ) = Sϕ(ϕ, σ) in Q, (1.3)

µ = −ε∆ϕ+ ε−1F ′(ϕ)− χσ in Q, (1.4)

∂tσ + div
(
σv)− div(n(ϕ)∇(σ + χ(1− ϕ))

)
= Sσ(ϕ, σ) in Q, (1.5)

where the coefficients m and n are positive functions and the viscous Brinkman stress tensor T is
defined as

T(v, p) = 2ηDv + λ(div v)I− pI . (1.6)

Here, the standard notation

Dv :=
1

2

(
∇v + (∇v)T

)
(1.7)

is used for the symmetrized gradient of the velocity field v which represents the volume-averaged
velocity field of the mixture with permeability ν. Moreover, p is the pressure, η and λ are nonnegative
constants denoting the shear viscosity and the bulk viscosity, respectively, and I ∈ R3×3 is the identity
matrix. Although several choices are possible, we endow the above system with the following boundary
and initial conditions:

T(v, p)n = 0 on Σ, (1.8)

∂nϕ = 0, µ = µΣ, ∂nσ = κ(σΣ − σ) on Σ, (1.9)

ϕ(0) = ϕ0, σ(0) = σ0 in Ω, (1.10)

wheren denotes the outer unit normal vector to ∂Ω, and ∂n the associated outward normal derivative.
The other variables of the system are ϕ, µ, and σ. In relevant cases, the phase variable ϕ is an order
parameter taking values in [−1, 1] that represents the difference between the volume fractions of
tumor cells and healthy cells. It allows us to keep track of the evolution of the boundary of the tumor,
since the level sets {ϕ = 1} := {x ∈ Ω : ϕ(x) = 1} and {ϕ = −1} describe the region of
pure phases: the tumorous phase and the healthy phase, respectively. The second variable µ denotes
the chemical potential related to ϕ as in the framework of the Cahn–Hilliard equation. We postulate
the growth and proliferation of the tumor to be driven by the absorption and consumption of some
nutrient σ (usually oxygen). Whenever 0 ≤ σ ≤ 1, σ ' 1 represents a rich nutrient concentration,
whereas σ ' 0 a poor one. The functions m(ϕ) and n(ϕ) are nonnegative mobility functions related
to the phase and to the nutrient variables, respectively. The positive physical constants ε and ν are
related to the interfacial thickness and surface tension, while the nonnegative constant χ represents
the chemotactic sensitivity. Finally, Sϕ and Sσ denote nonlinearities representing some source terms
that account for the mutual interplay between tumor, healthy cells, and nutrients. For further details
concerning the modeling, we refer to [15] and the references therein.

Concerning the boundary conditions, we point out that (1.8) can be understood as a no-friction bound-
ary condition for the velocity field v. This is a common request for similar systems, see, e.g., [8,9,22],
as it does not enforce any compatibility condition on the velocity source term g in (1.2), which is oth-
erwise needed if one assumes a no-slip boundary condition like v = 0 on Σ or the no-penetration
boundary condition v · n = 0 on Σ. Both these conditions entail that

∫
Ω
g = 0, which is not ideal

from the modeling perspective. Let us also notice that the vector field v is not solenoidal (as typically
in fluid-type problems), which entails challenges from the mathematical viewpoint.

DOI 10.20347/WIAS.PREPRINT.2939 Berlin 2022



Cahn–Hilliard–Brinkman model for tumor growth with possibly singular potentials 3

As a common denominator of a more general Cahn–Hilliard equation, in (1.4) F ′ represents the (gen-
eralized) derivative of a double-well shaped nonlinearity F . Prototypical examples are the regular, the
logarithmic, and the double obstacle potentials. These read, in the order, as

Freg(r) :=
1

4
(r2 − 1)2 , r ∈ R , (1.11)

Flog(r) :=


θ
2

[(1 + r) ln(1 + r) + (1− r) ln(1− r)]− θ0
2
r2 if r ∈ (−1, 1) ,

θ ln(2)− θ0
2

if r ∈ {−1, 1} ,
+∞ otherwise ,

(1.12)

Fdob(r) :=

{
c(1− r2) if r ∈ [−1, 1] ,

+∞ otherwise ,
(1.13)

for some positive constant c and 0 < θ < θ0. Besides, in the case of nonregular potentials like the
double obstacle (1.13), the second equation (1.4) has to be read as a differential inclusion.

The main novelty of this paper is the prescription of the Dirichlet boundary condition µ = µΣ for the
chemical potential on Σ, in contrast to the standard homogeneous Neumann (no-flux) boundary con-
dition ∂nµ = 0 on Σ (see, e.g., [8,9,22]). The limitation behind the latter choice regards the nonlinear
potentials that can be considered: in all of the aforementioned papers, the authors were forced to re-
strict the analysis to regular potentials, possibly of just quadratic growth at infinity; singular potentials
like (1.12) or (1.13) were excluded from the analysis. These, however, are actually more relevant phys-
ically, since, if solutions to the system exist, then the condition ϕ ∈ [−1, 1] is automatically fulfilled.
The restriction of the admitted potentials originates from the presence of the source term Sϕ in the
Cahn–Hilliard equation (1.1). Roughly speaking, for proving that µ ∈ L2(0, T ;H1(Ω)), the energetic
approach provides just a control on ∇µ in L2(Q). The classical approach then requires the employ-
ment of the Poincaré–Wirtinger inequality along with a control of the spatial mean of µ in L2(0, T ).
This can be achieved by comparison in equation (1.4), provided that F is regular and its derivative F ′

possesses a prescribed growth, which leads to the choice of potentials of polynomial type. Therefore,
the novelty of our work revolves around the different boundary condition, which allows us to apply
another version of Poincaré’s inequality to establish immediate control of µ ∈ L2(0, T ;H1(Ω)) from
the bound ∇µ ∈ L2(Q) without the need of an additional control of the spatial average of µ; in this
way, unpleasant growth restrictions for the potential can be avoided (see also [13]).

Without claiming to be exhaustive, let us now review some literature connected with the system (1.1)–
(1.10). It is well known that the Brinkman law interpolates between the Stokes and Darcy paradigms,
and it has become rather popular in recent times, see [8,9,22]. For tumor growth models both descrip-
tions seem reasonable, because the associated Reynolds number is very small. Formally, we recover
the Darcy limit when η ≡ λ ≡ 0, and ν > 0, where the boundary condition (1.8) yields that p = 0
on Σ; similarly, the Stokes limit is obtained when η, λ > 0, and ν = 0. The Stokes equation was
suggested, e.g., in [5, 10], by approximating the tumor as a viscous fluid, while Darcy’s law describes
a viscous fluid permeating a porous medium represented by the extracellular matrix and accounts for
the inclination of cells to move away from regions of high compression, see, e.g., [14, 15]. Station-
ary approximations for system (1.1)–(1.10) are popular as well, and we mention [12, 13, 17] and the
references therein, where just polynomial-type potentials were considered. To cope with the case of
singular potential, some authors (see [6]) suggested to include suitable relaxations. Besides, we refer
to [18, 19, 27] and the references therein, for related nonlocal versions, to [1, 16, 23] for the additional
coupling with elasticity, and to [26] for the coupling with the Keller–Segel equation.
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1.1 Biological Examples and Modeling Considerations

Before diving into the mathematical details, let us outline some physically meaningful choices for the
source terms Sϕ and Sσ introduced above.

Linear Kinetic. A first typical form for Sϕ and Sσ was proposed by Cristini et al. in [7] motivated by
linear kinetic:

Sϕ(ϕ, σ) := (Pσ −A)h(ϕ), Sσ(ϕ, σ) := B(σc − σ)− Cσh(ϕ). (1.14)

In the above expressions, P,A,B, and C denote nonnegative constants related to biological quanti-
ties that are, in the order, the proliferation rate of tumoral cells by consumption of nutrient, the apoptosis
rate, the consumption rate of the nutrient with respect to a preexisting concentration σc, and the nu-
trient consumption rate. As for the function h, it denotes an interpolation function between −1 and 1
with the property that h(−1) = 0 and h(1) = 1. Roughly speaking, h weights the corresponding
mechanism compared to the amount of cancer located in that region and “turns off” the associated
mechanism when the tumor is not present.

Linear phenomenological laws for chemical reactions. Another approach was proposed by ac-
counting for linear phenomenological laws for chemical reactions by A. Hawkins-Daarud et al. in [21],
where the following form was suggested:

Sϕ(ϕ, σ, µ) = −Sσ(ϕ, σ, µ) := P (ϕ)(σ + χ(1− ϕ)− µ), (1.15)

where P stands for a suitable nonnegative proliferation function.

In the forthcoming analysis, we will proceed in an abstract fashion without prescribing explicit struc-
tures for the source terms, but just postulating suitable growth conditions. Those are straightforwardly
fulfilled by the above cases but this last one. Namely, we cannot allow a linear growth of the sources
with respect to µ. Nevertheless, let us claim that the special form (1.15) can still be considered pro-
vided to adjust some estimates accordingly (cf. [6]).

The above system (1.1)–(1.10) (see, e.g., [15]) is naturally associated to a free energy E with following
the structure:

E(ϕ, σ) =
ε

2

∫
Ω

|∇ϕ|2 +
1

ε

∫
Ω

F (ϕ) +

∫
Ω

N(ϕ, σ), (1.16)

N(ϕ, σ) =
1

2
|σ|2 + χσ(1− ϕ), (1.17)

where the first two terms in E yield the well-known Ginzburg–Landau energy modeling phase segre-
gation and adhesion effects, while N stands for the chemical free energy density, respectively. For
convenience, let us immediately set a specific notation to denote the partial derivatives of the free
energy N with respect to the variables ϕ and σ:

Nϕ(ϕ, σ) := ∂ϕN(ϕ, σ) = −χσ and Nσ(ϕ, σ) := ∂σN(ϕ, σ) = σ + χ(1− ϕ), (1.18)

as a direct computation shows. This notation will turn very convenient for the estimation procedure
later on.

As they will play any role from the mathematical viewpoint, we will set m(·) ≡ n(·) ≡ 1, and ε = 1 in
our discussion. However, let us claim that our well-posedness result might be proven also for suitable
nonconstant, albeit non-degenerate, mobilities (see [8]).
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2 Notation, Assumptions and Main Results

Throughout the paper, Ω is a bounded and connected open subset of R3 (the two-dimensional case
can be treated in the same way) having a smooth boundary Γ := ∂Ω. In the following, |Ω| denotes
the Lebesgue measure of Ω. Similarly, we write |Γ| for the two-dimensional Hausdorff measure of Γ.
Given a final time T > 0, we set, for every t ∈ (0, T ],

Qt := Ω× (0, t), Σt := Γ× (0, t), Q := QT , Σ := ΣT . (2.1)

Given a Banach space X , we denote by ‖ · ‖X , X∗, and 〈·, ·〉X , its norm, its dual space, and the
associated duality pairing, respectively. As for the notation of norms, some exceptions will be utilized
in the sequel. Moreover, the symbol used for the norm in some space X is adopted for the one
in any power of X . Another standard notation that we employ concerns vectors, or vector-valued
functions, which are denoted by bold symbols; for instance, 0 stands for the zero vector in R3, and
v = (v1, v2, v3) ∈ R3. For 1 ≤ q ≤ ∞ and k ≥ 0, we indicate the usual Lebesgue and Sobolev
spaces on Ω by Lq(Ω) and W k,q(Ω), with the standard abbreviation Hk(Ω) := W k,2(Ω). The norm
in Lq(Ω) is simply denoted by ‖ · ‖q, and the same symbol is used for the norms in the analogous
spaces constructed on Q, Γ and Σ, if no confusion can arise. Then, we introduce the shorthands

H := L2(Ω), V := H1(Ω), V0 := H1
0 (Ω),

and W := {v ∈ H2(Ω) : ∂nv = 0 a.e. on Γ}, (2.2)

and endow these spaces with their natural norms. For simplicity, we write ‖ · ‖ instead of ‖ · ‖H .
Besides, the space H will be identified with its dual, so that we have the following continuous, dense,
and compact embeddings:

W ↪→ V ↪→ H ↪→ V ∗,

yielding that (V,H, V ∗) is a Hilbert triplet. Similarly, (V0, H, V
∗

0 ) is a Hilbert triplet that will be used
as well. We observe at once the compatible embeddings

V ↪→ Hs2(Ω) ↪→ Hs1(Ω) ↪→ H ↪→ (Hs1(Ω))∗ ↪→ (Hs2(Ω))∗ ↪→ V ∗

for 0 < s1 < s2 < 1, (2.3)

and we recall that

(Hs(Ω))∗ = (Hs
0(Ω))∗ = H−s(Ω) for 0 ≤ s ≤ 1/2 . (2.4)

Finally, the same symbols written with boldface characters denote the corresponding spaces of vector-
valued functions. So, we have for instance that Lp(Ω) = (Lp(Ω))3, H = H3 and V = V 3.
However, sinceH and V are powers of H and V , we simply write ‖ · ‖ and ‖ · ‖V instead of ‖ · ‖H
and ‖ · ‖V , respectively. Moreover, for given matricesA,B ∈ R3×3, we define the scalar product

A : B :=
3∑
i=1

3∑
j=1

[A]ij [B]ij .

The following structural assumptions will be in order in our analysis. The double-well potential F
introduced in the examples (1.11)–(1.13) is replaced by a more general one. Indeed, we can make the
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following assumptions:

F : R→ (−∞,+∞] admits the decomposition F = β̂ + π̂, where (2.5)

β̂ : R→ [0,+∞] is convex and l.s.c. with subdifferential β := ∂β̂

and fulfills β̂(0) = 0 and lim
r→+∞

β̂(r)|r|−2 = +∞ . (2.6)

π̂ ∈ C1(R) with Lipschitz continuous derivative π := π̂′. (2.7)

For the source terms we assume:

Sϕ, Sσ : R2 → R are Lipschitz continuous functions satisfying (2.8)

|Sϕ(r, s)|+ |Sσ(r, s)| ≤ Θ(|r|+ |s|+ 1)

for some constant Θ > 0 and every r, s ∈ R . (2.9)

g ∈ L∞(Q). (2.10)

Finally, the permeability, viscosity and sensitivity constants ν, η, λ and χ are requested to satisfy

ν, η ∈ (0,+∞) and λ, χ ∈ [0,+∞). (2.11)

It is well known that β is a maximal monotone graph in R×R with corresponding domain D(β), and

that 0 ∈ β(0). It is worth noticing that in the case β̂ ∈ C1(R) it follows that it is single-valued, and

we can write β = β̂′ as well as F ′ = β + π. Here, we immediately observe that all of the standard
potentials (1.11)–(1.13) fulfill (2.5)–(2.7), as well as that the biologically relevant examples given above
for the source terms satisfy (2.8)–(2.10).

As for the initial and boundary data, we assume:

ϕ0 ∈ V and β̂(ϕ0) ∈ L1(Ω) . (2.12)

µΣ ∈ H1(0, T ;L2(Γ)) ∩ L2(0, T ;H1/2(Γ)) . (2.13)

σΣ ∈ L2(Σ) . (2.14)

However, it is convenient to transform the Dirichlet inhomogeneous boundary condition for µ into a
homogeneous one by performing a change of variable for the chemical potential. To this end, we
introduce the harmonic extension of the boundary datum µΣ, i.e., the function h : Q→ R defined as
follows:

h(t) ∈ V, −∆h(t) = 0 and h(t)|Γ = µΣ(t) for a.a. t ∈ (0, T ) . (2.15)

We notice at once that (2.13) ensures that h enjoys at least the regularity

h ∈ H1(0, T ;H) ∩ L2(0, T ;V ) . (2.16)

Thus, upon setting µ̃ := µ−h, the boundary condition for µ in (1.9) now becomes the homogeneous
Dirichlet condition µ̃ = 0 on Σ. However, for the sake of simplicity, we proceed with abuse of notation
and still denote by µ the above difference µ̃ between the chemical potential and h. This change of
notation obviously slightly modifies the equations: the right-hand side of (1.1) has to be adapted, and
we have to rewrite (1.4) as

µ ∈ −ε∆ϕ+ ε−1∂F (ϕ)− χσ − h,

DOI 10.20347/WIAS.PREPRINT.2939 Berlin 2022
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where the differential inclusion arises from the possible multi-valued nature of the nonlinearity F , in
accordance with (2.5)–(2.7). For this reason, and in order to clarify the meaning of the equation, we
state the new problem to be dealt with in a precise form. In particular, the equations (1.1), (1.3) and
(1.5), and the corresponding boundary conditions, are replaced by variational equations (also owing
to the Leibniz rule for the divergence and (1.2)), and the homogeneous Dirichlet condition for µ is
enforced by the forthcoming (2.19).

By recalling (1.6)–(1.7) and (1.17)–(1.18), and setting m(·) ≡ n(·) ≡ 1 and ε = 1 as announced in
the Introduction, we look for a sextuple (v, p, µ, ϕ, ξ, σ) enjoying the regularity properties

v ∈ L2(0, T ;V ) , (2.17)

p ∈ L4/3(0, T ;H) , (2.18)

µ ∈ L2(0, T ;V0) , (2.19)

ϕ ∈ H1(0, T ;V ∗0 ) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ) , (2.20)

ξ ∈ L2(0, T ;H) , (2.21)

σ ∈ W 1,4/3(0, T ;V ∗) ∩ L∞(0, T ;H) ∩ L2(0, T ;V ) , (2.22)

that satisfies∫
Ω

T(v, p) : ∇ζ + ν

∫
Ω

v · ζ =

∫
Ω

(µ+ h)∇ϕ · ζ +

∫
Ω

Nσ(ϕ, σ)∇σ · ζ

for every ζ ∈ V and a.e. in (0, T ) , (2.23)

div v = g a.e. in Q , (2.24)

〈∂tϕ, φ〉V0 +

∫
Ω

∇µ · ∇φ =

∫
Ω

Sϕ(ϕ, σ)φ−
∫

Ω

(∇ϕ · v + ϕg)φ

for every φ ∈ V0 and a.e. in (0, T ) , (2.25)∫
Ω

∇ϕ · ∇z +

∫
Ω

(ξ + π(ϕ))z =

∫
Ω

(
µ+ h−Nϕ(ϕ, σ)

)
z

for every z ∈ V and a.e. in (0, T ) , (2.26)

ξ ∈ β(ϕ) a.e. in Q , (2.27)

〈∂tσ, ζ〉V +

∫
Ω

∇Nσ(ϕ, σ) · ∇ζ

=

∫
Ω

Sσ(ϕ, σ)ζ −
∫

Ω

(∇σ · v + σg)ζ + κ

∫
Γ

(σΣ − σ)ζ

for every ζ ∈ V and a.e. in (0, T ) , (2.28)

as well as the initial conditions

ϕ(0) = ϕ0 a.e. in Ω , and 〈σ(0), ζ〉V = 〈σ0, ζ〉V for every ζ ∈ V . (2.29)

Here is our main result:

Theorem 2.1. Assume (2.5)–(2.11), and let the notations (1.6)–(1.7) and (1.17)–(1.18) be in force.
Moreover, let (2.12)–(2.14) be fulfilled, and let h be defined by (2.15). Then, the weak formulation
(2.23)–(2.29) of the Cahn–Hilliard–Brinkman system admits at least one solution (v, p, µ, ϕ, ξ, σ)
with the regularity specified by (2.17)–(2.22).

DOI 10.20347/WIAS.PREPRINT.2939 Berlin 2022
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Remark 2.2. It is worth pointing out that equation (2.26) has been formulated in a weak form just
for convenience. Indeed, thanks to (2.27), along with the regularity properties (2.20) and (2.21), the
variational equation (2.26) is equivalent to the boundary value problem

−∆ϕ+ ξ + π(ϕ) = µ+ h−Nϕ(ϕ, σ) a.e. in Q and ∂nϕ = 0 on Σ . (2.30)

As further regularity is concerned, the components ϕ and ξ of every solution satisfy

ϕ ∈ L2(0, T ;W 2,6(Ω)) ∩ L4(0, T ;H2(Ω)) and ξ ∈ L2(0, T ;L6(Ω)) (2.31)

(in the two-dimensional case the summability exponent 6 can be replaced by any q ≥ 1), as shown
in the forthcoming Remark 4.1. Finally, we notice that, in view of the very low regularity at disposal for
the nutrient variable σ and the velocity field v, the uniqueness of weak solutions is not to be expected.

We continue this section by listing some tools that will be useful later on. We first recall Young’s
inequality

a b ≤ δ

q
aq +

(δ)−q
′/q

q′
bq
′

for all a, b ∈ [0,+∞), q ∈ (1,+∞) and δ > 0, (2.32)

where q′ denotes the conjugate exponent of q given by the identity (1/q)+(1/q′) = 1. We repeatedly
use it, mainly with q = q′ = 2. We also account for Hölder’s inequality, as well as for the following
Sobolev, compactness, Poincaré, and Korn inequalities:

‖v‖q ≤ CS ‖v‖V for every v ∈ V and q ∈ [1, 6] , (2.33)

‖v‖2
4 ≤ δ ‖∇v‖2 + Cδ ‖v‖2 for every v ∈ V and δ > 0 , (2.34)

‖v‖V ≤ CP ‖∇v‖ for every v ∈ V0 , (2.35)

‖v‖2
V ≤ CK

(
‖v‖2 + ‖Dv‖2

)
for every v ∈ V . (2.36)

Here, the constantsCS ,CP , andCK , depend only on Ω, whileCδ depends on δ, in addition. In (2.36),
the notation (1.7) is used.

Next, we present three auxiliary results that will be used in the sequel. The first one is stated in a
more general setting as an exercise in [11, Ex. III.3.5], but it readily follows as a corollary from [11,
Thm. III.3.1]. The second one is related to the Stokes resolvent operator and is a particular case
of [2, Thm. 3] (which is an extension of the results in [20]). Finally, the last one regards the trace
operator.

Lemma 2.3. There exists a constant C that depends only on Ω such that for every f and a satisfying

f ∈ H, a ∈H1/2(Γ), and

∫
Ω

f =

∫
Γ

a · n , (2.37)

there exists some u ∈ V satisfying

divu = f a.e. in Ω, u|Γ = a, and ‖u‖V ≤ C
(
‖f‖+ ‖a‖H1/2(Γ)

)
. (2.38)

Lemma 2.4. Assume that f ∈H and f ∈ V . Then, there exists a unique pair (v, p) satisfying

v ∈H2(Ω) and p ∈ V ,

− divT(v, p) + νv = f and div v = f in Ω ,

T(v, p)n = 0 on Γ .
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Cahn–Hilliard–Brinkman model for tumor growth with possibly singular potentials 9

Moreover, the mapping Ψ = (Ψ1,Ψ2) : (f , f) 7→ (v, p) is linear and continuous fromH × V into
H2(Ω)× V .

Lemma 2.5. The trace operator maps L∞(0, T ;H)∩L2(0, T ;V ) into L4(0, T ;L2(Γ)), and it holds
the estimate ∫ T

0

‖v(t)‖4
L2(Γ) dt ≤ C ‖v‖2

L∞(0,T ;H) ‖v‖2
L2(0,T ;V ) (2.39)

for every v ∈ L∞(0, T ;H) ∩ L2(0, T ;V ), where the constant C depends only on Ω, and where v
also denotes the trace of v on Γ.

Proof. As we did not find a precise reference, we provide a sketch of the proof. We denote by C1,
C2,. . . constants that depend only on Ω. We introduce the real interpolation space (by the way, the
Besov space B1/2

2,1 (Ω))
B := (V,H)1/2,1 . (2.40)

The trace operator v 7→ v|Γ maps B into L2(Γ) and is linear and continuous. In the half-space case
Ω = R3

+, this can be deduced, e.g., from formula (I.17) (with the notation Y (1,R3
+) for (2.40)) in the

paper [29], where it is also shown that the operator maps B onto L2(Γ). As usual, the result is then
extended to the general case by using local charts and a partition of unity. This leads to the estimate

‖v‖L2(Γ) ≤ C1 ‖v‖B for every v ∈ B.

On the other hand, the interpolation inequality

‖v‖B ≤ C2 ‖v‖1/2
V ‖v‖

1/2

holds true for every v ∈ V . Now, letting v ∈ L∞(0, T ;H)∩L2(0, T ;V ), we have for a.a. t ∈ (0, T )
that

‖v(t)‖L2(Γ) ≤ C1 ‖v(t)‖B ≤ C3 ‖v(t)‖1/2
V ‖v(t)‖1/2 ≤ C3 ‖v(t)‖1/2

V ‖v‖
1/2
L∞(0,T ;H) ,

and (2.39) directly follows by taking the 4th powers and integrating over (0, T ).

Remark 2.6. We notice that the application of the trace estimate in [11, Thm. II.4.1] (whose proof is left
to the reader), with the parameters therein being chosen as r = q = 2,m = 1, n = d = 3, λ = 0,
produces a similar trace inequality, namely,

‖v‖L2(Γ) ≤ c (‖v‖+ ‖v‖1/2‖v‖1/2
V ) for every v ∈ V.

Besides, let us state a general rule concerning the constants that appear in the estimates to be per-
formed in the following. The small-case symbol c stands for a generic constant whose actual value
may change from line to line, and even within the same line, and depends only on Ω, the shape of
the nonlinearities, and the constants and the norms of the functions involved in the assumptions of
the statements. In particular, the values of c do not depend on the parameters ε and k that will be
introduced in the next section. A small-case symbol with a subscript like cδ (specifically, with δ = ε)
indicates that the constant may depend on the parameter δ, in addition. On the contrary, we mark
precise constants that we can refer to by using different symbols (see, e.g., (2.33) and (2.38)).

The next sections aim to rigorously prove Theorem 2.1. A standard approach to guarantee the exis-
tence of solutions to similar Cahn–Hilliard type systems is based on suitable approximation procedures
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that can be schematized as follows: first, one has to regularize the possibly singular nonlinearity F ,
with the classical choice being the Yosida regularization that depends on a parameter, say, ε > 0.
Then, for every fixed ε > 0, one further discretizes the system in space via the Galerkin method and
solves a family of finite-dimensional problems that depend on a parameter k ∈ N. Next, one has to
provide some rigorous estimates, which are independent of both ε and k. From these estimates, us-
ing weak and weak star compactness arguments, one can find a suitable subsequence and eventually
pass to the limit as k →∞ and as ε→ 0, thus showing that the obtained limits yield a solution to the
original system.

The essence of the proof of Theorem 2.1 can be roughly schematized by the abovementioned steps,
but we had to face a major obstacle arising from the different boundary conditions in (1.9). The latter
prevent the solvability of the ODE system originating from the Galerkin scheme. In fact, due to (1.9),
one is in the approximation naturally led to consider Schauder bases (cf. (3.19) and (3.20)) for the
Laplace operator with homogeneous Neumann and Dirichlet boundary conditions for ϕ, σ and µ,
respectively. Despite of being natural, this choice completely impedes the solvability of the discrete
problem, because there occur inner products between the elements of the different two bases. To
overcome this intrinsic difficulty, we introduce an intermediate approximation step, which consists in
adding further regularizing terms at the level ε > 0 that somehow dominate the mixed terms and
enable us to solve the Galerkin system (cf. (3.24)–(3.29)). Finally, we pass to the limit as ε ↘ 0 as
anticipated above, thus proving the theorem.

3 Approximation

In this section, we introduce and solve a proper approximating problem depending on the parame-
ter ε > 0. First of all, we replace the functional β̂ and the graph β by their Moreau–Yosida regulariza-
tions β̂ε and βε, respectively (see, e.g., [4, pp. 28 and 39]). Then, we set

Fε := β̂ε + π̂ (3.1)

and recall that classical theory of convex analysis entails the following facts:

βε is monotone and Lipschitz continuous with βε(0) = 0 , (3.2)

0 ≤ β̂ε(r) =

∫ r

0

βε(s) ds ≤ β̂(r) for every r ∈ R , (3.3)

for every M > 0 there exist CM > 0 and εM > 0 such that

Fε(r) ≥M r2 − CM for every r ∈ R and every ε ∈ (0, εM) . (3.4)

The only nonobvious fact is the coercivity property in (3.4). In this direction, let us fix M > 0 and
observe that our assumption (2.6) on β̂ implies that

β̂(r) ≥ 2M r2 − CM for every r ∈ R and some constant CM > 0.

It then follows that

β̂ε(r) := inf
s∈R

{
1

2ε
|s− r|2 + β̂(s)

}
≥ inf

s∈R

{
1

2ε
|s− r|2 + 2M s2 − CM

}
=

1

2ε
|s∗ − r|2 + 2M s2

∗ − CM ,
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where s∗ is the minimum point, namely, s∗ = r/(1 + 4Mε). Hence, we have that

β̂ε(r) ≥ 2M s2
∗ − CM =

2M

(1 + 4Mε)2
r2 − CM ≥M r2 − CM

for every r ∈ R, whenever (1+4Mε)2 ≤ 2, i.e., (3.4) with Fε replaced by β̂ε (with an obvious choice
of εM ). Then, (3.4) itself follows, since π is Lipschitz continuous.

Besides this regularization, we replace g and h by smoother functions gε and hε satisfying

gε ∈ C0(Q), ‖gε‖∞ ≤ c , and gε → g a.e. in Q as ε↘ 0 , (3.5)

hε ∈ H1(0, T ;H) ∩ L2(0, T ;V ) ∩ C0(Q) , ‖hε‖H1(0,T ;H)∩L2(0,T ;V ) ≤ c ,

and hε → h strongly in L2(0, T ;V ) as ε↘ 0. (3.6)

For simplicity, we do not enter in the details concerning the construction of the regularizations above.
However, let us mention that standard mollification arguments are enough to get the desired proper-
ties prescribed by (3.5) and (3.6), respectively. Moreover, as anticipated, we introduce artificial viscous
terms in some of the equations. We prefer to present all of them in their variational form. The approx-
imating problem thus consists in finding a quintuple (vε, pε, µε, ϕε, σε) that satisfies the regularity
properties

vε ∈ L2(0, T ;V ) , (3.7)

pε ∈ L4/3(0, T ;H) , (3.8)

µε ∈ H1(0, T ;V ∗0 ) ∩ L2(0, T ;V0) , (3.9)

ϕε ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ) , (3.10)

σε ∈ W 1,4/3(0, T ;V ∗) ∩ L∞(0, T ;H) ∩ L2(0, T ;V ) , (3.11)

and solves the variational equations∫
Ω

T(vε, pε) : ∇ζ + ν

∫
Ω

vε · ζ =

∫
Ω

(µε + hε)∇ϕε · ζ +

∫
Ω

Nσ(ϕε, σε)∇σε · ζ

for every ζ ∈ V and a.e. in (0, T ) , (3.12)

div vε = gε a.e. in Q (3.13)

〈∂t(εµε + ϕε), φ〉V0 +

∫
Ω

∇µε · ∇φ =

∫
Ω

Sϕ(ϕε, σε)φ−
∫

Ω

(∇ϕε · vε + ϕεgε)φ

for every φ ∈ V0 and a.e. in (0, T ) , (3.14)

ε

∫
Ω

∂tϕε z +

∫
Ω

∇ϕε · ∇z +

∫
Ω

F ′ε(ϕε) z =

∫
Ω

(
µε + hε −Nϕ(ϕε, σε)

)
z

for every z ∈ V and a.e. in (0, T ) , (3.15)

〈∂tσε, ζ〉V +

∫
Ω

∇Nσ(ϕε, σε) · ∇ζ

=

∫
Ω

Sσ(ϕε, σε)ζ −
∫

Ω

(∇σε · vε + σεgε)ζ + κ

∫
Γ

(σΣ − σε)ζ

for every ζ ∈ V and a.e. in (0, T ) , (3.16)
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as well as the initial conditions

ϕε(0) = ϕ0 , µε(0) = 0 , a.e. in Ω , (3.17)

〈σε(0), ζ〉V = 〈σ0, ζ〉V for every ζ ∈ V . (3.18)

Let us incidentally notice that the presence of a selection ξ (cf. (2.27)) is no longer needed in the
approximating ε-problem due to the regularity at disposal for Fε defined by (3.1). Moreover, we can
simply write F ′ε(ϕ) in place of βε(ϕ) + π(ϕ) in (3.15).

Remark 3.1. We notice that, due to (3.10) and the initial condition for ϕε, the regularity for ∂tµε given
in (3.9) and the initial conditions for µε are equivalent to

∂t(εµε + ϕε) ∈ L2(0, T ;V ∗0 ) and (εµε + ϕε)(0) = ϕ0 ,

respectively.

Theorem 3.2. Under the assumptions of Theorem 2.1 and with the above notation, the approximating
problem (3.12)–(3.18) has at least one solution (vε, pε, µε, ϕε, σε) which fulfills (3.7)–(3.11).

The rest of this section is devoted to the proof of this theorem. The method we use starts from a
discrete problem based on a Faedo–Galerkin scheme. To this end, we introduce the nondecreasing
sequences {λj} and {λ0

j} of eigenvalues and the corresponding complete orthonormal sequences
{ej} and {e0

j} of eigenfunctions of the eigenvalue problems for the Laplace operator with homoge-
neous Neumann and Dirichlet boundary conditions, respectively. Namely, we have that

−∆ej = λjej in Ω and ∂nej = 0 on Γ , (3.19)

−∆e0
j = λ0

je
0
j in Ω and e0

j = 0 on Γ , (3.20)

for j = 1, 2, . . . , as well as the normalization conditions∫
Ω

eiej =

∫
Ω

e0
i e

0
j = δij for every i and j , (3.21)

with the standard Kronecker symbol δij . Moreover, if we set, for k = 1, 2, . . . ,

Vk := span{ej : 1 ≤ j ≤ k} and V 0
k := span{e0

j : 1 ≤ j ≤ k} , (3.22)

then the unions of the these spaces are dense in V and V0, respectively, and both are dense in H
as well. We notice at once that all of the above eigenfunctions are smooth since Ω is smooth, that
λ1 = 0, and that e1 = |Ω|−1/2. Then, the discrete problem related to k consists in finding a quintuple
(vk, pk, µk, ϕk, σk) with the regularity specified by

vk ∈ L2(0, T ;H2(Ω)), pk ∈ L2(0, T ;V ), ϕk, σk ∈ C1([0, T );Vk) ∩ L∞(Q),

and µk ∈ C1([0, T );V 0
k ) ∩ L∞(Q), (3.23)
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that solves the system∫
Ω

T(vk, pk) : ∇ζ + ν

∫
Ω

vk · ζ =

∫
Ω

(µk + hε)∇ϕk · ζ +

∫
Ω

Nσ(ϕk, σk)∇σk · ζ , (3.24)

div vk = gε a.e. in Q , (3.25)

ε

∫
Ω

∂tµk φ+

∫
Ω

∇µk · ∇φ

= −
∫

Ω

∂tϕk φ+

∫
Ω

Sϕ(ϕk, σk)φ−
∫

Ω

(∇ϕk · vk + ϕkgε)φ , (3.26)

ε

∫
Ω

∂tϕk z +

∫
Ω

∇ϕk · ∇z +

∫
Ω

F ′ε(ϕk) z =

∫
Ω

(
µk + hε −Nϕ(ϕk, σk)

)
z , (3.27)∫

Ω

∂tσk ζ +

∫
Ω

∇Nσ(ϕk, σk) · ∇ζ

=

∫
Ω

Sσ(ϕk, σk)ζ −
∫

Ω

(∇σk · vk + σkgε)ζ + κ

∫
Γ

(σΣ − σk)ζ , (3.28)

for every ζ ∈ V , φ ∈ V 0
k , z, ζ ∈ Vk, and t ∈ [0, T ), and that fulfills the initial conditions∫

Ω

ϕk(0)φ =

∫
Ω

ϕ0φ , µk(0) = 0 and

∫
Ω

σk(0)ζ =

∫
Ω

σ0ζ (3.29)

for every φ ∈ V 0
k and ζ ∈ Vk.

Existence for the discrete problem. The first aim of ours is to show the existence of at least one
solution (we do not care about uniqueness, since it is not needed). The method relies on a proper
application of Lemma 2.4. Besides, let us point out that the idea of employing the Stokes resolvent to
express the velocity field vk in terms of the other variables ϕk, µk, and σk is largely inspired by [8]
(see also [9, 22]). For a while, the symbols ϕk, µk and σk denote independent variables. To every
triplet (ϕk, µk, σk) ∈ Vk × V 0

k × Vk, we associate the vector-valued function

fk := (µk + hε)∇ϕk + (σk + χ(1− ϕk))∇σk , (3.30)

and we notice that fk only depends on time through the continuous function hε, while the dependence
on space occurs just through the eigenfunctions and their gradients, which are smooth. In particular,
on the one hand, if we read fk as a function of the coefficients of ϕk, µk, σk (with respect to the
bases just chosen), and t, then we see that it is continuous. On the other hand, for every t ∈ [0, T ],
we are allowed to apply Lemma 2.4 with f = fk(t) and f = gε(t). Since the mapping Ψ is linear,
continuous, and time independent, and since gε and hε are continuous, this yields a pair of functions
that are continuous with respect to the coefficients of ϕk, µk, σk, and t. This observation is made to
ensure the continuity of the functions that rule the system of ODE’s we are going to introduce.

Now, we let ϕk, µk and σk depend on time. To every triplet (ϕk, µk, σk) ∈ L∞(0, T ;Vk × V 0
k × Vk)

we associate the function fk still given by (3.30) and, for every t ∈ [0, T ], we apply Lemma 2.4
as before. We obtain two functions, which we still term Ψ1(fk, gε) and Ψ2(fk, gε) with an abuse of
notation, that, according to the lemma, belong to L∞(0, T ;H2(Ω)) and L∞(0, T ;V ), respectively.
By construction, the pair of functions (vk, pk) := (Ψ1(fk, gε),Ψ2(fk, gε)) solves the equations
(3.24)–(3.25) corresponding to the given triplet (ϕk, µk, σk). Therefore, the whole problem (3.24)–
(3.29) is equivalent to the problem of finding a triplet (ϕk, µk, σk) with the regularity specified in (3.23)
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that solves

ε〈∂tµk, φ〉V0 +

∫
Ω

∇µk · ∇φ

= −〈∂tϕk, φ〉V0 +

∫
Ω

Sϕ(ϕk, σk)φ−
∫

Ω

(∇ϕk ·Ψ1(fk, gε) + ϕkgε)φ , (3.31)

ε〈∂tϕk, z〉V +

∫
Ω

∇ϕk · ∇z +

∫
Ω

F ′ε(ϕk) z =

∫
Ω

(
µk + hε −Nϕ(ϕk, σk)

)
z , (3.32)

〈∂tσk, ζ〉V +

∫
Ω

∇Nσ(ϕk, σk) · ∇ζ

=

∫
Ω

Sσ(ϕk, σk)ζ −
∫

Ω

(∇σk ·Ψ1(fk, gε) + σkgε)ζ + κ

∫
Γ

(σΣ − σk)ζ , (3.33)

for every φ ∈ V 0
k , z, ζ ∈ Vk and t ∈ [0, T ), with fk given by (3.30), and satisfies the initial

conditions (3.29). We show that this problem has at least one solution. To this end, we represent the
unknowns in terms of the bases of the spaces Vk and V 0

k , i.e.,

ϕk(t) =
k∑
j=1

ϕkj(t)ej, µk(t) =
k∑
j=1

µkj(t)e
0
j , and σk(t) =

k∑
j=1

σkj(t)ej ,

and introduce the Rk-valued functions

ϕ̂k := (ϕkj)
k
j=1 , µ̂k := (µkj)

k
j=1 , and σ̂k := (σkj)

k
j=1 ,

which are the true unknowns. In terms of these coefficients, the discrete problem takes the form

εµ̂′k(t) = Aε,k(ϕ̂k(t), µ̂k(t), σ̂k(t), t)− ϕ̂
′
k(t) , (3.34)

εϕ̂′k(t) = Bε,k(ϕ̂k(t), µ̂k(t), σ̂k(t), t) , (3.35)

σ̂′k(t) = Cε,k(ϕ̂k(t), µ̂k(t), σ̂k(t), t) , (3.36)

with some continuous functions Aε,k,Bε,k,Cε,k : Rk × Rk × Rk × [0, T ] → Rk, and the initial
conditions for ϕ̂k, µ̂k and σ̂k are trivially derived from (3.29). By replacing ϕ̂′k in (3.34) using (3.35)
(recall that now ε > 0 is fixed), we obtain a standard Cauchy problem for a 3k-dimensional nonlinear
ODE system ruled by a continuous function. This allows us to apply the Cauchy–Peano theorem,
which ensures the existence of at least one local solution. This local solution can be extended to
a maximal solution, which provides a maximal solution (ϕk, µk, σk) to (3.24)–(3.29) defined in the
interval [0, Tk) for some Tk ∈ (0, T ]. We claim that this solution is bounded (as required) and global,
i.e., that Tk = T . The proof relies on the estimate

‖ϕk‖L∞(0,Tk;H) + ‖µk‖L∞(0,Tk;H) + ‖σk‖L∞(0,Tk;H) ≤ cε , (3.37)

which we are going to prove in the next lines. Since (3.21) implies that

‖ϕk(t)‖2 =
k∑
j=1

|ϕkj(t)|2 = |ϕ̂k(t)|2 for every t ∈ [0, Tk) ,

and similarly for the other two components, (3.37) shows that the R3k-valued function (ϕ̂k, µ̂k, σ̂k)
is bounded. Then, maximality also implies that the solution is global.

Next, we perform a number of a priori estimates that will allow us to let k tend to infinity and to show
that the approximating problem (3.12)–(3.18) has at least one solution. The first of these estimates
proves the validity of (3.37), in particular.
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Remark 3.3. We note that the initial values ϕk(0) and σk(0) are the H-projections of ϕ0 and σ0

onto Vk. To deal with them and for other purposes, it is worth noting a property of the H-projection vk
of a generic element v ∈ V onto Vk. We have that ‖vk‖ ≤ ‖v‖, and we derive a similar inequality for
the gradients. By definition, for j = 1, . . . , k we have that∫

Ω

vkej =

∫
Ω

vej ,

whence, using (3.19), also ∫
Ω

∇vk · ∇ej = −
∫

Ω

vk∆ej = −λj
∫

Ω

vkej

= −λj
∫

Ω

vej = −
∫

Ω

v∆ej =

∫
Ω

∇v · ∇ej .

By linear combination, it follows that∫
Ω

∇vk · ∇w =

∫
Ω

∇v · ∇w for every w ∈ Vk ,

and we conclude that

the H-projection vk coincides with the V -projection of v.

By noting that the choice w = vk is admitted in the above identity, and collecting everything, we
conclude that

‖vk‖ ≤ ‖v‖, ‖vk‖V ≤ ‖v‖V , and ‖∇vk‖ ≤ ‖∇v‖, for every v ∈ V . (3.38)

Therefore, in particular, we have the inequalities

‖ϕk(0)‖ ≤ ‖ϕ0‖ , ‖σk(0)‖ ≤ ‖σ0‖ , and ‖∇ϕk(0)‖ ≤ ‖∇ϕ0‖ . (3.39)

Now let q ∈ [1,+∞] and v ∈ Lq(0, T ;V ), and define vk : Q → R as follows: for a.a. t ∈ (0, T ),
vk(t) is the H-projection of v(t) onto Vk. Then,

vk ∈ Lq(0, T ;Vk) , and ‖vk‖Lq(0,T ;V ) ≤ ‖v‖Lq(0,T ;V ) .

Moreover, if q < +∞, then we also have that vk → v strongly in Lq(0, T ;V ). Indeed,

vk(t)→ v(t) strongly in V , and ‖vk(t)− v(t)‖qV ≤ 2q ‖v(t)‖q for a.a. t ∈ (0, T ) ,

so that one can apply the Lebesgue dominated convergence theorem. Clearly, everything can be
repeated for the space V0 and the projection on V 0

k .

First a priori estimate. We recall that we do not yet know that Tk = T . For every t ∈ (0, Tk), we
apply Lemma 2.3 with the choices

f = gε(t) and a =
1

|Γ|

(∫
Ω
gε(t)

)
n ,
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by observing that the assumptions (2.37) are satisfied, and we term uk(t) the function given by the
lemma. Avoiding writing the time t for a while, and recalling (2.38) and (3.5), we have that

‖uk‖L∞(0,Tk;V ) ≤ c . (3.40)

Then, we test (3.24) by ζ = vk − uk, with the aim of removing the pressure from the first estimate.
This idea has been introduced in [8], and it relies on the identities Dvk : ∇vk = |Dvk|2 and
I : ∇(vk − uk) = div(vk − uk) = 0. Besides, by also integrating over (0, t) with respect to time,
where t ∈ (0, Tk) is arbitrary, we obtain that

2η

∫
Qt

|Dvk|2 + ν

∫
Qt

|vk|2

= 2η

∫
Qt

Dvk : ∇uk + ν

∫
Qt

vk · uk

+

∫
Qt

µk∇ϕk · vk +

∫
Qt

Nσ(ϕk, σk)∇σk · vk

−
∫
Qt

µk∇ϕk · uk −
∫
Qt

Nσ(ϕk, σk)∇σk · uk +

∫
Q

hε∇ϕk · (vk − uk) . (3.41)

At the same time, we test (3.26) and (3.27) by µk and ∂tϕk, respectively, and integrate with respect to
time. We obtain that

ε

2

∫
Ω

|µk(t)|2 +

∫
Qt

|∇µk|2

= −
∫
Qt

∂tϕk µk +

∫
Qt

Sϕ(ϕk, σk)µk −
∫
Qt

∇ϕk · vk µk −
∫
Qt

ϕkgεµk , (3.42)

as well as

ε

∫
Qt

|∂tϕk|2 +
1

2

∫
Ω

|∇ϕk(t)|2 +

∫
Ω

Fε(ϕk(t)) +

∫
Qt

Nϕ(ϕk, σk)∂tϕk

=
1

2

∫
Ω

|∇ϕk(0)|2 +

∫
Ω

Fε(ϕk(0)) +

∫
Qt

µk∂tϕk +

∫
Qt

hε∂tϕk . (3.43)

By recalling thatNσ(ϕk, σk) = σk+χ(1−ϕk) by (1.18), testing (3.28) byNσ(ϕk, σk) and integrating
with respect to time, we also obtain that∫

Qt

∂tσkNσ(ϕk, σk) +

∫
Qt

|∇Nσ(ϕk, σk)|2 + κ

∫
Σt

|σk|2

=

∫
Qt

Sσ(ϕk, σk)Nσ(ϕk, σk)−
∫
Qt

∇σk · vkNσ(ϕk, σk)−
∫
Qt

σkgεNσ(ϕk, σk)

+ κ

∫
Σt

σΣ

(
σk + χ(1− ϕk)

)
− κχ

∫
Σt

σk(1− ϕk). (3.44)

At this point, we add (3.41)–(3.44) to each other and notice that some cancellations occur. Moreover,
we combine the term of (3.43) with the first one of (3.44). By recalling (1.18), we have that∫

Qt

Nϕ(ϕk, σk)∂tϕk +

∫
Qt

∂tσkNσ(ϕk, σk) =

∫
Ω

N(ϕk(t), σk(t))−
∫

Ω

N(ϕk(0), σk(0)).
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Cahn–Hilliard–Brinkman model for tumor growth with possibly singular potentials 17

Next, we observe that the Korn inequality (2.36) implies that

2η

∫
Qt

|Dvk|2 + ν

∫
Qt

|vk|2 ≥ α

∫ t

0

‖vk(s)‖2
V ds , where α := min{2η, ν}/CK .

Finally, as for the term involving Fε, we apply (3.4) with M = 1, and obtain that∫
Ω

Fε(ϕk(t)) ≥
∫

Ω

|ϕk(t)|2 − c ,

provided that ε is small enough (as in the lemma): from now on, it is understood that ε satisfies this
smallness condition. Regarding the right-hand side, we start by treating the nontrivial terms coming
from the identity (3.41). The symbol δ denotes a positive parameter whose value is chosen later on.
By recalling (3.40), we have that

2η

∫
Qt

Dvk : ∇uk + ν

∫
Qt

vk · uk

≤ δ

∫ t

0

‖vk(s)‖2
V ds+ cδ

∫ t

0

‖uk(s)‖2
V ds ≤ δ

∫ t

0

‖vk(s)‖2
V ds+ cδ .

Next, with the help of the Hölder, Sobolev, Poincaré, and Young inequalities, we obtain that

−
∫
Qt

µk∇ϕk · uk ≤
∫ t

0

‖µk(s)‖4 ‖∇ϕk(s)‖ ‖uk(s)‖4 ds

≤ δ

∫
Qt

|∇µk|2 + cδ

∫ t

0

‖∇ϕk(s)‖2 ‖uk(s)‖2
4 ds ≤ δ

∫
Qt

|∇µk|2 + cδ

∫
Qt

|∇ϕk|2 .

For the next term, we also apply the compactness inequality (2.34) to Nσ(ϕk, σk) and have that

−
∫
Qt

Nσ(ϕk, σk)∇σk · uk = −
∫
Qt

Nσ(ϕk, σk)
(
∇Nσ(ϕk, σk) + χ∇ϕk

)
· uk

≤
∫ t

0

‖Nσ(ϕk(s), σk(s))‖4

(
‖∇Nσ(ϕk(s), σk(s))‖+ χ‖∇ϕk(s)‖

)
‖uk(s)‖4 ds

≤ δ

∫
Qt

(
|∇Nσ(ϕk, σk)|2 + |∇ϕk|2

)
+ cδ

∫
Qt

|Nσ(ϕk, σk)|2 .

Similarly, using (3.6) and the Sobolev inequality (2.33) for hε and vk, we have that∫
Qt

hε∇ϕk · (vk − uk) ≤ δ

∫ t

0

‖vk(s)‖2
V ds+ cδ

∫ t

0

‖hε(s)‖2
V ‖∇ϕk(s)‖2 ds+ cδ .

We notice that the L1 norm of the function s 7→ ‖hε(s)‖2
V is bounded by a constant independent of ε

by (3.6). Now, among the volume integrals that come from (3.42)–(3.44) and should be estimated, just
the last one on the right-hand side of (3.43) needs some treatment. Indeed, all the others can easily
be dealt with by virtue of the Young inequality, possibly combined with other estimates, like (2.35) or
(2.9), without any difficulty. We have that∫

Qt

hε∂tϕk = −
∫
Qt

∂thε ϕk +

∫
Ω

hε(t)ϕk(t)−
∫

Ω

hε(0)ϕk(0)

≤
∫
Qt

(|∂thε|2 + |ϕk|2) + δ

∫
Ω

|ϕk(t)|2 + cδ

∫
Ω

|hε(t)|2 +

∫
Ω

|ϕk(0)|2 +

∫
Ω

|hε(0)|2

≤
∫
Qt

|ϕk|2 + δ

∫
Ω

|ϕk(t)|2 +

∫
Ω

|ϕk(0)|2 + cδ ,
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where we owe to (3.6) for the last inequality. Now, we move to the surface integrals. We have that

κ

∫
Σt

σΣ

(
σk + χ(1− ϕk)

)
− κχ

∫
Σt

σk(1− ϕk) ≤
κ

2

∫
Σt

|σk|2 + c

∫
Σt

|ϕk|2 + c

≤ κ

2

∫
Σt

|σk|2 + c

∫ t

0

‖ϕk(s)‖2
V ds+ c

≤ κ

2

∫
Σt

|σk|2 + c

∫
Qt

|ϕk|2 + c

∫
Qt

|∇ϕk|2 + c .

Finally, all of the terms involving the initial values can easily be estimated by accounting for (3.39) and
recalling (3.3) and (1.17) to treat the convex part β̂ε of Fε and the term involving N . At this point, by
collecting everything, choosing δ small enough, and applying the Gronwall lemma, we obtain that

‖vk‖L2(0,Tk;V ) + ‖∇µk‖L2(0,Tk;H) + ‖ϕk‖L∞(0,Tk;V ) + ‖Fε(ϕk)‖L∞(0,Tk;L1(Ω))

+ ‖N(ϕk, σk)‖L∞(0,Tk;H) + ‖Nσ(ϕk, σk)‖L2(0,Tk;V )

+ ε1/2 ‖µk‖L∞(0,Tk;H) + ε1/2 ‖∂tϕk‖L2(0,Tk;H) ≤ c .

In particular, this proves (3.37), so that Tk = T . Then, by recalling (1.17)–(1.18) and the Poincaré
inequality once more and rearranging, we conclude that

‖vk‖L2(0,T ;V ) + ‖µk‖L2(0,T ;V0) + ‖ϕk‖L∞(0,T ;V ) + ‖σk‖L∞(0,T ;H)∩L2(0,T ;V )

+ ε1/2 ‖µk‖L∞(0,T ;H) + ε1/2 ‖∂tϕk‖L2(0,T ;H) ≤ c . (3.45)

Second a priori estimate. We now aim at recovering an estimate for the pressure pk. Thus, we
construct qk ∈ L2(0, T ;V ) such that

div qk(t) = pk(t) in Ω and qk(t)|Γ =
1

|Γ|
(∫

Ω
pk(t)

)
n ,

‖q(t)‖V ≤ C ‖pk(t)‖ ,

for a.a. t ∈ (0, T ) and some constant C > 0. To this end, it suffices to apply Lemma 2.3 with an
obvious choice of f and a. Then, we test (3.24), written at the time t, by qk(t). However, we avoid
writing the time t for brevity. Recalling (1.6) and (3.25), we obtain that∫

Ω

(
2ηDvk : ∇qk + λgε div qk − pk div qk + νvk · qk

)
=

∫
Ω

(
(µk + hε)∇ϕk +Nσ(ϕk, σk)∇σk

)
· qk ,

and the definition of qk, as well as the Hölder, Sobolev, and Young inequalities, yield

‖pk‖2 ≤ c
(
‖vk‖V + ‖gε‖

)
‖qk‖V

+ (‖µk‖4 + ‖hε‖4) ‖∇ϕk‖ ‖qk‖4 + ‖Nσ(ϕk, σk)‖3 ‖∇σk‖ ‖qk‖6

≤ c
(
‖vk‖V + ‖gε‖

)
‖pk‖

+ c(‖µk‖4 + ‖hε‖4) ‖ϕk‖V ‖pk‖+ c ‖Nσ(ϕk, σk)‖3 ‖σk‖V ‖pk‖

≤ 1

2
‖pk‖2 + c

(
‖vk‖2

V + ‖gε‖2
)

+ c(‖µk‖2
V0

+ ‖hε‖2
V )‖ϕk‖2

V + c ‖Nσ(ϕk, σk)‖2
3 ‖σk‖2

V .
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Now, we rearrange, take the power of exponent 2/3, and integrate over (0, T ). By accounting for
(3.45) and the Young inequality once more, we deduce that∫ T

0

‖pk‖4/3 dt

≤ c

∫ T

0

(
‖vk‖4/3

V + ‖gε‖4/3 + (‖µk‖4/3
V0

+ ‖hε‖4/3
V )‖ϕk‖4/3

V + ‖Nσ(ϕk, σk)‖4/3
3 ‖σk‖

4/3
V

)
dt

≤ c

∫ T

0

‖Nσ(ϕk, σk)‖4/3
3 ‖σk‖

4/3
V dt+ c ≤ c

∫ T

0

(
‖Nσ(ϕk, σk)‖4

3 + ‖σk‖2
V

)
dt+ c

≤ c

∫ T

0

‖Nσ(ϕk, σk)‖4
3 dt+ c ,

and it remains to estimate the last integral. By interpolation, we have the continuous embedding

L∞(0, T ;H) ∩ L2(0, T ;L6(Ω)) ↪→ L4(0, T ;L3(Ω)) .

Since (3.45) implies that Nσ(ϕk, σk) is bounded in L∞(0, T ;H) ∩ L2(0, T ;V ) and the continu-
ous embedding V ↪→ L6(Ω) holds, the integral at hand is uniformly bounded. Therefore, we have
proved that

‖pk‖L4/3(0,T ;H) ≤ c . (3.46)

By the way, the argument used for Nσ(ϕk, σk) also applies to σk, so that

‖σk‖L4(0,T ;L3(Ω)) ≤ c . (3.47)

Third a priori estimate. We test (3.27) by the admissible function −∆ϕk and integrate in time. We
obtain that

ε

2

∫
Ω

|∇ϕk(t)|2 +

∫
Qt

|∆ϕk|2 +

∫
Qt

β′ε(ϕk)|∇ϕk|2

=
ε

2

∫
Ω

|∇ϕk(0)|2 +

∫
Qt

f(−∆ϕk) where f := µk + hε −Nϕ(ϕk, σk)− π(ϕk) .

As for the first term on the right-hand side, we recall (2.12) and Remark 3.3, to see that it is bounded.
Since f is bounded in L2(0, T ;H) by (3.45), we deduce that the same holds for ∆ϕk. Then, elliptic
regularity yields that

‖ϕk‖L2(0,T ;W ) ≤ c . (3.48)

Fourth a priori estimate. We take any ζ ∈ L4(0, T ;V ) and define ζk as follows: ζk(t) is the H-
projection of ζ(t) onto Vk for a.a. t ∈ (0, T ). Then, for a.a. t ∈ (0, T ), we test (3.28), written at the
time t, by ζk(t). However, we do not write the time t for simplicity. By also accounting for (3.25), we
have that ∫

Ω

∂tσk ζk = −
∫

Ω

∇Nσ(ϕk, σk) · ∇ζk +

∫
Ω

Sσ(ϕk, σk)ζk

−
∫

Ω

(
∇σk · vk + σk div vk

)
ζk + κ

∫
Γ

(σΣ − σk)ζk .
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Since ∂tσk(t) ∈ Vk and ζk(t) coincides with the V -projection of ζ(t) as explained in Remark 3.3, we
can replace ζk by ζ (still omitting the time) on the left-hand side and obtain∫

Ω

∂tσk ζk =

∫
Ω

∂tσk ζ .

By the same remark, we have that ‖ζk‖V ≤ ‖ζ‖V (see (3.38)). Hence, we infer that

−
∫

Ω

∇Nσ(ϕk, σk) · ∇ζk +

∫
Ω

Sσ(ϕk, σk)ζk ≤ c
(
‖ϕk‖V + ‖σk‖V + 1

)
‖ζ‖V .

To deal with the next term, we integrate by parts and obtain

−
∫

Ω

(
∇σk · vk + σk div vk

)
ζk = −

∫
Ω

(div(σkvk)) ζk

=

∫
Ω

σk vk · ∇ζk −
∫

Γ

σk ζk vk · n

≤ ‖σk‖3 ‖vk‖6 ‖∇ζk‖+ ‖σk|Γ‖ ‖vk · n‖4 ‖ζk|Γ‖4 . (3.49)

We can replace the L6 norm by the V norm since V ↪→ L6(Ω), and the L2 norm of ∇ζk by ‖ζ‖V .
Moreover, since the two-dimensional embeddingH1/2(Γ) ↪→ L4(Γ) holds true and the trace operator
is continuous from V to H1/2(Γ), we can estimate the last product as follows:

‖σk|Γ‖ ‖vk · n‖4 ‖ζk|Γ‖4 ≤ c ‖σk|Γ‖ ‖vk‖V ‖ζ‖V . (3.50)

Similarly, we have that

κ

∫
Γ

(σΣ − σk)ζk ≤ c
(
‖σΣ‖+ ‖σk|Γ‖

)
‖ζk‖V ≤ c

(
‖σΣ‖+ ‖σk‖V

)
‖ζ‖V ,

where, for clarity, we point out that ‖σΣ‖ here means the norm of σΣ(t) in L2(Γ). At this point, we
collect all these equalities and estimates and integrate over (0, T ). Omitting the integration variable t
for brevity, we have that∫

Q

∂tσk ζ ≤ c

∫ T

0

(
‖ϕk‖V + ‖σk‖V + 1

)
‖ζ‖V dt+ c

∫ T

0

‖σk‖3 ‖vk‖V ‖ζ‖V dt

+ c

∫ T

0

‖σk|Γ‖ ‖vk‖V ‖ζ‖V dt+ c

∫ T

0

(
‖σΣ‖+ ‖σk‖V

)
‖ζ‖V dt .

Therefore, by using the Hölder inequality, we have that∫
Q

∂tσk ζ ≤ c
(
‖ϕk‖L2(0,T ;V ) + ‖σk‖L2(0,T ;V ) + 1

)
‖ζ‖L2(0,T ;V )

+ c ‖σk‖L4(0,T ;L3(Ω)) ‖vk‖L2(0,T ;V ) ‖ζ‖L4(0,T ;V )

+ c ‖σk|Γ‖L4(0,T ;L2(Γ)) ‖vk‖L2(0,T ;V ) ‖ζ‖L4(0,T ;V )

+ c
(
‖σΣ‖L2(Σ) + ‖σk‖L2(0,T ;V )

)
‖ζ‖L2(0,T ;V ) .

Finally, we account for (3.45), (3.47), and Lemma 2.5, to conclude that∫
Q

∂tσk ζ ≤ c ‖ζ‖L4(0,T ;V ) for every ζ ∈ L4(0, T ;V ).
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This means that ∂tσk is bounded in the dual space of L4(0, T ;V ), i.e., that

‖∂tσk‖L4/3(0,T ;V ∗) ≤ c . (3.51)

Fifth a priori estimate. We aim at estimating the time derivative ∂t(εµk + ϕk). To this end, we
take any φ ∈ L2(0, T ;V0) and define φk : Q → R by setting for a.a. t ∈ (0, T ): φk(t) is the
H-projection of φ(t) onto V 0

k . Then, we rearrange (3.26), written at the time t, test it by φk(t), and
integrate over (0, T ). We obtain that∫

Q

∂t(εµk + ϕk)φk = −
∫
Q

∇µk · ∇φk +

∫
Q

Sϕ(ϕk, σk)φk −
∫
Q

(∇ϕk · vk + ϕkgε)φk .

For the first two terms on the right-hand side, we invoke the Lipschitz continuity of Sϕ and (3.45) to
immediately obtain that

−
∫
Q

∇µk · ∇φk +

∫
Q

Sϕ(ϕk, σk)φk

≤ c ‖µk‖L2(0,T ;V0) ‖φk‖L2(0,T ;V0) + c
(
‖ϕk‖L2(0,T ;H) + ‖σk‖L2(0,T ;H) + 1

)
‖φk‖L2(0,T ;H)

≤ c ‖φk‖L2(0,T ;V0),

while the last one needs some care. By the Hölder and Sobolev inequalities, (3.5) and (3.45) once
more, we obtain that

−
∫
Q

(∇ϕk · vk + ϕkgε)φk

≤
∫ T

0

‖∇ϕk(t)‖ ‖vk(t)‖4 ‖φk(t)‖4 dt+ ‖ϕk‖L2(0,T ;V ) ‖gε‖∞ ‖φk‖L2(0,T ;V0)

≤ ‖ϕk‖L∞(0,T ;V ) ‖vk‖L2(0,T ;V ) ‖φk‖L2(0,T ;V0) + c ‖ϕk‖L2(0,T ;V ) ‖φk‖L2(0,T ;V0)

≤ c ‖φk‖L2(0,T ;V0) .

Since ‖φk‖L2(0,T ;V0) ≤ ‖φ‖L2(0,T ;V0) by Remark 3.3 and we can replace φ by −φ, we infer that∣∣∣∫
Q

∂t(εµk + ϕk)φk

∣∣∣ ≤ c ‖φ‖L2(0,T ;V0) . (3.52)

Unfortunately, just ∂tµk is V 0
k -valued while ∂tϕk is not, so that we only have that∫

Q

∂t(εµk + ϕk)φ =

∫
Q

∂t(εµk + ϕk)φk +

∫
Q

∂tϕk(φ− φk).

However, on account of (3.45) and Remark 3.3 once more, we can write∣∣∣∫
Q

∂tϕk(φ− φk)
∣∣∣ ≤ ‖∂tϕk‖L2(0,T ;H)

(
‖φ‖L2(0,T ;H) + ‖φk‖L2(0,T ;H)

)
≤ cε ‖φ‖L2(0,T ;V0) .

Combining this with (3.52) yields

‖∂t(εµk + ϕk)‖L2(0,T ;V ∗0 ) ≤ cε . (3.53)
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Passage to the limit as k → ∞. We collect the basic estimates we have proved, namely, (3.45),
(3.46), (3.48), (3.51), and (3.53), and apply well-known weak and weak star compactness results.
Since ε is fixed, for some (not relabeled) subsequence and suitable limit functions, we have, as k →
∞,

vk → vε weakly in L2(0, T ;V ) ↪→ L2(0, T ;L4(Ω)) , (3.54)

pk → pε weakly in L4/3(0, T ;H) , (3.55)

µk → µε weakly star in L∞(0, T ;H) ∩ L2(0, T ;V0) , (3.56)

ϕk → ϕε weakly star in H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ) , (3.57)

σk → σε weakly star in W 1,4/3(0, T ;V ∗) ∩ L∞(0, T ;H) ∩ L2(0, T ;V ) , (3.58)

εµk + ϕk → εµε + ϕε weakly in H1(0, T ;V ∗0 ) . (3.59)

Then, the quintuple (vε, pε, µε, ϕε, σε) satisfies (3.7)–(3.11), as well as the initial conditions (3.17)–
(3.18) (recall the Remarks 3.1 and 3.3), and we aim at proving that it solves the whole approximating
problem. By linearity (cf. (1.18)), we deduce that, as k →∞,

Nϕ(ϕk, σk)→ Nϕ(ϕε, σε) and Nσ(ϕk, σk)→ Nσ(ϕε, σε)

weakly star in W 1,4/3(0, T ;V ∗) ∩ L∞(0, T ;H) ∩ L2(0, T ;V ) .

Moreover, by strong compactness (see, e.g., [24, Thm. 5.1, p. 58] and [28, Sect. 8, Cor. 4]) we may
without loss of generality assume that

ϕk → ϕε strongly in L2(0, T ;W 1,4(Ω)) and a.e. in Q , (3.60)

σk → σε strongly in L2(0, T ;L4(Ω)) and a.e. in Q , (3.61)

εµk + ϕk → εµε + ϕε strongly in L2(0, T ;L4(Ω)) . (3.62)

Notice that combining (3.54) and (3.56) with (3.60) yields that

∇ϕk · vk → ∇ϕε · vε weakly in L1(0, T ;H) , (3.63)

µk∇ϕk → µε∇ϕε weakly in L1(0, T ;H) . (3.64)

On the other hand, the above convergence properties and the Lipschitz continuity imply that, as k →
∞,

Sσ(ϕk, σk)→ Sσ(ϕε, σε) and F ′ε(ϕk)→ F ′ε(ϕε) , strongly in L2(0, T ;L4(Ω)). (3.65)

Now, we claim that

ζk → ζ strongly in L∞(0, T ;V ) implies that

∫
Q

(∇σk · vk)ζk →
∫
Q

(∇σε · vε)ζ . (3.66)

Assume ζk and ζ as said. From (3.58) and the strong compactness results already quoted, we deduce
that, as k →∞,

σk → σε strongly in L2(0, T ;H3/4(Ω)).

From this, we deduce that, as k →∞,

∇σk → ∇σε strongly in L2(0, T ;H−1/2(Ω)) , (3.67)
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owing to the interpolation theory in Hilbert spaces (see, e.g., [25, Ch. I]). We know that∇ is continuous
from V into H and from H into H−1(Ω) = (H1

0(Ω))∗. Then, it is continuous from H3/4(Ω) =

(V,H)1/4 into (H , (H1
0(Ω))∗)1/4. Since 1/4 < 1/2, the last space is (H

1/4
0 (Ω))∗ = (H1/4(Ω))∗,

which is embedded inH−1/2(Ω) (see (2.3)–(2.4)). Then, (3.67) follows. On the other hand, we have
that

‖∇(ζkvk)‖L2(0,T ;L3/2(Ω))

≤ ‖∇ζk‖L∞(0,T ;H) ‖vk‖L2(0,T ;L6(Ω)) + ‖ζk‖L∞(0,T ;L6(Ω)) ‖∇vk‖L2(0,T ;H)

≤ c ‖ζk‖L∞(0,T ;V ) ‖vk‖L2(0,T ;V ) ≤ c ,

so that {ζkvk} has a weak limit in L2(0, T ;W 1,3/2(Ω)). Since ζkvk → ζvε weakly in L2(0, T ;H),
we deduce that

ζkvk → ζvε weakly in L2(0, T ;W 1,3/2(Ω)) ↪→ L2(0, T ;H1/2(Ω)) ,

where the last (three-dimensional) embedding follows from a particular case of the embedding

W 1,q(Ω) ↪→ Hs(Ω) = W s,2(Ω), where s ∈ (0, 1), q ∈ [1,+∞), and s− 3

2
≤ 1− 3

q
.

Therefore, (3.66) holds true since L2(0, T ;H−1/2(Ω)) = (L2(0, T ;H1/2(Ω)))∗. By the same ar-
gument (by replacing the velocities by the Nσ terms, essentially), one obtains that∫

Q

Nσ(ϕk, σk)∇σk · ζ →
∫
Q

Nσ(ϕε, σε)∇σε · ζ for every ζ ∈ L∞(0, T ;V ) . (3.68)

Conclusion of the proof of Theorem 3.2. At this point, we can verify that the quintuple just found
solves the equations of problem (3.12)–(3.18). Clearly, (3.13) follows from (3.25) and (3.54). As for
(3.12), it suffices to check that some equivalent formulation is satisfied. This is the case if we take∫

Q

T(vε, pε) : ∇ζ + ν

∫
Q

vε · ζ =

∫
Q

(µε + hε)∇ϕε · ζ +

∫
Q

Nσ(ϕε, σε)∇σε · ζ

for every ζ ∈ L∞(0, T ;V ). (3.69)

Indeed, this equation actually is satisfied due to the convergence properties just mentioned. Similarly,
instead of considering (3.14)–(3.16), we deal with some time integrated version of theirs (analogous to
(3.69)), but with step functions as test functions (this is convenient at least for some of the equations,
and for simplicity we choose step functions for all of them). So, we assume that φ is a V0-valued step
function and that z and ζ are V -valued step functions. However, we have to be careful, since we are
starting from the discrete setting. So, given φ, z and ζ as said, we introduce φk as we did in proving
our fifth estimate, i.e., by defining φk(t) as the H-projection of φ(t) onto V 0

k , for a.a. t ∈ (0, T ).
Similarly, we define zk and ζk starting from z and ζ , now with Vk instead of V 0

k . By accounting for
Remark 3.3, we point out at once that, as k →∞,

φk → φ, zk → z, and ζk → ζ, strongly in L∞(0, T ;V ), (3.70)

since φ, z and ζ have a finite number of values. Next, we test (3.26),written at the time t, by φk(t) and
integrate over (0, T ). Upon rearranging, we obtain that∫

Q

∂t(εµk + ϕk)φk +

∫
Q

∇µk · ∇φk =

∫
Q

Sϕ(ϕk, σk)φk −
∫
Q

(
∇ϕk · vk + ϕkgε

)
φk .
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On account of the strong convergence in (3.70), recalling (3.59) and (3.63), and letting k tend to infinity,
we conclude that ∫ T

0

〈∂t(εµε + ϕε)(t), φ(t)〉V0 +

∫
Q

∇µε · ∇φ

=

∫
Q

Sϕ(ϕε, σε)φ−
∫
Q

(
∇ϕε · vε + ϕεgε

)
φ . (3.71)

What we have obtained is an integrated version of (3.14), which is equivalent to (3.14) itself since it
holds for every V0-valued step function φ. Similarly, we test (3.27) and (3.28) written at the time t by
zk(t) and ζk(t), respectively, and integrate over (0, T ). We obtain that

ε

∫
Q

∂tϕk zk +

∫
Q

∇ϕk · ∇zk +

∫
Q

F ′ε(ϕk) zk =

∫
Q

(
µk + hε −Nϕ(ϕk, σk)

)
zk∫

Q

∂tσk ζk +

∫
Q

∇Nσ(ϕk, σk) · ∇ζk

=

∫
Q

Sσ(ϕk, σk)ζk −
∫

Ω

(∇σk · vk + σkgε)ζk + κ

∫
Σ

(σΣ − σk)ζk .

By accounting for (3.70) and (3.66), we conclude that, as k →∞,

ε

∫
Q

∂tϕε z +

∫
Q

∇ϕε · ∇z +

∫
Q

F ′ε(ϕε) z =

∫
Q

(
µε + hε −Nϕ(ϕε, σε)

)
z , (3.72)∫

Q

∂tσε ζ +

∫
Q

∇Nσ(ϕε, σε) · ∇ζ

=

∫
Q

Sσ(ϕε, σε)ζ −
∫

Ω

(∇σε · vε + σεgε)ζ + κ

∫
Σ

(σΣ − σε)ζ , (3.73)

for all V -valued step functions z and ζ . Thus, (3.15)–(3.16) hold as well, and the proof of Theorem 3.2
is complete.

4 Existence of a Weak Solution

In this section, we prove Theorem 2.1. We start from the approximating problem analyzed in the previ-
ous section and let ε tend to zero. Since we did not prove uniqueness for the approximating solution,
we take a particular one, namely, the solution we have constructed above. This ensures a number of
bounds. Indeed, by the estimates established for the discrete solution and the semicontinuity of the
norms, it is clear that

‖vε‖L2(0,T ;V ) + ‖pε‖L4/3(0,T ;H)

+ ‖µε‖L2(0,T ;V0) + ‖ϕε‖L∞(0,T ;V )∩L2(0,T ;W ) + ‖σε‖W 1,4/3(0,T ;V ∗)∩L∞(0,T ;H)∩L2(0,T ;V )

+ ε1/2 ‖µε‖L∞(0,T ;H) + ε1/2 ‖∂tϕε‖L2(0,T ;H) ≤ c , (4.1)

for a positive constant c independent of ε. However, we need some additional estimates.

Sixth a priori estimate. We take any φ ∈ L2(0, T ;V0), and (for a.a. t ∈ (0, T )) we test (3.14),
written at the time t, by φ(t). Then, we integrate over (0, T ). With a procedure that is completely
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similar to the one used to prove (3.52), we see that∣∣∣∫ T

0

〈∂t(εµε + ϕε)(t), φ(t)〉V0
∣∣∣ ≤ c ‖φ‖L2(0,T ;V0) ,

meaning that
‖∂t(εµε + ϕε)‖L2(0,T ;V ∗0 ) ≤ c . (4.2)

Seventh a priori estimate. We recall that F ′ε = βε + π and test (3.15) written at the time t by
βε(ϕε(t)). Then, we integrate over (0, T ). By also accounting for (4.1), (3.3), (2.12) and (3.6), we
obtain that

ε

∫
Ω

β̂ε(ϕε(T )) +

∫
Q

β′ε(ϕε)|∇ϕε|2 +

∫
Q

|βε(ϕε)|2

= ε

∫
Ω

β̂ε(ϕ0) +

∫
Q

(
µε + hε −Nϕ(ϕε, σε)− π(ϕε)

)
βε(ϕε)

≤ 1

2

∫
Q

|βε(ϕε)|2 + c .

Since all of the terms on the left-hand side are nonnegative, we conclude that

‖βε(ϕε)‖L2(0,T ;H) ≤ c . (4.3)

Conclusion of the proof of Theorem 2.1. By recalling (4.1)–(4.3), we see that, as ε→ 0,

vε → v weakly in L2(0, T ;V ) ↪→ L2(0, T ;L4(Ω)) , (4.4)

pε → p weakly in L4/3(0, T ;H) , (4.5)

µε → µ weakly in L2(0, T ;V0) , (4.6)

ϕε → ϕ weakly star in L∞(0, T ;V ) ∩ L2(0, T ;W ) , (4.7)

βε(ϕε)→ ξ weakly in L2(0, T ;H) , (4.8)

σε → σ weakly star in W 1,4/3(0, T ;V ∗) ∩ L∞(0, T ;H) ∩ L2(0, T ;V ) , (4.9)

εµε → 0 strongly in L∞(0, T ;H) ∩ L2(0, T ;V0) , (4.10)

ε∂tϕε → 0 strongly in L2(0, T ;H) , (4.11)

εµε + ϕε → ϕ weakly in H1(0, T ;V ∗0 ) ∩ L2(0, T ;V ) , (4.12)

for suitable limit functions (v, p, µ, ϕ, ξ, σ). More precisely, this holds for some subsequence εn ↘ 0.
Nevertheless, here and in the sequel, we write just ε for simplicity. Then, the sextuple (v, p, µ, ϕ, ξ, σ)
satisfies the regularity properties in (2.17)–(2.22). By noting that (εµε + ϕε)(0) converges to ϕ(0)
weakly in V ∗0 , we infer that the initial conditions (2.29) are satisfied as well, and we now prove that
the sextuple we have found yields in fact a solution to the original system (2.23)–(2.29). To this end,
we try to follow the lines used to solve the approximating problem at the end of the previous section.
However, the analogues of some of those convergence properties require some further work.

First of all, we clearly have that, as ε→ 0,

Nϕ(ϕε, σε)→ Nϕ(ϕ, σ) and Nσ(ϕε, σε)→ Nσ(ϕ, σ) weakly in L2(0, T ;V ).
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Now, we account for the strong compactness results [24, Thm. 5.1, p. 58] and [28, Sect. 8, Cor. 4]
to deduce that εµε + ϕε converges to ϕ strongly in L2(0, T ;H). By combining this with (4.10), we
infer that, as ε→ 0,

ϕε → ϕ strongly in L2(0, T ;H). (4.13)

On the other hand, we have the interpolation identity

(H2(Ω), H)1/8 = H7/4(Ω)

and the associated interpolation inequality

‖v‖H7/4(Ω) ≤ c ‖v‖1/8

H2(Ω) ‖v‖
7/8 for every v ∈ H2(Ω) .

Therefore, by applying the Hölder inequality, we deduce, for every v ∈ L2(0, T ;H2(Ω)), that∫ T

0

‖v(t)‖2
H7/4(Ω) dt ≤

∫ T

0

‖v(t)‖1/4

H2(Ω) ‖v(t)‖7/4 dt

≤
(∫ T

0

‖v(t)‖2
H2(Ω) dt

)1/8(∫ T

0

‖v(t)‖2 dt
)7/8

.

By applying this inequality to ϕε − ϕ and owing to the boundedness in L2(0, T ;W ) and to strong
convergence in L2(0, T ;H), we readily deduce that

ϕε → ϕ strongly in L2(0, T ;H7/4(Ω)).

Now, we recall the (three-dimensional) continuous embedding

Hs(Ω) ↪→ W 1,q(Ω), where s > 1, q ≥ 2, and 1− 3

q
≤ s− 3

2
,

and apply it with s = 7/4 and q = 4. We conclude that, as ε↘ 0,

ϕε → ϕ strongly in L2(0, T ;W 1,4(Ω)).

This is the analogue of (3.60). As in the previous proof, we derive the analogues of (3.61), (3.63)–
(3.64), and the first of (3.65), namely,

σε → σ strongly in L2(0, T ;L4(Ω)) and a.e. in Q ,

∇ϕε · vε → ∇ϕ · v weakly in L1(0, T ;H) ,

µε∇ϕε → µ∇ϕ weakly in L1(0, T ;H) ,

Sσ(ϕε, σε)→ Sσ(ϕ, σ) strongly in L2(0, T ;L4(Ω)).

Moreover, by the same argument, we obtain the analogue of (3.66), which now sounds∫
Q

(∇σε · vε)ζ →
∫
Q

(∇σ · v)ζ for every ζ ∈ L∞(0, T ;V ) .

In a similar fashion, dealing with the Nσ terms in place of the velocities, one obtains the analogue of
(3.68), i.e.,∫

Q

Nσ(ϕε, σε)∇σε · ζ →
∫
Q

Nσ(ϕ, σ)∇σ · ζ for every ζ ∈ L∞(0, T ;V ) .
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At this point, we recall that the approximating solution we are considering also satisfies (3.13) and
the four variational equations (3.69) and (3.71)–(3.73), the first of which being satisfied for every ζ ∈
L∞(0, T ;V ) and the others for arbitrary step functions φ, z and ζ taking values in V0, V and V ,
respectively. At this point, we can let ε tend to zero. By recalling (3.5) and (3.6), we obtain (2.24)
and the integrated version of the variational equations (2.23) and (2.25)–(2.28) with the same type
of test functions. Thus, these equations are satisfied as they are written in the original problem. It
remains to verify (2.27). To this end, it suffices to observe that the weak convergence (4.8) coupled with
the strong convergence (4.13) allows us to apply a well-known property of the Yosida approximation
(see, e.g., [3, Prop. 2.2, p. 38]) which yields the inclusion ξ ∈ β(ϕ), as desired. Thus, the proof of
Theorem 2.1 is complete.

Remark 4.1. We further justify the regularity properties claimed in (2.31). The rigorous argument
should involve a regularization of β and truncation in the choice of the test function. However, we
proceed formally, for brevity. We write (2.26) in the form

∫
Ω

∇ϕ · ∇z +

∫
Ω

β(ϕ)z =

∫
Ω

fz for every z ∈ V (4.14)

where f := µ + h − Nϕ(ϕ, σ) − π(ϕ). Then, we test the above equation by z = (β(ϕ))5 (a.e.
in (0, T )) and owe to the Young inequality (2.32) on the right-hand side. We obtain (a.e. in (0, T )) that

∫
Ω

5|β(ϕ)|4|∇ϕ|2 +

∫
Ω

|β(ϕ)|6 =

∫
Ω

|f | |β(ϕ)|5 ≤ 5

6

∫
Ω

|β(ϕ)|6 +
1

6

∫
Ω

|f |6

whence immediately ‖β(ϕ)‖6 ≤ ‖f‖6. Since f ∈ L2(0, T ;V ) ⊂ L2(0, T ;L6(Ω)), we deduce
that β(ϕ) ∈ L2(0, T ;L6(Ω)). Then, elliptic regularity theory yields ϕ ∈ L2(0, T ;W 2,6(Ω)). To
show the remaining regularity property, we test the variational equation (4.14) by−∆ϕ and recall that
Nϕ(ϕ, σ) = −χσ. We thus have that

‖∆ϕ‖2 +

∫
Ω

β′(ϕ)|∇ϕ|2 ≤ ‖∇µ‖ ‖∇ϕ‖+ ‖h+ χσ − π(ϕ)‖ ‖∆ϕ‖

≤ ‖∇µ‖ ‖∇ϕ‖+
1

2
‖∆ϕ‖2 + c ‖h+ χσ − π(ϕ)‖2 .

Since ‖∇ϕ‖ and the last norm are bounded over (0, T ) by (2.16), (2.22) and (2.20), we deduce that

1

2
‖∆ϕ‖2 ≤ c ‖∇µ‖+ c whence also ‖∆ϕ‖4 ≤ c ‖∇µ‖2 + c .

Then, (2.19) implies that ∆ϕ ∈ L4(0, T ;H), whence the elliptic regularity theory ensures that ϕ ∈
L4(0, T ;H2(Ω)).
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[23] P. Krejčí, E. Rocca, and J. Sprekels. Analysis of a tumor model as a multicomponent deformable porous medium.
Interfaces Free Bound., published online first: 2022-03-29, DOI: 10.4171/IFB/472.

[24] J.-L. Lions. “Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires”, Dunot, Gauthier-Villars,
Paris, 1969.

[25] J.L. Lions and E. Magenes. “Non-Homogeneous Boundary Value Problems and Applications”, Die Grundlehren der
Mathematischen Wissenschaft, 181, Springer-Verlag, Berlin, 1972.

[26] E. Rocca, G. Schimperna, and A. Signori. On a Cahn–Hilliard–Keller–Segel model with generalized logistic source
describing tumor growth. Preprint arXiv:2202.11007 [math.AP], 1–38, 2022.

[27] L. Scarpa and A. Signori. On a class of non-local phase-field models for tumor growth with possibly singular potentials,
chemotaxis, and active transport. Nonlinearity 34, 3199–3250, 2021.

[28] J. Simon. Compact sets in the space Lp(0, T ;B). Ann. Mat. Pura Appl. (4) 146 56–96, 1987.

[29] L. Tartar. “Remarks on some interpolation spaces", Carnegie Mellon University, Research Report No. 94-NA-002,
1994.

DOI 10.20347/WIAS.PREPRINT.2939 Berlin 2022


	Introduction
	Biological Examples and Modeling Considerations

	Notation, Assumptions and Main Results
	Approximation
	Existence of a Weak Solution

