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Modeling Polycrystalline Electrode-electrolyte Interfaces: The
Differential Capacitance
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Weierstrass Institute, Mohrenstr. 39, 10117 Berlin, Germany

We present and analyze a model for polycrystalline electrode surfaces based on an improved continuum model that takes finite ion
size and solvation into account. The numerical simulation of finite size facet patterns allows to study two limiting cases: While for
facet size diameter d 0facet we get the typical capacitance of a spatially homogeneous but possible amorphous or liquid surface,
in the limit d1 nm facet[ ]  , an ensemble of non-interacting single crystal surfaces is approached. Already for moderate size of the
facet diameters, the capacitance is remarkably well approximated by the classical approach of adding the single crystal capacities of
the contributing facets weighted by their respective surface fraction. As a consequence, the potential of zero charge is not
necessarily attained at a local minimum of capacitance, but might be located at a local capacitance maximum instead. Moreover,
the results show that surface roughness can be accurately taken into account by multiplication of the ideally flat polycrystalline
surface capacitance with a single factor. In particular, we find that the influence of the actual geometry of the facet pattern in
negligible and our theory opens the way to a stochastic description of complex real polycrystal surfaces.
© 2020 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited. This is an open access
article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/
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The theoretical and experimental investigation of polycrystalline
electrode surfaces provides valuable information for the under-
standing of the performance for many types of real electrochemical
devices. Fundamental concepts like the structure of the electro-
chemical double layer, double layer capacitance, Faradaic reaction
rate equations and others have been derived and verified experi-
mentally for single crystal or liquid metal electrodes, see e.g.1–3 In
either case, the physicochemical properties of these electrodes
surfaces can be idealized as entirely homogeneous. In contrast,
real solid metal electrodes are most often polycrystalline. Surfaces of
polycrystalline electrodes in general exhibit a complex unstructured
and random pattern of facets with different crystallographic orienta-
tion as sketched in Fig. 2 left. It is well known that the electron work
function depends on the crystallographic orientation of a surface.4,5

As a consequence, the differential capacity and the corresponding
potential of zero charge (PZC) of the surface in contact to an
electrolyte depend on the crystallographic orientation as well, cf.6–8

In this paper we propose a mathematically sound approach which
allows to derive characteristics of polycrystalline electrodes from a
thermodynamically well founded model. We focus on double layer
capacitance and potential of zero charge as equilibrium properties. In
particular, we aim at the characterization of an ideal polycrystalline
surface where typical facet size, characterized by the diameter d facet,
is large compared to a suitable reference length of the electrolyte.
Here we always set the reference length for an aqueous electrolyte to
1 nm[ ]. For the ideal polycrystalline surface, the influence of edge
effects related to facet boundaries can be neglected such that
compact asymptotic equations defining potential of zero charge
and potential dependent double layer capacitance can be derived.
Numerical simulations of the spatial charge distribution in the
boundary layers confirm that contributions from facet boundary
effects indeed are marginal. Ultimately, we replace discrete facet
configurations by probability distributions of facets with identical
physical properties. This allows a very compact reformulation of the
polycrystalline electrode properties in terms of convolution integrals.

The development of the classical Gouy-Chapman-Stern-Grahame
theory of the electrochemical double layer9,10 strongly relied on
experimental measurements at mercury electrodes. Since these
electrodes consist of a liquid metal, their clean surface in contact
with an electrolyte typically can be considered as ideally smooth and

physical homogeneous. Thus, when trying to transfer the theory
from liquid to solid metal electrodes, first an awareness about the
relevance of surface roughness and individual properties of surfaces
facets of different crystallographic orientation needed to be estab-
lished, cf.11 Valette and Harmelin12 first related careful capacity
measurements of silver single crystal surfaces with the corre-
sponding experimental results for polycrystalline silver electrodes.
Although not explicitly written in Ref. 12, a relation for the capacity
of the polycristalline surface was assumed that is the same as the
limiting Eq. 3 below. In Ref. 13 different equivalent circuits for the
representation of polycrystalline surfaces are proposed and analyzed
by comparison with experimental data. The comparison supported a
model related to Eq. 3. In Ref. 14 the range of applicability of 3 is
discussed based on a spatially resolved analysis according to the
Gouy-Chapman-Stern-Grahame model in Ref. 15. Moreover, it was
shown that in the limit of vanishing size of the facets, the alternative
equivalent circuit model of Ref. 13 is approached.

To describe a polycrystalline electrode-electrolyte interface, we
apply in this work a model on the basis of continuum non-
equilibrium thermo-electrodynamics that was derived and analyzed
in Refs. 16–19. For a review of the prior development of generalized
Nernst-Planck models, we refer to Ref. 20. The model applied here
incorporates the pressure in the electrolyte as a variable and the
momentum balance, which ensures thermodynamic consistency.
Further, it allows to account for volume exclusion effects of all
species, and especially of the solvation effect. In Ref. 17 it has been
shown that this model is capable to predict qualitatively and in the
correct quantitative range the differential capacity of single crystal
electrodes with respect to the applied voltage and with respect to the
salt concentration. For further discussion of the underlying model,
we refer to the supplementary material (available online at stacks.
iop.org/JES/167/106512/mmedia). For a single crystal electrode in
contact with a non-adsorbing electrolyte, the capacity is exclusively
due to the charging of the double layer. As long as the bulk
electrolyte concentration is not too large, it shows the typical
symmetric camel shape capacitance curve. Figure 1 (left) demon-
strates the good agreement between the model predictions and the
experimental measurements. The potential of zero charge (PZC) is
located at the local capacity minimum and does not change with salt
concentration. The absolute value of the PZC depends on the
crystallographic orientation of the metal surface. Between differently
oriented surfaces, the difference of their respective PZC values are
known to correspond well to the differences of the electron workzE-mail: Ruediger.Mueller@wias-berlin.de

Journal of The Electrochemical Society, 2020 167 106512

https://orcid.org/0000-0003-2643-722X
https://orcid.org/0000-0003-4432-2434
https://orcid.org/0000-0002-0565-2601
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1149/1945-7111/ab9cca
https://doi.org/10.1149/1945-7111/ab9cca
https://doi.org/10.1149/1945-7111/ab9cca
http://stacks.iop.org/JES/167/106512/mmedia
http://stacks.iop.org/JES/167/106512/mmedia
mailto:Ruediger.Mueller@wias-berlin.de
https://crossmark.crossref.org/dialog/?doi=10.1149/1945-7111/ab9cca&domain=pdf&date_stamp=2020-06-24


function.5,17 In addition, we can observe in Fig. 1 (left) the expected
behavior such that for increasing bulk salt concentration the local
minimum at the PZC becomes less deep and eventually vanishes,
leading to a single maximum capacity curve.

For a polycrystalline electrode surface, we derive expressions of
the double layer charge, the potential of zero charge, and the
differential capacitance and compare these to the (theoretically)
more simple and well understood case of single crystal surfaces.
Within some reasonable scaling it is a remarkable and non-obvious
feature of the resulting model that double layer charge, and
subsequently the potential of zero charge, as well as the differential
capacity can be determined from solutions of an algebraic equation
system, rather than solving space dependent differential equations.
This even holds true for a stochastic description of a polycrystalline
electrode surface, which we show within this work.

The inhomogeneity of the surface capacitance is commonly
believed to cause so called “frequency dispersion” in electroche-
mical impedance spectroscopy, cf.,21 and the effects of surface
inhomogeneity can be expected to have even more serious impact in
the presence of Faradayic reactions. We plan to investigate these
non-equilibrium aspects in follow-up research.

Outline. In the next section, we give a brief overview over our
general approach and the main results. Next, we summarize the
general equilibrium conditions of the applied continuum model and
appropriate material models from Refs. 17, 19. In the following , we
apply the model to solid electrode surfaces. The differential capacity
of a single crystal surface is introduced and a model for polycrystal-
line surfaces is developed. Then, there is a section devoted to an
assessment of the results obtained by numerical solution of the
boundary value problem in 2D and in 3D for periodically patterned
surfaces of finite size facets. In particular, the limiting behavior for
extreme facet size parameters and the influence of surface roughness
on the length scale of the facets are analyzed. We proceed with a
discussion of the polycrystal model in the case of large facet size,
including the effects of adsorption and the stochastic description of
polycrystalline surfaces. We close with some concluding remarks .

General Approach and Main Results

We model the polycrystalline electrode surface by a regular
surface pattern with N> 1 different types of facets. Each facet
corresponds to certain crystallographic orientation. To each facet Σi,
1 ⩽ i ⩽ N, we assign a value of the electron work function and its
surface fraction = S

S
si

i∣ ∣
∣ ∣

with å == s 1i
N

i1 , where ∣·∣ denotes the
surface area. We show, based on our thermodynamic model of
Section 3, that the electric potential j

s

i on each facet Σi is related to
the work function, or in our notation, to the chemical potential m

s
e
i of

surface electrons of the respective surface orientation. The

polycrystalline electrode surface ÈS = Si i is then considered to
be in contact to some electrolytic solution in the volume domain EW .
The electrolyte in thermodynamic equilibrium is described by an
improved Poisson-Boltzmann systema, i.e. the system

E

åe c j j j- +  = =
a

a
Î

q p y pdiv 1 , , , 1, 10 ( ) ( ) ( ) [ ]

where yα refers to the species mole fractions and p is the pressure.
On the electrode surface, facet-wise constant boundary values for the
electric potential are prescribed. Then, the adjacent space charge
layer in the electrolyte can be computed numerically. Figure 2 (right,
bottom) shows a typical 3D numerical computation of the electric
potential iso-surfaces in the electrolyte EW for a periodical checker-
board electrode surface. Based on such numerical solution we can
compute, (i) the overall double layer charge Qpoly as function of the
applied voltage E, (ii) the potential of zero charge EPZC of a
polycrystalline electrode-electrode interface, and (iii) the corre-
sponding double layer capacity Cpoly (see Fig. 2 (right, top) ). This
approach is valid for arbitrary geometries and facet sizes. The only
assumption here is that the intersecting lines between two facets do
not have independent thermodynamic quantities.

For a non-adsorbing electrolyteb we have in general

Eò=
S

=

= =

=

W
Q q x dx Q E
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( )

( )
≕ ( )
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!

subject to the coupled equation system 1.
A scale analysis of the boundary value problem yields two

characteristic length scales of the model: the typical diameter d facet

of the facets Σi and a reference length Lref related to the non-
dimensionalization of the Poisson equation in 1. This reference
length is in the order of the Debye length LDebye of the electrolyte,
however, independent of the bulk electrolyte concentration. We
found that =L 1 nmref [ ] is a proper scaling for for aqueous solutions,
which is used throughout the manuscript.

If the facet or facet diameter d facet is large compared to1 nm[ ], the
double layer chargeQpoly can be obtained as a sum of the single facet
boundary layer charges QBL, weighted by their respective surface
fraction si. Subsequently, the potential of zero charge ¥Epoly,

PZC can be

Figure 1. Left: Computed boundary layer capacity of a single crystal surface for different concentrations of a non-adsorbing electrolyte. Right: Measured
capacitance at a (110) surface of Ag (Fig. 3a of Ref. 6, reprinted the permission of Elsevier).

aCompared to the standard Poisson-Boltzmann equation, the charge density q in 1
does not only depend on the electric potential φ, but also on the pressure p and the
Poisson equation is additionally coupled to an algebraic equation.

bNote that specific adsorption is also discussed within this work.
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determined from an algebraic equation system, and the differential
capacity Cpoly obeys also an algebraic representation, i.e.

m

m

= + -

= =

= + -
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where Q
BLˆ and C

BLˆ are nonlinear functions specified in Section 3.
The construction of the capacity ¥Cpoly,

BL of a polycristalline electrode
in the case of facets with two equal surface fractions is illustrated in
Fig. 3 (right). Remarkably, the potential of zero charge ¥Epoly,

PZC of
this polycrystalline surface in this case is located at the capacity
maximum and not at a local minimum of the curve!

For realistic polycrystalline electrodes, the consecutive labeling
of all facets might be impractical. We propose thus a stochastic
description of the surface in terms of a probability density f,
modeling the surface fraction as function of the surface chemical
potential of electrons. We derive in the limit d1 nm facet[ ]  the
model
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Figure 4 (left) shows two different distributions functions of the
surface fraction and Fig. 4 (right) the corresponding differential
capacitance. We observe, that a sharp peak of the distribution
function leads to a capacitance close to that of a single crystal
surface. More general, in Section 6.4, we see that a discrete
distribution of PZC values can be well approximated by a distribu-
tion function consisting of a finite number of clearly separated peaks.
Increasing the standard deviation of the normal-distribution, results
in stronger smearing of the capacitance over the potential range such
that the capacity minima actually disappear, while the overall shape
broadens. We discuss this aspect more in detail within this work.

In the opposite limiting case of vanishing facet diameter
d 0facet , the potential of zero charge is given as the surface

fraction weighted average of the corresponding single crystal
quantities, while the charge Qpoly and the capacity Cpoly remain
non-linear expressions identical to the ones of a typical single crystal
surface, i.e.

Figure 2. Sketch of the facet structure of a polycrystalline surface (left) and isosurfaces of the electric potential in the electrolyte from 3D-FEM computation
(right). The surface consists of a periodic checkerboard pattern of equally sized facets. The corresponding double layer chargeQpoly and capacityCpoly as function
of the applied voltage E.

Figure 3. Double layer charge and differential capacitance of a polycrystalline electrode determined from 3 with = =s s1 2
1

2
.
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Continuum Model

We use a continuum model that is based on a coupled volume-
surface description of charged and possibly reacting mixtures
coupled with the electromagnetic field. Detailed description of the
modeling can be found in Refs. 16, 17, 19. Following the standard
approach in non-equilibrium thermodynamics, the modeling consists
of two steps. The fist step is universal, i.e. material independent,
leading to the general model equations in Section 3.1. In the second
step, which is material dependent, non-negative entropy production
is guaranteed by application of an entropy principle, cf.19 After this,
specific behavior of a certain considered material is described in
terms of free energy densities in each volume domain and on the
surface. We summarize the free energy densities derived in Refs. 16,
17 in Section 3.2. In general these free energy densities have to be
derived from models of different character on an underlying finer
scale.

In this model, as a convention, each quantity defined in the
volume has a corresponding quantity confined to the electrode
surface Σ. We use the same letters for bulk and surface quantities
and indicate the surface quantities by an underset “s”. For a surface
Σ, we choose the orientation of the a normal vector that we denote
by n . Then, we denote the adjacent bulk volumes by EW and MW , such
that n is the outer normal of EW . For a generic function u in the
volume, we can define the tracec and jump at Σ by

K E MK E M
K

= = = -S
ÎW S

S S Su u x u u ulim , , . 6
x

∣ ( ) [[ ]] ∣ ∣ [ ]

Bulk positions far away from the surface Σ are denoted by Kx and the
evaluation of some function u(x) the bulk points is denoted by

K E MK K= =u u x , ,( ) .

Description of mixtures. To refer to the constituents of a
mixture on the surface Σ or the adjacent volume domains KW , we
use according index sets S , resp. K of species. For each
constituent, we denote the molecular mass by mα, the partial molar
volume by ua

ref , the charge number by zα, and the number density of
particles per m3 by nα, where Ka Î  or a Î S , respectively. Then,
we introduce the partial mass density ρα = mα nα. The free charge
density is (K M E= , )

K

å å= =
a

a a
a

a a
Î Î S 

q z n q z n, . 7
s s

[ ]

General assumptions.We restrict our considerations to the iso-
thermal case, where the temperature T enters the equations only as a
constant parameter and on the surface there holds E M= =S ST T T

s
∣ ∣ .

Moreover, we only consider the electrostatic case where the electric
field is given as j= -E . Excluding surface dipoles, the electric
potential φ is continuous at the surface, i.e. we can set

E Mj j j= =S S
s

∣ ∣ . Within this work, we assume a simple material
model with a constant dielectric susceptibility χ. In the following,
we neglect gravitation and restrict the presentation to planar
interfaces with no tangential transport on the surface.

Model equations.—The general continuum model relies on
universal, i.e. material independent balance equations in the volume
domains and on the surface. However, the model equations contain
several material dependent constitutive quantities which need
appropriate modeling. We summarize here the equilibrium equations
that result from the much more complex modeling framework.19 The
key ingredients for the material modeling are the free energy
densitiesd ρψ, ry

s s
in the bulk and on the volume, respectively.

Due to the assumed constant dielectric susceptibility, the free energy
densities are of the rather general structure

Kry ry ce j

ry ry

= - 

=

a a

a a

Î

Î S





T n

T n

, ,

, . 8
s s s s s s

1

2 0
2ˆ ( ( ) ) ∣ ∣

ˆ ( ( ) ) [ ]

The chemical potentials are defined as

m
ry

m
ry

=
¶
¶

=
¶

¶a
a

a
an n

, . 9
s

s s

s

[ ]

By means of Gibbs-Duhem relations, we introduce the material
pressure p and surface tension g

s
as

Figure 4. Left: densities of the surface chemical potential m
s

e given by normal distributions with different standard deviation. Right: Capacity curves for the
respective densities (solid—) and for the planar single crystal case (dotted line⋯). For large σ, the the capacity has a single maximum unlike the camel shape for
perturbations of the single crystal surface by small σ.

cThe notation indicates that the definition can be made for both domains EW and MW
in analogous manner. If u is not defined in either EW or MW , the respective trace
value is set to 0. dWhere not necessary, we omit the labels E or M for the volume domains.
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a a
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s s s s s
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Equilibrium bulk equations. The equilibrium of an incompres-
sible mixture in a bulk domain Ω is characterized by

c e j- + D = q1 , 11a0( ) [ ]

j = - p q , 11b[ ]

Km j a=  + Îa a z e0 for . 11c0( ) [ ]

The Poisson Eq. 11a determines the electric potential, 11b is the
momentum equation, 11c states that the electrochemical potentials
of all species are constant in equilibrium. We remark that these
equations are not independent, but 11a and 11c together with 10(left)
already imply 11b.

Equilibrium surface equations. On the surface Σ between the
bulk domains KW , for K M E= , , the equilibrium is given by

nc e j- +  = q1 , 12a
s

0[[( ) ]] [ ]

nc e j j j+ +  Ä  -  =p1 11 0, 12b0
1

2
2[[( ( ) ( ∣ ∣ )) ]] [ ]

K E MK
Km m a= Î =a a S for , , . 12c

s
∣ [ ]

Specific material models.—Suitable free energy densities for the
volume domains EW of the electrolyte, MW of the metal and for the
metal-electrolyte surface Σ have been derived in Refs. 16–18 and are
summarized here. The free energy densities account for the entropy
of mixing and elastic effects due to the finite size of the molecules.
For simplicity, we consider only the incompressible limit case. The
rather simplistic assumption of constant surface chemical potential
of electrons turns out to be just the appropriate way to capture a
central feature of metals. It results in the necessary constraint that
excess charge is stored on the metal surface.

Not included into the free energy density of the electrolyte are
Debye-type electrostatic interactions between ions. As a conse-
quence, the model cannot be expected to reproduce typical square-
root behavior in the limit of strong dilution. For the determination of
interface capacitance however, the most relevant regime is the
opposite limit of concentrated solutions.

Bulk electrolyte material model in EW . The electrolyte in the
domain EW is a mixture of several species, one of them being
the solvent that we refer to by the index α= 0. The index set of the
electrolytic species is denoted by E . The mole fractions yα of the
constituents are defined as

E

å= =a
a

b
b

Î
y

n

n
n nwith . 13[ ]

In many solvents, ions are solvated, meaning that a number κα of
solvent molecules are bound into a solvation shell around a center
ion. Thus, the partial volume ua

ref of a solvated ion in the electrolyte
is typically much larger than the partial volume of the solvent uref

0 .
Consequently, we consider the electrolyte as an incompressible
liquid mixture of free solvent molecules, undissociated species and
solvated ions.e The incompressibility of the mixture is characterized
by the constraint

E

E

å u=
a

a a
Î

n1 . 14[ ]

The chemical potentials for an ideal mixture of solvated ions
according to Ref. 17 are in the incompressible limitf

E
Em u a= + - + Îa a a a g p p k T yln , , 15ref ref

B( ) ( ) [ ]

with reference Gibbs free energy Ey u= +a a ag pref ref ref , with a
constant reference energy ya

ref .
Let E

ay , Ej and Ep denote the values of the mole fractions, the
electric potential and the pressure at some bulk point Ex in EW . In
equilibrium, the constant electrochemical potentials according to 11c
and the material model 15 then imply for the bulk mole fractions

E E

E E

j j

u

= - -

- - W

a a
a

a

y y
z e

k T

k T
p p

equilibrium: exp

in . 16

B

ref

B

0⎛
⎝⎜

⎞
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· ( )

( ) [ ]

Note that the pressure p in the electrolytic boundary layer can be
expressed as a function of the potential difference φ− Ej by solving
the condition 13 with the representations 16, i.e. the non-linear
implicit relation

E E E

E

å j j
u

- - - - - =
a

a
a a

Î
y

z e

k T k T
p pexp 1 0. 17

B

ref

B

0
⎛
⎝⎜

⎞
⎠⎟· ( ) ( ) [ ]

yields Ej j= -p p̂ ( ).
Bulk metal material model in MW . We consider a metal in the

domain MW as a binary mixture of positive metal ions M and free
electrons e with ze =−1, i.e. M = M, e{ }. For the metal bulk free
energy density, we adopt the Sommerfeld model22 and assume
incompressibility, cf.17 We do not specify the model here, because as
a consequence of the following surface material model, it turns out
that the metal bulk does not influence any of the results in this paper
and therefore can be ignored.

Surface material model on Σ. The surface Σ between the
domains EW and MW is considered as mixture of the surface metal
ions, surface electrons, electrolytic adsorbates and possibly reaction
products of the aforementioned species. The index set of surface
constituents is denoted by S with E MÈ Í S   . Note that we
consider on the surface also a solvation effect, whereby each
adsorbed ion binds ka

s
solvent molecules which propagates into

the partial molar area aaref .
We adopt the surface free energy model proposed in Ref. 17. In

particular, the surface chemical potential of the electrons is assumed
to be a constant value depending only on the material and the
crystallographic surface orientation. We propose to choose this value
related to the electron work function WΣ of the surface Σ.
Analogously to the metal volume, we have an incompressibility
constraint on the surface stating =a n 1M

ref

s
M , where aM

ref is the partial
area of surface metal ions. On the electrolyte side, we have to
account for adsorption from the volume. Since the surface is not
necessarily completely covered with adsorbates, we introduce a
number density of surface vacancies via

å= -
a

a
a

Î S 
n n

a

a
n . 18

s
V

s
M

ref

M
ref s

M

[ ]
⧹

eThis is in contrast to the model of a mixture of undissociated species, the bare center
ions and solvent molecules, regardless whether they are free or bound into a
solvation shell.

fIn the classical Poisson-Boltzmann setting, the pressure dependent term
Eu -a p pref ( ) is missing. This elastic contribution leads to a limitation of the

possible ion concentration. Moreover, the mole fraction yα also includes ion-solvent
interaction.
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Then, we define the surface fractions of vacancies and adsorbates by
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The chemical potentials of the surface species are
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With respect to the same bulk point in the electrolyte as above,
i.e. the values E

ay , Ej and Ep , the surface mole fraction of the
vacancies, the electrolytic adsorbates, and the surface reaction
products, have the representations in terms of the potential differ-
ence j j= -S

¥U ∣ ,
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where the amount of adsorbates and reaction products on the surface
is controlled by the corresponding Gibbs energies defined by
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The above representations and the definition 19 of the surface mole
fractions yield an algebraic equation which determines the surface
tension g

s
as a function of U.

Model Application for Solid Electrode Surfaces

It is well known that at the surface Σ between a metal and an
electrolyte a charged double layer exists, which decays into the
electrolyte bulk electrolyte. For Poisson–Boltzmann and Gouy-
Chapman type models the space charge layer width is in the order
of the Debye length

c e
=

+
L

k T

e c

1
, 23BDebye 0

0
2

( ) [ ]

where c is the bulk salt concentration. However, for the incompres-
sible mixture model of Section 3.2, which incorporates solvation
effect of the ionic species, we find that the space charge layer width
is in the order of =L 1 nmref [ ], almost independent of the bulk
concentration c, however, dependent on the applied voltage. Figure 5
displays the computed space charge layer, i.e. the cation and anion
densities nα as function of the electrode distance z for an applied

voltage of m+ - =E E 0.5
e s

e
ref1

0
V.

If the dimension of the considered experimental setup is
considerably larger than 1 nm[ ], say in the range of several mm, it
often is reasonable to consider the surface Σ as an infinite planar
surface and the electrolyte domain EW as a half space. We chose the
coordinates (x, y, z) such that Σ corresponds to the plane z= 0. Since
we are only interested in the boundary layer, we can choose a
sufficiently large zE and approximate the electrolyte domain as
E EW = S ´ z0,[ ].

Planar single crystal surface.—Given the simple geometric
setting and assuming the surface to be homogeneous in space, all
quantities in the electrolyte can only depend on the spatial coordinate
normal to Σ. Then, we define the boundary layer- and the surface
charge density by

E

ò å= = -
a

a a
Î S 

Q q z Q e z nd . 24
z

s s

BL

0
0

M

[ ]
⧹

In equilibrium, both quantities are completely determined by the
potential difference Ej j= -U .

s
It is a remarkable feature of the

applied material model in Section 3.2 that it is possible to determine
the boundary layer charge density QBL as function of Ug without
needing to spatially resolve the bulk Eqs. 11–12, i.e.

Ee c= + -Q U p U p Q Usgn 2 1 . 25BL
0

BL( ) ( )( ˆ ( ) ) ≕ ˆ ( ) [ ]

where p Uˆ ( ) is the material pressure determined from 17. Moreover,
all surface mole fractions are determined according to 21 and we get
for the surface charge density

Figure 5. Numerical computation of the space charge layer in front of a single
crystal metal surface at an applied voltage of m+ - =E E 0.5V

e s
e

ref1

0
for

various bulk concentrations c.
gThe typeface Q̂ indicates that this is a function Ej j= -U

s
and not the applied

voltage E.
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Thus, we can introduce the differential capacity as

= + = +C U
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dU
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Under the standard assumption that the potential difference
between an ideally non-polarizable reference electrode and the
bulk electrolyte remains constant under potential variations, it is
possible to show17 that

Ej j m= - = + - =U E
e

E E
1

with const ., 28
s s

e
ref ref

0
[ ]

where E is the applied voltage in a three electrode setup, m
s

e the
surface chemical potential of electrons, and Eref a constant which
depends on the actual reference electrode. For a specific surface Σ,
the differential capacity in the absolute scale E is given by an
appropriate shift of 27, i.e.

m= + -C E C E E . 29
e s

e
ref1

0
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⎠( ) ˆ [ ]

Modeling of planar polycrystal surfaces.—We consider now a
planar surface Σ which is composed of N facets Σi, i.e. ÈS = S=i

N
i1

as sketched in Fig. 2. We assume finite size surfaces patterns that can
be periodically extended to the whole plane. We denote by Si∣ ∣ the
area of the facet Σi whereby the total area of Σ is S = å S=i

N
i1∣ ∣ ∣ ∣ and

surface fraction S
S

si
i≔ ∣ ∣

∣ ∣
. We make the assumption

The facet boundaries Ç¶S ¶Si j for ¹i j constitute no indepen-
dent thermodynamic entities.

Thus, each facet Σi can be treated as a finite size planar single crystal
surface, and we can apply the material model of Section 3.2 on each
facet Σi separately. Since the surface density of metal ions depends
on the cystallographic orientation of the surface, the material
parameter aM is different for each individual facet Σi. As a
consequence, in the absence of adsorption to the surface, the surface
tension g

s
differs between the facets Σi.

h In addition, we have to
assign to each facet Σi a constant value of m

s
e, which has to be

related to the electron work function on a surface of the respective
cystallographic orientation. Because all facets are connected by
electric conductors, the electrochemical potential of the electrons is
constant over all grains in the metal MW , i.e.

Mm j m j m j- = - = -S W Se e e . 30
s

e
s

e
s

e
s

0 0 0i j( )∣ ( )∣ ( )∣ [ ]

Between each two surfaces, we thus have the pairwise potential
difference

j j m m- = -S S S S
e

1
. 31

s
e

s
e

0
j i j i∣ ∣ ( ∣ ∣ ) [ ]

Patterned planar surface. As in the single crystal case before,
we can expect boundary layers that decay exponentially from the
surface Σ into the electrolyte bulk. The length scale of the boundary
layer is given by the Debye length according to 23 and the electrolyte
bulk can be characterized by certain constant far field values E

ay , Ej
and Ep in a distance from the surface that is large compared to1 nm[ .

We assume that the electrolyte in EW is not influenced by any other
boundary layer than the one at Σ. Given the applied potential
E− Eref we set Ej = 0, which corresponds to an ideally polarizable
reference electrode. Then, the state in the electrolyte in EW is given
by the the generalized Poisson-Boltzmann boundary value problem
similar to Refs. 16, 17, 19

Ec e j j- + D = Wq p1 , in , 32a0( ) ( ) [ ]

E

E

å j= W
a

a
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y p1 , in , 32b( ) [ ]

j m= - - SS S E E on , 32c
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j  S0 far away from , 32d[ ]

where yα(φ, p) is given by 16 for Ea Î  .
Given a solution of 32 in EW , the boundary layer charge q is

determined by yα according to 7 and 14. The surface charge density
can be calculated by 26 on each facet Σi separately and we get
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Thus for the surface Σ, we conclude
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Upon solution of the boundary value problem, the boundary layer
charge density is computed from

Eò= -
S W

Q E q x dx
1

, 35poly
BL ( )

∣ ∣
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Finally, the total surface charge is = +Q E Q E Q E
s

poly poly
BL

poly( ) ( ) ( )
and the differential capacity of the patterned surface is computed by
taking the derivative with respect to the applied potential E.

Ensemble of planar single crystal surfaces. The total boundary
layer charge density can be decomposed into the contributions
adjacent to the different facets Σi, viz.
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Since boundary effects propagate into the interior with a length scale
in the order of the chosen reference length of the electrolyte,
boundary effects due to the finite size of Σi can be neglected once
the characteristic facet diameter is sufficiently large, i.e.

d1 nm facet[ ]  . Then, the charge density in front of Σi is well
approximated by the boundary layer charge 25 at a planar single
crystal with the same material parameters as Σi, i.e.

m- - +  S SQ Q E E
d

0 for
1 nm

0. 37ref
e s

e
BL BL 1
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0

⎜ ⎟
⎛
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⎞
⎠ˆ ∣ [ ] [ ]

Thus, in the limit of large facets, the boundary layer charge density
Qpoly

BL of the polycrystal is given by the according density of an
ensemble of non-interacting (infinitely large) planar single crystal
surfaces, all in contact with the same electrolyte, viz.
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ref
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The boundary layer capacity related to 38 is given by 3. As 33 can be
applied independent of the size of d facet, we conclude

hOne has to be careful with an interpretation of this fact. Surface tension of planar
solid surfaces is difficult to measure and one has to distinguish between the
“thermodynamic” surface tension and the “interfacial tension”, cf.18
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The potential of zero charge EPZC is determined from Eq. 37, i.e.

=Q E 0poly
BL ( ) !

. Intuitively one would expect that the potential of zero

charge EPZC is determined as må += Ss E
e i

N
i
s

e
ref1

1 i0
∣ . But since the

functions Q
BLˆ are non-linear with respect to their argument, this

does not hold, i.e. in general
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In Section 6 we provide some exemplary calculations showing the
difference between -E ErefPZC and m

s
e¯ for several parameter

variations.

Surfaces of Finite Size Pattern and Approached Limit Relations

Given a polycrystalline surface with a finite size pattern of facets
and their individual surface potentials, one has to expect that the
capacitance can only be determined numerically from a spatially
resolved FEM solution in EW and that this solution depends on the
specific geometry of the facets. In this section, we study numerically
the capacitance for certain examples of surface patterns. We assume
that the electrolyte consists of the solvent, denoted by S, and the
anions A and cations C of a completely dissociated salt, i.e.
E = A C S, ,{ }. For the numerical simulations we solve 35 with

physical constants and material parameters as given in Table I. We
chose the reference number density according to pure water. Since
we apply the simplified model of a constant dielectric susceptibility,
we chose a value for χ that refers to a strongly concentrated solution
and thus is considerably lower than c = 80H O2 , cf. e.g.23

In order to keep the focus of this section sharp, we assume here that
the electrolyte is non-adsorbing. If in addition also adsorption has to be
take in to account, surface charge and surface capacity can be computed
in purely algebraic manner by a post-processing step applying 34 and
its derivative with respect to the applied potential, respectively.

Pattern of two equally sized facets.—We consider first the most
simple configuration of a symmetric bi-crystalline surface, where
N= 2, = =s s 1 21 2 . We choose an average potential m

s
e¯ such that

m m m m- = - - = -S S 0.1 eV
s

e
s

e
s

e
s

e1 2∣ ¯ ( ∣ ¯ ) . On the surface, we

thus have the boundary values j = FS
s

ii∣ for i= 1, 2 with

F = -F = -0.1V1 2 . The simplest realization of this configuration
consists of a pattern of parallel stripes with alternating prescribed
potential. Here, we let d facet denote the width of the stripes. With an
appropriate choice of the coordinate system, the boundary values can
be described by a 1D-function such that

j =
F <
F - <

x
x d

x d d

for 2 ,

for 2 ,
42
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and periodic continuation. Accordingly, the potential and the charge
density in the electrolyte domain z> 0 can be determined from a 2D-
FEM computation by integration of the free charge q in space according
to 35. The choice of the boundary values implies that in the far field the
potential approaches Ej j m = - - -E Eref

e s
e

1

0
( ) ¯ . Plots of the

electric potential for m= -E Eref
e s

e
1

0
¯ and an electrolyte with a bulk

concentration of -0.1 mol l 1 and the remaining parameters according
to Table I are given in Fig. 6 (left). In the upper plot, where the facet
size was chosen as = »d L10 12.28 nmfacet Debye , one can observe
that the piece-wise constant boundary data to a large extend propagates
into the electrolyte and decays with increasing distance to the boundary.

To the contrary, in the lower plot, where = »d L 3.07 nmfacet 5

2
Debye ,

the profile of the potential is dominated by facet boundary effects such
that the regions of parallel iso-lines almost disappear.

Next, the applied potential is varied in positive and in negative
direction and the boundary value problem 32 is solved. From this
solution, the free charge density q and Q EBL ( ) are computed.
Figure 6 (right) shows the resulting capacity for different electrolyte
concentrations in dependence of the facet size d facet. We observe for
increasing facet size d facet a convergence of the computed capacity
curves to the algebraic solution 3. In particular, in the potential range
outside of the lowest and the largest position of the maxima, the
algebraic expression 3 is always a good characterization of the
polycrystalline surface, independent of the facet size. Figure 6 also
shows that the convergence depends on the electrolyte bulk
concentration. We thus repeat the numerical experiment over a
larger range of parameter variation, such that the bulk concentration
is varied between - -10 mol l4 1 and -1 mol l 1 and the facet diameter
is changed between 0.2 nm and 120 nm. We observe in Fig. 7 that
while the behavior with respect to the bulk concentration is not
monotonous, in any case the approximation error of 3 in the
maximum norm can be bounded by some term proportional to the
inverse of d facet.

In addition, 3D-FEM simulations with a checkerboard pattern of
the surface were performed where the boundary values are given by
periodic continuation of

j =
F < >

F < <
x y

x y d x y

x y d x y
,

for max , , sgn 0,

for max , , sgn 0.
43
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The observations from the 3D computations are analogous as for
the 2D case. Since for given d facet, the length of the contact lines in
the checkerboard pattern is double compared to the striped pattern
represented by the 2D case, convergence for increasing facet size is a
bit slower here. Together, the 2D and the 3D results indicate that the
shape of the facets is not relevant as long as the facet diameter d facet is
sufficiently large compared to a reference length in the order of1 nm[ ].
We conclude that already the covered surface fraction of the facets and
the corresponding single crystal capacities fully determine the capacity
of a polycrystalline surface of sufficiently large facet size.

As FEM simulations in 3D are computationally expensive, we
used anisotropic grids with a mesh grading with respect to the a-
priori known structure of the potential, see Fig. 8. To check that the
grid is sufficiently fine, we compared the resulting capacity curves
from numerical solutions of the boundary value problem 32 on

Table I. Physical constants and parameters used in the numerical
simulations.

dielectric constant e = ´ - -8.854 187 817 62 10 C Vm0
12 1( )

Boltzmann constant = ´ - -k 1.3806488 10 J KB
23 1

elementary charge = ´ -e 1.602 176 565 10 C0
19

Avogadro number = ´ -N 6.02214129 10 molA
23 1

temperature =T 298.15 K
reference pressure = ´p 1 10 Paref 5

dielectric susceptibility χ = 15
charge number −zA = zC = 1, zS = 0
solvation number κα = 10
reference number density = =

u
-n 55.5 mol lref 1 1

ref
0

bulk salt concentration E -c mol l 1[ ]
specific volumes u k u= +a a1ref ref

0( )
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different refinement levels of the initial mesh. Refined meshes on the
refinement levels 3, 4 and 5 consisted of 2 601, 18 513 and 139 425
nodes, respectively. Figure 8 shows the convergence of the
computed capacity curves when refining the mesh.

Characterization of PZC and limiting behavior.—In the pre-
vious section, we did not discuss the PZC for the patterned
polycrystalline surface. The reason is that due to the symmetry,
i.e. =s s1 2, it always coincides with the chosen reference potential.
In order to introduce some asymmetry, we slightly modify the
configuration to N= 2, =s 1 31 , =s 2 32 , and again set
F = -F = -0.1V1 2 . For a 2D-FEM simulation of this configura-
tion, we choose

j =
F <

F - <
x

x d

x d d

for 2 ,

for
3

2
,

44
s
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facet facet
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with periodic continuation of the boundary data. As in the previous
example, we again observe that the capacity of the patterned surface
approaches 3 for large facet sizes d facet, see Fig. 9 (left). From the
computed boundary charge as a function of the applied potential

according to 35, we can now determine the potential of zero charge
of the patterned surface with finite d facet. We observe that for a fixed
facet size d facet, the PZC is not constant but increases with the bulk
electrolyte solution, cf. Fig. 9 (right). Moreover, the potential range,
in which the PZC varies with respect to the bulk concentration, gets
wider for increasing d facet. As a limit for  ¥d facet , the PZC
reaches the values we get from the surface fraction weighted
averaging of single crystals according to 3. Since the capacity of a
planar single crystal is approximately quadratic at its PZC, the
boundary layer charge behaves almost cubic. Thus, one should not
expect, that the linear combination of single crystal capacities would
attain its PZC at the respective linear combination of the individual
PZCs.

In addition, another limit is of interest, however more from a
theoretical point of view. Let us consider d 0facet , although a
pattern at the atomic length scale or even blow that scale cannot be
realized in practice. We observe, that for d 0facet , the capacity
curve changes from the three-maxima shape according to 3 into the
typical two-maxima or camel shape that is well known from the
planar single crystal. In fact, for d 0facet , the capacity converges
to the capacity of a planar single crystal surface where the PZC is
determined as the sum of the PZCs on the contributing facets
weighted by their respective surface fraction si according to 5.
Moreover, this limit of the PZC is independent of the bulk
electrolyte concentration.

Surface roughness.—Because of surface roughness, the actual
surface area of real surfaces is larger compared to their ideally plain
counterparts which are characterized by their so called visible
surface area. As a measure of this effect, the surface roughness
factor W is introduced as the quotient of the real surface area over
the visible. Surface roughness appears on a large range of different
length scales, from “physical inhomogeneity” on the atomic length
scale to “geometric roughness” on a macroscopic scale of several
mm. A lot of attention was devoted to the analysis of “geometric”
surface roughness which in experiments may be caused e.g. by
electrode pre-treatment like polishing. In the context of electro-
chemical impedance analysis, roughness is then often analyzed in
the framework of fractal geometry, where on the larger scales, an
interaction of the boundary layer with bulk transport properties of
electrolyte has to be expected.

We want to concentrate on the effect of surface roughness on the
boundary layer capacitance and therefore consider only deforma-
tions of an ideally plain surface that are on a length scale of the facet
size d facet. We return to the setting of the symmetric bi-crystal of
Section 5.1 and let the surface be given by

Figure 7. Approximation error of 3 over the characteristic diameter d facet of
the facets for the symmetric bi-crystal and various electrolyte concentrations.

Figure 6. Left: profile of the electric potential for different diameters of the surface stripes. Right: capacity curves for different electrolyte concentrations, where
solid lines (—) refer to the algebraic solution according to 3, FEM solution for facet size =d 3.07 nmfacet is indicated by markers (+), and for =d 12.28 nmfacet

by dashed lines (- - ).
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where the parameter hmax is the maximal elevation of the surface
over the supporting pane, see Fig. 10. This results in a surface
roughness factor of

=
+

W
d h

d
. 46

facet 2 max 2

facet

( ) ( )
[ ]

We performed 2d FEM simulations of the boundary layer in
dependence of the applied potential and the electrolyte concentration
varying the surface roughness parameter relative to the Debye length
as =h Lmax Debye 5

8
, 5

4
, 5

2
. The respective surface roughness factors

according to 46 are =W 1.002, 1.0078, 1.031. We observe that with
increasing hmax , the capacity curves deviate stronger from the
calculated capacity of the perfectly smooth surface, see Fig. 11
left. Moreover, Fig. 11 right indicates that surface roughness can be
very accurately taken into account by multiplying the surface
roughness factor W to the capacity of the perfectly plain surface, i.e.

=C E W h C E . 47max
poly
BL( ) ( ) ( ) [ ]

Discussion of the Idealized Polycrystal

Within this discussion, we always apply the limit of large facet
size d1 nm facet[ ]  related to 3, keeping in mind, that this limit is
already well approached for =d 20 nmfacet .

Figure 8. Left: numerical grid on refinement level 3, as used for computation in Fig. 2. Right: computed capacity curves for different levels of grid refinement.

Figure 9. Left: capacity curves for -0.1 mol l 1 electrolyte and different facet size parameters (dashed lines - - ). Limits for large facet diameter (blue, solid —)
and vanishing facet diameter (red, solid —). Right: lines show the position of the PZC of the patterned surface in dependence of the facet size d facet for different
bulk concentrations. The circles on the to indicate the values of Epoly

PZC according to 3 that are approached for  ¥d facet and the dashed line refers to Epoly,0
PZC

according to 5.

Figure 10. Electric potential for an electrolyte of -0.1 mol l 1 salt concen-
tration in contact with a symmetric bi-crystal surface at the applied potential

m= -E Eref
e e
1

0
¯ . Top: flat surface, i.e. =h 0max , bottom: differently

oriented facets with =h 1.54 nmmax .
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Difference of PZC.—In the previous section, we kept the potential
difference between the two considered facets constant (viz. 0.2 V),
However, this difference is a material dependent characteristic
quantity that varies between different materials or different crystal-
lographic orientations. While differences of the PZC, respective m

s
e,

between differently oriented surfaces are considered minor for some
metals, e.g. “low melting metals” like Cd, Sn, Pb, Zn and Bi, cf.,5,10

considerable differences between the low index facets are reported
for e.g. Ag, Au, Cu, Pt and W, cf.24 Thus, we examine the situation of
an bi-crystal with equal surface fractions = =s s 1 21 2 and vary the
difference of the surface chemical potential of the electrons
m m mD = -S S
s

e
s

e
s

e1 2∣ ∣ between 0 eV and 0.8 eV. This corresponds
to varying the boundary values such that F - F 0V 0.8V1 2 . We
observe, that for F - F < 0.115V1 2 the capacity retains the typical
camel shape. For < F - F <0.115V 0.375V1 2 there is a three
maximum shape, whereas for larger potential differences between
the facets, we have a four-maximum configuration that again allows to
identify the two local extrema of the individual facets, see Fig. 12.
Once more, we stress that in experiments one should be aware of the
fact that for a polycrystalline surface the PZC in general is not found at
a local capacity minimum! For a sufficiently large potential difference
Φ1− Φ2, the PZC is in general found between the inner two local
maxima of the capacity, and only for specific configurations of the
surface fractions si the PZC is located at a local capacity minimum.
Even more, for moderate F - F1 2, the PZC is located near a local
capacity maximum!

As stated in Section 4.2, the potential of zero charge

m- ¹E E 48ref

s
e

PZC ¯ [ ]

but, it has to be determined from a solution of the non-linear
equation =Q E 0poly

BL ( ) . This solution is dependent on the salt
concentration c, the the surface fractions si, and the m S

s
e i∣ . For a

bi-crystal, Fig. 13 displays the difference m - -E E
s

e
refPZC¯ ( ).

Adsorption to the surface.—To study the effect of adsorption,
we return to the simple configuration of a symmetric bi-crystal in
Section 5.1, i.e. we choose N= 2, = =s s 1 21 2 . We assume that
the adsorption energies Δ gα do not differ between the different
facets. In particular, by the choice of

D = - D = + D = -g g g0.25 eV, 1 eV, 0.0735 eV. 49A C S [ ]

we assume, that cations effectively do not adsorb while anions and
the solvent are allowed to adsorb to the surface. For simplicity and

Figure 11. Left: detail of the boundary layer capacity for different electrolyte concentrations and surface roughness with =h 0.38 nmmax (markers +),
=h 0.77 nmmax (⋯) and =h 1.54 nmmax (- - ). Right: correction by surface roughness factor according to 46.

Figure 12. Capacity curves for varying difference m m mD = -S S
s

e
s

e
s

e1 2∣ ∣ for
a bi-crystal with equal surface fractions =s s1 2.

Figure 13. Numerical computation of the difference between the potential
of zero charge EPZC and the average surface chemical potential of electrons
m
s

e¯ for a bi-crystal as function of m m mD = -S S
s

e
s

e
s

e1 2∣ ∣ for various surface

fractions s1 (s2 = 1−s1 and electrolyte concentrations c.
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clarity of presentation, we do not consider surface reactions like
solvation shell stripping or electron transfer reactions. An extension
is straightforward by applying 21c for the reaction products and 26
for the surface charge. In the numerical computation, we use for the
radius and the partial area of the adsorbed species

u p= =a p a a ar a r, . 50ref ref ref ref3

4

1
3 8

3
2( ) ( ) [ ]

According to 34, the surface capacity of a patterned surface only
depends on the material parameters of the contributing facets and
their surface fractions si, but not on the facet geometry or the facet
size parameter d facet. Thus, we can combine 3 and 34 to conclude
that for large facet size, the capacity of a perfectly plain polycrystal
surface is

å m= - +
=

SC s C E E . 51
i

N

i
ref

e s
epoly

1

1
i

0
⎜ ⎟
⎛
⎝

⎞
⎠ˆ ∣ [ ]

Figure 14 shows the capacity curves of a single crystal surface and
illustrates the construction for a bi-crystal according to 51. As
already known for single crystal surfaces, if there is adsorption from
the electrolyte, the PZC depends on the electrolyte and its bulk
concentration, cf. e.g.17 The same also holds true for the polycrystal
and we conclude from 3 and 34 thati for <  ¥d1 nm facet[ ] , the
determination of Epoly

PZC requires the solution of the non-linear
algebraic equation

å m= - +
=

Ss Q E E0 . 52
i

N

i
ref

e s
e

1
poly
PZC 1

i
0

⎜ ⎟
⎛
⎝

⎞
⎠ˆ ∣ ) [ ]

Multiple different facets.—The above results can easily be
extended to more complex polycrystalline surfaces with many facets
of different type. We consider the case of N= 4 different types of
facets Σ1, Σ2, Σ3, Σ4 with the respective surface fractions =s 4 91 ,

= =s s 2 92 3 , =s 1 94 . Also, we want to have junction points
where more than two different facets meet. One possible simple
realization on a 2D surface is the periodic symmetric continuation of
the pattern sketched in Fig. 15. The boundary data is given as j= F

s
i

on Σi, for i= 1, 2, 3, 4. We choose F = -F = -0.1 V1 2 . First, we
let F = F4 1 and Φ3 = Φ2 and get slightly non-symmetric capacity
curvesj, see Fig. 15. Next, we change Σ3 such that F = -.061 V3
while still Φ4 = Φ1. Finally, set F = .085 V4 and keep the remaining
boundary values as before, see Fig. 15 bottom line.

As in Section 5.1, we checked convergence of the capacity
calculated from 3D-FEM simulation for finite facet size d facet to
the limit Eq. 3 for  ¥d facet and grid convergence of the numerical
solutions.

Stochastic distribution of surface patterns.—A precise measure-
ment of all surface facets and their corresponding work functions is
extremely expensive, if possible, and even measurements on very
similar facets may contain some scatter. Hence, the input values for
the mathematical model of the foregoing section can only be
determined to a certain precision, which has to be taken into account
when realistic polycrystalline surfaces are to be described. We
sketch therefore a stochastic description of the polycrystalline
surface based on the derived deterministic model and provide
some numerical examples of the double layer capacity.

Consider a surface Σ of N> 1 facets Σi. We define the set
m m= ¼S , ,
s

e
s

e
J1{ } of all different values of m

s
e on Σ. Moreover we

introduce the sets m m= =m S  i N1 :
s

e i{ ∣ }. Then we denote
with Σμ all facets which have the value μ for m

s
e and the according

surface fraction with ms , i.e.

È åS = S =m mÎ
Î

m
m




s s, . 53i i
i

i [ ]

Doing so, we switch the facet labeling from a consecutive
numbering of all facets to values of m

s
e. Since å =m mÎ S s 1, we

can introduce the discrete probability density

åw d w m-
m

m
Î S

f s , 54( ) ≔ ( ) [ ]

where δ is the Dirac-distribution. The charge Qpoly
BL stored in the

polycrystalline boundary layer thus rewrites as
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ò
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With the convolution operator * we obtain thus a very compact
expression for Qpoly

BL in terms of the distribution function f(ω), which
describes the facet density parametrized over the surface potential
m
s

e. The potential of zero charge Epoly
PZC is thus (implicitly) defined via

* - =f Q E E 0refBL( ˆ )( ) !
and the double layer capacity is
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Note that Q
BLˆ and C

BLˆ remain the non-linear functions described in
Section 4.

For realistic polycrystalline electrodes, the Dirac-distribution might
smear, whereby f becomes a continuous function. In order to show the
consequences of the smearing of the convolution operator * on the non-
linear functions of CBL we consider the following example. Let the
density f be given by a normal distribution of facets with respect to its
mean value m m- = 0

s
e

s
e( ¯ ) and with the standard deviation σ, see

Fig. 4. For small standard deviation like σ= 0.025, the resulting
capacity according to 4 is close to the single crystal capacity, see Fig. 4.
However, for σ= 0.2, the local capacity minimum has disappeared and
there is only a single capacity maximum. Due to the symmetry of the
chosen density f(ω), the PZC is in either case located at the maximum
of the density f. We want to stress, that this particular configuration of
facets with a broad scatter of the individual facet properties is very
different from the limit related to 5 where on each finite size part of the
surface a large number of accordingly small facets are considered.

Next, we want to investigate the effect of a polycrystal surface that
is mainly covered by facets near to low index surfaces like (100),
(110) and (111). For the low index facets of Ag we chose values of m

s
e

related to the (negative) work function as given in Table II. To
describe a non-ideal Ag polycrystal, we consider a probability density
that consists of a superposition of scaled normal distributions around
the potentials of the low index facets and a standard deviation small
enough, such that the peaks do not overlap, see Fig. 16 where
σ= 0.025 is chosen. The resulting capacity curve remains close to the

capacity of an ideal polycrystal with equal surface fractions =si
1

3
for

i= 1, 2, 3. Moreover, we perturb the configuration such that an equi-
distribution in a 1 V potential range is superimposed in the probability

iIn the case d 0facet the analogous result holds true, due to 5 and 34.
jThis situation is equivalent to the slightly non-symmetric case N = 2 and =s 5 91 ,

=s 4 92 .
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density. As a result, we obtain a much more smooth capacity curve.
The pure equi-distribution for ω(u) results in a capacity similar to the
normal distribution with large standard deviation.

Conclusions

The double layer model16,17,19 is build on a thermodynamically
consistent generalized Nernst-Planck model and serves as the

Figure 14. Left: Capacity curves for an adsorbing electrolyte and different bulk electrolyte concentrations where the higher peak at potentials more positive than
the PZC is due to adsorption of anions. Right: Construction of the capacity of a polycrystal surface as the sum of the single crystal capacities of the contributing
facets weighted by their surface fraction.

Figure 15. Top left: surface pattern as used in the 3D-FEM simulations of Section 6.3. Top right and bottom row: capacity curves, when assigning the indicated
different boundary values on the facets.

Table II. Recommended values for the electron work function on Ag
surfaces according to Ref. 24.

surface (110) (100) (111)
work function 4.10 eV 4.36 eV 4.53 eV
m m-
s

e
s

e¯ +0.2 eV -0.06 eV -0.23 eV
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theoretical basis of this work. In Ref. 17 it was successfully
validated against the most reliable experimental data of single crystal
capacitance.6–8 This validation now allows to turn the attention from
the single crystal to the less well defined conditions of polycrystal-
line surfaces. By the approach of numerically solving improved
Poisson-Boltzmann problems for patterned surfaces, simple repre-
sentations for the differential capacitance of polycystalline solid
metal electrode surfaces in terms of single crystal capacitance have
been obtained. While for a not too small facet size parameter d facet,
the result for the capacity of a polycrystalline surface is the expected
surface fraction weighted average, some caution is required when
considering PZC. Due to the non-linearity in the relation between
applied potential and boundary layer charge, the PZC is not given by
a weighted average and moreover, it also varies with the electrolyte
concentration. The result for d 0facet can be interpreted in the way
that for an amorphous solid material or a liquid material the surface
is inhomogeneous on an infinitesimal scale such that the surface
properties for each point are independent. Both limits, for large and
for small facet size, allow a to get rather clear picture of the
electrochemical double layer at pattered surfaces like polycrystal
surfaces. Moreover, the results justify the simple correction for
rough surfaces by a multiplication with a single geometry dependent
factor. In the intermediate cases, where the facets diameters are in
the order of1 nm[ ], the capacitance of a polycrystalline surface has to
be determined from spatially resolved numerical simulation in 2D or
3D and the results depend on the actual geometric surface pattern.

The results obtained here are in rather close resemblance to
previous results of Refs. 13, 14 where similar to 3, the capacitance of
the polycrystal is given as a surface fraction weighted sum of single
crystal capacitances. However, criteria about the applicability of
such representations are not directly comparable, since they depend
on quantities related to a different model which are not applicable in
the context of this work. Spatially resolved and linearized Gouy-
Chapman-Stern models were analyzed in Ref. 15 to derive that in the
case of sufficiently large differences between the m

s
e-values, the

facet size has to be small compared to a length which is related to an
inner-layer or Helmholtz capacitance of the individual facets, i.e.
e p -C d4 i

Helmholtz
1 facet( )  . Here, the lower bound is assumed to be

independent of the bulk concentration and in any case to be less than
5 nm in aqueous solution. For small differences in the surface
chemical potential of the electrons,15 derives L dDebye facet as the
sufficient and necessary condition for the applicability of 3. We do
not derive a similar criterion here, because one can easily see that the

difference between the two opposite limit Eqs. 3 for ¥Cpoly,
BL and 5 for

Cpoly,0
BL vanishes quadratically for small difference of the m

s
e values,

leaving no space for the intermediate cases.
Another interesting aspect of the approach followed here is the

possibility to develop a stochastic description of complex poly-
crystalline surfaces. The results indicate that assembly of an
electrode from a huge number of particles with different properties
can be represented by a distribution function with a large standard
deviation. As a consequence, the capacity of such a surface does not
show the typical single crystal camel shape or multiple clearly
separated maxima but a rather constant capacity over a broader
potential range. In light of this result, the function of supercapacitors
can be explained by the inhomogeneity of the fine faceted granular
electrode surface.

Outlook. In the modeling of the patterned surfaces with finite
facet size parameter d facet, we neglected distinguished contributions
from the facet boundary lines. While the according effects on the
capacity might be neglected for large enough facets, accurate
description of the finite size facet structure might require an
extension of the underlying thermodynamic continuum model to
line thermodynamics.

The modeling framework applied within this work strictly
distinguishes between a universal and a material dependent part.
The constitutive functions for the material modeling were chosen
here with the emphasis on simplicity. Various extensions of the
material model are possible, as for example different concepts of
incompressibility, different relations between solvation number and
partial volume of solvated ions, concentration dependent dielectric
susceptibility. Moreover, the surface model only contains entropic
interaction of the ions. Considering also e.g. enthalpic interactions is
in principle possible, however it would lead relations between ay

s
and the surface chemical potential ma

s
that are implicit. Partial

charge transfer is possible within the model framework. It entails
adsorbed species on the surface with fractional charge number.
However, systematic investigations how the (surface) solvation
number, the partial molar volume (or area), and the charge number
of the ions are related to each other are yet outstanding.

Surface reactions like solvation shell striping of adsorbed ions can
be included into the presented models for polycrystalline surfaces in a
straightforward manner. The same also holds true for electron transfer
reactions, as long as the reaction products do not leave the surface.
In the presence of Faradayic currents additional length scales for the

Figure 16. Left: different probability densities describing the surface chemical potential of electrons on a Ag-polycrstal where the surface is covered by facets
close to the three low index facets (100), (110) and (111) (blue), the low index facets and additionally an equi-distribution other facets (red), an a pure equi-
distribution of facets (yellow). Right: Capacity curves for the respective densities (solid —) and capacity of the ideal polycrystal of only the three low index
facets with equal surface fraction (dotted line ⋯).
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non-equilibrium transport of ions have to be taken into account. In
non-equilibrium, surface roughness on larger length scales might lead
to interactions of bulk transport and layer charging causing deviations
from ideal behavior of perfectly plain surfaces.
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