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Abstract: Shear coating is a promising deposition method for upscaling device fabrication and
enabling high throughput, and is furthermore suitable for translating to roll-to-roll processing.
Although common polymer semiconductors (PSCs) are solution processible, they are still prone to
mechanical failure upon stretching, limiting applications in e.g., electronic skin and health monitoring.
Progress made towards mechanically compliant PSCs, e.g., the incorporation of soft segments
into the polymer backbone, could not only allow such applications, but also benefit advanced
fabrication methods, like roll-to-roll printing on flexible substrates, to produce the targeted devices.
Tri-block copolymers (TBCs), consisting of an inner rigid semiconducting poly-diketo-pyrrolopyrrole-
thienothiophene (PDPP-TT) block flanked by two soft elastomeric poly(dimethylsiloxane) (PDMS)
chains, maintain good charge transport properties, while being mechanically soft and flexible.
Potentially aiming at the fabrication of TBC-based wearable electronics by means of cost-efficient
and scalable deposition methods (e.g., blade-coating), a tolerance of the electrical performance of
the TBCs to the shear speed was investigated. Herein, we demonstrate that such TBCs can be
deposited at high shear speeds (film formation up to a speed of 10 mm s−1). While such high speeds
result in increased film thickness, no degradation of the electrical performance was observed, as
was frequently reported for polymer−based OFETs. Instead, high shear speeds even led to a small
improvement in the electrical performance: mobility increased from 0.06 cm2 V−1 s−1 at 0.5 mm s−1

to 0.16 cm2 V−1 s−1 at 7 mm s−1 for the TBC with 24 wt% PDMS, and for the TBC containing 37 wt%
PDMS from 0.05 cm2 V−1 s−1 at 0.5 mm s−1 to 0.13 cm2 V−1 s−1 at 7 mm s−1. Interestingly, the
improvement of mobility is not accompanied by any significant changes in morphology.

Keywords: block copolymers; organic field-effect transistors; shear coating; shear speed; thickness-
dependent mobility

1. Introduction

In recent years, polymer conjugated semiconductors (PSCs), especially donor-acceptor
(D-A) copolymers, have been intensely researched for organic electronics applications,
e.g., organic field-effect transistors (OFETs) [1]. Because of extensive π-π stacking and
overlapping areas of the alternating copolymer, OFETs incorporating D-A PSCs as active
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materials possess high charge carrier mobilities as compared to PSC homopolymers (e.g.,
poly(3-hexylthiophene), P3HT), reaching up to 10 cm2 V−1 s−1 [2,3]. In general, PSCs are
easily processable from a solution, paving the way for the low-cost fabrication of large-area
devices, e.g., via roll-to-roll deposition on solid/flexible substrates [4,5]. The solution pro-
cessing parameters, such as deposition rate, concentration, choice of solvent, and surround-
ing temperature, significantly affect the molecular order and charge transport properties
of polymer chains. Therefore, along with tuning the chemistry of PSCs [6], the solution
deposition parameters have to be optimized to achieve printed high-performance OFETs.

Some of the solution processed deposition techniques include spin coating [7], dip
coating [8], shear coating [9,10], and inkjet printing [11]. Because of the simplicity of the
setup and flexibility of testing different parameters, as well as the potential to achieve high-
performance organic FETs, shear coating is the most ubiquitously used technique within
the research community. In shear coating, the active material (organic semiconductor or
PSC) is confined between a top movable blade and a temperature-controlled substrate. By
moving the blade at a fixed speed, the material is translated across the substrate, leading
to a guided and controlled film deposition. When compared to spin coating, solution
sheared PSC films have a higher crystallinity and improved molecular packing, which, in
turn, facilitates an effective charge transport in OFETs [10,12]. These film properties can
be influenced by shear coating parameters, such as shear speed [13], stage temperature
and gap between blade [14,15], and substrate. Besides this, there is a wide range of estab-
lished approaches to control the final film morphology, which can be divided into the ink
formulation pre-processing methods [16–18], post-processing alignment methods [19,20],
substrate pattering [21], as well as modified shear coating geometries methods [22,23].

Post-processing methods were demonstrated to significantly improve the device
performance. Some of these methods include the mechanical deformation of a PSC’s
film to induce chain alignment in a particular direction [19], or an additional annealing
step to improve the thin-film crystallinity and out-of-plane alignment [20]. However, pre-
processing techniques are known to be the most effective for controlling a PSC’s alignment.
The polymer can be treated with ultraviolet light (UV) [16,17] and/or aged, i.e., the solution
processed after a wating period [18], to induce the aggregate/fibril formation, after which
the alignment is achieved through blade movement.

Despite achieving high charge carrier mobilities, PSCs are still prone to mechanical
failure upon stretching (>30% strain) [24], which limits their electronic functionalities [25].
Several approaches have been followed to overcome this issue, one of which is the uti-
lization of polymer blends [26,27]. Such blends consist of a PSC that is embedded into an
elastomeric matrix. The main issue associated with the blending technique is a potentially
severe phase segregation of the two components (semiconductor and elastomer) due to
their low entropy of mixing, which can affect the electronic performance in the final OFET
device [28,29]. Instead of using a bulk blend, it is favorable to form so-called interconnec-
tive PSC networks within the elastomeric matrix. The work of Bao et al. showed that the
interconnectivity of PSC nanowires at both the top and bottom surfaces of an elastomeric
matrix allows for maintaining the charge transport without severe crack formation at 100%
strain [30]. Reichmanis et al. utilized less than 1 wt% of PSC to form interpenetrating
networks for large-area stretchable FETs arrays, which can maintain their charge mobilities,
even after 300 stretching cycles up to 100% strain [26].

Along with the improvement of the film’s mechanical compliance, the blending
technique was shown to induce the alignment of PSC chains within the elastomer matrix
when shear coating is used for processing. The work of Chang et al. was one of the first to
demonstrate a better alignment of a P3HT/polystyrene (PS) system with around 20 wt%
of P3HT nanowires as compared to the pure nanowires of P3HT [29]. Here, the final
orientation and alignment of polymer chains not only depends on the standard shear
parameters, but also on the PSC: elastomer ratio [31], and on the molecular weight of the
incorporated PSC [32]. An increase in charge carrier mobilities is observed because the
PSCs chains are aligned in the elastomer matrix when shearing. Xu et al. further improved
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this by forming a multi-scale order alignment when implementing a microtrench blade
during the shear process [23].

Despite the improved mechanical properties, the crucial and tedious choice of the
blend ratios (additional pre-treatment, e.g., UV or aging), as well as the risk of delamination
of the PSC from the elastomer matrix, are considered to be the main issues of the blending
approach [31,33]. Molecular engineering, which is directed towards developing intrinsically
stretchable PSCs, is another route to achieve mechanical compliant PSCs [34,35]. Among
the variety of existing methods to tune the electrical/mechanical properties on a molecular
level [27], the utilization of block copolymers is conceptually close to the blending approach.
Block copolymers consist of two polymers that are connected at their chain ends through a
chemical bond, where a phase segregation with distinct properties of each block can be
expected due to their thermodynamic incompatibility. Such block copolymers can be built
from a conjugated (e.g., semiconducting) and a soft (e.g., elastomeric) segment [36–38].
Because the two components are covalently bonded, the issue of delamination of the
PSC from the elastomeric matrix is avoided as compared to the physical blending of
both moieties. Wang et al. demonstrated the synthesis and characterization of P3HT-
block-poly(butyl acrylate) (P3HT-b-PBA) di-block copolymers. The electrical properties
of OFETs based on this structure maintained high charge carrier mobilities up to 1000
stretching cycles [37]. In our recent work, triblock copolymers (TBCs) consisting of an
inner semiconducting PDPP-TT and two outer soft PDMS blocks were achieved through
Stille coupling. While the content of the insulating PDMS block is very high, making
up to 67 wt% of the block copolymer structure, the TBC possess relatively high charge
carrier mobilities in the same range as the reference PDPP-TT copolymer, and it withstands
numerous stretching cycles to 50% strain (up to 1500 cycles) without losing electrical
functionality (Figure 1) [36].
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Figure 1. Polymer structure of (top) the reference (0 wt% PDMS), and (bottom) TBCs with 24 and
37 wt% PDMS.

While great efforts have been made to understand the behavior of pure PSCs and
PSC/elastomer blends upon shear coating, to the best of our knowledge investigations
on the influence of shear parameters on the morphology and electrical performance of
semiconducting block copolymers is missing as of yet. Yet, understanding these issues is
essential in assessing future applications of the TBCs in wearable devices and biosensors,
the manufacturing of which should involve cheap and scalable deposition methods, such as
doctor blading, ink-jet printing, or spay-coating [7,11,39]. The electrical performance of the
devices must tolerate an increased thickness of the active layer in order to use these methods
successfully, as the fabrication of ultra-thin, yet highly homogeneous films is still a highly
challenging task [22]. On the other hand, in many OFETs, a distinct thickness-dependent
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performance is observed, and thicker devices frequently show worse characteristics due to
increased contact barriers and amounts of traps [40].

Given these facts, here we investigate the influence of shear speed and elastomer
content on the thickness of the resulting films and the electrical performance of PDMS-
(PDPP-TT)-PDMS TBCs by fabricating bottom gate, top contact OFET devices. The obtained
results are then compared to the reference copolymer (i.e., pure PDPP-TT). Morphological
analysis (AFM/GIWAXS), as well as polarized UV-Vis spectroscopy, were carried out
aiming at a deeper understanding of the observed charge carrier mobility improvement.

2. Materials and Methods
2.1. Materials

The polymers (0, 24 and 37 wt% PDMS) were synthesized after the previously reported
protocols [36].

2.2. Field-Effect Transistor Fabrication

OFETs were fabricated on n-type doped Si (100) wafers with 300 nm SiO2 thermally
grown layer as gate dielectric. The substrates were treated with octadecyltrimethoxysilane
(ODTMS) according to literature reports [41]. The polymer solutions were prepared by
dissolving the corresponding polymers (27 mg/mL triblock copolymers or 20 mg/mL
reference PDPP-TT polymer) in chlorobenzene and stirring at 80 ◦C overnight. For the
shear coating, the substrate temperature (100 ◦C) was controlled by a thermocouple, and
the coating speed was varied using a linear motor from Jenny Science. The blade angle was
set to 8◦ with a gap of 100 µm between the substrate and the edge of the blade. Bottom-
gate, top-contact transistors were then finished by the thermal evaporation of 50 nm-thick
gold electrodes at a vacuum pressure of 10−7 mbar (L = 200 µm, W = 4500 µm). The
devices were electrically characterized under ambient conditions using a Keysight B1500
semiconductor analyzer.

2.3. Charge Carrier Mobility Calculation

The effective field-effect mobilities were extracted using the algorithm that was pro-
posed by Choi et al. that takes the non-linearity of transfer curves and non-zero threshold
voltage into account [42]. The reliability factor r was calculated, as follows:

rsat =

(√
|ISD |max−

√
|ISD |0

|VG |max

)
/
(

WCi
2L µsat

)
=

(√
|ISD |max−

√
|ISD |0

|VG |max

)
/
(

∂
√
|ISD |

∂VG

)2

where µsat is the calculated mobility, L, W, and Ci the channel length, channel width, and
dielectric capacitance of the transistor, |ISD|max the experimental maximum of the source-
drain current at maximum gate voltage |VG|max, and |ISD|0 is the source-drain current at
Vg = 0.

The effective field-effect mobility can then be calculated as:

µe f f = r× µclaimed

According to Choi et al., a FET following ideal Schockley equations with mobility, as
µeff would offer the same electrical performance as the reported non-linear transistors with
the claimed mobility µclaimed [43].

2.4. Polarized UV-Vis Spectroscopy

Polarized UV-Vis spectroscopy was carried out with an Agilent Cary 5000 spectropho-
tometer. The polymer films were sheared on glass slides that were treated with ODTMS.
These slides were prepared according to literature reports [41].



Polymers 2021, 13, 1435 5 of 14

2.5. Atomic Force Microscopy

The microscope (Bruker, Dimension Icon) was operated in tapping mode using silicon-
SPM-sensors with spring constant of ca. 42 N/m and resonance frequency of ca 300 kHz
with a tip radius <10 nm. The thickness of the polymer layers was measured using a scratch
test technique.

2.6. Grazing-Incidence X-ray Diffraction

Measurements were carried out at the XRD1 Beamline at the ELETTRA synchrotron
in Trieste, Italy. The incidence angle of the beam was 0.12◦ and the beam energy was
12.399 keV (λ = 1 Å). The Dectris Pilatus 2M area detector was placed at a distance of
400 mm from the sample. All of the measurements were taken at ambient condition. The
obtained data were analyzed with WxDiff software (c S.C.B.M).

3. Results and Discussion
3.1. Electrical Performance

Bottom-gate, top-contact (BGTC) OFETs were fabricated via shear coating to probe
the effect of different shear speeds on the overall transistor performance of TBCs with
varying elastomer content (0, 24, and 37 wt% PDMS). The dielectric-semiconductor interface
was modified with a self-assembled monolayer (SAM) of ODTMS. SAM functionalized
surfaces are commonly used for the deposition of organic semiconductors during the
fabrication of OFETs due to a substantial increase of charge carrier mobilities by several
orders of magnitude. The reason for that is assigned to higher polaron delocalization
and better molecular ordering [41,42,44], the dipole-induced built-in electric field of a
SAM [45], or the reduction of charge carrier trap states caused by water [46]. However,
because of the hydrophobic nature of the used SAMs, the shear speed is limited by wetting
conditions and film instabilities (e.g., stick-and-slip instabilities [47]), which might lead to
the complete absence of film formation. Not only this, but Hambsch et al. demonstrated a
clear negative trend, i.e., that increasing the shear speed leads to decreased charge carrier
mobilities of PDPP-based OFETs [42]. The two competing factors, i.e., increase in the charge
transport and instabilities of the fluid dynamical meniscus, are among the main obstacles
in achieving an increase of the fabrication throughput of semiconducting polymer-based
OFET devices [48,49].

We first carried out experiments with the reference polymer with 0 wt% PDMS in
order to investigate the behavior of the TBCs. Figure 2 (upper panel) represents the dual-
sweeping transfer curves of the tested devices. As can be seen in Figure 2, for the reference
polymer, the shape of the transfer curves changes significantly when the shear speed is
increased. Overall, the threshold voltage (Vth) shifts to more negative voltages in the speed
range from 0.5 to 5 mm s−1. It is important to note that the reference polymer shows
instabilities in the film deposition at 5 mm s−1 and that, at higher shear speeds, films are no
longer forming. Although the ON/OFF ratio is increased for the transfer curves at higher
shear speeds (>2 mm s−1), the overall drain current decreased in its value. Additionally,
the hysteresis of the curve becomes stronger at 3 mm s−1 shear speed. This is in agreement
with prior reports [42].

By contrast, both TBCs (24 and 37 wt% PDMS) form stable films up to shear speeds of
10 mm s−1. Regarding the shape of the transfer curves, OFETs that are based on either TBC
show smaller Vth values, along with a less pronounced shifting of Vth upon increasing
the shear speed. Similarly, the ON/OFF ratio is maintained within 104 for either TBC
throughout the probed shear speed range. This is not only in contrast to the reference
polymer without elastomer content, but also to previous work on blends of DPP-based
polymers in an elastomer matrix: here, the ON/OFF ratio was reported to change within
orders of magnitude while increasing the shear speed [14].
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Figure 2. Transfer curves of studied polymers with different wt% of elastomeric PDMS (0, 24 and 37 wt% PDMS) sheared
with speeds from 0 to 10 mm s−1. Solid lines denote the drain current at Vd = −80 V, while the dashed lines denote the
square root of the drain current at Vd = −80 V.

Table 1 summarizes more detailed device characteristics, including effective field-effect
mobilities, and Vth and ON/OFF ratios.

Table 1. Parameters of polymers with different wt% of elastomeric PDMS (0, 24 and 37 wt% PDMS) sheared at different speeds. The
data are obtained from four measurements on at least two different substrates at each shear speed.

Shear
Speed,

mm s−1

0 wt% PDMS 24 wt% PDMS 37 wt% PDMS

µeff, cm2

V−1 s−1 V th, V ION/OFF, A µeff, cm2

V−1 s−1 V th, V ION/OF, A µeff, cm2

V−1 s−1 V th, V ION/OF, A

0.5 0.27 ± 0.01 31 ± 4 3 × 102 ± 1 × 102 0.06 ± 0.04 17 ± 3 8 × 103 ± 7 × 103 0.05 ± 0.01 21 ± 4 6 × 104 ± 5 × 104

1 0.44 ± 0.09 31 ± 11 1 × 103 ± 2 × 102 0.09 ± 0.03 18 ± 4 5 × 104 ± 2 × 104 0.06 ± 0.02 17 ± 1 4 × 104 ± 3 × 104

1.5 0.19 ± 0.03 30 ± 5 8 × 104 ± 4 × 104 0.14 ± 0.02 24 ± 4 6 × 104 ± 2 × 104 0.06 ± 0.01 22 ± 2 4 × 104 ± 2 × 104

2 0.10 ± 0.02 20 ± 2 5 × 104 ± 2 × 104 0.15 ± 0.01 18 ± 4 3 × 104 ± 2 × 104 0.08 ± 0.01 22 ± 1 4 × 104 ± 2 × 104

3 0.11 ± 0.02 28 ± 2 4 × 104 ± 3 × 104 0.13 ± 0.01 22 ± 4 8 × 104 ± 2 × 104 0.08 ± 0.02 21 ± 2 3 × 104 ± 1 × 104

4 0.21 ± 0.02 27 ± 3 5 × 104 ± 3 × 104 0.15 ± 0.01 24 ± 4 7 × 104 ± 5 × 104 0.10 ± 0.01 18 ± 4 3 × 104 ± 2 × 104

5 0.25 ± 0.02 25 ± 6 3 × 104 ± 9 × 103 0.15 ± 0.02 18 ± 3 6 × 104 ± 5 × 104 0.10 ± 0.01 17 ± 1 2 × 105 ± 7 × 104

6 - - - 0.14 ± 0.01 18 ± 3 2 × 104 ± 2 × 104 0.11 ± 0.01 17 ± 1 2 × 104 ± 6 × 104

7 - - - 0.16 ± 0.01 18 ± 3 4 × 104 ± 1 × 104 0.13 ± 0.01 17 ± 3 8 × 104 ± 6 × 104

8 - - - 0.15 ± 0.01 19 ± 4 9 × 104 ± 9 × 104 0.17 ± 0.02 20 ± 1 5 × 104 ± 2 × 104

10 - - - 0.06 ± 0.01 15 ± 5 7 × 103 ± 5 × 103 0.15 ± 0.01 14 ± 1 3 × 104 ± 2 × 104

The effective field-effect mobilities (Figure 3) were calculated while taking into account
the non-linearity of transfer curves and non-zero threshold voltage, as outlined in the
experimental section [43]. More details on dependency of saturated mobility upon Vg can
be found in the Supporting Information (Figures S1–S3 and Table S1 in Supplementary
Materials).

The reference polymer shows an insignificant variation of the mobility in the shear
rates from 0.5 to 5 mm s−1 from 0.27 cm2 V−1 s−1 at 0.5 mm s−1 to 0.25 cm2 V−1 s−1 at
5 mm s−1, which is consistent with prior reports [42]. At a shear speed of 5 mm s−1, the
reference polymer no longer forms films reliably and, at higher speeds, the film deposition
no longer took place.
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with different wt% of elastomeric PDMS (0, 24 and 37 wt% PDMS). The error bars represent the
standard deviation obtained from four measurements on at least two different substrates at each
shear speed. At a shear speed of 5 mm s−1, the reference polymer no longer forms films reliably,
which is indicated by the light-blue colored value point.

A different behavior is observed for the TBCs. Here, increasing the shear speed leads
to a moderate increase in carrier mobility: for the TBC with 24 wt% PDMS, the mobility
nearly triples, from 0.06 cm2 V−1 s−1 at 0.5 mm s−1 to 0.16 cm2 V−1 s−1 at 7 mm s−1.
The TBC with 37 wt% PDMS similarly displays an increase in mobility, which rises from
0.05 cm2 V−1 s−1 at 0.5 mm s−1 to 0.13 cm2 V−1 s−1 at 7 mm s−1. At a speed of 8 mm s−1,
the carrier mobility of the TBC with 37 wt% PDMS reaches the same level as the TBC with
24 wt% PDMS, namely up to 0.17 cm2 V−1 s−1. The same trend is seen for the maximum
drain current at Vg = −80 V (see Supporting Information, Figure S4). At an even higher
speed of 10 mm s−1, the mobility of the TBC with 37 wt% PDMS stays within the same
order of magnitude, while the TBC with 24 wt% PDMS exhibits a sudden drop in mobility
due to the formation of holes in the film (see Supporting Information, Figure S5). The small
charge mobilities at low shear speeds for TBCs might be attributed to the devices having
a high surface roughness and inhomogeneous coverage on the substrate (see Supporting
Information, Table S2).

It is important to emphasize that the increase of the speed of the shear coating from 1 to
10 mm s−1 is accompanied by a steady increase of the film thickness (from approximately
50 nm for 24 wt% PDMS and 150 nm for 37 wt% PDMS up to 400 nm for both TBCs).
Therefore, the increased mobility could be ascribed to the thickness: Xu and co-workers
observed a similar behavior using blends of semiconducting and elastomer polymers
(however, the thickness values are lower than in the present work) [23]. The tolerance
of the TBCs’ mobility to increased film thickness is an attractive feature for applications
targeting high-throughput deposition methods (e.g., doctor blading), as, here, achieving
high quality films with precisely controlled low thicknesses is highly challenging.

Additional spectral and morphological studies were carried out aiming at a better
understanding of the observed dependence of the TBCs’ electrical performance on the
deposition conditions. As reported in the literature, the most common reasons for changes
of the electrical performance are morphological variations at different scales: (i) large-
scale chain-orientation order [50]; (ii) macroscopic features, e.g., presence or absence of
major inhomogeneities, pin-holes, cracks, variation of roughness, thickness [40]; and, (iii)
variations of the micro-structure, e.g., molecular packing and crystallinity [21]. Here, we
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used polarized UV-Vis-NIR spectroscopy, atomic force microscopy, as well as grazing-
incidence X-ray diffraction to gain deeper insight into morphological changes.

3.2. Polarized UV-Vis-NIR

The increased mobilities could be connected to the formation of better oriented and,
hence, more anisotropic films. To correlate the electrical performance with the chain-
orientation, polarized UV-Vis-NIR studies were carried out to analyze optical absorption
anisotropies in parallel and perpendicular directions of the polarized beam towards the
shear direction. With this technique, it is possible to probe the preferences in polymer
chain alignment. In general, an equal absorption in both directions demonstrates a ran-
dom average orientation of the chains, while the higher absorption in either a parallel or
perpendicular direction indicates a higher alignment in this particular direction.

For the reference PDPP-TT polymer, three main peaks are observed at around 430,
747, and 807 nm (Figure 4). Because the conjugated backbone of the TBCs is equivalent
to the reference polymer, similarly the main peaks were observed at 430, 745, and 789 nm.
The onset of absorption of the TBCs is slightly red-shifted as compared to the reference
polymer, which is reminiscent of PDPP-TT/elastomer blends [14].
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The dichroic ratio was calculated (A0◦/A90◦ ) for the polarized absorption spectra
to evaluate the polymer chain alignment in each polymer film at different shear speeds
(Figure 5).
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Figure 5. Dichroic ratios of the studied polymers with different wt% of elastomeric PDMS (0, 24, and 37 wt% PDMS) sheared
at different speeds.

For the fully conjugated reference copolymer, the dichroic ratio is around 1.3 for
1 mm s−1, which is consistent with literature reports of PDPP-TT [14], but lower than that
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observed for DPP polymers with less rigid donor units [10]. When the shear speed is
increased, the dichroic ratio is decreasing to 1.0 for 3 mm s−1, indicating a decline of chain
orientation, consistent with the observed decline of charge carrier mobility. In contrast,
while the initial dichroic ratio of the TBCs is slightly lower, in the range of 1.1–1.0, the
dichroic ratio is nearly maintained when the shear speed is increased up to 10 mm s−1.
Only a tentative negative trend is observed for the TBC with 37 wt% PDMS, here the
dichroic ratio declines from 1.1 for 1 mm s−1 to 1.0 for 10 mm s−1. Hence, the observed
increase in charge carrier mobility for higher shear speeds (Table 1 and Figure 5) is not
caused by an increase in the chain alignment.

3.3. Thickness Measurements

In the work of Le Berre et al., two regimes of shear deposition were identified: the
evaporative and Landau-Levich regime [51]. For the former, the film formation happens
directly at the contact line with the blade. In this regime, higher shear speeds lead to
a thinner film being deposited on the substrate. In the Landau–Levich regime, the wet
polymer film is stretched by viscous forces before subsequent drying, leaving behind
relatively thick films. The shear speed at which the transition between the two regimes
occurs depends on a variety of factors, e.g., solution concentration, deposition temperature,
choice of solvent. In general, the thicker films deposited in the Landau-Levich regime
exhibit a lower mobility, yet for industrial scale up, high coating speeds (e.g., >1 m min−1)
might be desirable [52].

As expected, two deposition regimes were observed for all of the analyzed polymers.
For the reference polymer (0 wt% PDMS), the critical point is at a shear speed of 4 mm s−1,
where the transition between both regimes is happening, consistent with previous re-
ports [12]. Close to this speed, the deposited films were quite thin, around 50 nm (Figure 6).
However, for the TBCs with 24 or 37 wt% PDMS, the transition between the regimes was
observed at a slower shear speed of around 1 mm s−1. The same behavior was already
described for blends of semiconducting DPP-based polymer with an elastomer matrix [23].
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Figure 6. Thickness of the studied polymers with different wt% of elastomeric PDMS (0, 24 and 37 wt% PDMS). The light-red
block defines the evaporative deposition regime, while the light-yellow block denotes the Landau-Levich deposition regime.

It has to be noted that, in the Landau–Levich regime, the films not only thicken, but
that an improvement in polymer chain alignment is not expected as the polymer aggregates
or its free chains relax before their orientation can be fixed in the final film morphology [12].
Despite this, we observe an increase in the charge carrier mobilities for the TBCs with
24 or 37 wt% PDMS within the Landau–Levich deposition regime. The ability of the
TBCs to maintain charge carrier mobilities upon shearing at high shear speeds might be
beneficial for organic photovoltaics (OPVs), as, here, a large active layer thickness toleration
is required, especially when targeting commercial production [53]. While the variation
of thickness could thus be a reason for the observed relative mobility increase, the exact
mechanistic reason behind this dependence is not understood as of yet.
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3.4. Atomic Force Microscopy

Atomic Force Microscopy (AFM) was performed to observe changes in morphology
caused by different shear speeds (Figure 7). A general observation is that all of the inves-
tigated films prepared at different shear speeds are rather smooth and contain no visual
defects or major inhomogeneities.
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37 wt% PDMS sheared at 1 mm s−1 (upper panel) and 5 mm s−1 (lower panel). The scale bar denotes 1 µm.

For the reference polymer, the root-mean-square roughness (RMS) decreases rapidly
from 1.2 nm to approximately 0.7 nm when increasing the shear speed from 1 to 5 mm s−1.
The fiber-like structures (grain size) decrease in size from 1 to 5 mm s−1, which is consistent
with the decrease in effective field-effect mobility at high shear speeds. By contrast, when
the shear speed is increased from 1 to 5 mm s−1, the RMS value remains relatively constant,
at 0.6–0.7 nm, for either TBC. Further information on the RMS values and AFM images can
be found in the Supporting Information (Table S2). As such, the variation of morphology, as
assessable by AFM, cannot be a reason for the different electrical performance of the TBCs.

3.5. Grazing-Incidence X-ray Diffraction

Molecular packing, crystallinity, and chain orientation of all polymer films were
investigated using grazing-incidence wide-angle X-ray scattering (GIWAXS) (Figure 8).

The reference polymer (0 wt% PDMS) exhibits a series of (h00) reflections oriented
along Qz corresponding to a semicrystalline microstructure with edge-on orientated lamel-
lae. The (100) peak at Qz~0.34 Å−1 is attributed to a lamellar stacking distance of ~18.48 Å.
The (010) peak is observed at Qxy 1.67 Å−1, corresponding to a π-π stacking distance of
3.76 Å. A broad amorphous halo is also observed at Qxy 1.4 Å−1, thought to be caused by
the distance between the Sulphur centers of two adjacent thiophene rings (Figure 8). The
GIWAXS patterns of both TBCs’ films exhibit the same features as the pristine polymer
with a slight decrease on the lamellar stacking and a slight increase on the π-π stacking
distance (3.72 and 19.04 Å, respectively). Additionally, an amorphous halo corresponding
to the amorphous PDMS blocks is clearly visible at Qxy 0.84 Å−1 (Figure 8). From the
analyzed peak positions and calculated coherence length (see Supplementary Information,
Table S3), there is no clear difference on the film morphology with the addition of PDMS
content or by the increase of the shear speed.
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Figure 8. GIWAXS patterns of the studied polymers with different wt% of elastomeric PDMS: AFM height images of the
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(upper panel) and 5 mm s−1 (lower panel).

4. Conclusions

In summary, we investigated the dependency of the electrical properties of OFETs
using TBCs (i.e., PDPP-TT reference polymer end-capped with PDMS moieties) on the
shear speed and morphological changes during this process. While the reference polymer
with 0 wt% PDMS no longer forms films above a shear speed of 5 mm s−1, the TBCs
with 24 and 37 wt% PDMS still give stable and electrically functional films at 10 mm s−1.
When investigating the film thickness, all of the polymers show an evaporative and a
Landau-Levich deposition regime, the latter marked by a pronounced thickening of the
deposited films. The reference polymer shows the expected decrease in effective field-effect
mobility upon increasing the shear speed and obtaining thicker films. In contrast, for
both TBCs, a moderate increase in mobility is observed when the shear speed is increased.
This mobility increase is taking place, despite the expected film thickening at high shear
speeds. Except for the thickness increase, no particular changes were observed in the film
morphology (as demonstrated by polarized UV-Vis, AFM, and GIWAXS measurements),
indicating that the mobility increase of the TBCs cannot be attributed to a better ordering.
The variation of film thickness might be a reason for the relative charge carrier mobility
increase; however, the mechanistic reasons behind this phenomenon are not clear as of yet.
Overall, the obtained results confirm that the TBCs can be deposited at high speeds without
distorting their morphological characteristics, which is reflected in the ability to retain
their electric properties. The findings can be potentially applied to allow large throughput
deposition methods, for which it is highly challenging to reliably achieve films of low
thickness and high quality.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym13091435/s1: Figures S1–S3: gate-voltage dependent saturation mobility and non-linear
square root of the transfer characteristic for the reference (0% wt% PDMS), 24 and 37 wt% PDMS
content TBCs, respectively. Figure S4: The relationship of drain current at Vg = −80 V to the shear
speed. Figure S5: AFM height image of a film of the TBC with 24 wt% PDMS deposited at 10 mm s−1

shear speed. Table S1: summarized µsat,max and µsat,min for the studied polymers with different wt%
of elastomeric PDMS. Table S2: The roughness of films of the studied polymers with different wt%
of elastomeric PDMS. Table S3: GIWAXS spacing parameters for thin films of the studied polymers
with different wt% of elastomeric PDMS.
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