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Consistent boundary conditions for electrochemical interfaces, which cover double layer charging, pseudo-capacitive effects and
transfer reactions, are of high demand in electrochemistry and adjacent disciplines. Mathematical modeling and optimization of
electrochemical systems is a strongly emerging approach to reduce cost and increase efficiency of super-capacitors, batteries, fuel
cells, and electro-catalysis. However, many mathematical models which are used to describe such systems lack a real predictive
value. Origin of this shortcoming is the usage of oversimplified boundary conditions. In this work we derive the boundary conditions
for some general electrode-electrolyte interface based on non-equilibrium thermodynamics for volumes and surfaces. The resulting
equations are widely applicable and cover also tangential transport. The general framework is then applied to a specific material
model which allows the deduction of a current-voltage relation and thus a comparison to experimental data. Some simplified 1D
examples show the range of applicability of the new approach.
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Mathematical modeling of electrochemical systems is a strongly
growing subject with many applications in science and industry.1

Applications range from fundamental single crystal systems2 to plat-
ing and metal deposition,3 lithium ion batteries,4–8 fuel cells,9 su-
per caps,10 and many further. Continuum models are the very ba-
sis of interpreting experimental results and widely used in chemical
engineering to estimate cell dimensioning and heat generation, uti-
lized in computed aided optimization of charging profiles or material
compositions, and applied to many more issues of electrochemical
systems.

But the development of new electrochemically active materials and
subsequent reaction mechanisms proceeds rapidly, e.g. with lithium
air11 or sulfur batteries,12 solid electrolytes13 or ionic liquids14 and
new electro-catalytic materials.15 The adaption of existing mathemat-
ical models to new materials or material combinations is quite often
not straight forward, if at all possible, and could even lead to a misin-
terpretation of experimental results. A systematic modeling approach
which is applicable to various new electrochemical systems is hence
of great importance, including reaction intermediates which can form
at the electrode-electrolyte interface.

The continuum mechanical modeling procedure generally spreads
in two parts, (i) the derivation or prescription of volumetric balance
equations, and (ii) stating the corresponding boundary conditions. The
volumetric balance equations account for ion diffusion in the elec-
trolyte phase, solid state diffusion in intercalation materials, mechani-
cal deformation and stress, viscosity effects, heat transport, and others.
Their derivation is mainly based on the modern framework of non-
equilibrium thermodynamics, which provides some guidance through
the actual modeling procedure. A core advantage of this framework is
the stringent separation between general, material independent rela-
tions (expressed in chemical potentials μα of some species A) and the
actual material modeling (expressing chemical potentials as function

of state variables, e.g. μα ∝ kBT ln (yα) or μα ∝ kBT ln
(

yα

1−yα

)
where

yα is the mole fraction of A). This allows for a systematic derivation
of the balance equations for a specific material and was applied to
various electrochemical systems.4,16–24

However, the corresponding boundary conditions are quite often
not derived with such a care. Especially for cyclic voltammetry, one of
the main characterization methods in electrochemistry,25–29 this is an
important and outstanding issue. Even though many models exits to

zE-mail: Manuel.Landstorfer@wias-berlin.de

simulate cyclic voltammetry,30–32 they lack some general fundament
and are not able to predict complex cyclic voltammograms (CVs)
such as Figs. 1a or 1b. Origin of this shortcoming is that many effects
occurring at the metal-electrolyte interface are not resolved by the
established boundary conditions.

In order to obtain a predictive mathematical model, the bound-
ary conditions have to be thermodynamically consistent with the re-
spective volume balance equations. For example, the specific material
function of the chemical potential for an ionic species enters the trans-
fer reaction rate (i.e. a Butler-Volmer type expression), the ionic flux
in the electrolyte (i.e. a Nernst-Planck type flux), and the dissociation
reaction (i.e. the mass action law). This work provides a system-
atic guidance through the derivation of thermodynamically consistent
boundary conditions for general electrochemical interfaces, account-
ing for a vast amount of possible reaction mechanisms. In II the
general thermodynamic modeling procedure is explained, including
the considered species and domains, a description of the double layer,
the general balance equations and the considered reactions. Some
equilibrium assumptions in III lead to the general flux boundary con-
ditions, including tangential terms. Based on this, the current-voltage
relation of a half cell is derived in the Current/Voltage relation sec-
tion, which is the basis for any comparison to experimental data. The
Material functions section provides explicit material functions for a
simple metal, a liquid electrolyte considering solvation effects, and
an electrode surface accounting for adsorption processes. In the sec-
tion for a Flat metal/electrolyte interface we derive explicitly the final
equations and provide computations of representative examples. This
shows the general validity of the approach, which is finally summa-
rized in the Conclusions section. The resulting framework is general
enough to be applied to various electrochemical systems, e.g. nano
electrodes, liquid-liquid interfaces, intercalation electrodes, and it can
be easily adopted to various other materials or embedded in porous
media theory.

Thermodynamic Modeling

Domain and species.—We consider an electrolytic mixture �E

with species A, α ∈ IE, an electrode �M with species A, α ∈ IM, and
the electrode surface � with species/adsorbates A

s
α, α ∈ IS (see Fig.

2). The volume phases �E,M are modeled with volumetric species den-
sities nα / mol L−1 , where mα denotes the molar mass and e0zα the
charge of the constituent A. The free charge density of each phase is de-
noted by qi = e0

∑
α∈Ii

zαnα and the mass density ρi =∑α∈Ii
mαnα,
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Figure 1. Representative CVs for which no satisfactory theoretical model is available. (a) Cyclic voltammetry of UHV-prepared Ag(111) (dotted line), Ag(110)
(solid line), and Ag(100) (dashed line) in 5 mM NaF + 1 mM NaOH. (Reprinted with permission from Ref. 53, Fig. 4. Copyright 2004 American Chemical
Society.) (b) CVs of Pt(110) electrodes in contact with various aqueous electrolytes at a sweep rate of 50 mV/s (Adapted by permission from Macmillan Publishers
Ltd: Nature Communications (Ref. 54, Fig. 3a), copyright 2015)

i = E, M. We denote with

IEM = (IE ∪ IM). [1]

the set of all electrolyte and electrode constituents.
The surface � is described in terms of surface densities

n
s
α / mol cm−2 with charge number z

s
α of each adsorbate A

s
α, α ∈ IS,

and the surface charge density is q
s

= ∑α∈IS e0z
s
α. Note that there

can be far more constituent present on the surface than in the volume
phases. We denote thus with

Ie
S = IS\(IE ∪ IM) [2]

the species which are exclusively present on the surface.
The modeling procedure is based on the general framework of cou-

pled non-equilibrium thermo-electrodynamics for volume and surface
phases.33–36

Chemical potentials.—The chemical potentials of the constituent
Aα, α ∈ IEM and A

s
α, α ∈ IS are derived based on some explicit

free energy functions which describe the specific material. Within the
theory of coupled volume and surface thermodynamics, independent
free energy densities of the volume, i.e. ρψ, and the surface, ψ

s
, arise.

The derivation of these free energy functions is not scope of this work,
and the detailed derivation is given in Ref. 2. The chemical potentials
of some constituent Aα in the volume and on the surface are given by

Figure 2. Sketch of the double layer forming at an interface between two
charged domains �M and �E.

μα = ∂ρψ

∂nα

and μ
s

α =
∂ψ

s

∂n
s
α

. [3]

Since we want to derive first rather general, material independent
results in order to ensure applicability of the model for various elec-
trochemical interfaces, e.g.

� metal/electrolyte,
� liquid/liquid
� metal/solid electrolyte,
� intercalation electrode/electrolyte,
� liquid metal/solid electrolyte,

we do not yet specify the explicit material functions of the phases
�E, �M and �. Explicit examples are given in the Material functions
section.

Double layer.—Adjacent to the surface �, two boundary or space
charge layers �BL

M and �BL
E form,2 which build together with � the so

called double layer37 (see Fig. 2). This can be used to decompose the
overall electrochemical interface in a handsome way.

We discuss briefly some aspects about coordinate transformations
in the double layer regions which are necessary to proceed with the
derivation. For x ∈ �BL

i and x
s

∈ � we have the representations

x = xex + yey + zez and x
s

= vbv + wbw = x
s
(v, w) [4]

where ei are the cartesian coordinates and bi curvilinear covariant
basis vectors of �. Consider now

x = x
s
+ u · bu = x(u, v, w) [5]

with

bu = E
〈E, E〉 . [6]

This is actually the construction of a curvilinear coordinate system
which follows the electric field lines. We have thus a parametrization
of �BL

i in terms of (u, v, w) with covariant basis vectors (bu, bv, bw).
Next, consider the curve

γ(u′) = x(u′; v, w) u′ ∈ [0, u] [7]
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for fixed values of (v, w). Obviously this curve follows the electric
field lines and we have

∂

∂u
γ = E

〈E, E〉 . [8]

The electrostatic potential ϕ at some point x ∈ �BL
i can be traced back

to x
s
(v,w) on the surface along the curve γ, i.e.

ϕ(x) − ϕ
s
(v,w) =

∫
γ

E · ds =
u∫

0

E · E
〈E, E〉du′ =

u∫
0

1 du′ = u.

[9]

This shows that the third coordinate u of the curvilinear coordinate
system (u, v, w) is actually the potential distance along γ to the surface
potential. Note that electric field obeys with respect to the covariant
basis the representations E = Eu · bu and E = ∇ϕ = (∂uϕ)bu ,
whereby ||E|| = |Eu |. The arc-length of γ can be computed from

len(γ) =
∫
γ

1 ds =
u∫

0

1

|Eu |du′, [10]

which shows that this approach only makes sense as long as the electric
field does not vanish. Since within the space charge layer we have per
definition qi 	= 0, the Poisson equation div ε0(1 + χ)E = qi states a
non-vanishing electric field whereby this approach is valid.

Note that for a fixed value u = U BL
i Equation 5 defines a hyper-

surface �BL
i parallel to �, i.e. x(U BL

i ; v, w) =: x
s

BL
i (v,w). Per definition

� and �BL
i never intersect and are in some sense parallel, however,

with respect to the potential distance and not necessary with respect
to the distance along the normal vector of �.

If the surface potential is constant with respect to (v, w), ϕ(x
s
) = ϕ

s
is actually a parametrization of � and thus

∇ϕ

||∇ϕ||
∣∣∣∣
x
s

= n [11]

a normal vector of �. In this case �BL
i is indeed a family of parallel

surfaces. It is to emphasize that a special type of microscope actually
uses this strategy to map a metal surface without touching it, i.e. the
electrochemical force microscope.38

This allows us to decompose the metal-electrolyte interface domain
� = �M ∪ � ∪ �E into

� = �M ∪ � ∪ �E = �∗
M ∪ �BL

M ∪ � ∪ �BL
E︸ ︷︷ ︸

=:�DL

∪ �∗
E, [12]

where �∗
i are electro-neutral domains (i.e. qi = 0). xi denote bulk

points in each phase �∗
i , i = E, M, i.e. far away from the metal surface.

An evaluation of nα at the parallel-surface �BL
i is frequently used and

denoted by

nα

∣∣BL
i

= nα

∣∣
x∈�BL

i
= nα

∣∣BL
i

(v, w), i = E, M, [13]

where an evaluation at some bulk point xi far away from the the
interface �DL is denoted by nα

∣∣
xi

= ni
α, i = E, M.

Balance equations.—Consider a species density nα(x, t), α ∈
Ii , i = E, M which satisfies a balance equation

∂nα

∂t
= −div (nαv + Jα) + rα x ∈ �i , [14]

where Jα is the diffusional flux, v the barycentric velocity and rα the
volumetric reaction rate of constituent A. This balance equation is
subject to the boundary boundary condition (or surface balance)39

∂n
s
α

∂t
= − div

s
(n

s
αw + J

s
α)

+ 2kMwnn
s
α ± (Jα + nα(v − w)

) · n
∣∣
�

+ r
s
α, [15]

where n
s
α(x

s
, t) denotes the surface density, J

s
α the tangential surface

flux, div
s

the surface divergence, r
s
α the surface reaction rate, kM the

mean curvature and wn the normal velocity of the surface velocity w.
By convention, the + sign in 15 holds for �E and the − sign for �M.

The barycentric velocity v and the surface velocity w are deter-
mined from the respective momentum balances and we refer to Ref.
40 for detailed discussions. However, for the scope of this work we
assume mechanical equilibrium41

div (σ) = 0 and [[σ]]n = −2kMγ
s
n − ∇

s
γ
s

[16]

and a surface at rest, i.e. w = 0. However, several aspects of the further
derivation still hold for mechanical non-equilibrium by some careful
re-derivation. σ denotes the total stress tensor and γ

s
is the surface

tension of the surface �. The double bracket denotes the jump at the
interface. The total stress is given by

σ = −(pId + π) + (1 + χ)ε0

(
E ⊗ E − 1

2 〈E, E〉 · Id
)
, [17]

where the contribution of the electric field is called Maxwell stress42

and π the viscous stress tensor. Viscous effects or more complex
surface stress tensors can of course be included.

Note, however, that even in mechanical equilibrium v is not nec-
essarily zero. But is not determined anymore from the momentum
balance, as we shall see later. It is thus convenient for the further
derivation to consider the balance equations in terms of the net flux

jα = nαv + Jα with
∑
α∈Ii

mαjα = ρv i = E, M, [18]

since we obtain the boundary conditions for these fluxes.
The decomposition of �i = �∗

i ∪ �BL
i allows us to integrate 14

along the curve γ from x
s
(v,w) to x

s

BL
i (v, w), i.e. to derive a surface

balance equation from the thin boundary layer part of the balance
Equation 14. This strategy was in detailed explained and derived by
Grauel 1988 ,43,44 however, for parallel surfaces. But it applies straight
forward to the constructed family of potential-parallel surfaces �BL

i .
Following the derivation of Grauel we obtain

∂nBL
α

∂t
= − div

s
JBLα + rBLα [19]

± jα · n
∣∣BL
i

∓ jα · n
∣∣
�

[20]

for a thin boundary layer, with

nBL
α =
∫
γ

nα ds , JBLα =
∫
γ

JBLα ds and rBLα =
∫
γ

rα ds. [21]

Combing 15 and 19 gives the double layer balance equation

∓ jα · n
∣∣BL
i

= −∂nDL
α

∂t
− div

s
JDLα + rDLα [22]

with

nDL
α = nBL

α + n
s
α , JDLα = J

s
α + JBLα and rDLα = rBLα + r

s
α [23]

Note that 22 are actually the (flux) boundary condition at �DL for the
balance Equation 14 in electro-neutral domains �∗

i , i = E, M. This is
a crucial aspect, since we shifted the double layer contribution in the
balance Equations 14 into the new boundary condition 22. Equation 22
represent the most general type of boundary condition for an electro-
neutral domain and covers all double layer charging effect as well as
charge transfer reactions (i.e. Butler–Volmer-like expressions), as we
see in the following sections.

Even though the definitions of nBL
α and JBLα seem to be inconvenient,

it actually turns out that one is able to determine analytical expressions
of the resulting integrals when the double layer is in equilibrium along
the curve γ.
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Note that the exclusive surface species α ∈ Ie
S are subject to the

surface balance equations

∂n
s
α

∂t
= − div

s
J
s
α + r

s
α [24]

Summarizing, we consider thus volume balance equations in the
two electro-neutral domains �∗

E and �∗
M and surface balance equations

on the thin interface �DL, which covers the electrolyte and metal
boundary layers as well as the actual metal surface.

In order to proceed with the derivation, we have to specify the
surface reactions occurring on the metal surface �.

Reactions.—Goal of this section is to derive explicit representa-
tions of the surface reaction rates r

s
α in the balance Equations 22 and

24. We consider four general types of reactions:

� Dissociation, which occurs only within a single phase, i.e.∑
α∈IE\{β}

να,βA ⇀↽ A β ∈ Id
i , i = E, M. [25]

The reactions 25 define implicitly the species set Id
i of dissociative

reaction products, e.g. H+ + OH− ⇀↽ H2O with H2O ∈ Id
E .

� Adsorption, which is considered as the diffusion or jump pro-
cess from a point x → x

s
onto the the metal surface �, i.e.

Aα ⇀↽ A
s

α, α ∈ IE ∪ IM. [26]

� Surface reactions, which are of general kind∑
α∈IE

ν′
α,βA

s
α +
∑
α∈IM

ν′
α,βA

s
α ⇀↽ A

s
β ∀β ∈ Ie

S [27]

Note that 27 serves actually to define implicitly the index set Ie
S of

the exclusive surface constituent. Consider, for example, the species
H+ in the electrolyte phase �E and e− in the electrode �M. If atomic
hydrogen H is not present in either of the bulk phases, but only on the
surface as adsorbed H

s
, we have the surface reaction H+

s
+ e−

s
⇀↽ H

s

with H
s

∈ Ie
S .

� Transfer reactions, which can be considered as surface reac-
tions where the reaction product is present in either of the adjacent
phases �∗

E or �∗
M . We can therefore write∑

α∈IE\{β}
ν′

α,βA
s

α +
∑
α∈IM

ν′
α,βA

s
α ⇀↽ A

s
β ∀β ∈ Ir

E [28]

∑
α∈IE

ν′
α,βA

s
α +
∑

α∈IM\{β}
ν′

α,βA
s

α ⇀↽ A
s

β ∀β ∈ Ir
M [29]

Note that 28 and 29 actually serve to determine implicitly the subsets
Ir
E and Ir

M of the reactive species, with Ir
EM = Ir

E ∪ Ir
M . For example, if

we consider H2 to be also a species present in the electrolyte phase as
dissolved gas species, we have 2H+

s
+ 2e−

s
⇀↽ H2

s
as transfer reaction

with H2 ∈ Ir
E .

Equilibrium Assumptions and Consequences

For the further derivation it is quite useful to simplify the model
based on some plausible thermodynamic equilibrium assumptions.

Double layer in equilibrium.—Throughout this work we assume
that the space charge layers �BL

E and �BL
M adjacent to the metal surface

� are in thermodynamic equilibrium along the arc γ. This assump-
tion is justified by matched asymptotic methods45 when the boundary
layer is thin compared to the electro-neutral domains �∗

E and �∗
M. The

equilibrium conditions read

∂u(μα + e0zαϕ) · bu = 0 α ∈ Ii , i = E, M. [30]

Integration along the family of curves γ gives

μα

∣∣BL
i

+ e0zαU BL
i = μα

∣∣
x
s
∈�

α ∈ Ii , i = E, M [31]

with

U BL
i = ϕ

s
− ϕ
∣∣
x
s
BL
i

(v, w) ∈ S. [32]

Note that this condition holds for every (v, w) ∈ S.
The equilibrium conditions 31 lead also to explicit representations

of the boundary layer variables nBL
α . Reconsider the definition of nBL

α ,
i.e.

nBL
α =
∫
γ

nα ds. [33]

Inserting the parametrization of γ gives

nBL
α =

UBL
i∫

0

nα

1

|Eu | du. [34]

It is to emphasize that the units of the integration in 34 is actually V.
But due to the substitution of γ, the term 1

|Eu | arises with units m V−1,

which thus gives indeed units of mol m−2 for nBL
α . Hence, in order to

perform actually the integration of 34, we seek expressions

nα = n̂α(u) and Eu = Êu(u), [35]

where u is the coordinate of the curvilinear base vector bu . This the real
importance of the substitution in 34 and the introduction of the curvi-
linear coordinate system in the space charge layer. Surprisingly, it is
indeed possible to find such representations for some explicit material
functions of μα. We provide representations of representative mate-
rials (incompressible liquid electrolyte, metal electrode, intercalation
electrode) in Chemical potentials section and proceed meanwhile with
the general representation nBL

α = n̂BL
α (U BL

i ), α ∈ Ii , i = E, M.

Reactions.—Dissociation.—The dissociation reactions 25 are as-
sumed to be in equilibrium throughout this work. This entails the
equilibrium condition ∑

α∈IE\{β}
να,βμα = μβ, [36]

for the index set Id
i of the dissociation reaction products in �i , i =

E, M. Note that this does not necessarily entail complete dissociation
but rather computes the concentration of some constituent, e.g. the
H+ and OH− concentration (or pH-value) due to the auto-protolytic
reaction H+ + OH− → H2O .

Adsorption.—Throughout this work we assume that the adsorption
process is always in equilibrium, which entails the condition

μα

∣∣
x
s
∈�

= μ
s

α, α ∈ IE ∪ IM. [37]

However, since we assume that the boundary layers are also in equi-
librium, we can trace back the chemical potential μα at � along the
curve γ to the the point x

s

BL
i and obtain

μα

∣∣BL
i

+ e0zαU BL
i = μ

s
α (v,w) ∈ S. [38]

This describes actually the superposition of adsorption and diffusion
through the boundary layer. In order to emphasize this we employ the
typeface

A
∣∣
i
⇀↽ A

s
α, α ∈ Ii , i = E, M, [39]

for this process.
Quite similar to the boundary layer it is possible to obtain explicit

representations of n
s
α in terms of U BL

i based on material functions of

μ
s

α. Explicit representations are given in Chemical potentials section
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and we proceed the discussion with the general representation n
s
α =

n̂
s
α(U BL

i ), α ∈ Ii , i = E, M.

Surface reactions.—Since we assume that the diffusion of the con-
stituents A, α ∈ Ii , i = E, M through the corresponding boundary lay-
ers and the subsequent adsorption are in equilibrium, we can rewrite
27 as ∑

α∈IE
να,βA
∣∣
E

+
∑
α∈IM

να,βA
∣∣
M

⇀↽ A
s

β ∀β ∈ Ie
S, [40]

where the typeface A
∣∣
E

and A
∣∣
M

emphasizes this aspect. The reaction
rate of this net reaction is denoted by R

s

S
β . Possible reactions are, for

example, adsorption with subsequent de-solvation or partial charge
transfer.2,46

We assume that all net surface reactions which can be written as
40 are in thermodynamic equilibrium, which provides the condition∑

α∈IE
να,β(μα

∣∣BL
E

+ e0zαU BL
E )

+
∑
α∈IM

να,β(μα

∣∣BL
M

+ e0zαU BL
M ) = μ

s
β β ∈ Ie

S . [41]

Note that the charge number of A
s

β is∑
α∈IE

να,βzα +
∑
α∈IM

να,βzα = z
s
β [42]

in order to ensure the electroneutrality condition of the reaction 27.
For the adsorbates A

s
β we provide explicit material functions μ

s
β

in the Chemical potentials section which lead to representation n
s
β =

n̂
s
β(U BL

E , U BL
M ), β ∈ Ie

S .

Transfer reactions.—The equilibrium condition of diffusion
through the double layer, adsorption and subsequent surface reac-
tions allows us to rewrite the general transfer reactions 28 and 29 as
net reactions ∑

α∈IEM\{β}
να,βA
∣∣
E

⇀↽ A
∣∣
E

β ∈ Ir
EM, [43]

with reaction rate RT
β and index set Ir

EMIr
E ∪ Ir

M of all reactive species.
Possible examples of transfer reactions are

� 2H+|E + 2e−|M ⇀↽ H2|E (hydrogen evolution)
� Cu+|M − e−|M ⇀↽ Cu+

2 |E (metal deposition/dissolution)
� Na+|E ⇀↽ Na+|M (dissolution in Hg)
� Fe+

3 |E + e−|M ⇀↽ Fe+
2 |E (Redox shuttle)

� Li+|E + e−|M ⇀↽ Li|M (intercalation).

The metal and electrolyte species which are not a reaction product of
a transfer reaction are denoted by

I ′
E = IE\Ir

E and I ′
M = IM\Ir

M, with I ′
EM = I ′

E ∪ I ′
M. [44]

For the charge numbers of the involved constituents we have the
condition ∑

α∈IEM\β
να,βzα = zβ β ∈ Ir

EM. [45]

Transfer reactions are not assumed to be in equilibrium throughout
this work. The equilibrium condition of 43 (for β ∈ Ir

i , i = E, M)∑
α∈IE

να,β(μα

∣∣BL
E

+ e0zαU BL
E )

+
∑
α∈IM

να,β(μα

∣∣BL
M

+ e0zαU BL
M )

!= μβ

∣∣BL
i

+ e0zαU BL
i , [46]

would imply constant values of U BL
E and U BL

M . Since we seek to vary
the potential U BL

E (i.e. potentiometry), as we show in the next sections,
this is untenable.

However, surface thermodynamics dictates that the reaction rates
RT

β of the transfer reactions 43 are related to 4620 via (for β ∈ Ir
i , i =

E, M)

RT
β =

LT
β ·

⎛⎜⎝e αβ
kBT

( ∑
α∈IE

να,β(μα|BLE +e0zαUBL
E )+ ∑

α∈IM
να,β(μα|BLM +e0zαUBL

M )−μβ|BLi −e0zαUBL
i

)

−e
− (1−αβ)

kBT

( ∑
α∈IE

να,β(μα|BLE +e0zαUBL
E )+∑

α∈IM
να,β(μα|BLM +e0zαUBL

M )−μβ|BLi −e0zαUBL
i

)⎞⎟⎠
[47]

with LT
β ≥ 0 for β ∈ Ir

EM. This is the most general form of a thermo-
dynamically consistent expression for a transfer reaction rate.

Boundary conditions.—Base on the reaction rates of 40 and 43,
the surface production rates r

s
α obey a specific structure, i.e.

r
s
α =

⎧⎪⎨⎪⎩
−∑β∈Ie

S
νβ,α RS

β −∑β∈Ir
EM

νβ,α RT
β , if α ∈ I ′

EM

−∑β∈Ie
S
νβ,α RS

β + RT
α −∑β∈Ir

EM\{α} νβ,α RT
β , if α ∈ Ir

EM

RS
α , if α ∈ Ie

S

[48]

Reinsertion of of the production rates in 22 and some calculations
lead to the boundary conditions (α ∈ Ii , i = E, M)

±jα · n
∣∣BL
i

= ∂nEff
α

∂t
+ div

s
JEffα − rEffα [49]

with

nEff
α = nDL

α +
∑
β∈Ie

S

νβ,αn
s
β [50]

JEffα = JDLα +
∑
β∈Ie

S

νβ,αJ
s
β [51]

rEffα =
{

rDLα −∑β∈Ir
EM

νβ,α RT
β , if α ∈ I ′

EM

rDLα + RT
α −∑β∈Ir

EM\{α} νβ,α RT
β , if α ∈ Ir

EM

. [52]

The abbreviation Eff emphasizes that only the effective linear com-
binations 50-52 arise in the boundary conditions 49.

Note that the (equilibrium) representations of n̂BL
α (U BL

i ),
n̂
s
α(U BL

i ), α ∈ IEM and n̂
s
β(U BL

E , U BL
M ), β ∈ Ie

S lead to the represen-

tations (α ∈ Ii , i, j = E, M, i 	= j)

±jα · n
∣∣BL
i

= CEff
α · dU BL

i

dt
+ CPseu, j

α · dU BL
j

dt
+ div

s
JEffα − rEffα [53]

with

CEff
α = CBL

α + C
s

α + CPseu,i
α α ∈ Ii , i = E, M [54]

CBL
α = dnBL

α

dU BL
i

, C
s

α =
dn

s
α

dU BL
i

α ∈ Ii , i = E, M [55]

and CPseu, j
α := d

dU BL
j

⎛⎝∑
β∈Ie

S

νβ,αn
s
β

⎞⎠ α ∈ Ii , i, j = E, M. [56]

This are the most general boundary conditions for an electrochemical
interface, including double layer charging, pseudo-capacity effect,
transfer reactions, tangential surface diffusion, curvature effects.
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The Equations 53 are then the actual boundary conditions for the
balance Equations 14 in the electro-neutral domains �∗

i (i.e. with
qi = 0 in �i , i = E, M). These boundary conditions hold for each
charged interface, however, are not solvable yet since the number of
unknowns is not equal to the number actual balance equations. In order
to obtain a closed equation system, we require explicit representations
of CEff

α , CPseu
α , and rEffα , which requires specified material functions

μα and μ
s

α.

Current/Voltage Relation

Measured current.—The electrode �∗
M with boundary ∂�M =

�∗
M ∪ �inert

M ∪ �BL
M is connected via the surface �∗

M to an ampere-
meter. Hence, the measured current I / A corresponds to the flux of
charge through �∗

M , i.e.

I = −
∫
�∗
M

jqM · dA. [57]

We assume that no current flows through the inert part of the electrode
boundary, i.e. jqM = 0 on �inert

M . The global balance of qM reads

d

dt

∫
�∗
M

qM dV = I +
∫

�BL
M

jqM · dA. [58]

Since qM = 0 in �∗
M, we obtain with Eq. 49

I =
∫

�DL

∂

∂t

(
qDL
M + q

s

Pseu
M

)− rEffqM
d A, [59]

where

qDL
M = e0

∑
α∈IM

zαnDL
α , [60]

qPseu
M = e0

∑
α∈IM

zα

∑
β∈Ie

S

νβ,αn
s
β, [61]

rEffqM
= e0

∑
α∈IM

zαrEffα . [62]

The electroneutrality condition of the whole double layer states

qDL
M + qDL

E + qe
S = 0 with qe

S = e0

∑
α∈Ie

S

z
s
αn

s
α [63]

and leads to

I =
∫

�DL

∂

∂t

(
qDL
E + qe

S − q
s

Pseu
M

)− rEffqM
d A [64]

Note that with Eq. 42 we have

qe
S − qPseu

M = e0

∑
α∈Ie

S

⎛⎝z
s
α −
∑
β∈IM

zβνα,β

⎞⎠ n
s
α

= e0

∑
α∈Ie

S

⎛⎝∑
β∈IE

zβνα,β

⎞⎠ n
s
α [65]

in order to ensure the electroneutrality of the surface reactions. The
quantity ∑

β∈IE
zβνα,β = zEα, for α ∈ Ie

S, [66]

can be considered as the pseudo-charge of the adsorbates A
s

α, α ∈ Ie
S ,

since the constituents incorporated in

qPseu
E = e0

∑
α∈Ie

S

zEαn
s
α [67]

are not necessarily charged. The quantity

qEff
E := qDL

E + qPseu
E [68]

is then the effective electrolytic charge in the double layer and the
measurable current writes as

I =
∫

�DL

∂

∂t
qEff
E − rEffqM

d A. [69]

Due to the equilibrium representations n̂DL
α (U BL

E ), α ∈ IE and
n̂
s
β(U BL

E , U BL
M ), β ∈ Ie

S (c.f. Equilibrium assumptions and consequences

section), the effective double layer charge qEff
E has a representation

qEff
E (U BL

E , U BL
M ) = qDL

E (U BL
E ) + qPseu

E (U BL
E , U BL

M ). [70]

Hence we obtain

I =
∫

�DL

(
CEff
E (U BL

E ; v, w) · dU BL
E

dt

+ CPseu,M
E (U BL

E , U BL
M ; v, w) · dU BL

M

dt
− rEffqM

)
d A. [71]

with

CEff
E = dqEff

E

dU BL
E

and CPseu,M
E = dqPseu

E

dU BL
M

. [72]

CEff
E is then the effective differential capacity of the interface and

CPseu
E,M the metallic pseudo-capacity. Note that due to the decomposition

qEff
E = qBL

E + q
s
E + qPseu

E the differential capacity CEff
E decomposes

into

CEff
E = CBL

E + C
s
E + CPseu,E

E [73]

with boundary layer capacity CBL
E = dqBLE

dUBL
E

, surface capacity C
s
E =

dq
s
E

dUBL
E

, and electrolytic pseudo-capacity CPseu,E
E = dqPseuE

dUBL
E

.

However, CPseu
E and CPseu

E,M are inherently different since CPseu
E,M

vanishes when U BL
M = const., which is for example the case for an

ideal metal.
Next we discuss the reaction rate rEffqM

. Note that the term∑
α∈IM zαrDLα vanishes due to the electroneutrality condition of the

dissociation reactions. Reinsertion of the definition 52 and using
Eq. 45 gives, with

zMβ :=
∑
α∈IM

να,βzα, β ∈ Ir
E and zEβ :=

∑
α∈IE

να,βzα, β ∈ Ir
M,

[74]

after some calculation (see appendix B)

rEffqM
= e0

∑
α∈Ir

M

zEα RT
α − e0

∑
α∈Ir

E

zMα RT
α . [75]

The transfer reaction rates RT
α are given in Eq. 47 with RT

α =
R̂T

α (U BL
E , U BL

M ).
Since in most experimental setups the current is normalized to the

surface area A� of the electrode, we obtain the final expression of the
measurable current density

i = 1

A�

∫
�DL

(
CEff
E · dU BL

E

dt
+ CPseu

E,M · dU BL
M

dt

− e0

∑
α∈Ir

M

zEα RT
α + e0

∑
α∈Ir

E

zMα RT
α

)
d A. [76]

Note that this relation is the actual measuring instruction for any
comparison of a continuum model to experimental data. It is the most
general expression for a single surface phase and covers adsorption
effects, surface reactions and pseudo-capacitance, as well as transfer
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reactions. In general it is the a posteriori relation to compute the
current for given (numerical) solutions of the state variables of the
interface.

Measured potential.—Yet we have introduced the boundary layer
potential drops U BL

E and U BL
M of a single electrochemical interface.

However, there can arise additional potential drops in the electro-
neutral domains �∗

E and �∗
M, namely

ϕ
∣∣
�∗
M
− ϕ
∣∣
�BL
M

= U ∗
M and ϕ

∣∣
�∗
E
− ϕ
∣∣
�BL
E

= U ∗
E . [77]

The whole potential drop between the bulk metal and the bulk elec-
trolyte is thus

ϕ
∣∣
�∗
M
− ϕ
∣∣
�∗
E

= U ∗
M + U BL

M + U BL
E + U ∗

E =: UM,E. [78]

In a three electrode setup, this is related to the measurable voltage E
via2

E = U ∗
M + U BL

M + U BL
E + U ∗

E + UE,R, [79]

where UE,R covers the whole electrolyte-reference potential drop.
However, it is a quite common and valid assumption that UE,R is
constant, which can be achieved experimentally very precisely.47

Experimentally it is only possible to vary E and not each indi-
vidual potential drop of Eq. 79. However, experimentally as well as
theoretically there are some strategies to overcome this problem. For
example, if the conductivity of the bulk phases �∗

E and �∗
M is very

high, the potential drops U ∗
E and U ∗

M vanish.

Material Functions

We restrict the further modeling procedure to an electrode/
electrolyte interface with specified material functions.

Chemical potentials.—Electrolyte.—For the electrolyte phase, we
rely on the free energy density ρψE given in Ref. 2 which covers the
entropy of mixing, solvation effects as well as the incompressibil-
ity of the liquid mixture. The chemical potentials of the respective
constituents are

μα = gR
α + kBT ln (yα) + vR

α (p − pE) α = 0, 1, . . . , NE, [80]

where gR
α denotes the reference partial molar Gibbs energy, yα =

nα

n the mole fraction, n = ∑N
α=0 nα the number density of mixing

particles,48 vR
α the partial molar volume, and p is the pressure. Note

that the incompressibility of the liquid mixture implies the constraint

n = 1∑N
α=0 vR

α yα

. [81]

For the following derivation we assume that upon the equilibrium
assumption of the dissociation reactions the reaction rates rα (and thus
also rDLα ) vanish.

Electrode.—The electrode is considered as a mixture of electrons
e−, metal ions M, and additional constituents Ia

M which can be dis-
solved in the metallic lattice (e.g. intercalated, solution solution, etc.).
For the electrons and the metal ions we rely on a Thomas–Fermi
electron gas with free energy density ρψM of Ref. 2, leading to repre-
sentations

μM = ψR
M + vR

M pM + kBT ln (aM ) and μe = h2

2me

(
3

8π

) 2
3

n
2
3
e ,

[82]

where vR
M denotes the partial molar volume of the metal ions, pM

the metal ion partial pressure, ψR
M the reference molar free energy,

and aM the activity of the metal ions. The incompressibility implies
vR

M = 1/nM .
For the additional species we write simply

μα = ψR
α + kBT ln (aα) α ∈ Ia

M , [83]

where aα is the activity. If Ia
M = ∅ we have aM = 1. Various models

for the activity and thus the state of an ion or an intercalated species
in a solid exits21,35,49–51 and can be directly applied. However, for the
further derivation we do not want to specify the material model further.

Surface.—For the electrode surface � we consider a surface free
energy density ψ

s
which covers surface solvation effects, surface in-

compressibility, entropy of mixing, and reference contributions.2 With
the explicit representation of ψ

s
given in2 we obtain the surface chem-

ical potentials

μ
s

α =

⎧⎪⎪⎨⎪⎪⎩
ψ
s

R
α + kB T ln

(
y
s
α

)− ωαkB T ln
(
y
s

V

)
for α ∈ IS\{e−, M}

ψ
s

R
M + ωM kB T ln

(
y
s

V

)− aR
Mγ

s

E for α = M

ψ
s

R
e = const. for α = e−.

[84]

The respective quantities are

� the number of surface vacancies

n
s

V = ωM n
s

M −
NS∑
α=0

ωαn
s
α, [85]

where ωα denotes the number of adsorption sites of A
s

α,
� the number of mixing particles

n
s

= n
s

V +
NS∑
α=0

n
s
α, [86]

� the surface fractions

y
s
α =

n
s
α

n
s

, α = 0, 1, . . . , NS, V, [87]

� the adsorbate surface tension γE,
� the partial molar area of the metal surface aR

M ,
� and the constant electron surface chemical potential ψ

s

R
e .

The surface incompressibility implies quite similar to 81 the con-
straint

n
s

M = 1

aR
M

⇔ aR
V n

s
V +

NS∑
α=0

aR
α n

s
α = 1 [88]

with the partial molar areas

aR
V = 1

ωM
aR

M and aR
α = ωα

ωM
aR

M = ωαaR
V . [89]

Equilibrium representations and consequences.—Electrolyte
boundary layer.—The equilibrium conditions 30 of the electrolytic
boundary layer �BL

E lead to the representations

yα = yα

∣∣BL
E

· e− zαe0
kB T u− vR

α
kB T p̂(u) = ŷα(u) [90]

where p̂(u) is obtained from the implicit equation system

g(u, p) =
∑
α∈IE

yα − 1 = 0. [91]

Together with 81 we have thus a representation

n̂α(u) = yα

∣∣BL
E

· e− zαe0
kB T u− vR

α
kB T p̂(u)

∑N
β=0 vR

β · yβ

∣∣BL
E

· e− zβe0
kB T u−

vR
β

kB T p(u)

, α ∈ IE. [92]
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The coupled Poisson-momentum equation system

ε0div (1 + χ)E = qi and ∇p · bu = qi E · bu = qi Eu [93]

leads to the representation2

Êu(u) = sgn(u)

√
2

ε0(1 + χE)
p̂(u). [94]

Hence we have the necessary representations n̂α(u) and Êu(u) stated
in the Double layer section to compute

nBL
α =

UBL
E∫

0

n̂α

1

|Eu | du = n̂BL
α

(
U BL

E

)
. [95]

However, since actually only derivatives of nBL
α with respect to U BL

E

arise in the boundary conditions 53, we obtain

CBL
α = dnBL

α

dU BL
E

= ŷα(U BL
E )∑

β∈IE vR
β · ŷβ

(
U BL

E

) ( 2

ε0(1 + χE)
p̂
(
U BL

E

))− 1
2

.

[96]

The boundary layer capacity 73 has then the representation

CBL
E = − sgn(ϕ − ϕE)

√
ε0(1 + χE)

2
(

p̂
(
U BL

E

)) · qE
(
U BL

E , p̂
(
U BL

E

))
. [97]

Electrode potential drop.—The equilibrium adsorption condition
for the electrons, namely μ

s
e = μe

∣∣BL
M

− e0U BL
M , actually entails

U BL
M = const. [98]

since μ
s

e = const. This condition thus describes the metallic behavior

of an electrode, where U BL
M = const. implies that any excess charge on

the electrode is excessively stored on the surface in terms of surface
electrons. We refer to Ref. 2 for a detail discussion on this aspect. It is to
emphasize, however, that for non-metallic/electrolyte interfaces U BL

M

is not necessarily a constant. The electro-neutrality condition along
the arc γ gives then some implicit equation F(U BL

E , U BL
M ) = 0 with

which one could proceed. However, this requires a careful derivation
based on the equations stated above.

For our purpose here we proceed with the condition U BL
M = const.

In the boundary condition 53 the term dUBL
M

dt thus vanishes and CPseu,M
α

does not contribute.

Adsorbates.—The adsorption equilibrium conditions 38 for α ∈
IEM and surface reaction equilibrium conditions 41 for the constituents
A
s

α, α ∈ Ie
S lead to representations2

y
s
α = ŷα

(
U BL

E , γ
s
E

)
α ∈ IS [99]

n
s
α =

y
s
α

aR
V yV +∑β∈IS aR

β y
s
β

α ∈ IS [100]

together with the constraint

g
s

(
U BL

E , γ
s
E

) = yV +
∑
α∈IS

y
s
α − 1 = 0 [101]

which satisfies
dγ

s
E

dU BL
E

= q
s
S. [102]

This determines (for α ∈ IS)

C
s

α = dn
s
α

dUE
= ∂n

s
α

∂UE
+ q

s
S

∂n
s
α

∂γ
s
E

[103]

= − e0
kB T a R

V

(
f
s

1· f
s

4− f
s

3 · f
s

2

( f
s

2)2 +
f
s

1

f
s

2

f
s

4· f
s

2− f
s

1· f
s

5

( f
s

2)2

)
= Ĉ

s
α

(
U BL

E

)
[104]

with the (dimensionless) abbreviations

f
s

1 := y
s
α, f

s
2 := y

s
V +
∑
α∈IS

ωα y
s
α, f

s
3 = zα yα [105]

f
s

4 = e0

∑
α∈IS

zαωα y
s
α, f

s
5 = y

s
V +
∑
α∈IS

ω2
α y

s
α, [106]

and consequently

CPseu,E
α = d

dU BL
E

(∑
β∈Ie

S

νβ,αn
s
β

)
= ĈPseu,E

α

(
U BL

E

)
. [107]

Note that this leads to explicit expressions of the surface capacity

C
s
E =

dq
s
E

dU BL
E

= e0
d

dU BL
E

∑
α∈IE

zαnα [108]

and the electrolytic pseudo-capacity

CPseu,E
E = dqPseu

E

dU BL
E

= e0
d

dU BL
E

∑
α∈Ie

S

zEαnα. [109]

Reaction rates of transfer reactions.—Based on the chemical
potentials specified in the Chemical potentials section we can now
also deduce explicit representations of the reaction rates RT

β (eq. 47)
for the transfer reactions 43.

However, some preliminary abbreviations are useful for the further
derivation:

πβ

∣∣BL
E

:= 1

yβ

∣∣BL
E

∏
α∈IE\{α}

(
yα

∣∣BL
E

)να,β ∏
α∈IM\e−

(
aα

∣∣BL
M

)να,β

, β ∈ Ir
E

[110]

πβ

∣∣BL
M

:= 1

aβ

∣∣BL
M

∏
α∈IE

(
yα

∣∣BL
E

)να,β ∏
α∈IM\{α,e−}

(
aα

∣∣BL
M

)να,β

, β ∈ Ir
M .

[111]

Some auxiliary calculations then lead to the representations

RT
β = LT

β ·
((

πβ

∣∣BL
E

)αβ · e
−αβ·
(

�gT
β

kBT +zM
β

e0
kBT UBL

E

)

−
(
πβ

∣∣BL
E

)−(1−αβ)
e(1−αβ)·

( �gT
β

kBT +zM
β

e0
kBT UBL

E

) )
= R̂T

β

(
U BL

E

)
β ∈ Ir

E

[112]

RT
β = LT

β ·
((

πβ

∣∣BL
M

)αβ · e−αβ·
(�gT

β
kBT −zE

β

e0
kBT UBL

E

)

−(πβ

∣∣BL
M

)−(1−αβ)
e(1−αβ)·

(�gT
β

kBT −zE
β

e0
kBT UBL

E

) )
= R̂T

β

(
U BL

E

)
β ∈ Ir

M

[113]

with

�gT
β =
⎧⎨⎩

gR
β − ∑

α∈IEM\{β}
να,βgR

α − e0zMβU BL
M , for β ∈ Ir

E

gR
β − ∑

α∈IEM\{β}
να,βgR

α + e0zEβU BL
M for β ∈ Ir

M .
[114]

Note, however, that the incorporation of the boundary layer potential
drop U BL

M in the definition of �gT
β is only useful when U BL

M = const.
For a semiconductor-electrolyte or an electrolyte-electrolyte interface
this is not necessarily the case.
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Balance equations and boundary conditions.—At this stage it is
quite illustrative to briefly summarize the derivation and the general
results. We shifted the boundary layer contributions of the balance
Equations 14 into the new boundary conditions 22 at �DL which gives
the balance equations

∂nα

∂t
= −div (jα) + rα x ∈ �∗

i , α ∈ Ii , i = E, M, [115]

in the electro-neutral domains �∗
i . We have thus qi = 0 in �∗

i which
reduces the charge balance to

div Jqi = 0 x ∈ �∗
i . [116]

The boundary conditions at the interface �DL are, based on the
specific material functions of this section,

� for the Electrolyte species,

jα · n
∣∣BL
E

=
⎧⎨⎩CEff

α · dUBL
E

dt +∑β∈Ir
EM

νβ,α RT
β + div

s
JEffα α ∈ I ′

E

CEff
α · dUBL

E

dt − RT
α +∑β∈Ir

EM\{α} νβ,α RT
β + div

s
JEffα α ∈ Ir

E

[117]
� and for the Metal species,

−jα · n
∣∣BL
M

=
⎧⎨⎩CPseu,E

α · dUBL
E

dt +∑β∈Ir
EM

νβ,α RT
β + div

s
JEffα α ∈ I ′

M

CPseu,E
α · dUBL

E

dt − RT
α +∑β∈Ir

EM\{α} νβ,α RT
β + div

s
JEffα α ∈ Ir

M .

[118]

The incompressibility constraint∑
α∈IE

vR
α nα = 1 and vR

M nM = 1 [119]

can be used to obtain an equation for the barycentric velocity, namely

∑
α∈IE

vR
α

∂nα

∂t
= −div v = 0 and vR

M

∂nM

∂t
= −div v = 0

[120]

Note that the boundary condition for the normal component of the
barycentric velocity is determined from

nv · n
∣∣BL
i

=
∑
α∈Ii

jα · n
∣∣BL
i

i = E, M. [121]

At the respective bulk surfaces �∗
E and �∗

M we fix the concentration
of all species, i.e.

nα

∣∣
�∗

i
= ni

α α ∈ Ii , i = E, M. [122]

Initial conditions.—At the beginning of any experiment we want
to prescribe a homogenous concentration throughout the domains
�∗

i , i = E, M. We have thus the initial conditions

nα(x, 0) = ni
α x ∈ �∗

i , α ∈ Ii , i = E, M, [123]

in order to be compatible to the boundary condition 122. Further we
consider that no tangential diffusional fluxes occur.

But what about the initial reaction conditions at the interface
�DL ?

Let U BL
E (t = 0) = U BL,0

E be the applied potential difference at t =
0. We can evaluation the π-functions 110 with the bulk concentrations
ni

α, namely

πE
β := 1

yE
β

∏
α∈IE\{α}

(
yEα
)να,β

∏
α∈IM\e−

(
aM

α

)να,β
β ∈ Ir

E, [124]

πM
β := 1

aM
β

∏
α∈IE

(
yEα
)να,β

∏
α∈IM\{α,e−}

(
aM

α

)να,β
β ∈ Ir

M . [125]

Consider now the transfer reactions at time t = 0, i.e. for β ∈ Ir
i ,

i, j = E, M, i 	= j

RT
β

∣∣
UBL,0
E

= LT
β ·
(

(πi
β)αβ · e−αβ·

(�gT
β

kBT +z j
β

e0
kBT UBL,0

E

)

−(πi
β)−(1−αβ)e(1−αβ)·

(�gT
β

kBT +z j
β

e0
kBT UBL,0

E

) )
=: RT,0

β . [126]

For given values of the �gT
β in eq. 112 these are in general not equal

to zero and could entail a huge flux at time t = 0 through the interface.
This is actually the exchange current density j0,T

α of the constituent
Aα due to the transfer reactions, with

j0,T
α =

{∑
β∈Ir

EM
νβ,α RT,0

β , if α ∈ I ′
EM

−RT,0
α +∑β∈Ir

EM\{α} νβ,α RT,0
β , if α ∈ Ir

EM.
[127]

We may thus re-define the total flux as

iα := jα − j0,T
α n [128]

which satisfies the balance equation

∂nα

∂t
= −div iα + rα x ∈ �∗

i , α ∈ Ii , i = E, M, [129]

and is subject to the boundary conditions

� Electrolyte species,

iα · n
∣∣BL
E

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
CEff

α · dUBL
E

dt +∑β∈Ir
EM

νβ,α

(
RT

β − RT,0
β

)+ div
s

JEffα α ∈ I ′
E

CEff
α · dUBL

E

dt +∑β∈Ir
EM\{α} νβ,α

(
RT

β − RT,0
β

)
− (RT

α − RT,0
α

)+ div
s

JEffα α ∈ Ir
E

[130]

� Metal species,

−iα · n
∣∣BL
M

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
CPseu,E

α · dUBL
E

dt +∑β∈Ir
EM

νβ,α

(
RT

β − RT,0
β

)+ div
s

JEffα α ∈ I ′
M

CPseu,E
α · dUBL

E

dt +∑β∈Ir
EM\{α} νβ,α

(
RT

β − RT,0
β

)
− (RT

α − RT,0
α

)+ div
s

JEffα α ∈ Ir
M .

[131]

This new total flux satisfies then the initial reaction conditions

iα · n
∣∣BL
E

= CEff
α · dU BL

E

dt
α ∈ IE [132]

and

−iα · n
∣∣BL
M

= CPseu,E
α · dU BL

E

dt
α ∈ IM. [133]

Note that this gives also rise to an transfer current density I T,0 as

i T,0 = e0

∑
α∈Ir

M

zEα RT,0
α − e0

∑
α∈Ir

E

zMα RT,0
α [134]

which can be computed from the above representations.
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Flux relation.—The most simple relation between the diffusional
flux jα and the chemical potentials μα in order to ensure a non-negative
entropy production is23,35

Jα = Dαnα

1

kBT
∇
(

μα − mα

mi,0
μi,0 + e0

(
zα − mα

mi,0
zi,0

)
ϕ

)
α ∈ Ii\{Ai,0}, i = E, M, [135]

where Ai,0 is some reference species of the respective phase, e.g. the
solvent in a liquid mixture or the lattice constituents in some solid.

A similar relation can be implied on the surface to relate the tan-
gential surface flux J

s
α to the surface chemical potentials μ

s
α. However,

we in the following the

Flat Metal/Electrolyte Interface

In order to validate the general modeling procedure, we employ
some meaningful assumptions to simplify the overall equation sys-
tem. We seek then to compute the current density/voltage relation
(i(t), E(t)) based on the preceding model.

Electrode.—The metal �M is considered to consists only of two
species, IM = {e−, M}, where the metal M does not participate in
any surface reaction. This corresponds to an inert electrode without
intercalation. Further, we assumed the surface to be flat, which allows
for a 1D approximation. The metal surface is positioned at x

s
and the

double layer is thus �DL is (xBL
E , xBL

M ). The bulk metal is positioned
at x∗

M and the bulk electrolyte at x∗
E . The conductivity of the metal is

assumed to be sufficiently large to ensure U ∗
M = 0.

Electrolyte.—Reconsider the index set of electrolyte species, IE =
I ′
E ∪ Ir

E . We can, however, introduce an additional decomposition

IE = ISupp
E ∪ IAct

E [136]

where ISupp
E denotes the supporting electrolyte species (in addition

to the solvent) and IAct
E the electro-active constituents, i.e. reaction

educts and products of the transfer reactions.
A supporting electrolyte (anions, cations, solvent, etc. with index

set ISupp
E ), in electrochemistry, according to the IUPAC definition, is

an electrolyte containing chemical species that are not electro-active
and have an ionic strength iSupp

E and conductivity κ
Supp
E , i.e.

iSupp
E = e0

∑
α∈ISupp

E

z2
αnα and κ

Supp
E = e0

∑
α∈ISupp

E

(e0zα)2 Dαnα,

[137]

much larger than that of the electro-active species (dissolved gas,
anions, cations, etc. with index set IAct

E ). Supporting electrolyte is
also sometimes referred to as inert electrolyte or inactive electrolyte
and do not participate in transfer reactions.

For our general transfer reactions∑
α∈IEM\{β}

να,βA
∣∣
E

⇀↽ A
∣∣
E

∀β ∈ Ir
EM [138]

we can conclude (β ∈ Ir
EM)

να,β = 0 for α ∈ ISupp
E , and να,β 	= 0 for α ∈ IAct

E . [139]

The supporting electrolyte species are thus not taking part in the
boundary conditions 130, whereby the balance equations decouple. It
is thus sufficient to solve the PDE system

∂nα

∂t
= −∂x jα for α ∈ IAct

E . [140]

In addition, the decomposition IE = ISupp
E ∪ IAct

E propagates also
to the current

Jq = e0

∑
α∈IE

zα jα = J Supp
q + J Diff

q . [141]

Note that in �∗
E we have qE = 0 and thus

Jq = const. [142]

The electric current Jq decomposes as

Jq =
(
κ

Supp
E + κAct

E

)
∂xϕ + κ

Supp
E · FSupp

chem + κAct
E · FAct

chem [143]

with

κi
E = e0

∑
α∈IE

(
e0zα

)2
Dαnα i = Supp, Act [144]

Fi
chem = e0

∑
α∈Ii

E

zα
Dα

κ
Supp
E

nα∇
(
μα − mα

m0
μ0

)
i = Supp, Act [145]

We assume now κ
Supp
E → ∞, which implies

∂xϕ → 0 and thus U ∗
E → 0. [146]

Supporting electrolytes are widely used in electrochemical measure-
ments when control of electrode potentials is required, which is the
sake of this study. The huge conductivity of the solution to practically
eliminates the so-called IR drop U ∗

E in the bulk electrolyte �∗
E and thus

simplifies the equation system (as well as the experimental access).
The flux of the electro-active species (α ∈ IAct

E ) reduces further to

jα = −Dαnα

1

kBT
∂x

((
μα − mα

m0
μ0

))
[147]

Assuming further that the chemical diffusion is just a simple diffusion
process, i.e.

jα = Dαnα

1

kBT
∂x

((
μα − mα

m0
μ0

))
≈ −Dα∂x nα α ∈ IAct

E ,

[148]

leads to the (simple) PDE system (for all α ∈ IAct
E )

∂nα

∂t
= −∂x iα [149]

iα = −Dα∂x nα. [150]

Hence, the transfer reactions actually determine which balance equa-
tions require to be solved.

Current/Voltage relation.—Based on our assumptions the mea-
sured current 69 is

i − i T,0 = CEff
E · dU BL

E

dt
+ e0

∑
α∈Ir

E

zMα
(
RT

α − RT,0
α

)
[151]

which has capacitive contribution and a faradaic contribution. Note,
however, that an evaluation of this equation actually requires the
(numerical) solutions ñα(x, t) of the equation system 149–149 with
boundary conditions 130. The representation 112 shows that Rα is
actually a function of U BL

E (t) and πβ

∣∣BL
E

, with

πβ

∣∣BL
E

= 1

yβ

∣∣BL
E

∏
α∈IE\{α}

(
yα

∣∣BL
E

)να,β ∏
α∈IM\e−

(
aα

∣∣BL
M

)να,β

, β ∈ Ir
E .

[152]

The expressions yβ

∣∣BL
E

are actually evaluations of the time dependent
solutions ỹα at the boundary xBL

E . While all species IE of the elec-
trolyte phase contribute to the double layer capacity CEff

E , only the
electro-active species IAct

E contribute to the faradaic current
∑

α∈Ir
E

zMα(
RT

α − RT,0
α

)
.

For the applied voltage reconsider that we have a relation

E = U BL
E + U R with U R = const.. [153]

We consider a time-dependent triangular function according to Fig. 3
for E .
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Figure 3. Time dependent Voltage E(t) with scan rate vscan, initial potential
E0, potential maximum Emax and minimum Emin for one cycle with time
length tCycle.

Non-dimensionalization of the equation system.—In order to
solve the equation system numerically, some preliminary non-
dimensionalizations and variable transformations are required.

Consider first the non-dimensionalization

ξ = x

xL
, τ = t

tCyc
�g̃T

α = �gT
α

kBT
[154]

ϕ = e0

kBT
U BL

E uα = nα

nE
α

wα = ln (uα) , [155]

which does hold true since nE
α 	= 0 ∀α ∈ IAct

E . Note that this implies
also

yα

yEα
= nα

nE
α

= uα [156]

since n = nE = nR and entails

πβ

∣∣BL
E

πE
β

= yE
β

yβ

∣∣BL
E

∏
α∈IE\{α}

(
yα

∣∣BL
E

)να,β ∏
α∈IM\e−

(
aα

∣∣BL
M

)να,β

∏
α∈IE\{α}(yEα)να,β

∏
α∈IM\e− (aMα)να,β

[157]

= 1

uβ

∣∣BL
E

∏
α∈IE\{α}

(
uα

∣∣BL
E

)να,β ∏
α∈IM\e−

(
uα

∣∣BL
M

)να,β =: π̃β

∣∣BL
E

.

[158]

Note, however, that it is numerically problematic to consider uα as
variable since these values might become negative due to the accumu-

Figure 4. Numerical simulation of the capacitive current with adsorption and
partial charge transfer reaction 172. The partial molar area of aR

Aλ on the surface

is varied in multiples of aR
0 .

lation of numerical errors. However, using wα as variable solves this
problem and we have thus the following transformations:

∂uα

∂t
= uα

∂wα

∂t
= ewα

∂wα

∂t
[159]

∂ξuα = ewα ∂ξwα [160]

π̃β

∣∣BL
E

= e
∑

α∈IEM\{α,e−} να,β·wα|BLE −wβ|BLE . [161]

We obtain finally the following mathematical problem:

� PDE System:

ewα
∂wα

∂τ
= ∂ξ̃iα for α ∈ IAct

E [162]

ĩα = D̃αewα ∂ξwα [163]

with

D̃α = tCyc

x2
L

Dα , iα = −d̃α ĩα and d̃α = nE
α

xL

tCyc
. [164]

� bulk boundary condition at x∗
E :

wα|x∗
E

= 0 for α ∈ IAct
E , [165]

� transfer reaction conditions at the double layer interface xDL
E :

ĩα|BLE = 1

d̃α

⎛⎝CEff
α · d E

dt
+
∑
β∈Ir

EM

νβ,α R̃T
β

⎞⎠ α ∈ I ′
E ∩ IAct

E [166]

ĩα|BLE = 1

d̃α

⎛⎝CEff
α · d E

dt
− R̃T

α +
∑

β∈Ir
EM\{α}

νβ,α R̃T
β

⎞⎠ α ∈ Ir
E ∩ IAct

E

[167]

with R̃β = (RT
β − RT,0

β )
� initial conditions

wα(0, x) = 0 α ∈ IE [168]

After solving the PDE system, the solutions for uα are obtained
from

uα = ewα . [169]

Parameters.—Before discussing the actual examples, it is illustra-
tive to discuss briefly the parameters of the overall model framework.

Cyclic voltammetry.—The parameters for the cyclic voltammetry
are the initial potential E0, the potential maximum Emax and the the
minimum Emin, with Emax − Emin ∈ [1 − 4] V. The scan rate vscan is
normally in the range of 10–100

[
V s−1
]
. Hence, the cycle time tCyc

is normally in the order of 100s, and the number of cycles is denoted
by N Cyc.

Transport equations.—The Diffusion coefficients Dα of the
electro-active species IAct

E dissolved in water are in the order of
10−5
[
cm2 s−1

]
. For the computational domain (xBL

E , x∗
E ) with xL =

x∗
E − xBL

E we employ a scaling with the Nernstian diffusion layer,26

which leads to

xL = NND ·
√

max Dα · tCycle · 104 [μm] [170]

and NND = 5 (conservative).
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Capacity.—Several parameter have an impact on the effective ca-
pacity CEff

E , and we refer to2 for a detailed discussion on the respective
values. Briefly summarized, the parameters are

particle density at the boundary layer nα

∣∣BL
E

,

charge numbers zα, dielectric susceptibility χE,

solvation numbers κα and κ
s

α, adsorption energy �gA
α ,

partial molar volumes vR
α , partial molar areas aR

α .

In the examples section we provide explicit values without any further
discussion.

Transfer reactions.—For each transfer reaction 43 with reaction
rate RT

β we have essentially two parameters, Lβ

[
molcm−2 s

]
and

�gT
β [ eV] with �gT

β ∈ (−2, 2) / eV .
The exchange current density for each reaction is then

i0
β = e0zMβ LT

β ·
( (

πi
β

)αβ · e
−αβ·
(

�gT
β

kBT +z j
β

e0
kBT UBL,0

E

)

− (πi
β

)−(1−αβ) e
(1−αβ)·

(
�gT

β
kBT +z j

β

e0
kBT UBL,0

E

) )
, [171]

which is in the order of / μAcm−2 . Note that parametric dependency
of the transfer reaction and the resulting current on Lβ and �gT

β is
highly non-linear.

Examples.—The scan rate is fixed for all examples as vScan =
100 / mV s−1 . If not mentioned otherwise, E0 = 0V, Emax = 1.5V
and Emin = −1.5V.

AC solution without transfer reaction.—This first example servers
to investigate the capacitive current. We consider now an aque-
ous solution of AC, which is completely dissociated into C+ and
A− ions. We employ the standard parameters of2 and χE = 45 for
water and vR

A− = vR
C+ = 45 · vR

0 , where vR
0 = 0.0180 / L mol−1 is

the partial molar volume of water. The partial molar area of water is
aR

0 = 10.33 · 108 / cm2 mol−1 2,46. The metal surface is considered as
Ag(110) .

The anion A− may adsorb on the surface and thereby lose a part
of the solvation shell as well as some partial charge, i.e.

A−∣∣
E

− (1 − λ)e−∣∣
M

− (κA− − κ
s

Aλ )H2O ⇀↽ A
s

λ. [172]

This adsorption process entails that the partial molar area aR
Aλ of is

related to λ.46 We can thus perform a parameter variation of aR
Aλ for an

aqueous AC solution and study the impact on the capacitive current
density

i = CEff
E · d E

dt
. [173]

The adsorption energy for A
s

λ is �g A
Aλ = −0.2 / eV . Figure 4 shows

a computation of the corresponding current-voltage relation for vari-
ations of λ.

Note, however, that adsorption and discharge process could also
be a 2-step mechanism, for example

A−∣∣
E

− (1 − λ)e−∣∣
M

− (κA− − κ
s

Aλ )H2O ⇀↽ A
s

λ, [174]

A−∣∣
E

− e−∣∣
M

− (κA− − κ
s

A)H2O ⇀↽ A
s
, [175]

where the uncharged reaction product A
s

has solvation number κ
s

A = 0

and thus approximately aR
A = aR

0 . Figure 5 shows a computation of
the corresponding CV with aR

Aλ = 5 · aR
0 , �g A

Aλ = −0.2eV and a
variation of �gA

A.

Figure 5. Numerical simulation of the capacitive current with two-step dis-
charge of the anion A−.

AC solution with transfer reaction.—Next we consider an addi-
tional transfer reaction

A+∣∣
E

− e−∣∣
M

⇀↽ A
∣∣
E

[176]

for the example preceding example. The bulk concentration of nE
C is set

to 10−8 / mol L−1 . The parameters for the transfer reactions are exem-
plarily chosen as �gT

C = 0 / eV and LβT = 1.0364·10−14 / molm−2 .
For the adsorption energy of A

s
we use �gA

A = 0eV.

Fig. 6 shows that the faradaic current (peak at 1.2V) and the current
due to the adsorption and discharge process A−∣∣

E
− e−∣∣

M
− (κA− −

κ
s

A)H2O ⇀↽ A
s

(peak at 0.4 V) can be in the same order.

2-Step electron transfer.—The final example is to consider a two
step electron transfer reaction,

RT
1 : C2+∣∣

E
+ e−∣∣

M
⇀↽ C+∣∣

E
[177]

RT
2 : C+∣∣

E
+ e−∣∣

M
⇀↽ C
∣∣
E

[178]

for which we consider a solution of A2C with concentration 0.01M.
Further, we consider bulk concentrations of for C+ and C of 0.01M.

Figure 6. Numerical simulation of the cyclic voltamogramm with dou-
ble layer current and faradaic current. Potential profile according to the
subfigure.
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Figure 7. CV simulation of a 2-step electron transfer reaction.

The reaction parameters are

�gT
1 = 0 eV i1 = {0.1, 1} [179]

�gT
2 = −0.2 eV i2 = {0.1, 1}. [180]

We thus vary the exchange current density in this example.
Fig. 7 displays a numerical simulation of this example and the

impact of the parameter variation of i1 and i2.

Mixture of KPF6 and KCl vs. Ag(110).—The electrochemical
interface of a silver crystal electrode in contact to mixtures of
x MKCl + (0.02 − x)MKPF6 was investigated by G. Valette52. He
performed precise measurments of the differential capacity which
allows for a validation of the theory. An intensive validation of the ca-
pacity for solutions of a single salt at various concentrations is given in
Ref. 2 and Fig. 8 shows a comparison of the computed and measured
the differential capacity. The central parameters for the simulation are

Figure 9. Computed current-voltage for a cyclic voltammetry experiment of
the Ag(110)—x MKCl + (0.02 − x)MKPF6 interface.

the adsorption energies

�gCl− = −0.3 eV and �gCl = −0.1 eV [181]

of the surface reactions

Cl−
∣∣
E

− (κCl− − κ
s

Cl− )H2O ⇀↽ Cl−
s

[182]

Cl−
∣∣
E

− (κCl− − κ
s

Cl)H2O ⇀↽ Cl
s

[183]

and the corresponding surface solvation numbers

κ
s

Cl− = 6 · aR
0 and κ

s
Cl = 0. [184]

The partial molar area of Cl is assumed to be aR
Cl = 3aR

0 . Fig. 8 shows
a comparison of the computation based on the model framework and
the measurement of G. Valette for a mixture of electrolytes.

The corresponding CV for vScan = 100 / mV s−1 is given in
Fig. 9. It shows remarkable features and allows for future model
based investigations of cyclic voltammetry.

(a) (b)

Figure 8. Comparison of the computed differential capacity and measured data. (a) Computed capacity of Ag(110)—xMKCl + (0.02 – x)MKPF6. (b) Measured
capacity of Ag(110)—xMKCl + (0.02 – x)MKPF6 (Fig. 1 of Ref. 52, reprinted with permission from Elsevier).
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Comparison to classical Butler-Volmer reaction rates.—For a
single-step transfer reaction

A+∣∣
E

− e−∣∣
M

⇀↽ A
∣∣
i
, i = E, M, [185]

e.g. Fe3+ + e− ⇀↽ Fe2+ or Li+ + e− ⇀↽ Li, the common approach
for the corresponding reaction rate RT is the Butler–Volmer equa-
tion. Throughout the literature various explicit representations can be
found, most prominently:

� Bard/Faulkner, p. 99,26 Nicholson,30 (in my notiation):

RT = j0 ·
(

nA+
∣∣BL
E

n∗
A+

· eα
e0

kBT η − nA

∣∣BL
i

n∗
A

· e−(1−α)
e0

kBT η

)
[186]

� Newman, p. 205 ff.1 (in my notiation):

RT = j0 ·
(

nA+
∣∣BL
E

nE
A+

)(1−α)

·
(

nA

∣∣BL
i

ni
A+

)α

·
(

eα
e0

kBT η − e−(1−α)
e0

kBT η
)

[187]

The reaction rate 47 derived from non-equilibrium thermody-
namics with chemical potential functions μα = gR

α + kBT ln (yα) +
vR

α(p − pR) states

RT = j0 ·
((

yA+
∣∣BL
E

yA

∣∣BL
M

· y∗
A

y∗
A+

)α

· e−α
e0

kBT η

−
(

yA

∣∣BL
M

yA+
∣∣BL
E

· y∗
A+

y∗
A

)(1−α)

e(1−α)
e0

kBT η

⎞⎠ [188]

where y∗
α are the equilibrium concentrations according to the Nernst

equation

ln

(
y∗

A+

y∗
A

)
= �gT

β

kBT
− zEβ

e0

kBT
U ∗

E [189]

and

η = U BL
E − U ∗

E . [190]

is the over-potential. A comparison of the reaction rates 186 and 187 to
the expression 188 derived within this work reveals some remarkable
contradictions. In 186 the forward reaction rate is proportion to nA+

∣∣BL
E

(and the backward rate to nA

∣∣BL
i

), while in 187 the overall rate (or

exchange current density) is proportion to the product of nA+
∣∣BL
E

and

nA

∣∣BL
i

. However, the reaction rate 188, derived from non-equilibrium
thermodynamics, states that the forward and the backward term are
proportional to some quotient of the mole the fractions. This is a strict
consequence of the general reaction rate 47.

The difference becomes even more evident when de-solvation dur-
ing the transfer reaction and an intercalation lattice for the reaction
product is considered, i.e.

A+∣∣
E

− e−∣∣
M

+ κ · S
∣∣
E

⇀↽ A
∣∣
M

[191]

where κ denotes the solvation number of A+ and S the solvent. The
electrode M is now considered as an intercalation material wherein the
reaction product M may diffuse. For such an intercalation lattice, the
most simple chemical potential function for A is21

μA = gR
A + kBT ln

(
yA

1 − yA

)
. [192]

The general reaction rate rate 47 then states

RT = j0 ·
(

kα · e−α
e0

kBT η − k−(1−α)e(1−α)
e0

kBT η

)
[193]

with

k = (yA+ · yκ
S)
∣∣BL
E

yA
1−yA

∣∣BL
M

·
y∗

A
1−y∗

A

y∗
A+ · (y∗

S)κ
. [194]

This reaction rate accounts for the de-solvation process within the
charge transfer reaction, the (finite) lattice of the intercalation material
and the concentration of A+ in the electrolyte phase. Comparing again
this relation to 186 and 187 clearly shows shortcomings of the classical
Butler-Volmer approach, i.e. that the reaction rate RT vanishes for a
fully charged electrode (RT → 0 for yA → 1). Newman et al.5 resolve
this issue by substituting nA with nA · (nmax

A − nA), but yet obtaining
a different functional dependency.

Exploring all differences between the classical Butler-Volmer ap-
proach and the general reaction rates 47 is not the scope of this work,
but may be explored in some subsequent paper. Most importantly the
derivation procedure explained in the Equilibrium assumptions and
consequences section ensures thermodynamically consistent bound-
ary conditions which can be applied to interpret experimental data.

Conclusions

In this work the boundary conditions for a general electrochemical
interface were derived based on the framework of non-equilibrium
thermodynamics. The formulation is general enough to be applied
to various electrochemical systems and the work provides guidance
through the derivation of a specific system. It ensures that the bound-
ary conditions are thermodynamically consistent with the respective
volume balance equations and general enough to couple various reac-
tion mechanisms. The electrode, the electrolyte, and the surface are
inherently coupled through adsorption conditions of the electrons and
the electrolyte species. It is to emphasize that the expression 53 of the
boundary conditions also accounts for tangential transport through
the double layer. Based on this general framework an expression of
the measurable current of a half cell was derived. This shows vari-
ous contributions of the electrode and the electrolyte phase, including
pseudo-capacitive effects. Material functions for the electrode, the
electrolyte, and the surface, i.e. representations of the chemical po-
tentials in terms of the thermodynamic state variables, lead to explicit
expressions of the boundary conditions. These where then applied to a
flat metal/electrolyte interface, which greatly simplifies the equation
system. The model was then applied to some representative exam-
ples showing the applicability of the model. Numerical simulations
of current-voltage relations give an impression of the remarkable pre-
dictability of the model framework.

Appendix A: Surface Capacity

Here we provide a semi-explicit representation of the surface capacity C
s

. First of all

note that the surface charge q
s

has the representation

q
s

= −
∑NE

α=1 zαe0 y
s
α +∑NE

α=1

∑|zα |
β=−1 zαe0 y

s
α,β

aR
V y

s
V +∑NE

α=0 aR
α y

s
α +∑NE

α=0

∑|zα |
β=−1 aR

α,β y
s
α,β

. [A1]

With the representation y
s
α, y

s
α,β and y

s
V of2 we obtain an expression of q

s
in terms of

(ϕ
s

− ϕE) and (γ − γR ), i.e. q
s

= q̂
s
(ϕ

s
− ϕE, γ − γR ). The surface charge is thus a function

of ϕ
s

and the surface tension γ. The surface fractions y
s
α,β obey the constraint

y
s

V (γ − γR ) +
NE∑
α=0

y
s
α(ϕ

s
− ϕE, γ − γR ) +

NE∑
α=0

|zα |∑
β=−1

y
s
α,β(ϕ

s
− ϕE, γ − γR ) − 1 = 0, [A2]

which is an implicit relationship between UE and γ − γR. Hence, we may use the implicit
function theorem to deduce a solution γ = γ̂(UE) from Equation A2, which satisfies
dγ̂/d(UE) = q

s
. The surface capacity C

s
is thus

Ĉ
s

=
dq̂

s

dUE

=
⎛⎝ ∂q

s

∂UE

+ q
s

·
∂q

s

∂(γ − γR )

⎞⎠ . [A3]



Journal of The Electrochemical Society, 164 (11) E3671-E3685 (2017) E3685

With the (dimensionless) abbreviations

f
s

1 :=
NE∑
α=1

zα y
s
α + e0

NE∑
α=1

|zα |∑
β=−1

zα y
s
α,β [A4]

f
s

2 := y
s

V + ω0 y
s

0 +
NE∑
α=1

ωα y
s
α +

NE∑
α=1

|zα |∑
β=−1

ωα,β y
s
α,β [A5]

f
s

3 =
NE∑
α=1

z2
α y

s
α +

NE∑
α=1

|zα |∑
β=−1

z2
α y

s
α,β [A6]

f
s

4 = e0

NE∑
α=1

zαωα y
s
α + e0

NE∑
α=1

|zα |∑
β=−1

zαωα,β y
s
α,β [A7]

f
s

5 = y
s

V + ω0 y
s

0 +
NE∑
α=1

ωα y
s
α +

NE∑
α=1

|zα |∑
β=−1

ω2
α,β y

s
α,β [A8]

we obtain for the surface capacity the expression

Ĉ
s

= − e2
0

kB T aR
V

⎛⎝ f
s

1 · f
s

4 − f
s

3 · f
s

2

( f
s

2)2
+

f
s

1

f
s

2

f
s

4 · f
s

2 − f
s

1 · f
s

5

( f
s

2)2

⎞⎠ . [A9]

Note that the term
e2
0

kB T a R
V

indeed has units F
m2 and that all functions f

s
k , k = 1, . . . , 5,

are dependent on UE and γ − γR .

Appendix B: Calculation of the Faradaic Current

Reconsider that

rEffqM
= rEff,

′
qM

+ r
s

Eff,r
qM

[B1]

with

rEff,
′

qM
= e0
∑

α∈I′
M

zαrEffα = −e0
∑

α∈I′
M

zα

⎛⎝ ∑
β∈Ir

E

νβ,α RT
β + ∑

β∈Ir
M

νβ,α RT
β

⎞⎠ [B2]

rEff,rqM
= e0

∑
α∈Ir

M

zαrEffα = −e0

∑
α∈Ir

M

zα

⎛⎝∑
β∈Ir

E

νβ,α RT
β +

∑
β∈Ir

M\{α}
νβ,α RT

β − RT
α

⎞⎠ [B3]

We can thus rewrite

e0

∑
α∈Ir

M

zα RT
α − e0

∑
α∈Ir

M

zα

∑
β∈Ir

M\{α}
νβ,α RT

β − e0

∑
α∈I′

M

zα

∑
β∈Ir

M

νβ,α RT
β [B4]

= e0

∑
α∈Ir

M

⎛⎝zα −
∑

β∈IM\{α}
zβνα,β

⎞⎠ RT
α [B5]

Due to the electro-neutrality of each transfer reaction we have

zα −
∑

β∈IM\{α}
zβνα,β =

∑
β∈IE

zβνα,β [B6]

and obtain thus

rEffqM
= e0

∑
α∈Ir

M

zEα RT
α − e0

∑
α∈Ir

E

zMα RT
α . [B7]
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