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Pressure-robustness in the context of optimal control

Christian Merdon, Winnifried Wollner

Abstract

This paper studies the benefits of pressure-robust discretizations in the scope of optimal control
of incompressible flows. Gradient forces that may appear in the data can have a negative impact on
the accuracy of state and control and can only be correctly balanced if their L2-orthogonality onto dis-
cretely divergence-free test functions is restored. Perfectly orthogonal divergence-free discretizations
or divergence-free reconstructions of these test functions do the trick and lead to much better analytic
a priori estimates that are also validated in numerical examples.

1 Introduction

The stationary Stokes equations seek an unknown velocity u ∈ V and pressure p ∈ Q such that

ν(∇u,∇ϕ) + (p,div ϕ) = (f , ϕ) ∀ϕ ∈ V

(div u, ψ) = 0 ∀ψ ∈ Q

with given data ν > 0, f ∈ L2(Ω) on a domain Ω ⊂ Rn with n ≤ 3, and the standard function spaces
V := H1

0(Ω;Rd), and Q := L2
0(Ω). A standard discretization by inf-sup stable finite element spaces

Vh × Qh ⊂ V × Q yields solutions (uh, ph) satisfying a best approximation estimate, see, e.g., [10,
Section III.1.2], or [3, Section VI.2], of the form

‖u− uh‖2V ≤
1

β2
h

inf
ϕh∈Vh

‖u− ϕh‖2V + C2
P where CP :=

1

ν
inf

ψh∈Qh

‖p− ψh‖Q

with the discrete inf-sup constant βh. The estimate indicates, that the error in the velocity can be polluted
by a pressure which is hard to approximate. This is caused by a violation of the L2-orthogonality between
divergence-free functions and irrotational forces. To remove this dependency, so called pressure-robust
discretizations can be used, either perfectly orthogonal divergence-free methods [26, 28, 7, 14, 24, 16]
or modifications of classical methods via a reconstruction operator Π that repairs the orthogonality where
needed [19, 23, 21, 18, 16, 17]. With these methods estimates of the form

‖u− uh‖2V ≤
1

β2
h

inf
ϕh∈Vh

‖u− ϕh‖2V + C2
Π where CΠ := O(hk)‖∆u‖Hk−1(Ω)

are possible where the reconstruction causes a consistency error CΠ of optimal convergence order k
(provided that ∆u ∈ Hk−1) that is pressure-independent. Quasi-optimal estimates in case ∆u /∈ L2(Ω)
can be found in [22]. Divergence-free H1-conforming discretizations even come without any consistency
error, i.e. CΠ = 0, but usually require higher-order polynomial or non-standard ansatz spaces or specially
refined meshes to ensure inf-sup stability. Also note, that pressure-robust methods may have the potential
to increase the accuracy beyond the presence of gradient errors in the data f , but also in presence of
complicated gradient forces generated by the material derivative in transient Navier-Stokes flows [9, 1].
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Pressure-robustness in the context of optimal control 2

This paper aims to investigate possible benefits of using pressure-robust discretizations in the context of the
optimization of incompressible flows, where a canonical optimization problem is given by

min
(q,u,p)∈Q×V×Q

1

2
‖u− ud‖2L2(Ω) +

α

2
‖q‖2L2(Ω)

s.t.

{
ν(∇u,∇ϕ) + (p,div ϕ) = (f + q, ϕ) ∀ϕ ∈ V

(div u, ψ) = 0 ∀ψ ∈ Q

(P)

with the control space Q = L2(Ω;Rn).

The discretization of (P) and similar control problems subject to an equation for an incompressible flow has
been discussed extensively in the literature. [25] showed optimal rates for a mixed finite element method for
the above stationary Stokes control problem. Similar results on optimal convergence rates for the control of
stationary and nonstationary Navier-Stokes control have been provided in [12] and [6], respectively. For least
squares finite element approximations of the respective optimality system [2, 4] showed best approximation
results, and the same was done in [5] for a standard Galerkin approximation of nonstationary Stokes control.
For the related Dirichlet control problem error estimates have been obtained by HDG methods in [11] and
for Navier-Stokes control in [13]

All of the above results contain velocity errors depending on the pressure approximations. This implies
that all the proposed methods will have spurious error contributions in the velocity induced by complicated
pressures. In fact, irrotational forces can not only appear in the right-hand side f , but also in the data ud.
According to its Helmholtz–Hodge decomposition ud = ∇ψ + curlφ only the divergence-free part curlφ
can be optimized, while the irrotational part ∇ψ cannot; but will confuse non-pressure-robust discretiza-
tions. Therefore, this paper discusses a pressure robust discretization of (P). A naive approach to pressure
robustness in the control problem would be the use of a pressure robust discretization for the PDE constraint
which we will detail in Section 3.3.1. However, in view of irrotational forces in the data ud, this is insufficient
and hence, Section 3.3.2, provides a fully pressure robust approximation for (P).

The rest of the paper is structured as follows. Section 2 introduces the canonical Stokes optimization prob-
lem studied in this paper. Section 3 discusses the classical discretization and its a priori error estimate and
suggests a novel pressure-robust discretization. Section 4 proves an a priori estimate for the fully pressure-
robust variant that has qualitative improvements over the classical scheme. Section 5 compares the three
schemes in two numerical examples to illustrate the theoretical findings.

2 Canonical Stokes optimization problem

Consider the optimal control problem: for given data f ∈ L2(Ω), ud ∈ L2(Ω), seek state and control
(u,q) ∈ V0 ×Q, where V0 = {ϕ ∈ V |div ϕ = 0} are the divergence-free functions, solving

min
(u,q)∈V0×Q

1

2
‖u− ud‖2L2(Ω) +

α

2
‖q‖2L2(Ω)

s.t. (ν∇u,∇ϕ) = (f + q, ϕ) ∀ϕ ∈ V0.

Note, that this problem is equivalent to (P) by introducing a pressure p ∈ Q to allow working with test
functions from V rather than V0.
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Pressure-robustness in the context of optimal control 3

Since this is a linear quadratic optimization problem, standard theory, e.g., [27], gives the necessary and
sufficient optimality conditions with an adjoint state w ∈ V0 satisfying:

0 = ν(∇u,∇ϕ)− (q + f , ϕ) ∀ϕ ∈ V0,

0 = ν(∇ϕ,∇w)− (u− ud, ϕ) ∀ϕ ∈ V0,

0 = (αq + w, ϕ) ∀ϕ ∈ Q.

The third equation yields an algebraic relation

q =
−1

α
w

between the adjoint w and the control which could be used to eliminate the control variable from the prob-
lem, by the so called variational discretization approach [15]. However, [8] suggests that rather than tak-
ing this simple substitution a more convenient choice for the following analysis is the consideration of the
rescaled adjoint

z =
1√
α
w, and hence q =

−1√
α
z.

From this it is easy to see that an optimal solution (q,u) ∈ Q×V0 of (P) is equivalently given by a solution
(u, z) ∈ V0 ×V0 of

ν(∇u,∇ϕ) + α−1/2(z, ϕ) = (f , ϕ) ∀ϕ ∈ V0,

ν(∇ϕ,∇z)− α−1/2(u, ϕ) = −α−1/2(ud, ϕ) ∀ϕ ∈ V0.
(2.1)

Adding the pressures or Lagrange multipliers for the divergence constraints, it is also equivalent to seek
(u, z, p, λ) ∈ V ×V ×Q×Q

ν(∇u,∇ϕ) + (div ϕ, p) + α−1/2(z, ϕ) = (f , ϕ) ∀ϕ ∈ V,

(div u, ψ) = 0 ∀ψ ∈ Q,
ν(∇ϕ,∇z) + (div ϕ, λ)− α−1/2(u, ϕ) = −α−1/2(ud, ϕ) ∀ϕ ∈ V,

(div z, ψ) = 0 ∀ψ ∈ Q.

(2.2)

3 Discretization and a priori estimates

3.1 Preliminaries

For the discretization the space V0 is replaced by some discretely divergence-free space

V0
h := {ϕh ∈ Vh : (div ϕh, ψh) = 0 for all ψh ∈ Qh}

for some inf-sup stable pair Vh × Qh. The analysis involves the consistency error of the possibly relaxed
divergence constraint in form of the dual norm

‖∇ψ‖2(V0
h)? := sup

ϕh∈V0
h

∫
ψ div (ϕh) dx/‖∇ϕh‖. (3.1)

For exactly divergence-free schemes this norm is always zero, and otherwise can be bounded by the pres-
sure best-approximation error ‖ψ − πQh

ψ‖.
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Pressure-robustness in the context of optimal control 4

Below we discuss a straight-forward classical discretization and some modified pressure-robust variant that
replaces these errors by something qualitatively better.

It is studied how the consistency errors from the lack of pressure-robustness or their pressure-robust alter-
natives influence the a priori estimates for the natural energy norm induced by the PDE rather than the cost
functional, see also [8],

|||(u, z)|||2 := ‖∇u‖2L2(Ω) + ‖∇z‖2L2(Ω).

To do so, we estimate the distance of (uh, zh) to the Stokes best-approximations (Shu, Shz) ∈ V0
h×V0

h,
that are defined by

(∇(w − Shw),∇ϕh) = 0 for all ϕh ∈ V0
h, (3.2)

and allow for the Pythagoras theorem

|||(u− uh, z− zh)|||2 = |||(u− Shu, z− Shz)|||2 + |||(Shu− uh,Shz− zh)|||2. (3.3)

Due to inf-sup stability with inf-sup constant βh > 0, the first summand enjoys the best-approximation
property, i.e. for any w ∈ V,

‖∇(w − Shw)‖2L2(Ω) = inf
ϕh∈V0

h

‖∇(w − ϕh)‖2L2(Ω) ≤
1

βh
inf

ϕh∈Vh

‖∇(w − ϕh)‖2L2(Ω)

and shows convergence rates corresponding to the regularity of u and z and the polynomial order of Vh.
This best-approximation result is only perturbed by the second summand |||(Shu − uh,Shz − zh)|||2
which therefore is the primal object of interest in the a priori error analysis below.

Moreover, assuming sufficient regularity of w ∈ {u, z} and H2-regularity of the Stokes-problem on the
domain Ω, the Stokes projection also enjoys the estimate

‖w − Shw‖L2(Ω) . h‖∇(w − Shw)‖L2(Ω) . hk+1‖w‖Hk+1 (3.4)

which is needed in Theorem 4.1 below and can be shown by the usual Aubin–Nitsche argument.

3.2 Classical discretization

The classical variational discretization of (2.2) solves the following discrete problem: seek (uh, zh, ph, λh) ∈
Vh ×Vh ×Qh ×Qh such that

ν(∇uh,∇ϕh) + (div ϕh, ph) = (f − α−1/2zh, ϕh) ∀ϕh ∈ Vh,

(div uh, ψh) = 0 ∀ψh ∈ Qh,
ν(∇ϕh,∇zh) + (div ϕh, λh) = α−1/2(uh − ud, ϕh) ∀ϕh ∈ Vh,

(div zh, ψh) = 0 ∀ψh ∈ Qh.

(3.5)

The error estimates involve the previously defined Stokes projector Sh : V → V0
h and as stated above

only the second summand in (3.3) needs to be discussed.
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Pressure-robustness in the context of optimal control 5

Lemma 3.1 (A priori error estimate for difference to best-approximation). For the solution of (uh,qh) of
(3.5) and the discrete Stokes projectors of the exact solutions (Shu,Shq), it holds

|||(Shu− uh,Shz− zh)||| ≤ 1

ν

(
‖∇p‖2(V0

h)? + ‖∇λ‖2(V0
h)?

)1/2

+
1

α1/2ν

(
‖u− Shu‖2 + ‖z− Shz‖2

)1/2
.

where p and λ are the respective pressures of the Stokes problems for u and z. The dual norms, as defined
in (3.1), measure their generated consistency error due to the discrete divergence.

Remark 3.2. Note that the upper bound

‖∇ψ‖(V0
h)? ≤ ‖ψ − πQh

ψ‖L2(Ω)

together with assumed regularity of p and λ would allow for the usual estimates in terms of powers of the
mesh size. However, the upper bound ‖∇ψ‖(V0

h)? is sharper, and in particular vanishes for divergence-free

elements (i.e., V0
h ⊂ V0). In this case only higher order terms according to (3.4) remain on the right-hand

side.

Proof of Lemma 3.1. Using (3.2) and testing the first equation of (2.2) and (3.5) withϕh = Shu−uh ∈ V0
h

reveals

ν‖∇(Shu− uh)‖2L2(Ω)

= ν(∇(u− uh),∇(Shu− uh))

= (f − α−1/2z,Shu− uh)− (p,div (Shu− uh))− (f − α−1/2zh, Shu− uh)

= −α−1/2(z− zh,Shu− uh)− (p,div (Shu− uh)).

Analogously, one shows that

ν‖∇(Shz− zh)‖2L2(Ω) = α−1/2(uh − u,Shz− zh)− (λ,div (Shz− zh)).

Using

(z− zh, Shu− uh) = (Shz− zh,Shu− uh) + (z− Shz,Shu− uh)

(u− uh, Shz− zh) = (Shu− uh, Shz− zh) + (u− Shu,Shz− zh)

one obtains

A : = (z− zh, Shu− uh)− (uh − u,Shz− zh)

= (z− Shz,Shu− uh)− (u− Shu, Shz− zh)

which can be estimated by

|A| ≤
(
‖u− Shu‖2 + ‖z− Shz‖2

)1/2 × |||(Shu− uh,Shz− zh)|||

Analogously, for
B := (p,div (Shu− uh)) + (λ, div (Shz− zh)

DOI 10.20347/WIAS.PREPRINT.2923 Berlin 2022



Pressure-robustness in the context of optimal control 6

one obtains the estimate

|B| ≤
(
‖∇p‖2(V0

h)? + ‖∇λ‖2(V0
h)?

)1/2
× |||(Shu− uh,Shz− zh)|||

The summation of both estimates yields

|||(Shu− uh,Shz− zh)|||2 =
−1

ν

(
B + α−1/2A

)
≤ ν−1

((
‖∇p‖2(V0

h)? + ‖∇λ‖2(V0
h)?

)1/2

+ α−1/2
(
‖u− Shu‖2 + ‖z− Shz‖2

)1/2
)

× |||(Shu− uh,Shz− zh)|||.

This concludes the proof.

3.3 Pressure-robust discretization

In this section, we assume the existence of some reconstruction operator Π : Vh + V →Wh that maps
discretely divergence-free functions to exactly divergence-free function, i.e., it holds

Π: V0
h →Wh ∩ {ϕ ∈ H(div,Ω) : div ϕ = 0}.

For the Bernardi–Raugel finite element methods used in the numerical examples one can use the stan-
dard interpolation Π = IBDM1 into the Brezzi-Douglas-Marini space Wh := BDM1(T ) := P1(T ) ∩
H(div,Ω) where P1 denotes the piecewise affine vector-valued polynomials. This operator than has the
property

‖ϕ−Πϕ‖L2(Ω) . hm‖ϕ‖H1+m for m ∈ {1, 2} and ϕ ∈ Hm(Ω) (3.6)

which can be found in textbooks like [3]. The Friedrichs inequality ‖ϕ‖L2(Ω) ≤ CF ‖∇ϕ‖L2(Ω) then also
implies the estimate

‖Πϕ‖L2(Ω) ≤ ‖ϕ−Πϕ‖L2(Ω) + ‖ϕ‖L2(Ω . (h+ CF )‖∇ϕ‖L2(Ω) for any ϕ ∈ V. (3.7)

For higher-order finite elements (k ≥ 2) the same property for m ∈ {1, . . . , k + 1} and additional
orthogonality properties are needed such that, for any g ∈ Hk−1(Ω), it holds

(g, ϕ−Πϕ) . hk‖g‖Hk−1‖∇ϕ‖

to allow for an estimation of the consistency error by

‖g ◦ (1−Π)‖2(V0
h)? := sup

ϕh∈V0
h

(g, (1−Π)ϕh)

‖∇ϕh‖L2(Ω)
. hk‖g‖Hk−1 . (3.8)

For more details and choices of reconstruction operators for higher order finite element methods see,
e.g., [20, 21, 18].
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3.3.1 Partially pressure-robust discretization

In the optimal control setting, a naive approach to pressure robustness would be the use of a pressure
robust discretization of the Stokes equation in (P), giving the problem

min
(qh,uh,ph)∈Q×Vh×Qh

1

2
‖uh − ud‖2L2(Ω) +

α

2
‖qh‖2L2(Ω)

s.t.

{
ν(∇uh,∇ϕh) + (ph,div ϕh) = (f + qh,Πϕh) ∀ϕh ∈ V,

(div uh, ψh) = 0 ∀ψh ∈ Qh.

Here following the variational discretization approach of [15] the control qh ∈ Q is only discretized implicitly
by the optimality conditions. In the case at hand the optimality conditions yield qh = −α−1/2Πzh =
−α−1/2Πwh ∈Wh.

Following the same arguments as in Section 2 the solution of this discretized optimization problem is given
equivalently by a solution (uh, zh, ph, λh) ∈ Vh ×Vh ×Qh ×Qh of

ν(∇uh,∇ϕh) + (div ϕh, ph) = (f − α−1/2Πzh,Πϕh) ∀ϕh ∈ Vh

(div uh, ψh) = 0 ∀ψh ∈ Qh
ν(∇ϕh,∇zh) + (div ϕh, λh) = α−1/2(uh − ud, ϕh) ∀ϕh ∈ Vh

(div zh, ψh) = 0 ∀ψh ∈ Qh.

The optimality system shows that we can not expect a real advantage of this partially pressure robust
discretization compared to the classical formulation, since the adjoint still suffers from a lack of pressure
robustness and associated consistency errors for hidden gradient fields in the data. That this is indeed the
case is shown in the numerical examples in Section 5.

3.3.2 Fully pressure-robust discretization

To obtain a fully pressure-robust method, in addition to the Stokes equation also the cost functional needs
to be modified as follows

min
(qh,uh,ph)∈Q×Vh×Qh

1

2
‖Πuh − ud‖2L2(Ω) +

α

2
‖qh‖2L2(Ω)

s.t.

{
ν(∇uh,∇ϕh) + (ph,div ϕh) = (f + qh,Πϕh) ∀ϕh ∈ Vh,

(div uh, ψh) = 0 ∀ψh ∈ Qh.

Again, the optimization problem is equivalent to searching for a solution of the reduced optimality system.
Hence, we search (uh, zh, ph, λh) ∈ Vh ×Vh ×Qh ×Qh solving

ν(∇uh,∇ϕh) + (div ϕh, ph) = (f − α−1/2Πzh,Πϕh) ∀ϕh ∈ Vh,

(div uh, ψh) = 0 ∀ψh ∈ Qh,
ν(∇ϕh,∇zh) + (div ϕh, λh) = α−1/2(Πuh − ud,Πϕh) ∀ϕh ∈ Vh,

(div zh, ψh) = 0 ∀ψh ∈ Qh.

(3.9)
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4 Analysis of the fully pressure-robust method

Lemma 4.1 (A priori error estimate). For the solution (uh, zh) of (3.9) and the discrete Stokes projectors
(Shu, Shz) of the (assumed to be sufficiently smooth) exact solutions, it holds

|||(Shu− uh, Shz− zh)||| ≤
(
‖∆u ◦ (1−Π)‖2

V0
h
? + ‖∆z ◦ (1−Π)‖2

V0
h
?

)1/2

+
1

να1/2

(
‖(1−ΠSh)u ◦Π‖2(V0

h)?

+ ‖(1−ΠSh)z ◦Π‖2(V0
h)?

)1/2
.

The consistency error caused by the reconstruction operators can be estimated under the assumption of the
H2-regularity of the Stokes operator on the given domain and (3.6), (3.8) for the reconstruction operator, by

‖∆w ◦ (1−Π)‖2(V0
h)? := sup

ϕh∈V0
h

(∆w, (1−Π)ϕh)

‖∇ϕh‖L2(Ω)
. hk‖∆w‖Hk−1 ,

‖(1−ΠSh)w ◦Π‖2(V0
h)? := sup

ϕh∈V0
h

((1−ΠSh)w,Πϕh)

‖∇ϕh‖L2(Ω)
. hk+1‖w‖Hk .

Remark 4.2. The second norm compares w with its reconstructed Stokes projection. For the exactly di-
vergence free Scott–Vogelius element it holds Π = 1 and hence one obtains the same estimate as in
Lemma 3.1.

Proof of Lemma 4.1. Using (3.2) and testing the first equation of (3.9) with ϕh = Shu − uh ∈ V0
h, and

using f = −ν∆u−∇p+ α−1/2z and (∇p,Πϕh) = 0 reveals

ν‖∇(Shu− uh)‖2L2(Ω) = ν(∇(u− uh),∇(Shu− uh))

= − ν(∆u,Shu− uh)− (f − α−1/2Πzh,Π(Shu− uh))

= − ν(∆u, (1−Π)(Shu− uh))

− α−1/2(z−Πzh,Π(Shu− uh)).

Analogously, one obtains

ν‖∇(Shz− zh)‖2L2(Ω) = −ν(∆z, (1−Π)(Shz− zh)) + α−1/2(u−Πuh,Π(Shz− zh)).

Observe that

−ν(∆u, (1−Π)(Shu− uh))− ν(∆z, (1−Π)(Shz− zh))

≤ ν‖∆u ◦ (1−Π)‖V0
h
?‖∇(Shu− uh)‖L2(Ω)

+ ν‖∆z ◦ (1−Π)‖V0
h
?‖∇(Shz− zh)‖L2(Ω)

≤ ν
(
‖∆u ◦ (1−Π)‖2

V0
h
? + ‖∆z ◦ (1−Π)‖2

V0
h
?

)1/2

× |||(Shu− uh,Shz− zh)|||.

Similar to the Galerkin case, we have the additional higher order terms (with factor −α−1/2)

A := (u−Πuh,Π(Shz− zh))− (z−Πzh,Π(Shu− uh)).

DOI 10.20347/WIAS.PREPRINT.2923 Berlin 2022
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Again, some manipulations reveal

(z−Πzh,Π(Shu− uh)) = (z−ΠShz,Π(Shu− uh)) + (Π(Shz− zh),Π(Shu− uh))

(u−Πuh,Π(Shz− zh)) = (u−ΠShu,Π(Shz− zh)) + (Π(Shu− uh),Π(Shz− zh))

and the subtraction of both lines leads to

|A| ≤
(
‖(1−ΠSh)u ◦Π‖2(V0

h)? + ‖(1−ΠSh)z ◦Π‖2(V0
h)?

)1/2

× |||(Shu− uh,Shz− zh)|||.

The combination of these estimates concludes the proof of the first claim and it remains to show the bounds
for the consistency errors. The first bound follows from (3.8) and the second bound can be estimated as
follows. The stability estimate (3.7) and triangle inequalities yield

sup
ϕh∈V0

h

(w −ΠShw,Πϕh)

‖∇ϕh‖L2(Ω)
. ‖w −ΠShw‖L2

≤ ‖w − Shw‖L2 + ‖w −Πw‖L2 + ‖(1−Π)(w − Shw)‖L2

. ‖w − Shw‖L2 + ‖w −Πw‖L2 + h‖∇(w − Shw)‖L2 .

The claimed estimate now follows from (3.6) and (3.4).

5 Numerical examples

This section visualizes the theoretical results in two numerical examples that were conducted with the open
source Julia package GradientRobustMultiPhysics.jl.

To distinguish all three schemes, a common formulation is given by

min
(qh,uh,ph)∈Q×Vh×Qh

1

2
‖Π1uh − ud‖2L2(Ω) +

α

2
‖qh‖2L2(Ω)

s.t.

{
ν(∇uh,∇ϕh) + (ph, div ϕh) = (f + qh,Π2ϕh) ∀ϕh ∈ Vh,

(div uh, ψh) = 0 ∀ψh ∈ Qh,

where the classical scheme employs Π1/Π2 = id/id, the partially pressure-robust scheme employs
Π1/Π2 = id/Π and the new fully pressure-robust scheme employs Π1/Π2 = Π/Π.

5.1 Example 1

This example studies the prescribed polynomial solution

u(x, y) = curl(x4(x− 1)4y4(y − 1)4)

of the Stokes problem −ν∆u = q on the unit square Ω = (0, 1)2. The solution satisfies q := −ν∆u ∈
H1

0 (Ω) and therefore (q,u) minimizes the objective functional for α = 0, f = 0 and ud := u. For α > 0,
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α = 10−6, ν = 1 α = 10−1, ν = 1

α = 10−6, ν = 10−3 α = 10−1, ν = 10−3

Figure 5.1: Example 1: Reference solutions for u (larger images) and z (smaller images) for ν = 1 (top row)
and ν = 10−3 (bottom row) and α = 10−6 (left column) and α = 10−1 (right column), and independent
of ε.

the exact minimizer is unknown and a reference solution is computed on a very fine grid with the second-
order divergence-free Scott-Vogelius finite element method. To study pressure-robustness, we perturb the
data with some irrotational gradient field

ud(x, y) := u(x, y) + ε∇(cos(x) sin(y))

for different choices of ε ≥ 0. From the analysis it is clear that any divergence-free scheme like the Scott-
Vogelius element ignores the irrotational part in the data and therefore is independent of ε. Figure 5.1 shows
some reference solutions for fixed ν = 1 and different choices of α.

Figures 5.3 shows the convergence history for ν = 1, where all methods under consideration perform very
similar. Only in the case α = 10−6 and α = 10−4 the errors for q of the classical method and the partially
pressure-robust method are worse than the error of the pressure-robust method. Also the velocity error
behaves a bit suboptimal pre-asymptotically in these cases.

Figure 5.2 shows some discrete solutions of the classical scheme and the fully pressure-robust scheme with
ε = 10−4 and moderate viscosity ν = 10−3 and different choices of α. For smaller α significant errors
in u and z can be seen, while for α = 0.1 only z looks heavily distorted in the classical scheme. For the
smallest α = 10−6 also the z of the full robust scheme looks different than the reference solution, but at
least it looks symmetric and the magnitude is matched. Images for the partially pressure-robust scheme
are not presented, but look very similar to those for the classical one. The observations are also inline with
the convergence histories in Figure 5.4. Here the situation for the classical and also the partially pressure-
robust method is dramatically different. The error in the energy norm even diverges pre-asymptotically (the
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α = 10−1, classical α = 10−1, fully p-robust

α = 10−3, classical α = 10−3, fully p-robust

α = 10−6, classical α = 10−6, fully p-robust

Figure 5.2: Example 1: Discrete solutions uh (larger images) and zh (smaller images) for classical (left) and
fully pressure-robust (right) Bernardi–Raugel method for ε = 10−4, ν = 10−3 and α = 10−1, 10−3, 10−6

(from top to bottom).
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classical scheme

partially p-robust scheme

fully p-robust scheme

Figure 5.3: Example 1: Convergence histories for the classical (top row), partially pressure-robust (middle
row) and fully pressure-robust (bottom row) Bernardi–Raugel methods for ε = 10−4, ν = 1 and various
choices of α. The first, second and third column depict the total energy error, velocity error, and the control
error, respectively.
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classical scheme

partially p-robust scheme

fully p-robust scheme

Figure 5.4: Example 1: Convergence histories for the classical (top row), partially pressure-robust (middle
row) and fully pressure-robust (bottom row) Bernardi–Raugel methods for ε = 10−4, ν = 10−3 and various
choices of α. The first, second and third column depict the total energy error, velocity error, and the control
error, respectively.

DOI 10.20347/WIAS.PREPRINT.2923 Berlin 2022



Pressure-robustness in the context of optimal control 14

Figure 5.5: Coarsest grids used in Example 1 (left) and Example 2 (right).

effect scales with α−1 and becomes more pronounced for smaller ν. Only the fully pressure-robust method
shows optimal convergence rates in the full range of tested parameters.

5.2 Example 2

Consider a unit square Ω = (0, 1)2 = ΩC∪ΩF ∪ΩO decomposed into a control region ΩC = (0, 2/5)×
(0, 1), a free region ΩF = (2/5, 3/5) × (0, 1) and an observation region ΩO = (3/5, 1) × (0, 1). The
right part of Figure 5.5 shows a coarse triangulation where these regions are marked with red, green and
blue color in the mentioned order.

By straightforward arguments, the optimal control is reformulated into

min
(qh,uh,ph)∈Q×Vh×Qh

1

2
‖Π1uh − ud‖2L2(ΩO) +

α

2
‖qh‖2L2(ΩC)

s.t.

{
ν(∇uh,∇ϕh) + (ph, div ϕh) = (f ,Π2ϕh) + (qh,Π2ϕh)ΩC

∀ϕh ∈ Vh,

(div uh, ψh) = 0 ∀ψh ∈ Qh.

The optimization problem is equivalent to searching for a solution (uh, zh, ph, λh) ∈ Vh×Vh×Qh×Qh
of

ν(∇uh,∇ϕh)− (div ϕh, ph) = (f ,Π2ϕh)− (α−1/2Π2zh,Π2ϕh)ΩC
∀ϕh ∈ Vh,

(div uh, qh) = 0 ∀qh ∈ Qh,
ν(∇ϕh,∇zh) + (div ϕh, λh) = α−1/2(Π1uh − ud,Π1ϕh)ΩO

∀ϕh ∈ Vh,

(div zh, qh) = 0 ∀qh ∈ Qh.

This example employs the same data from Example 1, but with a perturbation that really is orthogonal on
divergence-free functions when integrated over ΩO, i.e.

ud(x, y) := u(x, y) + ε∇(sin(x− 0.6) cos(y)).

Moreover, we prescribe f := −µ∆u such that (0,u) is the minimizer of the objective functional for
α = 0, so this time the control should be close to z = 0. For α > 0, the exact minimizer is once
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α = 10−1, classical α = 10−1, fully p-robust

α = 10−3, classical α = 10−3, fully p-robust

α = 10−6, classical α = 10−6, fully p-robust

Figure 5.6: Example : Discrete solutions uh (larger images) and zh (smaller images) for classical (left) and
fully pressure-robust (right) Bernardi–Raugel method for ε = 10−4, ν = 10−3 and α = 10−1, 10−3, 10−6

(from top to bottom).
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classical scheme

partially p-robust scheme

fully p-robust scheme

Figure 5.7: Example 2: Convergence histories for the classical (top row), partially pressure-robust (middle
row) and fully pressure-robust (bottom row) Bernardi–Raugel methods for ε = 10−4, ν = 10−3 and various
choices of α. The first, second and third column depict the total energy error, velocity error, and the control
error, respectively.
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again approximated on a very fine grid with the second-order divergence-free Scott-Vogelius finite element
method.

As in the previous example Figure 5.6 depicts some discrete solutions of the classical scheme and the
fully robust scheme for ν = 10−3 and different choices of α. The solution zh of the fully robust method is
about two orders of magnitudes closer to z = 0 than the classical scheme. This is also supported by the
convergence histories in Figure 5.7. For very small α the errors for the fully robust scheme are also about
two order of magnitudes better than the errors of the classical scheme and also seem to converge faster.
This may be explained by the velocity error uh that is almost independent of α and only gets larger for very
small α. This might be caused by the higher-order term in Lemma 4.1.
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