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1 Introduction 1

Abstract

We investigate linear parabolic systems with coupled nonsmooth capaci-

ties and mixed boundary conditions. We prove generalized resolvent estimates

in W
−1,p spaces. The method is an appropriate modification of a technique

introduced by Agmon to obtain L
p estimates for resolvents of elliptic differ-

ential operators in the case of smooth boundary conditions. Moreover, we

establish an existence and uniqueness result.

1 Introduction

We are interested in the investigation of strongly coupled linear parabolic systems
with coupled nonsmooth capacities and mixed boundary conditions of the form

∂

∂t

m∑

k=1

ejkuk −
m∑

k=1

N∑

β=0

(
N∑

α=1

Dα
(
ajk

αβDβuk

)
− ajk

0βDβuk

)
= fj on Ω × R+,

m∑

k=1

N∑

α=1

N∑

β=0

ajk
αβDβuk να = gj on ΓN × R+,

uj = 0 on ΓD × R+,
m∑

k=1

ejkuk(0) = wj on Ω,

j = 1, . . . , m,

(1)

where (D0v, D1v, . . . , DNv) = (v, ∂v
∂x1

, . . . , ∂v
∂xN

), and να denotes the α-th component
of the outer unit normal vector. In our system the coefficient functions ejk in the
terms with the time derivative as well as the components of the diffusion coefficients
ajk

αβ are discontinuous space functions. The aim of the paper are (modified) resolvent

estimates related to the system (1) in the scale of W 1,p
0 , W−1,p spaces where p > 2.

For the special case of (1) with only one parabolic equation (m = 1), e11 = 1 and
mixed boundary conditions a corresponding result can be found in a paper of Gröger,
Rehberg [5].

Writing (1) in form of an operator equation

(Eu)′ + Au = F, Eu(0) = w0,

where the operator E corresponds to the multiplication by the m × m matrix ejk

of L∞(Ω) coefficients (see (8)) and A represents the linear second order elliptic
differential operator (see (5)) we intend to prove in the paper (modified) resolvent
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estimates of the form

‖(A + λE)−1‖L(W−1,p(Ω∪ΓN )m,W 1,p
0

(Ω∪ΓN )m) ≤ c,

‖E(A + λE)−1‖L(W−1,p(Ω∪ΓN )m,W−1,p(Ω∪ΓN )m) ≤
c

|λ|
,

‖(A + λE)−1E‖L(W 1,p
0

(Ω∪ΓN )m,W 1,p
0

(Ω∪ΓN )m) ≤
c

|λ|
if Re λ ≥ 0.

(2)

In Section 2 we introduce the notation and some auxiliary results. Section 3 contains
some results for linear elliptic systems with complex coefficients. A Hilbert space
formulation of the instationary problem and an existence and uniqueness result for
this formulation are given in Section 4. Section 5 is devoted to the main result of
the paper. There we establish the resolvent estimates. In this section we apply
techniques used in [1, 5]. Moreover, we derive conclusions which allow us to to
apply results of [2] for evolution problems of parabolic type in Banach spaces. This
then is done in Section 6, where we provide a regularity result for the corresponding
parabolic system.

2 Notation

Let G = Ω ∪ ΓN be a bounded regular subset of RN (see [5, Section 2], [4, Defini-
tion 2]). We denote by G◦, ∂G and G the interior, the boundary and the closure
of G, respectively. We use different function spaces defined on G. All functions are
considered to be complex-valued. For p ∈ [1,∞) we introduce the spaces W 1,p

0 (G)
to be the closure of the set

{
u|G◦ : u ∈ C∞

0 (RN), supp u ∩ (G \ G) = ∅
}

in the space W 1,p(G◦). By W−1,p(G) we denote the dual space of W 1,p′

0 (G), where
p′ is related to p by 1

p
+ 1

p′
= 1. We introduce the abbreviations

V1,p := W 1,p
0 (G)m, V−1,p := W−1,p(G)m,

Y p := Lp(G, C)m, Zp := Lp(G, CN+1)m.

On V1,p we use the norm

‖u‖p
V1,p =

∫

G

(
m∑

j=1

N∑

α=0

|Dαuj|
2

)p/2

dx, u = (u1, . . . , um) ∈ V1,p.

As in [6] we suppose the anti-linear or conjugate-linear forms to form the dual spaces.
We define the map J ∈ L(V1,2,V−1,2) by

〈Ju, v〉V1,2 =

∫

G

m∑

j=1

N∑

α=0

DαujD
αvj dx, ∀u, v ∈ V1,2,
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where Duj = (D0uj , D
1uj, . . . , D

Nuj) = (uj,
∂uj

∂x1

, . . . ,
∂uj

∂xN
) for uj ∈ W 1,p

0 (G). With
the notation Du = (Du1, . . . , Dum) we obtain

〈Ju, v〉V1,2 =

∫

G

Du · Dv dx, ∀u, v ∈ V1,2.

If it is necessary to indicate the subset G ⊂ RN on which the functions spaces are
considered we write JG instead of J . Let us remark that J corresponds to an m
component map from W 1,2

0 (G) to W−1,2(G) which is used in [5] for the treatment of
one single equation. Therefore we can carry over the corresponding arguments and
results from [5, Section 2] and cite them here.

First, for p ≥ 2, J maps V1,p continuously into V−1,p. Second, for p ∈ [2,∞), let Rp

denote the class of all regular subsets G ⊂ R
N such that JG maps W 1,p

0 (G)m onto
W−1,p(G)m. For G ∈ Rp we introduce the number

γp,G := sup
{
‖u‖W 1,p

0
(G)m : u ∈ W 1,p

0 (G)m, ‖JGu‖W−1,p(G)m = 1
}
. (3)

We will write γp instead of γp,G if the choice of G is clear. Third, we have γ2 = 1 and,
according to the Open Mapping Theorem, γp < ∞. Fourth, the following results
can be found in [4] (for real-valued functions) and in [5].

Lemma 2.1 i) For every regular subset G ⊂ RN there exists a p0 > 2 such that
G ∈ Rp0

.
ii) If G ∈ Rp0

for some p0 > 2, then G ∈ Rp for all p ∈ [2, p0] and

γp ≤ γθ
p0

where
1

p
=

θ

p0
+

1 − θ

2
.

3 Results for linear elliptic systems

To write down formulas more concise we will write quantities y ∈ Cm(N+1) in the
form y = {yα

j }j=1,...,m, α=0,...,N .

For j, k = 1, . . . , m let (ajk
αβ)α,β=0,...,N = (akj

αβ)α,β=0,...,N be measurable

complex valued (N + 1) × (N + 1) matrix functions with

ajk
αβ = ajk

βα ∈ L∞(G), α, β = 0, 1, . . . , N,

Re

(
m∑

j,k=1

N∑

α,β=0

ajk
αβ(x)yβ

k y α
j

)
≥ a0|y|

2,

m∑

j=1

N∑

α=0

∣∣∣∣∣

m∑

k=1

N∑

β=0

ajk
αβ(x)yβ

k

∣∣∣∣∣

2

≤ a2
1|y|

2 f.a.a. x ∈ G, ∀ y ∈ C
m(N+1),

(4)
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where a1 ≥ a0 > 0 are suitable constants. By means of these coefficient functions
we define the linear continuous operator A from V1,2 into V−1,2 by

〈Au, v〉V1,2 :=

∫

G

m∑

j,k=1

N∑

α,β=0

ajk
αβ DβukD

αvj dx, u, v ∈ V1,2. (5)

The restriction of the operator A to V1,p is continuous from V1,p into V−1,p, too.

Theorem 3.1 We assume that G ∈ Rq for some q > 2 and that the coefficients ajk
αβ

fulfil (4). Let K :=
(
1 −

(
a0

a1

)2
)1/2

and let p ∈ [2, q] be such that γpK < 1, where γp

is defined in (3). Then the operator A maps V1,p onto V−1,p. Moreover, there holds
true the estimate

‖A−1‖L(V−1,p,V1,p) ≤
a0

a2
1

γp

1 − γpK
. (6)

Proof. Let τ := a0 a−2
1 . We define an operator Aτ : Z2 → Z2 by

(Aτz)α
j = zα

j − τ
m∑

k=1

N∑

β=0

ajk
αβ zβ

k

for z = {zα
j }j=1,...,m, α=0,...,N ∈ Z2. For arbitrarily fixed f ∈ V−1,p we introduce the

operator Qf : V1,p → V1,p,

Qfu := J−1(D∗AτDu + τf), u ∈ V1,p.

Here D∗ means the adjoint of D : V1,2 → Z2. Remembering the definition of A and
Aτ we find

Qfu = u − τJ−1(Au − f), u ∈ V1,p.

Our aim is to prove that the equation Au = f can be solved. For this purpose we
show that the operator Qf : V1,p → V1,p is strictly contractive. For z ∈ Zp we obtain

|(Aτz)(x)|2 = |z(x)|2 − 2τ Re
( m∑

j,k=1

N∑

α,β=0

ajk
αβ(x) zβ

k (x) z α
j (x)

)

+ τ 2
m∑

j=1

N∑

α=0

∣∣∣
m∑

k=1

N∑

β=0

ajk
αβ(x) zβ

k (x)
∣∣∣
2

≤ (1 + a2
1τ

2 − 2a0τ)|z(x)|2 = K2 |z(x)|2.

Thus we conclude that ‖Aτz‖Zp ≤ K‖z‖Zp for all z ∈ Zp. Note that for the adapted
spaces of domain and range the estimates ‖D∗‖L(Zp,V−1,p) ≤ ‖D‖L(V1,p,Zp) = 1 and
‖J−1‖L(V−1,p,V1,p) = γp hold true. We estimate

‖Qfu − Qfv‖V1,p

= ‖J−1D∗AτD(u − v)‖V1,p

≤ ‖J−1‖L(V−1,p,V1,p)‖D
∗‖L(Zp,V−1,p)‖Aτ‖L(Zp,Zp)‖D‖L(V1,p,Zp)‖u − v‖V1,p

≤ γp K ‖u − v‖V1,p ∀u, v ∈ V1,p.
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Since by assumption γp K < 1 the operator Qf is strictly contractive and the fixed
point u ∈ V1,p is a solution to Au = f . Thus A maps V1,p onto V−1,p. Furthermore,
if for arbitrarily given f, g ∈ V−1,p the fixed points of Qf and Qg are uf and ug,
respectively, then

‖uf − ug‖V1,p = ‖Qfuf − Qgug‖V1,p ≤ ‖Qfuf − Qfug‖V1,p + ‖Qfug − Qgug‖V1,p

≤ γp K ‖uf − ug‖V1,p + τ γp‖f − g‖V−1,p.

And we obtain
‖uf − ug‖V1,p ≤

a0

a2
1

γp

1 − γpK
‖f − g‖V−1,p,

which proves the norm estimate (6). �

4 The instationary problem

Let G be a bounded regular subset of RN , S = [0, T ]. We assume that (ejk)j,k=1,...,m

is a real-valued m × m matrix function on G with the properties

ejk = ekj ∈ L∞(G), j, k = 1, . . . , m,

m∑

j=1

∣∣∣∣∣

m∑

k=1

ejk(x)yk

∣∣∣∣∣

2

≤ e2
1|y|

2,

Re

(
m∑

j,k=1

ejk(x)ykyj

)
≥ e0|y|

2 f.a.a. x ∈ G, ∀ y ∈ C
m.

(7)

By means of this matrix we define the operator E from V1,2 into V−1,2 by

〈Eu, v〉V1,2 =

∫

G

m∑

j,k=1

ejk ukvj dx, u, v ∈ V1,2. (8)

For right hand sides F ∈ L2(S,V−1,2) and initial values w0 ∈ Y 2 we consider the
linear instationary problem

(Eu)′ + Au = F, Eu(0) = w0, u ∈ L2(S,V1,2), Eu ∈ H1(S,V−1,2). (9)

Theorem 4.1 Let G be a bounded regular subset of R
N and let the coefficients ajk

αβ

and ejk fulfil the properties (4) and (7), respectively. Then, for all F ∈ L2(S,V−1,2)
and all initial values w0 ∈ Y 2 there is a unique solution u to the initial value prob-
lem (9).

Main ideas of the proof. Applying techniques as used in [3, Hilfssatz 2.84] (for one
component) and the properties (7) we can show that the operator

Λ: {u ∈ L2(S,V1,2), Eu ∈ H1(S,V−1,2), Eu(0) = w0} ⊂ L2(S, Y 2) → L2(S,V−1,2),
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Λu = (Eu)′

is maximal monotone. According to (4) the operator A : L2(S,V1,2) → L2(S,V−1,2)
is Lipschitz continuous and strongly monotone. Therefore by a theorem of Browder
(see [8, vol. II/B]), for all F ∈ L2(S,V−1,2) and all initial values w0 ∈ Y 2 there is a
unique solution u to the initial value problem (9). �

Now we are interested in assertions concerning higher regularity of the solution to
(9). For this purpose we will deal with resolvent estimates and will apply results of
Favini and Yagi [2].

5 Resolvents

We denote by H the complex half plane

H := {λ ∈ C : Re λ ≥ 0}.

Lemma 5.1 Let G be a bounded regular subset of RN and let the coefficients ajk
αβ

and ejk fulfil the properties (4) and (7), respectively. Then there exists a q > 2 such
that for every p ∈ [2, q] and all λ ∈ H
i) the mapping (A + λE)|V1,p is a continuous bijection from V1,p onto V−1,p and
ii) the mapping (IdV−1,p + λEA−1) is a continuous bijection from V−1,p onto itself.

Proof. Let λ ∈ H be fixed. We set κ = 1 − a0

2a1

sgn (Im λ) i. Then |κ|2 < 2 and

Re (κλ) = Re λ + a0

2a1

|Im λ|. Furthermore, note that Im 〈Eu, u〉 = 0 for u ∈ V1,2.

Then, for u ∈ V1,2 we can estimate

2‖Au + λEu‖V−1,2‖u‖V1,2 ≥ |κ〈Au + λEu, u〉| ≥ Re (κ〈Au + λEu, u〉)

= Re 〈Au, u〉 − Im κ Im 〈Au, u〉 + Re (κλ) Re 〈Eu, u〉 − Im (κλ) Im 〈Eu, u〉

≥ Re 〈Au, u〉 −
a0

2a1

|Im 〈Au, u〉| + (Re λ +
a0

2a1

|Im λ|) Re 〈Eu, u〉

≥ a0‖u‖
2
V1,2 −

a0

2
‖u‖2

V1,2 +
a0

2a1
|λ|e0‖u‖

2
Y 2

≥
a0

2

(
‖u‖2

V1,2 +
e0

a1
|λ|‖u‖2

Y 2

)
.

Here we have used the properties (4), (7). In summary we obtain

‖u‖V1,2 ≤
4

a0
‖Au + λEu‖V−1,2 ∀u ∈ V1,2. (10)

Since the mappings A|V1,p as well as E|V1,p are linear and continuous from V1,p into
V−1,p for all p ∈ [2,∞), the continuity of (A + λE)|V1,p is obvious and injectivity
results from (10).
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By Theorem 3.1 there exists a q > 2 such that for all p ∈ [2, q] the operator A
from V1,p onto V−1,p is linear and continuous, and A−1 : V−1,p → V1,p is linear and
continuous, too. Therefore, (IdV−1,p + λEA−1) is linear and continuous from V−1,p

into itself. Injectivity can be shown as follows: Let v + λEA−1v = 0 for some
v ∈ V1,p. Then u := A−1v ∈ V1,p fulfills Au + λEu = 0 which by the injectivity of
A + λE leads to u = 0 and v = 0.

Next we show the surjectivity. Let f ∈ V−1,p arbitrarily be given. We want to solve
the equation Au + λEu = f . We set v = Au, u = A−1v and obtain the problem

v + λEA−1v = f. (11)

Since A−1 : V−1,p → V1,p is continuous and the embedding W 1,p
0 (G) →֒ Lp(G) is com-

pact the operator A−1 : V−1,p → Y p is completely continuous. On the other hand, E
considered as mapping from Y p to V−1,p is continuous. Therefore EA−1 : V−1,p →
V−1,p is completely continuous. Hence, by the Riesz-Schauder Theory IdV−1,p +
λEA−1 could fail to be an operator from V−1,p onto V−1,p only if 1

λ
is an eigenvalue

of −EA−1. If 1
λ

would be an eigenvalue and v∗ 6= 0, v∗ ∈ V−1,p would be the corre-
sponding eigenfunction we would find u∗ = A−1v∗ 6= 0, u∗ ∈ V1,p (since A is linear
and surjective). We apply (10) to u∗ and obtain

‖u∗‖V1,2 ≤ c‖Au∗ + λEu∗‖V−1,2 = c‖v∗ + λEA−1v∗‖V−1,2.

The last term is zero if ( 1
λ
, v∗) is an eigenpair which gives the contradiction to u∗ 6= 0.

Thus, IdV−1,p+λEA−1 is a mapping from V−1,p onto V−1,p and for all f ∈ V−1,p there
is a solution v ∈ V1,p to (11). Setting u = A−1v we get a solution to Au + λEu = f .
Thus, (A + λE)|V1,p : V1,p → V−1,p is surjective, too. �

Theorem 5.1 Let G be a bounded regular subset of R
N and let the coefficients ajk

αβ

and ejk fulfil the properties (4) and (7), respectively. Then there exists a q > 2 such
that for every p ∈ [2, q]

sup
λ∈H

‖(A + λE)−1‖L(V−1,p,V1,p) < ∞,

sup
λ∈H

‖λE(A + λE)−1‖L(V−1,p,V−1,p) < ∞,

sup
λ∈H

‖(A + λE)−1λE‖L(V1,p,V1,p) < ∞.

Proof. 1. We define the set G̃ := G × (−1, 1) which becomes a regular subset in

RN+1. Thus we find a q̃ > 2 such that G̃ belongs to Rq̃(R
N+1) (see Section 2).

For λ ∈ H we define the operator Ãλ : W 1,2
0 (G̃)m → W−1,2(G̃)m,

〈Ãλũ, ṽ〉W 1,2
0

(G̃)m :=

∫

G̃

m∑

j,k=1

N+1∑

α,β=0

ãjk
αβ DβũkD

αṽj dx, ũ, ṽ ∈ W 1,2
0 (G̃)m, (12)
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where for j, k = 1, . . . , m the (N + 2) × (N + 2) matrix functions ãjk are given by

ãjk
αβ(x̃) := κ ajk

αβ(x) for α, β = 0, . . . , N,

ãjk
α(N+1)(x̃) = ãjk

(N+1) α(x̃) := 0 for α = 0, . . . , N,

ãjk
(N+1)(N+1)(x̃) :=

κ λ a1 ejk(x)

|λ| e0
, x̃ = (x, xN+1) ∈ G̃,

κ is the same as in the proof of Lemma 5.1.

2. Then, by (4), (7)

m∑

j=1

N+1∑

α=0

∣∣∣∣∣

m∑

k=1

N+1∑

β=0

ãjk
αβ yβ

k

∣∣∣∣∣

2

=
m∑

j=1

N∑

α=0

∣∣∣∣∣κ
m∑

k=1

N∑

β=0

ajk
αβ yβ

k

∣∣∣∣∣

2

+
m∑

j=1

∣∣∣∣∣

m∑

k=1

κλa1ejk

|λ|e0
yN+1

k

∣∣∣∣∣

2

≤ 2a2
1

{
m∑

k=1

N∑

β=0

|yβ
k |

2 +

(
e1

e0

)2 m∑

k=1

|yN+1
k |2

}

≤ 2a2
1

(
1 +

(
e1

e0

)2
)
|y|2 ∀y ∈ C

m(N+2).

3. Furthermore, we estimate

Re

(
m∑

j,k=1

N+1∑

α,β=0

ãjk
αβ yβ

k y α
j

)

= Re

(
m∑

j,k=1

N∑

α,β=0

κajk
αβ yβ

k y α
j +

m∑

j,k=1

κλa1ejk

|λ|e0
yN+1

k y N+1
j

)

≥ Re
m∑

j,k=1

N∑

α,β=0

ajk
αβ yβ

k y α
j − |Im κ|

∣∣∣∣∣Im
m∑

j,k=1

N∑

α,β=0

ajk
αβ yβ

k y α
j

∣∣∣∣∣

+
Re (κλ)a1

|λ|e0
Re

m∑

j,k=1

ejk yN+1
k y N+1

j −
Im (κλ)a1

|λ|e0
Im

m∑

j,k=1

ejk yN+1
k y N+1

j

≥ a0

m∑

j=1

N∑

α=0

|yα
j |

2 −
a0

2

m∑

j=1

N∑

α=0

|yα
j |

2

+
a1Re λ + a0

2
|Im λ|

|λ|e0
Re

m∑

j,k=1

ejk yN+1
k y N+1

j

≥
a0

2

m∑

j=1

N∑

α=0

|yα
j |

2 +
a0

2

m∑

j=1

|yN+1
j |2

≥
a0

2

m∑

j=1

N+1∑

α=0

|yα
j |

2 ∀y ∈ C
m(N+2).
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4. According to the last two steps we can apply Theorem 3.1 to the operator Ãλ

with the constants a0

2
and 2a1(1+e1/e0) instead of a0 and a1. Therefore there exists

an exponent q̃ > 2 such that for all p ∈ [2, q̃] the estimate

‖ũ‖W 1,p
0

(G̃)m ≤ c inf
λ∈H

‖Ãλũ‖W−1,p(G̃)m ∀ũ ∈ W 1,p
0 (G̃)m (13)

is fulfilled. We denote the minimal exponent of q and q̃ again by q.

5. We fix some function φ ∈ C∞
0 ((−1, 1)) with the properties 0 ≤ φ(s) ≤ 1 and

φ(s) = 1 for s ∈ [−1
2
, 1

2
]. We enlarge functions u ∈ V1,p to functions ũ defined on G̃

by the rule

ũ(x̃) = u(x)φ(s)eiµs, x̃ = (x, s) ∈ G̃, µ =

(
|λ|e0

a1

)1/2

.

Then we can validate the estimate

‖ũ‖p

W 1,p
0

(G̃)m
≥

∫ 1/2

−1/2

∫

G

(
m∑

j=1

N∑

α=0

|Dαuj|
2

)p/2

dx ds = ‖u‖p
V1,p. (14)

Moreover, for ṽ ∈ W 1,p′

0 (G̃)m we reconstruct functions v ∈ V1,p′ by

v(x) :=

∫ 1

−1

ṽ(x, s)φ(s)eiµs ds, x ∈ G,

and obtain

‖v‖p′

V1,p′
=

∫

G

(
m∑

j=1

N∑

α=0

|Dαvj |
2

)p′/2

dx

≤ c

∫

G̃

(
m∑

j=1

N∑

α=0

|Dαṽj |
2

)p′/2

dx ≤ c‖ṽ‖p′

W 1,p′

0
(G̃)m

.

Since φ ∈ C∞
0 ((−1, 1)) we can calculate

∫ 1

−1

d

ds
[φ(s)eiµs]DN+1ṽj ds

= −

∫ 1

−1

d2

ds2
[φ(s)eiµs]ṽj ds

= −

∫ 1

−1

(
φ′′(s)eiµs + 2

d

ds
(eiµs)φ′(s) − µ2eiµsφ(s)

)
ṽj ds

= −

∫ 1

−1

(
φ′′(s)eiµsṽj − 2eiµs d

ds
[φ′(s)ṽj ] − µ2eiµsφ(s)ṽj

)
ds

=

∫ 1

−1

eiµs
(
φ′′(s)ṽj + 2φ′(s)DN+1ṽj + µ2φ(s)ṽj

)
ds.
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Using this identity we estimate

|〈Ãλũ, ṽ〉| =

∣∣∣∣∣

∫

G̃

m∑

j,k=1

N+1∑

α,β=0

ãjk
αβDβũkD

αṽj dx̃

∣∣∣∣∣

=

∣∣∣∣∣

∫

G

{
κ

m∑

j,k=1

N∑

α,β=0

ajk
αβDβuk

∫ 1

−1

φ(s)eiµsDαṽj(·, s) ds

+
κλ

µ2

m∑

j,k=1

ejkuk

∫ 1

−1

d

ds
[φ(s)eiµs]DN+1ṽj ds

}
dx

∣∣∣∣∣

=

∣∣∣∣∣κ
∫

G

m∑

j,k=1

{
N∑

α,β=0

ajk
αβDβukD

αvj

+
λ

µ2
ejkuk

∫ 1

−1

eiµs
(
2φ′(s)DN+1ṽj +

(
µ2φ(s) + φ′′(s)

)
ṽj(·, s)

)
ds

}
dx

∣∣∣∣∣
= |κ〈Au + λEu, v〉|

+

∣∣∣∣∣
κλ

µ2

m∑

j,k=1

∫

G

ejkuk

∫ 1

−1

eiµs
(
2φ′(s)DN+1ṽj + φ′′(s)ṽj(·, s)

)
ds dx

∣∣∣∣∣

≤ |κ〈Au + λEu, v〉| + c‖u‖Y p‖ṽ‖W 1,p′ (G̃)m .

In summary we end up with

‖Ãλũ‖W−1,p(G̃)m ≤ c(‖Au + λEu‖V−1,p + ‖u‖Y p). (15)

6. Now we combine the estimates (13), (14) and (15) and get

‖u‖V1,p ≤ c
(
‖Au + λEu‖V−1,p + ‖u‖Y p

)
∀λ ∈ H. (16)

According to Nečas [7, Lemma 2.6.1], for every ε > 0 there exists a cε > 0 such that

‖u‖Y p ≤ ε‖u‖V1,p + cε‖u‖Y 2 .

Therefore it results from (16) and (10) and the continuous embeddings W 1,2(G) →֒
L2(G) and W−1,p(G) →֒ W−1,2(G) that

‖u‖V1,p ≤ c‖Au + λEu‖V−1,p, (17)

which proves the first assertion of the theorem.

7. Since A : V1,p → V−1,p is linear and continuous, and (17) holds, we estimate

‖λEu‖V−1,p ≤ ‖Au + λEu‖V−1,p + ‖Au‖V−1,p

≤ ‖Au + λEu‖V−1,p + c‖u‖V1,p ≤ c‖Au + λEu‖V−1,p.
(18)
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For g ∈ V−1,p we define ug = (A + λE)−1g ∈ V1,p. Using (18) we find

‖λE(A + λE)−1‖L(V−1,p,V−1,p)

= sup
{
‖λE(A + λE)−1g‖V−1,p

∣∣ g ∈ V−1,p, ‖g‖V−1,p ≤ 1
}

= sup
{
‖λEug‖V−1,p

∣∣ g ∈ V−1,p, ‖g‖V−1,p ≤ 1
}

≤ c sup
{
‖(A + λE)ug‖V−1,p

∣∣ g ∈ V−1,p, ‖g‖V−1,p ≤ 1
}

= c sup
{
‖(A + λE)(A + λE)−1g‖V−1,p

∣∣ g ∈ V−1,p, ‖g‖V−1,p ≤ 1
}

= c sup
{
‖g‖V−1,p

∣∣ g ∈ V−1,p, ‖g‖V−1,p ≤ 1
}
≤ c,

which gives the second assertion.

8. For u ∈ V1,p we can estimate

‖(A + λE)−1λEu‖V1,p ≤ ‖(A + λE)−1(A + λE)u‖V1,p + ‖(A + λE)−1Au‖V1,p

≤
(
1 + ‖(A + λE)−1‖L(V−1,p,V1,p)‖A‖L(V1,p,V−1,p)

)
‖u‖V1,p

≤ c‖u‖V1,p,

where we used the first assertion of the theorem and (4). Thus

‖(A + λE)−1λE‖L(V1,p,V1,p) = sup
u∈V1,p, ‖u‖

V1,p≤1

‖(A + λE)−1λEu‖V1,p ≤ c

proves the last assertion. �

Next we formulate a result which ensures all requirements of [2, Theorem 3.8, p.56].
Our Theorem 5.2 guarantees that (in the setting M = EA−1, L = −IdV−1,p) [2,
Theorem 3.8] can be applied.

Theorem 5.2 Let G be a bounded regular subset of RN and let the coefficients ajk
αβ

and ejk fulfil the properties (4) and (7), respectively. Moreover, let q be given by
Theorem 5.1. Then for every p ∈ [2, q] the operator EA−1 : V−1,p → V−1,p is a closed
linear operator. Moreover, the generalized resolvent set

ρEA−1(IdV−1,p) =
{
λ ∈ C : IdV−1,p + λEA−1 has a single

valued bounded inverse on V−1,p
}

contains a sector

Σ =
{
λ ∈ C : λ = r(cos ϕ + i sin ϕ), r ≥ 0, |ϕ| <

π

2
+ δ
}

for a suitable δ > 0, and the generalized resolvent fulfils

‖EA−1(IdV−1,p + λEA−1)−1‖L(V−1,p) ≤
c

|λ| + 1
∀λ ∈ Σ.
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Proof. 1. Let p ∈ [2, q] be arbitrarily fixed. We denote

I = IdV−1,p.

The operators I and EA−1 are closed linear operators defined on the whole space
V−1,p. According to the proof of Lemma 5.1, EA−1 : V−1,p → V−1,p is completely
continuous, I + λEA−1 could fail to be an operator from V−1,p onto V−1,p only if 1

λ

is an eigenvalue of −EA−1, and H lies in the generalized resolvent set ρEA−1(I).

2. Next, we prove two generalized resolvent estimates for λ ∈ H. Using the second
inequality in Theorem 5.1 and the boundedness of the linear operator A : V1,p →
V−1,p we can estimate

‖(I + λEA−1)−1‖L(V−1,p) = ‖[(A + λE)A−1]−1‖L(V−1,p)

= ‖A(A + λE)−1‖L(V−1,p)

≤ ‖A‖L(V1,p,V−1,p)‖(A + λE)−1‖L(V−1,p,V1,p)

≤ c1 ∀λ ∈ H.

(19)

Moreover, we find from (19) that

‖λEA−1(I + λEA−1)−1‖L(V−1,p)

= ‖(I + λEA−1)(I + λEA−1)−1 − (I + λEA−1)−1‖L(V−1,p)

≤ ‖I‖L(V−1,p) + ‖(I + λEA−1)−1‖L(V−1,p)

≤ c2 ∀λ ∈ H.

(20)

3. Next, we prove that a resolvent estimate of type (19) (with a changed constant)
holds true for λ in a suitable sector Σ ⊃ H, too. Let δ > 0 be a constant such that√

cos2 ϕ + (1 − sin ϕ)2 ≤ 1
2c2

for all ϕ with π
2

< |ϕ| ≤ π
2

+ δ. We define

Σ =
{
λ ∈ C : λ = r(cos ϕ + i sin ϕ), r ≥ 0, |ϕ| <

π

2
+ δ
}

.

Let λ = r(cosϕ + i sin ϕ) ∈ Σ \ H be arbitrarily given. Then π
2

< |ϕ| ≤ π
2

+ δ and
λ0 = ir ∈ H. We write

(I + λEA−1)−1 = [I + λ0EA−1 + (λ − λ0)EA−1]−1

= [{I + (λ − λ0)EA−1(I + λ0EA−1)−1}(I + λ0EA−1)]−1

= (I + λ0EA−1)−1{I + (λ − λ0)EA−1(I + λ0EA−1)−1}−1.

Since λ ∈ Σ \ H, λ0 ∈ H the inequality (20) guarantees that

‖(λ − λ0)EA−1(I + λ0EA−1)−1‖L(V−1,p) ≤ r
√

cos2 ϕ + (1 − sin ϕ)2
c2

|λ0|
≤

1

2
.
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Therefore, the operator I+(λ−λ0)EA−1(I+λ0EA−1)−1 possesses a bounded inverse
with

‖I + (λ − λ0)EA−1(I + λ0EA−1)−1‖L(V−1,p)

≤
∞∑

n=0

|λ − λ0|
n‖EA−1(I + λ0EA−1)−1‖n

L(V−1,p) ≤
∞∑

n=0

(1

2

)n

= 2.

In summary, using (19), we obtain

‖(I + λEA−1)−1‖L(V−1,p)

≤ ‖I + (λ − λ0)EA−1(I + λ0EA−1)−1‖L(V−1,p)‖(I + λ0EA−1)−1‖L(V−1,p)

≤ 2c1 ∀λ ∈ Σ.

(21)

Thus, the generalized resolvent set ρEA−1(I) contains the set Σ.

4. Now we carry over the estimate of type (20) to λ ∈ Σ. We find

|λ|‖EA−1(I + λEA−1)−1‖L(V−1,p) = ‖λEA−1(I + λEA−1)−1‖L(V−1,p)

= ‖I − (I + λEA−1)−1‖L(V−1,p)

≤ (‖I‖L(V−1,p) + 2c1) ≤ c3 ∀λ ∈ Σ.

(22)

5. Using the inequalities (21) and (22) we obtain for all λ ∈ Σ the estimate

(|λ| + 1)‖EA−1(I + λEA−1)−1‖L(V−1,p)

≤ |λ|‖EA−1(I + λEA−1)−1‖L(V−1,p) + ‖EA−1(I + λEA−1)−1‖L(V−1,p)

≤ c3 + ‖EA−1‖L(V−1,p)‖(I + λEA−1)−1‖L(V−1,p) ≤ c3 + 2cc1 ≤ c5.

This ensures

‖EA−1(I + λEA−1)−1‖L(V−1,p) ≤
c5

|λ| + 1
∀λ ∈ Σ, (23)

which completes the proof. �

6 Regularity results for the solution of the insta-

tionary problem

Lemma 6.1 Let G ∈ RN be a regular bounded set and let p ∈ [2, q] where q be given
by Theorem 5.1. Moreover, we assume (7) for the coefficients ejk. Then the closure
of the set E[V1,p] in V−1,p is the whole space V−1,p.

Proof. 1. It suffices to prove that for any real-valued function

b ∈ L∞(G) with 0 <
1

τ
≤ b ≤ τ a.e. on G for some τ > 0
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the set b [W 1,p
0 (G)] is dense in W−1,p(G). Then the result can be carried over to the m

component case where the operator E describes the multiplication by a symmetric,
positive definite m × m matrix of real-valued L∞(G) coefficients (see (7)).

2. Let f ∈ W−1,p(G) and ε > 0 be arbitrarily given. Since W 1,p′(G) is dense in
Lp′(G) and W 1,p′(G) is reflexive, Lp(G) is dense in W−1,p(G). Let Ip : Lp(G) →
W−1,p(G) denote the corresponding embedding and let cp be its norm. Thus there
exists an u ∈ Lp(G) such that ‖f − Ipu‖W−1,p(G) < ε

2
. Then 1

b
u ∈ Lp(G), too. Since

C∞
0 (Ω) ⊂ W 1,p

0 (G) is dense in Lp(G), we find some y ∈ C∞
0 (Ω) with

‖
1

b
u − y‖Lp(G) <

1

cpτ

ε

2
.

Finally, we can conclude that

‖f − Ipby‖W−1,p(G) ≤ ‖f − Ipu‖W−1,p(G) + ‖Ipu − Ipby‖W−1,p(G)

<
ε

2
+ cp‖u − by‖Lp(G) ≤

ε

2
+ cp‖b‖L∞(G)‖

1

b
u − y‖Lp(G) < ε

which proves the lemma. �

Theorem 6.1 Let G be a bounded regular subset of R
N and let the coefficients ajk

αβ

and ejk fulfil the properties (4) and (7), respectively. Moreover, let q be given by
Theorem 5.1. Then for every p ∈ [2, q] and σ ∈ (0, 1] the following assertions hold:
For any F ∈ Cσ([0, T ];V−1,p) and any w0 ∈ V−1,p there is a unique solution to the
problem

(Eu)′(t) + Au(t) = F (t) in V−1,p, t ∈ (0, T ],

(Eu)(0) = w0.
(24)

This solution owns the regularity properties Eu ∈ C1((0, T ];V−1,p)∩C([0, T ];V−1,p)
and u ∈ C((0, T ];V1,p).

Proof. 1. First, we consider the instationary problem

(EA−1v)′(t) + v(t) = F (t) in V−1,p, t ∈ (0, T ] (25)

with an initial condition which is to be understood in the seminorm sense that

‖EA−1
{
EA−1v(t) − w0

}
‖V−1,p → 0 as t → 0.

[2, Theorem 3.8, p. 56] guarantees the following existence result for problem (25).
For any F ∈ Cσ([0, T ];V−1,p) (0 < σ ≤ 1) and any w0 ∈ V−1,p equation (25)
possesses a unique strict solution v such that

EA−1v ∈ C1((0, T ];V−1,p), v ∈ C((0, T ];V−1,p).
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2. Moreover, (see [2, Theorem 3.9, p. 56]) if w0 ∈ EA−1[V−1,p] = E[V1,p] then
EA−1v(t) is continuous at t = 0 in the norm of V−1,p, i.e. EA−1v ∈ C([0, T ];V−1,p)
and EA−1v(0) = w0.

3. According to Lemma 6.1 we have E[V1,p] = V−1,p such that for any w0 ∈ V−1,p

the solution v of (25) fulfills EA−1v ∈ C([0, T ];V−1,p) and EA−1v(0) = w0.

4. Next, we take this solution v of (25), define u = A−1v and find that the function
u is a solution of the problem

(Eu)′(t) + Au(t) = F (t) in V−1,p, t ∈ (0, T ].

This solution u fulfills Eu ∈ C1((0, T ];V−1,p) and Au ∈ C((0, T ];V−1,p). By the
isomorphism property of A we get u ∈ C((0, T ];V1,p). Moreover, since w0 ∈ V−1,p =
E[V1,p] we get Eu ∈ C([0, T ];V−1,p) and (Eu)(0) = w0. �

For θ ∈ (0, 1) we consider the interpolation spaces (cf. [2, (3.17)])

[
V−1,p

]θ
=

{
z ∈ V−1,p : sup

ζ>0
ζθ‖(ζEA−1 + I)−1z‖V−1,p < ∞

}
.

[2, Theorem 1.12] ensures that

[
V−1,p

]θ
=
(
V−1,p, D(AE−1)

)
θ,∞

, θ ∈ (0, 1),

where (V−1,p, D(AE−1))θ,∞ denotes the real interpolation spaces and D(AE−1) is

the domain of definition of the operator AE−1.

Remark 6.1 [2, Theorem 3.17, p. 62] ensures the following regularity properties
of the solutions to (25) and (24), respectively.

If the right hand side fulfills F ∈ Cθ([0, T ];V−1,p) and F (0) ∈
[
V−1,p

]θ
for some

θ ∈ (0, 1) and if additionally w0 = 0 then the solution v to problem (25) enjoys the
regularity

(EA−1v)′ ∈ Cθ([0, T ];V−1,p) ∩ B([0, T ];
[
V−1,p

]θ
)

where B([0, T ]; X) denotes the set of bounded functions f : [0, t] → X. Moreover we
obtain

v = F − (EA−1v)′ ∈ Cθ([0, T ];V−1,p).

Under the same assumptions the corresponding solution u to problem (24) possesses
the property that

(Eu)′ ∈ Cθ([0, T ];V−1,p) ∩B([0, T ];
[
V−1,p

]θ
), Au = F − (Eu)′ ∈ Cθ([0, T ];V−1,p).

Using the isomorphism property of A this yields for u itself the regularity u ∈
Cθ([0, T ];V1,p).
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