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Abstract. Complicated systems composed of many interact-
ing subsystems are frequently studied as complex networks.
In the simplest approach, a given real-world system is rep-
resented by an undirected graph composed of nodes stand-
ing for the subsystems and non-oriented unweighted edges
for interactions present among the nodes; the characteristic
properties of the graph are subsequently studied and related
to the system’s behaviour. More detailed graph models may
include edge weights, orientations or multiple types of links;
potential time-dependency of edges is conveniently captured
in so-called evolving networks. Recently, it has been shown
that an evolving climate network can be used to disentangle
different types of El Niño episodes described in the literature.
The time evolution of several graph characteristics has been
compared with the intervals of El Niño and La Niña episodes.
In this study we identify the sources of the evolving network
characteristics by considering a reduced-dimensionality de-
scription of the climate system using network nodes given by
rotated principal component analysis. The time evolution of
structures in local intra-component networks is studied and
compared to evolving inter-component connectivity.

1 Introduction

Complex networks (Newman, 2003; Boccaletti et al., 2006)
represent a relatively young scientific discipline that has al-
ready influenced many research fields ranging from techno-
logical areas such as the Internet (Faloutsos et al., 1999),
the World Wide Web (Albert et al., 1999), power grids or
transportation networks (Guimera et al., 2005; Rosvall et al.,
2005), through socially oriented research topics such as so-
cial networks (Wasserman and Faust, 1994), scientific col-
laboration networks (Newman, 2001) or financial markets

(Mantegna, 1999), to networks dealing with complex natu-
ral systems. The latter comprise systems like protein–protein
interaction networks (Jeong et al., 2001), brain networks
(Bullmore and Sporns, 2009) or climate networks (Tsonis
and Roebber, 2004). Most of these systems are composed of
many interacting subsystems whose coupling is hard to de-
scribe using any homogeneous or regular structural model.
In these cases, the complex network paradigm can help with
understanding the topology of the underlying connectivity
structure (Arenas et al., 2008). Complex networks provide
an analysis tool to uncover patterns and their influence on
the behaviour of the studied system. The analysis is usually
based on computing-specific characteristics of the networks
under study.

In many complex systems there are connections between
subsystems which are represented by physically existing or
well-defined coupling such as connections in the Internet net-
work, routes in transportation networks or documented co-
operation in scientific collaboration networks. On the other
hand, there is a relatively large class of systems, e.g. the
brain or the Earth climate, where such structural connectiv-
ity is either not well-defined or not effectively measurable,
while instrumental measurements given in the form of mul-
tivariate time series of key variables are available. In these
cases, the connectivity may be inferred from statistical asso-
ciations of pairs of time series. This means that the strength
of the connection between two subsystems is represented as
the mutual statistical relationship between two time series
recorded from respective subsystems. This “functional con-
nectivity” (a term coined originally in a neuroscientific con-
text, seeFriston et al., 1993 for details) may be identified
using various measures of statistical dependence. The net-
works constructed from multivariate time series are known as
functional networks or alternatively as interaction networks
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(Bialonski et al., 2010). We will further focus on this class of
systems and consider the climate system captured by multi-
variate time series of a meteorological variable.

The choice of an appropriate statistical dependence mea-
sure, such as Pearson’s (linear) correlation or mutual infor-
mation, may depend on the data character. In the context of
complex nonlinear systems, the use of nonlinear functional
connectivity methods seems advantageous due to sensitivity
to specific non-linear dependences, and has also been advo-
cated for climate network analysis (Donges et al., 2009a, b).
However, recently proposed quantification approaches pre-
sented byHlinka et al.(2011) andHartman et al.(2011) sug-
gest that although statistically significant, the nonlinear con-
tribution to connectivity is for many practical purposes negli-
gible, including the analysis of temperature data from climate
reanalysis data sets (Hlinka et al., 2013a). For other issues re-
lated to the choice of an appropriate dependence measure see
e.g.Paluš et al.(2011) andHlinka et al.(2013b).

Since the edges in interaction networks are inferred from
measures of statistical association, time series reflecting a
long time interval are convenient in order to obtain robust
estimates of an association measure. This is an optimal ap-
proach for stationary processes; in the case of non-stationary
processes it provides some type of average connectivity es-
timate at best, but potentially also biased estimates (such as
spurious correlations due to common long-term trends). Im-
portantly, even the global structural information can be, and
for sufficiently long time intervals usually is, time-dependent
in a relevant manner, i.e. the non-stationarity may be of di-
rect interest for the researcher. This fact forces network sci-
entists to use generalisations that embody time evolution for
complex networks. There are several approaches, of which
the most prominent aretemporal networksandevolving net-
works. For the temporal networks, see for exampleHolme
and Saramäki(2012); every connection has defined inter-
vals of its existence that altogether constitute a specific time-
weighted network that is analysed using the designated ap-
proach. On the other hand, evolving networks are less com-
plicated, since they merely involve a number of static net-
works using sliding windows in time and usual analyses from
a complex network perspective that are parameterised with
time. The result of this analysis is a time evolution of network
characteristics that are often compared to the temporal evo-
lution of specific phenomena. In the field of brain networks,
Kuhnert et al.(2010) studied the evolution of network char-
acteristics using several days of continuing EEG recording,
while Bialonski and Lehnertz(2013) traced the evolution of
a particular network property during an epileptic seizure.

In the field of climate networks the method of evolv-
ing networks has recently been used to analyse the tempo-
ral variability of surface air temperature correlation struc-
tures, providing insights into the global response of the cli-
mate system to events such as volcanic eruptions or differ-
ent phases of the El Niño Southern Oscillations (Radebach
et al., 2013). The authors analysed the evolving climate

network for 62 years of surface air temperature anomalies
using the gridded whole-Earth NCEP/NCAR reanalysis data
set (Kalnay et al., 1996). The original NCEP/NCAR data
on an angularly regular grid were transformed into a quasi-
isotropic icosahedral grid (Heikes and Randall, 1995) that
ensures homogeneity in the number of geographic neigh-
bours and nearest-neighbour grid point distances using in-
terpolation. The quasi-isotropic icosahedral grid represents a
more suitable spatial sampling of the globe for complex net-
work analysis.

It is a question, however, how relevant for the characteri-
sation of the dynamics of the climate system the spatial sam-
pling is of either the original angularly regular grid or that
of the quasi-isotropic icosahedral grid. Inspired by the ap-
proaches used in research on brain dynamics byShirer et al.
(2012), one may search for a functional parcelation of the
globe in order to find regions of coherent climate variabil-
ity, which might serve as natural nodes of the climate net-
work. Modern data analysis provides a range of other meth-
ods for dimensionality reduction by definition of regions with
relatively homogeneous time series, of which several have
been applied recently in or developed for analysis of climate
time series in the context of graph-theoretical analysis (see
e.g.Steinhaeuser et al., 2012; Tsonis et al., 2011; Fountalis
et al., 2013).

Recently,Vejmelka et al.(2014) proposed a principled ap-
proach for estimation of the count of dynamically relevant
components in a climate time series data set and their identifi-
cation (a basic description of the method is available already
in Hlinka et al.(2013b), where it was used along with grid-
based dimensionality reduction to assess the effects of non-
linearity for causal network estimates). We use this method in
conjunction with varimax-rotated principal component anal-
ysis (Vejmelka and Paluš, 2010; Groth and Ghil, 2011) as an
intermediate step in network analysis, as a method for con-
cise representation of the data compared to the (climatologi-
cally largely irrelevant) spatial sampling used in the original
gridded data set.

Using thus identified key (spatially representable) compo-
nents of the dynamics, in the current paper we pose the ques-
tions whether, how and to what extent the temporal evolu-
tion of the grid-based climate network is already reflected in
the dynamics of the higher level inter-component network
and vice versa. Then we study the role of local (within-
component) and distant (between-component) links in the
global network evolution; in particular, we try to identify the
sources of the most prominent extrema in the evolution of the
time-dependent grid-based network characteristics.
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2 Evolving network characteristics

2.1 Data

Following the study ofRadebach et al.(2013) we use surface
air temperature (SAT) data from the NCEP/NCAR reanaly-
sis (Kalnay et al., 1996) on an angularly regular 2.5◦

× 2.5◦

grid. The time interval covered by our data spans 62 years
from 1948 to 2009. For the purpose of this study both daily
and monthly data are used. The high temporal resolution
(daily) data are used for the network evolution analysis us-
ing a sliding temporal window, while full-duration monthly
data are for computational reasons used for identification of
the key components/regions for the considered dimensional-
ity reduction.

In order to minimise the bias introduced by the periodic
changes in the solar input we first produce theanomaly time
seriesby removing the long-term mean annual cycle from all
considered local time series. Depending on the type of the
data this long-term mean is either computed for each day or
month of the year.

While the anomalization procedure is a standard step in
most climate data analyses, for the dimensionality reduction,
following the results ofHlinka et al.(2013a), we also remove
the seasonality in variance from the time series at each loca-
tion. This preprocessing step removes the differences in lo-
cal temperature variability in different periods of the year. To
apply this procedure for monthly data, each anomaly time se-
ries for a given month is divided by the standard deviation of
anomalies for the given month. The final step of the prepro-
cessing of monthly data is detrending removing slow trends
from the data. FollowingHlinka et al.(2013a) we consider
only linear trends.

2.2 Defining regions of interests

In order to construct a climate network one needs to define a
set of regions whose connections establish the network edges
based on the strengths of statistical associations between the
time series of a meteorological variable characterising each
region of interest. For this purpose several strategies can be
applied. The simplest way is to use the original data grid with
time series directly adopted from the data source with ap-
propriate preprocessing steps. While we have an angularly
regular grid and use measures of statistical associations to
define connections between regions, namely the correlation
coefficient (see below), there can be a bias of the correla-
tion dependent on the distance of the grid points from the
poles and thus from each other due to mechanisms includ-
ing inherent smoothness of the implicit interpolation scheme
of the reanalysis as well as typical spatial scales of climate
variability.

There are several ways to treat this potential source of bias.
One standard procedure is so-calledcosine reweighting. This
process just scales the time series of each grid point by the

square root of the cosine of the latitude. Note also that the
poles obtain zero weight in this scheme. As another alterna-
tive, we may mention the use of network statistics correcting
for different areas represented by the grid points, especially
“node-splitting invariant” network measures (Heitzig et al.,
2012).

Another approach to account for different areas repre-
sented by each grid point on the angularly regular grid is
the remapping of the original grid to a more suitable one.
Following the data analysis settings used byRadebach et al.
(2013), we apply an interpolation scheme based on the quasi-
isotropic icosahedral grid (Heikes and Randall, 1995). This
transformation starts with the initial projection of the ver-
tices of an icosahedron to a sphere (putting two of them at
the poles) and follows with a subsequent grid refinement by
means of interpolation to obtain the final grid points’ place-
ments. For details see the documentation of the SCRIP pack-
age used for this purpose (Jones, 1997). The resulting grid
ensures that the area each point represents is approximately
the same in all cases and the number of neighbours is the
same almost everywhere.

In contrast to the use of a relatively fine geographically de-
fined grid, we explore the use of data-driven dimensionality
reduction. Of the many methods available, here we define the
regions of interests via a rotated version ofprincipal compo-
nent analysis(PCA). (Rotated) PCA has long been used in
climatology; however, typically only a few strongest com-
ponents were taken into account and interpreted. Recently,
rotated PCA has been proposed to be used to provide a set
of all statistically significant climatic modes in the decom-
position of a predefined scalar field (Vejmelka et al., 2014).
This method is used here to detect the spatial distribution and
representative time series of a set of key components of SAT
variability.

For some purposes, including parcelation of the globe into
subregions, the components need to be transformed into clus-
ters. To this end, we used a simple maximum loading crite-
rion, i.e. for each point of the original grid we determine the
component with the highest component loading at the point,
and assign this point to the corresponding cluster.

2.3 Construction of static network

Having defined the nodes of the climate network, previously
called regions of interest, we have to determine edges to
make the definition of the network complete. For this purpose
measures of statistical association are used. According to
Hlinka et al.(2013a) the correlation coefficient is satisfactory
for monthly or daily surface air temperature data when using
appropriate preprocessing. The pairwise correlation coeffi-
cientsr(xi, xj ) of the time seriesxi(t), i ∈ {1, . . . , n} (n is
the number of nodes) define then×n weighted connectivity
matrixWi,j = r(xi, xj ). This matrix in fact represents a com-
plete weighted graph, i.e. a graph where each edge exists and
has a weight attached. Since for these networks the resulting
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characteristics can be hard to interpret, it may be more con-
venient to transform it to an unweighted network given by a
matrixA (simply called a graph in the following).

The simplest approach is to apply a thresholdW ∗ by defin-
ing Ai,j = 1, Wi,j > W ∗ andAi,j = 0 otherwise. The result-
ing matrixA is called theadjacency matrix. When applying
thresholding to several graphs it is sometimes convenient to
determine the threshold based on a fixed predefined density
of the graphs, where the density of the graph is defined as
the actual number of edges divided by the maximum possi-
ble number of edges in a graph of a given size, i.e. for a graph
G with m edges we have a density ofρ =m/

(
n
2

)
.

2.4 Network characteristics

For a graphG = (V , E) with a node setV = {v1, v2, . . . , vn}

of size n and |E| =m edges several characteristics can be
computed that could be used to analyse the underlying sys-
tem (Boccaletti et al., 2006; Newman, 2003). One particu-
larly useful characteristic defined for a nodevi is thenode
degreeki defined as

ki =

n∑
j=1

Aj,i . (1)

One interesting aspect related to the degree is that it is one
of the characteristics that can reveal a typical behaviour of
the corresponding network which subsequently leads to clas-
sifying it as a complex network – namely according to the
presence or absence of a power law-shaped degree distribu-
tion (seeBarabási and Albert, 1999).

In addition, we also concentrate on characteristics that de-
termine another typical complex network property, small-
worldness. This property can be defined using two charac-
teristics (Watts and Strogatz, 1998; Hlinka et al., 2012). The
first one is theclustering coefficientdefined as

C =
1

n

n∑
i=1

Ci, Ci =

n∑
i,j,k=1

Ai,j Ai,k Aj,k

ki (ki − 1)
. (2)

The local version of this characteristic,Ci , measures the
average density of triangles centered at vertexvi , which
means that it shows the density of edges between all neigh-
bours of vertexvi . The last mentioned value can also be in-
terpreted as the probability that two randomly chosen neigh-
bours ofvi are mutually connected.

A slightly different property is measured by the network
transitivitydefined as

T =

n∑
i,j,k=1

Ai,j Ai,k Aj,k

n∑
i,j,k=1,j 6=k

Ai,j Ai,k

. (3)

We can see that in this case the probability of neighbour in-
terconnection is computed as the ratio between the numbers
of triangles and connected triples of vertices in the graph,
which imposes a different behaviour of this characteristic
than revealed byC.

For any pair of verticesvi and vj in a graphG we can
furthermore compute their distancedi,j as the length of the
shortest path betweenvi andvj . Using this distance defini-
tion we can compute theaverage path lengthas

L =
1

n(n − 1)

n∑
i,j=1

di,j . (4)

This characteristic can be influenced by the connectedness
of the underlying graph. A graph is calledconnectedif for
all pairs of vertices there exists a path connecting them and
unconnected otherwise. For unconnected graphs there ex-
ist maximal subgraphs that are connected themselves. These
subgraphs are calledconnected components. Due to the
structure of complex networks, for an unconnected network
there usually exists one so-calledgiant componentand pos-
sibly several smaller ones.

Considering the average path length, there are two basic
approaches for its computation for unconnected graphs. Ei-
ther we can compute the average from all connected com-
ponents excluding unconnected pairs, or set the distance of
unconnected pairs to the number of vertices and keep averag-
ing over the whole vertex set. The latter option is used in this
paper in line with the approach ofRadebach et al.(2013).
Another alternative would be to use a different yet related
measure, the global efficiency, instead ofL. The latter is de-
fined using the harmonic mean of the path lengths, so that it
is reasonable to setdi,j =∞ for vertices from disconnected
network components.

2.5 Generalisation to evolving network

In natural complex systems changes to their structure in time
can occur. Assuming an approximate step-wise stationarity,
static networks can be constructed with a time-sliding win-
dow approach. This means that for a time intervaltstart to tend
spanned by our data we define for a window sizew and offset
δ a series of intervals fromti − w to ti for i = 0, 1, 2, . . . ,̀ ,
wheret0 = tstart+ w andti+1 = ti + δ for i = 0, 1, 2, . . . ,̀ − 1.
Sliding windows analysis is used for daily SAT data for the
entire time interval of 62 years from 1948 to 2009 using win-
dows withw = 365 days and offsetδ = 30 days.

Considering the initial window displacement and 365 days
per year, 62 years correspond to 742 time points. Note that
time series of consecutive windows are partially overlapping
and thus dependent.

Nonlin. Processes Geophys., 21, 451–462, 2014 www.nonlin-processes-geophys.net/21/451/2014/
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Fig. 1. Comparison of the evolution of the thresholdW∗

for the RPCA graph (68 components) and grid-based graph
(with 2562 nodes) obtained for fixed densities. Blue line:
2562 nodes,ρ = 0.005, black line: 68 components,ρ = 0.005, red
line: 2562 nodes,ρ = 0.142, green line: 68 components,ρ = 0.142.

3 Results

3.1 Comparison of grid-based and component-based
network evolution

As a first step, we have constructed the evolving network ac-
cording to the settings ofRadebach et al.(2013), using an
equidistant grid of 2562 points and density 0.005.

The evolution of the graph-theoretical characteristics re-
produces well that reported inRadebach et al.(2013) (see
Fig. 1).

To assess the extent to which the features of the evolution
of the main graph-theoretical characteristics are already re-
produced using the much smaller network of 68 components
obtained from rotated PCA, we plot these along in the same
Fig. 1.

Visual inspection suggests that most of the significant
peaks within the grid-based time series are reproduced in
the component network, albeit to a variable degree. There
is a clear qualitative correspondence between the two time
series, with most of the pronounced peaks shared between
grid-based and component-based graph evolution.

This relationship is conserved, although varying in
strength, when varying the densities of the two networks (see
Fig. 2). Notably, the correlation increases with increasing
density of the grid network (corresponding to a higher pro-
portion of long-range connections, see Fig. 4 inRadebach et
al., 2013). Also, the correlation is stronger for a lower den-
sity of the component network, suggesting that the evolution
of only the core backbone of the inter-regional network is
most relevant for explanation of the evolution of the global
grid-based network.

This correspondence between the evolution of grid and
component graphs suggests that the phenomena driving the
evolution of the global grid graph structure have a substantial
relation to effects that involve the interaction between modes
of climate dynamics (to the extent that these are represented
by the components). However, it does not inform us about
the role of intra-regional connectivity.

Hlinka et al.: Local and global effects in evolving climate network 5

Fig. 1. Comparison of the evolution of the threshold W ∗ for the
RPCA graph (68 components) and grid-based graph (with 2562
nodes) obtained for fixed densities. Blue line: 2562 nodes, ρ=
0.005, Black line: 68 components, ρ= 0.005, Red line: 2562 nodes,
ρ= 0.142, Green line: 68 components, ρ= 0.142

Density of grid graph

D
en

si
ty

 o
f 

co
m

p
o

n
en

t 
g

ra
p

h

 

 

0.143 0.1 0.051 0.017 0.005

0.143

0.1

0.051

0.017

0.005

0

0.2

0.4

0.6

0.8

1

Fig. 2. Correlation coefficients between the time evolution of the
applied thresholds for varying density of the RPCA graph (68 com-
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strength, when varying the densities of the two networks, see
Figure 2. Notably, the correlation increases with increasing
density of the grid network (corresponding to a higher pro-
portion of long-range connections, see Figure 4 in Radebach
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3.2 Disentangling intra-regional and inter-regional con-
tributions to graph evolution

To assess the relative role of local and global interactions, we
utilize the rotated PCA for a crisp parcelation of the globe.400

In particular, each grid node is assigned uniquely to a com-
ponent that has the highest loadings at the node, as described
in Section 2.2.

We use these parcels for splitting the whole graph into
multiple subgraphs, each defining either interactions within405

a given parcel, or between two selected parcels (forming a
bipartite graph).

For each of these subgraphs, the evolution of its graph-
theoretical characteristics is computed.

However, using a density of 0.005 as for the original full410

graph may lead to graphs with very few or even no links in
case of smaller subgraphs. Therefore we use a heuristic dis-
counting method, changing the density as a function of graph
size n so that the average degree k scales approximately as
k ∼ α logn, where α∼ 1.6 is a constant that was fitted to415

the requirement that density for the original network with
logn= 2562 is 0.005.

The role of the dynamics within a specific parcel (or
among two parcels) in the evolution of the global dynam-
ics can be then inspected by comparison of the time evo-420

lution. The regions (region-pairs) that show intra-regional
(inter-regional) connectivity variations with time similar to
the global threshold evolution are further referred to as dom-
inant regions (region-pairs). We use this simplified term for
ease of presentation, without speculating on the nature of425

the mechanism linking the (inter)regional phenomena to the
global graph evolution at this point.

For multiple regions, the evolution of the threshold needed
for obtaining a pre-defined density of connection within a re-
gion shows marked similarity to the threshold evolution in430

the global network, for the most pronounced examples, see
Figure 3. The similarity is strongest for component 1, corre-
sponding to a region in the Eastern Tropical Pacific, giving
a Pearson correlation coefficient of 0.77 with respect to the
global threshold evolution time series.435

The other regions showing high correlation between the
evolution of intra-regional connectivity and the global evo-
lution include mainly tropical regions, see Figure 4. Inter-
estingly, among these tropical regions are the regions cor-
responding to components 3 and 4 that show in their evo-440

lution a distinct peak in year 1993, which can be related to
the Mount Pinatubo volcanic eruption (see Radebach et al.
(2013) for a discussion of the reflection of Pinatubo event
in the global climate temperature network). The correlations
of the connectivity dynamics from extra-tropical regions are445

Fig. 2. Correlation coefficients between the time evolution of the
applied thresholds for varying density of the RPCA graph (68 com-
ponents) and grid-based graph with 2562 nodes.

3.2 Disentangling intra-regional and inter-regional
contributions to graph evolution

To assess the relative role of local and global interactions, we
utilise the rotated PCA for a crisp parcelation of the globe. In
particular, each grid node is assigned uniquely to a compo-
nent that has the highest loadings at the node, as described in
Sect. 2.2.

We use these parcels for splitting the whole graph into
multiple subgraphs, each defining either interactions within
a given parcel, or between two selected parcels (forming a
bipartite graph).

For each of these subgraphs, the evolution of its graph-
theoretical characteristics is computed.

However, using a density of 0.005 as for the original full
graph may lead to graphs with very few or even no links in
the case of smaller subgraphs. Therefore we use a heuris-
tic discounting method, changing the density as a function
of graph sizen so that the average degreek scales approx-
imately ask ∼ α logn, whereα ∼ 1.6 is a constant that was
fitted to the requirement that the density for the original net-
work with logn = 2562 is 0.005.

The role of the dynamics within a specific parcel (or
among two parcels) in the evolution of the global dynam-
ics can be then inspected by comparison of the time evo-
lution. The regions (region pairs) that show intra-regional
(inter-regional) connectivity variations with time similar to
the global threshold evolution are further referred to asdom-
inant regions (region pairs). We use this simplified term for
ease of presentation, without speculating on the nature of
the mechanism linking the (inter-)regional phenomena to the
global graph evolution at this point.

For multiple regions, the evolution of the threshold needed
for obtaining a pre-defined density of connectionwithin a re-
gion shows marked similarity to the threshold evolution in
the global network, for the most pronounced examples (see

www.nonlin-processes-geophys.net/21/451/2014/ Nonlin. Processes Geophys., 21, 451–462, 2014



456 J. Hlinka et al.: Local and global effects in evolving climate networks

Fig. 3. The temporal evolution of thresholdW∗ for selecting the
intra-regional components. Top panel: the temporal evolution of the
global 2562-node network threshold. Bottom panel: the temporal
evolution of thresholdW∗ for the selected five regions with the most
similar evolution to the global graph evolution. For each compo-
nent, its identification number and the correlation of the respective
time series with the global 2562-node network threshold evolution
is shown.

Fig. 3). The similarity is strongest for component 1, corre-
sponding to a region in the eastern tropical Pacific, giving
a Pearson correlation coefficient of 0.77 with respect to the
global threshold evolution time series.

The other regions showing high correlation between the
evolution of intra-regional connectivity and the global evo-
lution include mainly tropical regions (see Fig.4). Interest-
ingly, among these tropical regions are the regions corre-
sponding to components 3 and 4 that show a distinct peak
in the year 1993 in their evolution, which can be related
to the Mount Pinatubo volcanic eruption (seeRadebach et
al., 2013for a discussion of the reflection of Pinatubo event
in the global climate temperature network). The correlations
of the connectivity dynamics from extra-tropical regions are
considerably lower. The regions dominated by the respective
components are visualised in Fig.5.

As a next step, we explore the evolution of the inter-
regional connectivity in a similar way. For each pair of
components, we compute the threshold evolution and com-
pare that to the global threshold evolution. The results are
given in Figs.6 and 7. The dominant inter-regional links
show correlations up to 0.82 with the global threshold time
series and typically correspond to interactions of the ENSO
region with some other tropical or adjacent subtropical
region.

Fig. 4. Regions that show high relevance for the global graph evo-
lution. Top panel: correlation of the intra-regional threshold evolu-
tion with the global 2562-node network threshold evolution. Bottom
panel: histogram thereof.

Fig. 5. Regions that show high relevance for the global graph evo-
lution, due to characteristic evolution of either the intra-regional
or inter-regional connectivity. Top 10 regions involved highlighted
along with the respective component numbers for visual inspection
of relevant time series in text and other figures.

To summarise the above-reported results, both intra-
regional and inter-regional interactions are related to the
global network evolution. The eastern to central tropical Pa-
cific plays a central role in both intra-regional and inter-
regional dominant interactions; however, connectivity of
other tropical regions also plays an important role in the
global connectivity changes. In particular, the global graph
evolution is to a large extent reflected in the evolution of
the interactions between the ENSO region and other tropi-
cal regions.

3.3 Splitting the network

To elucidate the relative role of the ENSO region in the east-
ern to central tropical Pacific (or more widely the whole
tropics) in the global graph evolution, one may split the
global grid-based graph into two parts: the ENSO (or trop-
ics) and the extra-ENSO (or extra-tropics) areas. For each of
the two regions, the set of graph-theoretical properties can be
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Fig. 6. The temporal evolution of the inter-regional components.
Visualisation as in Fig.3.

calculated and compared to the graph-theoretical properties
of the full graph.

The evolution of connectivity within the ENSO region
to a large extent copies that of the global graph evolution
(r = 0.77) (see Fig.8). However, the same is true, even to a
higher extent, of the evolution of the extra-ENSO part of the
network (r = 0.93).

Compared to the evolution of the ENSO network, the evo-
lution of the whole tropical network captures even better the
global graph evolution. On the other hand, the remaining
part of the network shows a much weaker resemblance to
the global network evolution. A comparison of the thresh-
old evolutions for the full, tropical and extra-tropical graphs
is shown in Fig.9. Note that the full graph evolution is al-
most perfectly correlated with the tropical graph evolution
(r = 0.97), while the correlation with the extra-tropical graph
is much weaker (r = 0.52).

For the evolution of the other graph-theoretical properties,
see Figs.10, 11, 12and13.

Fig. 7.Pairs of regions that show high relevance for the global graph
evolution. Top panel: for fifteen region pairs with strongest correla-
tion of inter-regional connectivity evolution with the global 2562-
node network threshold evolution, a link is shown and the regions
highlighted (darker red corresponds to the highest correlation the
region is involved in, also given by the number written within the
region).

Fig. 8. The temporal evolution of the ENSO and extra-ENSO
subgraph.

4 Discussion

4.1 Role of intra-regional and inter-regional
connectivity in global graph evolution

Our analysis demonstrated that the global graph evolution
reflects to a comparable extent the evolution of intra-regional
and inter-regional connectivity. The contribution of the inter-
regional connectivity evolution is clear from the comparison
with the evolution of the component-based graph, which was
able to explain up to 50 % of the global evolution variability
(see Fig.2).

The evolution of the component graph was most similar to
the evolution of the full grid-based graph for low component-
graph density and high grid-graph density. We suggest that
particularly for higher densities, the global grid graph is more
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Fig. 9. The temporal evolution of the tropical and extra-tropical
subgraph.
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Fig. 10. Evolution of the graph-theoretical properties of the ENSO
subgraph: Threshold W ∗, characteristic path length L, average
clustering coefficientC, size of the giant component gc and number
of connected components nc.

Fig. 11. Evolution of the graph-theoretical properties of the extra-
ENSO subgraph.

The evolution of the component-graph was most simi-
lar to the evolution of the full grid-based graph for low

Fig. 12. Evolution of the graph-theoretical properties of the tropics
subgraph.

Fig. 13. Evolution of the graph-theoretical properties of the extra–
tropics subgraph.

component-graph density and high grid-graph density. We
suggest that particularly for higher densities, the global grid505

graph is more strongly determined by long-range connec-
tions and therefore more related to the component graph. For

Fig. 10.Evolution of the graph-theoretical properties of the ENSO
subgraph: thresholdW∗, characteristic path lengthL, average clus-
tering coefficientC, size of the giant component gc and number of
connected components nc.

strongly determined by long-range connections and therefore
more related to the component graph. For instance, the vol-
canic eruption of Mount Pinatubo in 1991, which had rel-
atively localised effects and is not strongly reflected in the
component-graph network, but which is clearly visible in the
low-density grid-based graph as a peak in the years 1992–
1993 (Radebach et al., 2013), but not so much for the higher
densities (when the El Niño effect is much more dominant)
(see Fig.1).
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tropics subgraph.

component-graph density and high grid-graph density. We
suggest that particularly for higher densities, the global grid505

graph is more strongly determined by long-range connec-
tions and therefore more related to the component graph. For

Fig. 11. Evolution of the graph-theoretical properties of the extra-
ENSO subgraph.

Fig. 12.Evolution of the graph-theoretical properties of the tropics
subgraph.

4.2 Alternative grid size

Given the extent to which the global graph evolution re-
flects the dynamics of long-range links, it should not be cru-
cially affected by spatial sub-sampling of the grid. To further
explore this hypothesis, we have repeated the analysis for
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component-graph density and high grid-graph density. We
suggest that particularly for higher densities, the global grid505

graph is more strongly determined by long-range connec-
tions and therefore more related to the component graph. For

Fig. 13. Evolution of the graph-theoretical properties of the extra-
tropics subgraph.

sparser spatial grids, with 642, 162 and 42 grid points instead
of the original 2562. Note that particularly the last choice cor-
responds to a quite severe coarse-graining of the globe. The
similarity of the threshold evolutions across a range of prede-
fined densities is shown in Fig.14. Note that the correlation
is relatively high across a wide range of densities, although it
decreases with increasing coarse-graining.

Figure 14 also demonstrates that the component graph
with 68 nodes shows qualitatively different behaviour than
even the sparse grids, in that it shows highest correlation
when thresholded at very low densities, irrespective of the
density used for the full 2562 grid. This suggests that the
dimensionality reduction produced by the RPCA is qualita-
tively different from pure coarse-graining of the network; and
the component network probably also reflects other climate
phenomena than a coarsened grid-based network does.

4.3 Alternative thresholding for subgraphs

In the analysis reported above, the intra-regional and inter-
regional networks have been thresholded to fixed pre-defined
densities. However, the edges present in these graphs within
certain time windows do not necessarily correspond to the
edges present in the same window in the global graph thresh-
olded at density 0.005. This motivates the use of an alterna-
tive thresholding strategy, where for each time window, the
threshold of the global graph is used for all subgraphs. In this
case, the time-dependent variable of interest for each region
or region pair is the density (or number) of edges. Notably,
as the total number of edges is fixed across time points, the
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Fig. 14. Similarity of evolutions for varying grid size and density of
the graphs compared to the original graph with 2562 nodes. Left:
original graph density 0.005. Right: original graph density 0.142.

instance, the volcanic eruption of Mount Pinatubo in 1991,
which had relatively localized effects and is not strongly re-
flected in the component-graph network, but clearly visible in510

the low-density grid-based graph as a peak in the years 1992-
93 (Radebach et al., 2013), but not so much for the higher
densities (when the El Niño effect is much more dominant),
see Figure 1.

4.2 Alternative grid-size515

Given to the extent the global graph-evolution reflects the dy-
namics of long-range links, it should not be crucially affected
by spatial sub-sampling of the grid. To further explore this
hypothesis, we have repeated the analysis for sparser spatial
grids with 642, 162 and 42 grid points instead of the origi-520

nal 2562. Note that particularly the last choice corresponds
to a quite severe coarse graining of the globe. The similar-
ity of the threshold evolutions across a range of predefined
densities is shown in Figure 14. Note that the correlation is
relatively high across a wide range of densities, although it525

decreases with increasing coarse-graining.
Figure 14 also demonstrates that the component-graph

with 68 nodes shows qualitatively different behavour than
even the sparse grids, in that it shows highest correlation
when thresholded at very low densities, irrespective of the530

density used for the full 2562 grid. This suggests that the
dimensionality reduction produced by the RPCA is qualita-
tively different from pure coarse-graining of the network; and
the component-network probably reflects also other climate
phenomena than a coarsened grid-based network.535

4.3 Alternative thresholding for subgraphs

In the analysis reported above, the intra-regional and inter-
regional networks have been thresholded to fixed pre-defined
densities. However, the edges present in these graphs within
certain time window do not necessarily correspond to the540

edges present in the same window in the global graph thresh-
olded at density 0.005. This motivates the use of an alterna-

Fig. 15. Regions that show high relevance for the global graph evo-
lution, when intra-regional graph threshold is in each time point
set equal to the global 2562-node grid graph with density 0.005.
Vizualization as in Figure 4.

tive thresholding strategy, where for each time window, the
threshold of the global graph is used for all subgraphs. In this
case, the time-dependent variable of interest for each region545

or region pair is the density (or number) of edges. Notably, as
the total number of edges is fixed across time points, the den-
sities of the subgraphs are mutually inevitably dependent, i.e.
any increase in connectivity in some intra-regional or inter-
regional graph must be compensated by a decrease in density550

somewhere else. The results of the corresponding analysis
are shown in Figures 15 and 16. Note that the prominent role
of the ENSO region, and more generally, the whole tropical
strip is largely unchanged; however, the correlations with the
global evolution are shifted downwards, with many negative555

correlations, particularly for extra-tropical regions. This can
be understood as a consequence of the intrinsic dependence
due to this alternative thresholding strategy.

4.4 Non-locality of RPCA components

The RPCA network is based on correlations between560

the component time series. These time series represent a
weighted average of all time series observed across the globe
(with the weights corresponding to the component loadings),
and therefore do not represent phenomena strictly localized
in a particular region. To address this issue, one can use the565

RPCA-based crisp parcelation to define a new representative
time series for each component as the average of all time se-
ries within the respective parcel. Time series defined in this
way intuitively more clearly represent a given area due to
no overlap among the parcels - this approach corresponds to570

defining climate indexes based on a spatial average. Impor-
tantly, the graph theoretical analysis based on such 68 time
series qualitatively reproduces the results with component
time series, although the component-graph evolution is more
similar to that of sparse grids (results not shown).575

Fig. 14. Similarity of evolutions for varying grid size and density
of the graphs compared to the original graph with 2562 nodes. Left
panels: original graph density 0.005. Right panels: original graph
density 0.142.

Fig. 15.Regions that show high relevance for the global graph evo-
lution, when the intra-regional graph threshold at each time point
is set equal to the global 2562-node grid graph with density 0.005.
Visualisation as in Fig.4.

densities of the subgraphs are mutually inevitably dependent,
i.e. any increase in connectivity in some intra-regional or
inter-regional graph must be compensated for by a decrease
in density somewhere else.

The results of the corresponding analysis are shown in
Figs.15 and16. Note that the prominent role of the ENSO
region, and more generally, the whole tropical strip is
largely unchanged; however, the correlations with the global
evolution are shifted downwards, with many negative cor-
relations, particularly for extra-tropical regions. This can be
understood as a consequence of the intrinsic dependence due
to this alternative thresholding strategy.

4.4 Non-locality of RPCA components

The RPCA network is based on correlations between
the component time series. These time series represent a
weighted average of all time series observed across the globe
(with the weights corresponding to the component loadings),
and therefore do not represent phenomena strictly localised
in a particular region. To address this issue, one can use the
RPCA-based crisp parcelation to define a new representative
time series for each component as the average of all time
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Fig. 16. Pairs of regions that show high relevance for the global
graph evolution, when the inter-regional graph threshold at each
time point is set equal to the global 2562-node grid graph with den-
sity 0.005. Visualisation as in Fig.7.

series within the respective parcel. Time series defined in
this way intuitively more clearly represent a given area due
to no overlap among the parcels – this approach corresponds
to defining climate indexes based on a spatial average. Im-
portantly, the graph theoretical analysis based on such 68
time series qualitatively reproduces the results with compo-
nent time series, although the component-graph evolution is
more similar to that of sparse grids (results not shown).

4.5 Alternative region definition schemes

For definition of the regions in the current work, we
have used VARIMAX-rotated PCA, endowed with a
dimensionality-selection scheme based on statistical analysis
of the eigenvalue spectra, a method used previously inHlinka
et al.(2013b). For more details about methods, we refer the
reader toVejmelka et al.(2014). Modern data analysis pro-
vides a range of other methods for dimensionality reduction
by definition of regions with relatively homogeneous time
series, of which several have been recently applied in or de-
veloped for analysis of climate time series in the context of
graph-theoretical analysis (see e.g.Steinhaeuser et al., 2012;
Tsonis et al., 2011; Fountalis et al., 2013). Unlike Radebach
et al. (2013), the authors do not study the detailed temporal
evolution of the networks; however, their definition of parcels
may in principle be used in an analysis analogous to the one
presented here. A direct comparison of the parcelations is
difficult to interpret meaningfully due to different data sets
and assumptions behind the parcellation methods; however,
somewhat promising is the fact that the number of separate
parcels are relatively similar across the schemes. A compar-
ison or optimisation of parcelation approaches would be a
valuable avenue for further work in multi-scale climate net-
work analysis; however, selection of optimality criteria and

dependence on parameter choice and data type or preprocess-
ing may make it a very strenuous task.

5 Conclusions

The detailed analysis of the evolution of connectivity in the
surface air temperature network has shown that the temporal
changes of both localised and inter-regional connectivity are
reflected in the global graph evolution. Apart from the impor-
tant role of the ENSO region that was suggested earlier based
on evidence including the relation to the El Niño and La Niña
phases (Radebach et al., 2013; Tsonis and Swanson, 2008;
Yamasaki et al., 2008), our detailed analysis provided evi-
dence for the additional role of other tropical regions. These
are relevant both through variations of their intra-regional
connectivity and variations in the inter-regional connectivity,
particularly between these regions and the ENSO region. The
dominant role of the tropical region was further confirmed by
evaluation of the evolution of the tropical and extra-tropical
subnetworks.

Although the overall qualitative character of the global
graph evolution was conserved across a range of graph den-
sities used, the height of specific peaks and likely the relative
importance of regional and intra-regional events depends on
the graph density choice.

Generally, to reproduce the dynamics of the spatially well-
sampled network at a given density, a similar density of
the coarse-grained network is best used. However, the ob-
tained RPCA-based climate networks reproduce even rel-
atively dense grid-based networks better when thresholded
very conservatively, i.e. to low density.

This suggests that the character of networks con-
structed using the RPCA dimension reduction scheme differs
markedly from networks obtained by a simple spatial down-
sampling. This phenomenon together with detailed analy-
sis of network signatures of climate phenomena at specific
scales are subjects of further research.
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