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By employing a nonlinear quantum kicked rotor model, we investigate the transport of energy in
multidimensional quantum chaos. This problem has profound implications in many fields of science
ranging from Anderson localization to time reversal of classical and quantum waves. We begin our analysis
with a series of parallel numerical simulations, whose results show an unexpected and anomalous behavior.
We tackle the problem by a fully analytical approach characterized by Lie groups and solitons theory,
demonstrating the existence of a universal, nonlinearly-enhanced diffusion of the energy in the system,
which is entirely sustained by soliton waves. Numerical simulations, performed with different models, show
a perfect agreement with universal predictions. A realistic experiment is discussed in two dimensional
dipolar Bose-Einstein-Condensates (BEC). Besides the obvious implications at the fundamental level, our
results show that solitons can form the building block for the realization of new systems for the enhanced
transport of matter.

A
nderson localization is a fundamental concept that, originally introduced in solid-state physics to describe
conduction-insulator transitions in disordered crystals, has permeated several research areas and has
become the subject of great research interest1–11. Theories and subsequent experiments demonstrated that

disorder favors the formation of spatially localized states, which sustain diffusion breakdown and exponentially
attenuated transmission in random media1. Although many properties of wave localization are now well under-
stood, several fundamental questions remains. Perhaps one of the most intriguing problem is related to the
transport of energy. Intuitively, one can expect that disorder –by favoring exponentially localized stated– arrests
in general any propagation inside a noncrystalline medium. However, the interplay between localization and
disorder is nontrivial5,12,13 and under specific conditions randomness can significantly enhance energy transport.
In linear regime, in particular, it has been observed that quasi-crystals with multifractal eigenstates and/or
material systems with temporal fluctuations of the potential (or refractive index), lead to anomalous diffusion
in the phase space14–18. This originates counterintuitive dynamics including ultralow conductivities14, as well as
the formation of mobility edges even in one dimensional systems17. All these studies focused on linear materials
and they did not investigate the role of nonlinearity for further controlling the transport of energy in many
dimensions.

In the context of quantum localization, the problem of energy transport has stirred a conspicuous interest as
well. In this area, quantum-classical correspondences mediated by Anderson localization possess many implica-
tions in the irreversible behavior of time reversible systems, which are at the basis of a long standing physical
debate –i.e., the Loschmidt paradox19. Started a few centuries ago as a controversy between Boltzmann and
Loschmidt, this famous paradox is still the matter of intense research in the scientific community20–26. The
Loschmidt paradox deals with the origin of the irreversible behavior of time reversible systems that, according
to the law of classical mechanics, should not manifest irreversible entropy growth as conversely predicted by the
second law of thermodynamics. Time reversibility, in fact, guarantees that for every orbit that leads to an entropy
increase there exists –with the same probability– a time-reversed path that generates the same entropy change but
with an opposite sign19. Recent experiments might suggest that a possible solution of this paradox can be
formulated in terms of deterministic chaos23. According to this interpretation, time reversibility is possible only
at the quantum level, where Anderson localization breaks diffusive transport and suppresses the mixing ability of
chaos, as discussed in one dimension by a series of papers21,22,27. The possibility to exploit quantum time reversal is
at the basis of several nontrivial dynamics including the quantum-echo effect21,22,26. However, when more dimen-
sions are considered, numerical simulations predict that ergodicity is fully restored and diffusive transport settles
is again, thus re-establishing the classical features of chaos and preventing quantum time reversal and its
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associated dynamics22. Nevertheless, theoretical work reported to
date considered only noninteracting systems, characterizesd by lin-
ear equations of motion. The Loschmidt paradox, conversely,
involved the use of interacting atoms, whose interplay in the mean
field regime is accounted by short and/or long ranged nonlinear
responses28–30. As pointed out in the literature21, atoms interactions
are of crucial importance in quantum localization and diffusion. A
key question in this problem lies in understanding how nonlinearity
affects the transport of energy in many dimensions. In one dimen-
sional quantum chaotic systems, pioneering numerical experiments
of Casati et al.27 reported that nonlinearity maintains dynamical
localization effects. This conforms to the intuitive idea that a non-
linear response, due to its localization properties, works together
Anderson effects to suppress mixing dynamics. Recent theoretical
work performed on d-dimensional disordered lattices show that at
any finite nonlinearity there exist a finite probability for the obser-
vation of Anderson localization effects31. In this scenario, nontrivial
effects are expected to occur on the energy transport, due to the rich
interplay between localization and nonlinearity, as well as by the
additional degrees of freedom that can interact in the dynamics.

In this Article, we theoretically investigate this problem by
employing both numerical simulations and analytic techniques. To
pursue a general theory, we here consider the following two dimen-
sional model:

i
Ly

Lt
z+2yzy

ð
drR r’{rð Þ y r’ð Þj2zUdT tð Þ

��� �
~0, ð1Þ

with r 5 (x, y), =2 5 h2/hx2 1 h2/hy2, dT 5 Sn d(t 2 nT) a periodic
delta-function of period T, R a general nonlinear response and
U x,yð Þ~c cos xz cos yð ÞzE cos xzyð Þ a two dimensional peri-
odic potential with strength defined by E and c. Equation (1) defines
a two dimensional, nonlinear quantum kicked rotor: for R 5 0 it
reduces to the linear quantum kicked rotator22 while for U 5 0 it
corresponds to the 2D nonlinear Schrödinger equation (NLS), which
represents a universal model of nonlinear waves in dispersive
media30. In one dimension, conversely, Eq. (1) generalizes the non-
linear model investigated in27 with classical chaos parameter K 5

2cT. Despite its deterministic nature, Eq. (1) can be precisely mapped
to the Anderson model with a random potential11,32,33, and therefore
furnishes a fundamental model for studying energy transport and
dynamical localization34,35 in random systems.

This article is organized as follows. We begin by a series of experi-
ments studying the diffusion of energy by integrating Eq. (1) in time
with a parallel algorithm. We interpreted the results by an analytic
theory based on Lie symmetry groups and soliton waves, which

predicts a universal enhanced diffusion process, which is entirely
sustained by nonlinearity. Analytical results are validated against
numerical simulations, showing a perfect agreement with our pre-
dictions. We finally discuss the realization of a possible experiments
in a multidimensional dipolar BEC, showing the feasibility of our
ideas in a realistic setting.

Results
A first numerical experiment. We begin our analysis by calculating

the momentum diffusion Ph i~ y
p̂2

2

����
����y

� �
versus time, with p̂~+=i

the momentum operator and Æyjfjyæ 5 # drfjyj2 the quantum
average. In order to investigate a general system, we considered a
nonloncal diffusive nonlinear response n 5 # drR(r9 2 r)jy(r9)j2
following from:

1{s2+2
� �

n~ yj j2, ð2Þ

with nonlocality controlled by s. When s 5 0, the system response is
local with n 5 jyj2. For s ? 0, conversely, the system nonlinearity

becomes long ranged with kernel given by R rð Þ~ 1
2p

K0
r
s

	 

, being

K0 the modified Bessel function of second kind. Diffusive nonli-
nearities are particularly interesting in the context of nonlinear
optics, as they can be easily accessed in liquids, as well as in Bose-
Einstein Condensates (BEC), where they generalize previously
investigated models36–38. Parallel numerical simulations are per-
formed by a direct solution of (1) with an unconditionally stable
algorithm. In order for the field y to explore the periodic potential
U, we here consider wave packets whose spatial extension Dr = 2p.
Figure 1 summarizes our results obtained for s 5 0.2, by launching at

the input a gaussian beam y~Ae{x2=v2
0 with waist v0 5 0.3 and

amplitude A 5 4 (Fig. 1a). The stochastic parameter K has been set to
K 5 1.8 . K*, above the stochastization threshold K* < 0.97 where
the linear classical uncoupled rotor exhibits diffusive transport in
momentum space22. For comparison, we also calculated the linear
dynamics resulting from R 5 0 (Fig. 1b dotted line). As seen from
Fig. 1b, the 2D nonlinear rotor behaves dramatically different with
respect to its linear counterpart, demonstrating the strong role
played by nonlinearity in the process. In particular, the linear
system exhibits Anderson localization and diffusion suppression
for E~0 (uncoupled condition), while for growing E it shows a
monotonically increasing sub-diffusion (Fig. 1b). In the nonlinear
regime, conversely, Anderson localization is suppressed even for
E~0, and the dynamics shows an erratic, random-like behavior
that does not manifest any simple monotonic increase for growing

Figure 1 | (a)–(b) spatial density | y | 2 distribution at (a) t 5 0 and at (b) t 5 100T; (c) momentum diffusion ÆPæ versus time in linear (dashed lines) and

nonlinear (solid lines) conditions and for increasing coupling E. In the simulations we set s 5 0.2, v0 5 0.3, A 5 4 and K 5 1.8.
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values of E. These results are also significantly different from the
nonlinear kicked rotor in one dimension27, where nonlinearity was
observed to induce Anderson localization effects thus suppressing
any diffusive (or sub diffusive) regime.

Analytic theory and Universal diffusion scaling. To theoretically
investigate the results of Fig. 1 and derive predictions of universal
character, we begin by calculating the time evolution of the wave
packet center of mass, thus generalizing the Ehrenfest theorem of
classical quantum mechanics:

L y rj jyh i
Lt

~2Re y p̂j jyh if g, L y p̂j jyh i
Lt

~ y +Fj jyh i, ð3Þ

with F 5 UdT 1 # dr9R(r 2 r9)jy(r9)j2. Equations (3) are valid for any
dimensionality of the problem and for any nonlinearity R. In the
following we assume a generic nonlinear response R that support
at least a stable bound state of minimum energy, i.e., a nonlinear
ground state solution. Numerical simulations performed in the
previous section showed that the spatial field profile of the
wavepacket, despite the chaotic motion, is not significantly altered
in time (Fig. 1a,c). We can therefore describe the wavepacket
dynamics in terms of a reduced set of coordinates modeling the
nonlinear ground state of Eq. (1). To find the general form of the
nonlinear ground state, we exploit Lie symmetry groups theory39. In
particular, we start from the Lagrangian density L of Eq. (1), written
for U 5 0:

L~
i
2

y
Ly1
Lt

{y1
Ly

Lt

� �
{ yj j21

2

ð
dr’R r{r’ð Þ y r’ð Þj j2z +yj j2, ð4Þ

and identify its variational symmetries, which we express by the
following basis of Lie generators:

v1~+, v2~
L
Lt

,

v3~x
L
Ly

{y
L
Lx

, v4~iy
L
Ly

:
ð5Þ

These generators are associated to translational, rotational and
Gauge symmetries of (1). The nonlinear ground state of (5)
represents an invariant solutions with respect to the global
symmetry group generated by:

v~r0
:v1zv2zv3zbv4: ð6Þ

We employed the method of characteristics39,40 to find the functional
form of the general solution, which reads as follows:

y~w r{r0j jð Þeibt ð7Þ

with w being a complex envelope. Equation (7) represents a soliton
wave of the system. Closed form expression of w for integrable
responses R are found by the inverse scattering transform. In the
case of Eq. (2), which possesses a nonintegrable response, we

found approximate solutions by a variational analysis36,41. In
particular, we use the following Gaussian ansatz:

w~

ffiffiffiffiffiffi
2P
p

r
e{r2=a2

a
, ð8Þ

defined by the power P 5 Æyjyæ and waist a(t). By substituting Eq. (8)
in (4), after long but straightforward algebra we obtain the classical
dynamics following from the Hamiltonian H:

H~
1
2

La
Lt

� �2

zV, V~ 8
a2

{
P

2ps2
Z

a2

4s2

� �
, ð9Þ

with Z(x) 5 e2xC(0,x), C(0,x) the upper incomplete gamma function
andV the potential of the one dimensional motion of a. The potential
V has a bell shape profile that possesses a unique absolute minimum
V(a*) for every combination of P and s. The fixed point a(0) 5 a*
corresponds to a soliton wave of the system, which propagates in a
translational fashion with fixed waist a(t) 5 a*, while different initial
values lead to a breather42 characterized by a periodic oscillation of a
in time. Figure 2a shows a typical V profile obtained for P 5 100 and
different nonlocality degrees s. As seen in the figure, the potential
well becomes bigger and bigger for increasing non locality,
explaining the dynamical robustness of the soliton dynamics
during the chaotic motion observed in the parallel simulations
performed in the previous section.

To investigate the motion of the soliton ground state in the general
case when U ? 0 and R is arbitrary, we substitute Eq. (7) into (3) and
perform an integration from nT to (n 1 1)T. After some algebra, we
end with the following system:

pnz1~pn{ K:gz2ET sin x0zy0ð Þ:u½ �,

qnz1~qnzpnz1,
ð10Þ

with g 5 [sin x0, sin y0], u 5 [1, 1], classical position qn ; q(nT) and
momentum pn ; p(nT) defined from q 5 Æyjr0jyæ/Æyjyæ and
p~Re y p̂j jyh if g:2T= y yjh i, respectively. In the derivation of (10)
we assumed the general condition of Æyj(r 2 r0)2jyæ = 2p, in agree-
ment with our introductory premises. Equations (10) represent a two
dimensional standard map: for K . K*, above the stochastization
threshold of the single uncoupled rotor, Eq. (10) is hyperchaotic and
each dimension acts as an external noise source to the other, increas-
ing the mixing of the overall system43. To highlight such a dynamics,
we plot in Fig. 2b the positive Lyapunov exponent l calculated for
Eqs. (10). As seen, even when only a single rotor overcomes its
stochastization threshold, it provides a noise source to the other
giving rise to two positive Lyapunov exponents. The largest
Lyapunov exponent grows linearly with E (Fig. 2b). The hyperchaotic
nature of Eq. (10) is expect to strongly affect the momentum dif-
fusion in the phase space. We investigate the latter by generalizing
the approach of Rechester and White developed for turbulent flows44.
The classical diffusion D of the map can be expressed as follows:

Figure 2 | (a) soliton potentialV calculated for P 5 100 and for different non locality degrees s; (b) positive Lyapunov exponent l of the chaotic map (10)

versus coupling E, calculated for K 5 5 and E 5 0.8.
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D~
Dp2

2

� �
~ lim

n??

1
n

ð2p

0
dqn

ðz?

{?
dpnP qn,pn,nð ÞDp2

2
, ð11Þ

being Dp 5 pn 2 p0 andP the probability distribution of position pn

and momentum qn at time n (measured in kick units). To calculateP,
we begin by observing that the the evolution of the map (10) at the n-
th kick can be written as follows:

pn~p0zTn{1, qn~qn{1zp0zTn{1, ð12Þ

expressed as a function of the initial momentum p0, with
Tn~

Pn
i~1 K:gjz2ET sin xjzyj

� �
:u and gj 5 [sin xj, sin yj]. The

evolution of the probability density P at time n is then given by:

P qn,pn,nð Þ~
Xz?

hn~{?

. . .
Xz?

h1~{?

ðz?

{?
dp0

ð2p

0
dq0|

P q0,p0,0ð Þd pn{p0{Tn{1ð Þ:

P
n

j~1

ð2p

0
dqjd qj{qj{1{p0{Tj{1z2phj

	 

,

ð13Þ

being P(q0, p0 ,0) the initial density. The presence of the additional
summations over h originates from the periodicity of the position q
in the phase space. By considering a general uniform initial distri-
bution with all the particles possessing nonzero momentum p, i.e.,

P q0,p0,0ð Þ~ d p{p0ð Þ
2p

, after substituting into (13) and (15), we

obtain:

D~ lim
n??

1
n

Xz?

hn~{?

� � �
Xz?

h1~{?

P
n

j~1

ð2p

0

dqj

4p
T2

n{1eihj qj{qj{1{p0{Tj{1ð Þ:
ð14Þ

The leading order in the integral is obtained by neglecting any folding
in the position space, i.e., by assuming hj 5 0 (for hj ? 0, conversely,
we get asymptotically small corrections expressed in terms of Bessel
functions that we do not reported here due to their cumbersome
expressions). The leading diffusion reads as follows:

D~
K2zS2

2
, ð15Þ

being
P

~2ET . Equation (15) is to be considered of universal applic-
ability, i.e., for any system dimension and for arbitrary nonlinear
responses, as it has been derived under the general equations (3),
(10)–(15).

Discussion
Equation (15) allows to fully interpret the nonlinear dynamics of Eq.
(1). In particular, the quantum average ÆPæ results from an hyperch-
aotic system described by a two dimensional dimensional standard

map, and each realization manifests itself as a random walk in Fig. 1b.
The map diffusion rate is identical to the momentum diffusion of the
classical linear rotor22, hence, an additional average (in time or over
an ensemble of input conditions) re-establishes a perfect classical
correspondence for every coupling E§0. It is worthwhile observing
that the classical correspondence in the multidimensional linear
quantum rotor is manifested only for very high coupling E, and in
general the quantum diffusion ÆPæ follows a fractional behavior with
ÆPæ / tb,1 (see e.g.22, or Fig. 1b dashed lines). As a result, the linear
quantum rotor sub-diffuses at a slower rate than its classical counter-
part. Conversely, Eq. (15) predicts a perfect classical correspondence
for every coupling E, which is re-established thanks to nonlinear
effects. In order to verify Eq. (15), and to demonstrate such a non-
linearly-enhanced transport dynamics, we performed extensive
numerical simulations from Eq. (1) and calculated the average dif-
fusion through a quantum average followed by an average over dif-
ferent input conditions

�Ph i~
ð

dy yh j p̂
2

2
yj i: ð16Þ

Figure 3 summarizes our results obtained for K 5 5, s 5 0.2 and by
considering an initial wave packet composed by a Gaussian beam
with waist v0 5 0.3 and amplitude A 5 4. In complete agreement
with Eqs. (10)–(15), we observe a diffusive behavior �Ph i!t for every
E§0 (Fig. 3a solid lines), whose rate is exactly matching our theor-
etical prediction based on Eq. (15) [Fig. 3a dashed lines]. Figure 3b
compares linear and nonlinear evolution of Eq. (1), the former
obtained for R 5 0. As seen in the figure, the nonlinear enhancement
in the diffusion due to the restoration of classical effect is significant,
and it increases with the coupling E. This can be intuitively expected
due to the fact that an increasing coupling leads to an increasing
mixing in the system and to stronger diffusion effects. The relative
diffusion variation DD~ Dnonlinear{Dlinear

Dnonlinear
, normalized respect to the

nonlinear dynamics, is approximatively 50% at E~1:2, which means
that nonlinearity is significantly faster (by a factor of two) in trans-
porting energy.

In order to discuss a possible experimental realization, and further
verify the universality of our predictions, we considered the case of a
multidimensional dipolar BEC41. This system attracted a conspicuous
interest in the scientific community due to its important implications
in many-body dynamics, quantum computing and nonlinear
waves28,45–48. Dipolar BEC are characterized by long range interactions,
which support stable ground state solitons and high order azimu-
tons28,48. The nonlinear dynamics of the wavefunction in a kicked
optical lattice can be written in the following adimensional form:

i
LY
Lt

zUdTYz+2Y{ a Yj j2zb

ð
dk
4p2

eik:r:h kð Þ~n
� �

Y~0, ð17Þ

Figure 3 | (a) Momentum diffusion �Ph i versus time calculated from Eq. (1) (solid lines) and Eqs. (15) (dashed lines). Panel (b) compares the nonlinear

diffusive dynamics based on Eq. (1) to the linear transport dynamics obtained in the case of R 5 0.
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with dimensionless t 5 tvz, X~x

ffiffiffiffiffiffiffiffiffiffiffiffi
2mvz

r
, Y~y

ffiffiffiffiffiffiffiffiffiffiffiffi
2mvz

r
, Y~

y
� ffiffiffiffiffiffiffi

r?
p

, a~
gr?ffiffiffiffiffi

2p
p

vzlz
, b~

4
ffiffiffi
p
p

gdr?

3 vzl2
z

, h kð Þ~2{3pkek2
erfc kð Þ,

where +2~
L2

LX2
z

L2

LY2
, ~n is the Fourier transform of jYj2, vz is

the BEC trapping frequency along z, l~

ffiffiffiffiffiffiffiffiffi
mvz

r
, g the coupling con-

stant characterizing two-body contact interactions, gd the strength of
the dipole-dipole interaction potential28 and r‘ a reference BEC den-
sity. Interaction terms g and gd can be tuned via Feshbach resonance,
which allows to experimentally control the ratio gd/g that determines
the properties of the nonlinear ground state of the condensate. In our
numerical experiments, we considered gd/g 5 20.5, as a feasible value
for the generation of a stable two-dimensional soliton state28.

Figure 4 summarizes our results for K 5 2, T 5 1 and different
coupling strengths E. In perfect agreement with our theory, the aver-
aged momentum diffuses as predicted by our universal formula,
increasing its strength as the coupling E grows. The final density
distribution, after t 5 50T, shows the stable propagation of the
dipolar ground state that is evolving inside the system (Fig. 4b),
proving the feasibility of our predictions in a realistic system.

In conclusion, motivated by the large interest in the study of the
energy transport in disordered system, we investigated the role of
nonlinearity in affecting the dynamics of energy diffusion in random
media. This problem has also profound implications in quantum
chaos and time reversibility of classical systems, where nonlinearity
emerges naturally when we consider interacting particles. We
considered a universal model of wave propagation, namely the multi-
dimensional quantum kicked rotor in presence of a generic atom-
atom interactions. We began our analysis with a single numerical
experiment, and studied the behavior of the energy diffusion in the
phase space, finding unexpected results that are very different with
respect to both linear multidimensional dynamics and nonlinear
evolutions of one dimensional systems. We tackled the problem by
employing a combination of soliton theory and Lie symmetry ana-
lysis, finding a universal diffusion evolution of the energy that follows
from the full restoration of classical effects sustained by soliton
waves. The latter, in particular, breaks Anderson localization effects
and diffuse energy with a larger rate with respect to linear systems of
the same size. Numerical simulations performed on different models,
including dipolar BEC, perfectly agree with our universal predic-
tions. From a pure quantum perspective, our results demonstrate
that atom-atom interactions inhibit quantum time reversal in many
dimensions, due to the full recovery of classical chaotic mixing in the
system. This generalizes the intuition of Adachi, Today and Ikeda22,

who found that in linear regime multidimensional quantum time
reversal is only conditionally possible, in the sense that an E threshold
exists for the recovery of the initial wavepacket, while beyond a
specific interaction E no reversal is possible. When nonlinearity is
taken into account, conversely, solitons reestablish a fully mixing
dynamics and for all values of E no time reversal can be observed.

We can therefore conclude that nonlinear waves can favor the
energy transport in a disordered medium, and significantly speed
up the process of energy diffusion when compared to linear
dynamics. Solitons can be therefore used for the development of
new architectures for enhancing the transport of matter in disor-
dered materials.

Methods
Numerical simulations of Eq. (1) have been realized by an homemade parallel code
based on an unconditionally stable, second order time marching scheme.
Parallelization is achieved by a two dimensional domain decomposition strategy,
where each part of the computational domain is assigned to a different processor, with
all communications written following the MPI standard. The numerical results pre-
sented in this work have been realized by 200000 single cpu hours on 128 processors
of our ‘‘reddragon’’ linux cluster.
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