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Abstract. We consider the behavior of the nonlocal minimal surfaces in the vicinity of the boundary. By
a series of detailed examples, we show that nonlocal minimal surfaces may stick at the boundary of the
domain, even when the domain is smooth and convex. This is a purely nonlocal phenomenon, and it is in
sharp contrast with the boundary properties of the classical minimal surfaces.

In particular, we show stickiness phenomena to half-balls when the datum outside the ball is a small
half-ring and to the side of a two-dimensional box when the oscillation between the datum on the right and
on the left is large enough.

When the fractional parameter is small, the sticking effects may become more and more evident. Moreover,
we show that lines in the plane are unstable at the boundary: namely, small compactly supported perturba-
tions of lines cause the minimizers in a slab to stick at the boundary, by a quantity that is proportional to
a power of the perturbation.

In all the examples, we present concrete estimates on the stickiness phenomena. Also, we construct a
family of compactly supported barriers which can have independent interest.

1. Introduction

It is well known (see e.g. [16, 14]) that the classical minimal surfaces do not stick at the boundary.
Namely, if Ω is a convex domain and E is a set that minimizes the perimeter among its competitors in Ω,
then ∂E is transverse to ∂Ω at their intersection points.

In this paper we show that the situation for the nonlocal minimal surfaces is completely different. Indeed,
we prove that nonlocal interactions can favor stickiness at the boundary for minimizers of a fractional
perimeter.

The mathematical framework in which we work was introduced in [6] and is the following. Given s ∈
(0, 1/2) and an open set Ω ⊆ Rn, we define the s-perimeter of a set E ⊆ Rn in Ω as

Pers(E,Ω) := L(E ∩ Ω, Ec) + L(Ω \ E,E \ Ω),

where Ec := Rn \ E and, for any disjoint sets F and G, we use the notation

L(F,G) :=

∫∫

F×G

dx dy

|x− y|n+2s
.

We say that E is s-minimal in Ω if Pers(E,Ω) < +∞ and Pers(E,Ω) 6 Pers(F,Ω) among all the sets F
which coincide with E outside Ω.

Problems related to the s-perimeter naturally arise in several fields, such as the motion by nonlocal
mean curvature and the nonlocal Allen-Cahn equation, see e.g. [7, 21]. Also, the s-perimeter can be seen
as a fractional interpolation between the classical perimeter (corresponding to the case s→ 1/2) and the
Lebesgue measure (corresponding to the case s→ 0), see e.g. [18, 3, 8, 1, 12].

The field of nonlocal minimal surfaces is rich of open problems and surprising examples (see e.g. [11])
and the interior regularity theory of the nonlocal minimal surfaces has been established in the plane and
when the fractional parameter is close enough to 1/2 (see [9, 22]), but, as far as we know, the boundary
behavior of the nonlocal minimal surfaces has not been studied till now.

We show in this paper that the boundary datum is not, in general, attained continuously. Indeed,
nonlocal minimal surfaces may stick at the boundary and then detach from the boundary in a C1, 1

2
+s-

fashion. We will give concrete examples of this stickiness phenomenon with explicit (and somehow optimal)
estimates. In particular, we will present stickiness phenomena to half-balls, when the domain is a ball and
the datum is a small half-ring, and to the sides of a two-dimensional box, when the datum is small on one
side and large on the other side.
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Figure 1. The stickiness property in Theorem 1.1.

Moreover, we study how small perturbations with compact support may affect the boundary behavior
of a given nonlocal minimal surface. Quite surprisingly, these perturbations may produce stickiness effects
even in the case of flat objects and in low dimension. For instance, adding a small perturbation to a
half-space in the plane produces a sticking effect, with the size of the sticked portion proportional to a
power of the size of the perturbation. We now present and discuss these results in further detail.

Stickiness to half-balls. For any δ > 0, we let

(1.1) Kδ :=
(
B1+δ \B1

)
∩ {xn < 0}.

We define Eδ to be the set minimizing Pers(E,B1) among all the sets E such that E \B1 = Kδ.
Notice that, in the local setting, the minimizer of the perimeter functional that takes Kδ as boundary

value at ∂B1 is the flat set B1 ∩ {xn < 0} (independently of δ). The picture changes dramatically in
the nonlocal framework, since in this case the nonlocal minimizers stick at ∂B1 if δ is suitably small, see
Figure 1. The formal statement of this feature is the following:

Theorem 1.1. There exists δo > 0, depending on s and n, such that for any δ ∈ (0, δo] we have that

Eδ = Kδ.

Stickiness to the sides of a box. Given a large M > 1 we consider the s-minimal set EM in (−1, 1)×R
with datum outside (−1, 1)× R given by the jump

JM := J−M ∪ J+
M ,

where J−M := (−∞,−1]× (−∞,−M)

and J+
M := [1,+∞)× (−∞,M).

(1.2)

We prove that, if M is large enough, the minimal set EM sticks at the boundary (see Figure 2). Moreover,
the stickiness region gets close to the origin, up to a power of M . The precise result is the following:

Theorem 1.2. There exist Mo > 0 and Co > C ′o > 0, depending on s, such that if M >Mo then

[−1, 1)× [CoM
1+2s
2+2s , M ] ⊆ Ec

M

and (−1, 1]× [−M, −CoM
1+2s
2+2s ] ⊆ EM .

Also, the exponent 1+2s
2+2s

above is optimal. For instance, if either [−1, 1)× [bM
1+2s
2+2s , M ] ⊆ Ec

M or (−1, 1]×
[−M, −CoM

1+2s
2+2s ] ⊆ EM for some b > 0, then b > C ′o.
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Figure 2. The stickiness property in Theorem 1.2, with β := 1+2s
2+2s .

Figure 3. The stickiness property in Theorem 1.3.

Stickiness as s → 0+. The stickiness properties of nonlocal minimal surfaces are a purely nonlocal
phenomenon and they become more evident for small values of s. To provide a confirming example, we
consider the boundary value given by a sector in R2 outside B1, i.e. we define

(1.3) Σ := {(x, y) ∈ R2 \B1 s.t. x > 0 and y > 0}.
We show that as s → 0+ the s-minimal set in B1 with datum Σ sticks to Σ, and, more precisely, this
stickiness already occurs for a small so > 0 (see Figure 3).

Theorem 1.3. Let Es be the s-minimizer of Pers(E,B1) among all the sets E such that E \B1 = Σ.
Then, there exists so > 0 such that for any s ∈ (0, so] we have that Es = Σ.

Instability of the flat fractional minimal surfaces. Rather surprisingly, one of our results states
that the flat lines are “unstable” fractional minimal surfaces, in the sense that an arbitrarily small and
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Figure 4. The stickiness/instability property in Theorem 1.4, with β := 2+ε0
1−2s .

compactly supported perturbation can cause a boundary stickiness phenomenon. We are also able to give
a quantification of the size of the stickiness in terms of the size of the perturbation: namely the size of
the stickiness is bounded from below by the size of the perturbation to the power 2+ε0

1−2s
, for any fixed ε0

arbitrarily small (see Figure 4). We observe that this power tends to +∞ as s→ 1/2, which is consistent
with the fact that classical minimal surfaces do not stick. The precise result that we obtain is the following:

Theorem 1.4. Fix ε0 > 0 arbitrarily small. Then, there exists δ0 > 0, possibly depending on ε0, such that
for any δ ∈ (0, δ0] the following statement holds true.

Assume that F ⊃ H∪F−∪F+, where H := R×(−∞, 0), F− := (−3,−2)× [0, δ) and F+ := (2, 3)× [0, δ).
Let E be the s-minimal set in (−1, 1) × R among all the sets that coincide with F outside (−1, 1) × R.
Then

E ⊇ (−1, 1)× (−∞, δ
2+ε0
1−2s ].

The proof of Theorem 1.4 is rather delicate and it is based on the construction of suitable auxiliary
barriers, which we believe are interesting in themselves. These barriers are used to detach a portion of
the set in a neighborhood of the origin and their construction relies on some compensations of nonlocal
integral terms. As a matter of fact, the compactly supported barriers are obtained by glueing other
auxiliary barriers with polynomial growth (the latter barriers are somehow “self-sustaining solutions” and
can be seen as the geometric counterparts of the s-harmonic function xs+).

Though quite surprising at a first glance, the sticking effects that we present in this paper have some (at
least vague) heuristic explanations. Indeed, first of all, the contribution to the fractional mean curvature
which comes from far may bend a nonlocal minimal surface towards the boundary of the domain: then,
the points in the vicinity of the domain may end up receiving a contribution which is incompatible with
the vanishing of the fractional mean curvature, due to some transverse intersection between the datum
and the domain itself, thus forcing these points to stick at the boundary.

Another heuristic explanation of the stickiness phenomenon comes from the different fractional scalings
that the problem exhibits at different scales. On the one hand, vanishing of the fractional mean curvature
corresponds to a s-harmonicity property (i.e. a harmonicity with respect to the fractional operator (−∆)s)
for the characteristic function of the s-minimal set, with s ∈ (0, 1/2). If the boundary of the set is the

graph of a smooth function u, this gives an equation for u whose linearization corresponds to (−∆)
1
2

+s,

which would correspond, roughly speaking, to a regularity theory of order C
1
2

+s at the boundary. On the
other hand, nonlocal minimal surfaces detach from free boundaries in a C1, 1

2
+s-fashion (see [5]), which

suggests that the linearized equation of the graph is not a good approximation for the boundary behavior.

The rest of the paper is organized as follows. In Section 2, we discuss the case of the stickiness to a
half-ball and we prove Theorem 1.1. Then, Section 3 considers the case of a two-dimensional box with
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high oscillating datum, providing the proof of Theorem 1.2. The asymptotics as s → 0 is presented in
Section 4.

The second part of the paper is devoted to the proof of Theorem 1.4. In particular, Sections 5, 6 and 7
are devoted to the construction of the auxiliary barriers. More precisely, in Section 5 we construct barriers
with a linear growth, by superposing straight lines with slowly varying slopes; then, in Section 6, we glue
the barrier with linear growth with a power-like function (this is needed to obtain sharper estimates on
the size of the glueing) and in Section 7 we adapt this construction to build barriers that are compactly
supported.

This will allow us to prove Theorem 1.4 in Section 8. The paper ends with an appendix that contains a
simple, but general, symmetry property, and an alternative proof of an integral identity.

2. Stickiness to half-balls

This section is devoted to the analysis of the stickiness phenomena to the half-ball, caused by a small
half-ring as external datum. The main goal of this part is to prove Theorem 1.1. For this, we take Kδ as
in (1.1), i.e.

Kδ :=
(
B1+δ \B1

)
∩ {xn < 0}

and Eδ to be the set minimizing Pers(E,B1) among all the sets E such that E \B1 = Kδ.
We make some auxiliary observations. First of all, we check that the s-perimeter of Kδ (and then of the

minimizer) must be small if so is δ:

Lemma 2.1. For any ε > 0 there exists δε > 0 such that for any δ ∈ (0, δε] we have that

Pers(Kδ, B1) 6 ε.

Proof. We have

Pers(Kδ, B1) = L(B1, Kδ) 6
∫∫

B1×
(
B1+δ\B1

) dx dy

|x− y|n+2s
.

Now we observe that

(2.1) (0,+∞) 3
∫∫

B1×
(
B2\B1

) dx dy

|x− y|n+2s
= lim

δ→0+

∫∫

B1×
(
B2\B1+δ

) dx dy

|x− y|n+2s
.

Indeed, the first integral in (2.1) is finite, see for instance Lemma 11 in [8] (applied here with ε := 1,
Ω := B2 and F := B1). As a consequence of (2.1), for any ε > 0 there exists δε > 0 such that for
any δ ∈ (0, δε] we have∣∣∣∣∣

∫∫

B1×
(
B2\B1

) dx dy

|x− y|n+2s
−
∫∫

B1×
(
B2\B1+δ

) dx dy

|x− y|n+2s

∣∣∣∣∣ 6 ε,

which gives the desired result. �
Next result proves that the boundary of the minimal set Eδ can only lie in the neighborhood of ∂B1,

if δ is small enough. More precisely:

Lemma 2.2. For any ε ∈ (0, 1) there exists δε > 0 such that for any δ ∈ (0, δε] we have that

(∂Eδ) ∩B1−ε = ∅.

Proof. We observe that it is enough to prove the desired claim for small ε (since this would imply the claim
for bigger ε). The proof is by contradiction. Suppose that there exists p ∈ (∂Eδ)∩B1−ε. Then Bε/2(p) ⊂ B1

and so, by the Clean Ball Condition (see Corollary 4.3 in [6]), there exist p1, p2 ∈ B1 such that

Bcε(p1) ⊂ E ∩Bε/2(p) and Bcε(p2) ⊂ Ec ∩Bε/2(p),

for a suitable constant c > 0. In particular, both Bcε(p1) and Bcε(p2) lie inside B1, and if x ∈ Bcε(p1)
and y ∈ Bcε(p2) then |x− y| 6 ε. As a consequence

Pers(Eδ, B1) > L
(
Bcε(p1), Bcε(p2)

)
> |Bcε(p1)| |Bcε(p2)|

εn+2s
= coε

n−2s,
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Figure 5. Touching the set Eδ coming from the origin.

for some co > 0. On the other hand, by Lemma 2.1 (used here with εn in the place of ε), we have
that Pers(Eδ, B1) 6 Pers(Kδ, B1) 6 εn provided that δ is suitably small with respect to ε. As a conse-
quence, we obtain that εn > coε

n−2s, which is a contradiction if ε is small enough. �
The statement of Lemma 2.2 can be better specified, as follows:

Corollary 2.3. For any ε ∈ (0, 1) there exists δε > 0 such that for any δ ∈ (0, δε] we have that

Eδ ∩B1−ε = ∅.

Proof. Without loss of generality, we may suppose that ε ∈ (0, 1/2). The proof is by contradiction. Suppose
that Eδ ∩B1−ε 6= ∅. Then, by Lemma 2.2, we have that B1−ε ⊆ Eδ. Moreover, if we set

H :=
(
B2 \B1

)
∩ {xn > 0},

we have that H ⊆ Ec
δ . As a consequence,

Pers(Eδ, B1) > L(B1−ε, H) > L(B1/2, H) > c,

for some c > 0. This is in contradiction with Lemma 2.1 and so it proves the desired result. �
With this, we are in the position of completing the proof of Theorem 1.1:

Proof of Theorem 1.1. We need to show that Eδ ∩ B1 = ∅. By contradiction, suppose not. Then there
exists

(2.2) p ∈ Eδ ∩B1.

By Corollary 2.3, we know that

(2.3) Br ⊂ Ec
δ if r ∈ (0, 1− ε).

We enlarge r till Br hits ∂Eδ. That is, by (2.2), there exists ρ ∈ [1 − ε, 1) such that Bρ ⊂ Ec
δ and there

exists q ∈ (∂Bρ) ∩ (∂Eδ) (see Figure 5).
Therefore, using the Euler-Lagrange equation in the viscosity sense (see Theorem 5.1 in [6]), we conclude

that

(2.4)

∫

Rn

χEcδ (y)− χEδ(y)

|q − y|n+2s
dy 6 0.

By (2.3), we know that

Eδ ⊆ (B1 \Bρ) ∪Kδ ⊆ B1+δ \Bρ

and so

(2.5)

∫

Rn

χEδ(y)− χEcδ (y)

|q − y|n+2s
6
∫

B1+δ\Bρ

dy

|q − y|n+2s
−
∫

Bρ

dy

|q − y|n+2s
.
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In addition, if y ∈ B1/2, then |q − y| 6 |q|+ |y| < 2 and so

(2.6)

∫

B1/2

dy

|q − y|n+2s
> c̃,

for some c̃ > 0.
Now we define λ := (ε + δ)

1
2(n+2s) . We notice that λ is small if so are ε and δ, and so Bλ(q) ⊂ Bc

1/2.

Then, formula (2.6) gives that
∫

Bρ

dy

|q − y|n+2s
> c̃+

∫

Bλ(q)∩Bρ

dy

|q − y|n+2s
.

This, (2.4) and (2.5) give that

(2.7)

∫

B1+δ\Bρ

dy

|q − y|n+2s
−
∫

Bλ(q)∩Bρ

dy

|q − y|n+2s
> c̃.

Now we define

A1 :=
(
B1+δ \Bρ

)
∩Bλ(q) and A2 :=

(
B1+δ \Bρ

)
\Bλ(q).

We notice that ∫

A2

dy

|q − y|n+2s
6 |A2|
λn+2s

6 |B1+δ \Bρ|
λn+2s

6 C (ε+ δ)

λn+2s
= C
√
ε+ δ,

for some C > 0. Hence, (2.7) becomes

(2.8)

∫

A1

dy

|q − y|n+2s
−
∫

Bλ(q)∩Bρ

dy

|q − y|n+2s
> c̃

2
.

Now we set

A1,1 := A1 ∩Bρ(2q) and A1,2 := A1 \Bρ(2q),

see again Figure 5. We remark that Bρ(2q) is tangent to Bρ at the point q, and A1,1 ⊆ Bλ(q) ∩ Bρ(2q).
Therefore, by symmetry

(2.9)

∫

A1,1

dy

|q − y|n+2s
6
∫

Bλ(q)∩Bρ(2q)

dy

|q − y|n+2s
=

∫

Bλ(q)∩Bρ

dy

|q − y|n+2s
.

Now we observe that A1,2 is trapped between Bρ and Bρ(2q), and it lies in Bλ(q) therefore (see e.g.
Lemma 3.1 in [13])

∫

A1,2

dy

|q − y|n+2s
6 Cρ−2sλ1−2s 6 Cλ1−2s = C (ε+ δ)

1−2s
2(n+2s) ,

up to renaming constants.
The latter estimate and (2.9) give

∫

A1

dy

|q − y|n+2s
6
∫

Bλ(q)∩Bρ

dy

|q − y|n+2s
+ C (ε+ δ)

1−2s
2(n+2s) .

By inserting this information into (2.8), we obtain 2C (ε+ δ)
1−2s

2(n+2s) > c̃, which leads to a contradiction by
choosing ε small enough (and thus δ 6 δε small). �

3. Stickiness to the sides of a box

In this section, we discuss the stickiness properties to the sides of a box with high oscillatory external
data and we prove Theorem 1.2. To this goal, we recall that the set JM has been defined in (1.2) and EM
is the s-minimal set in (−1, 1)× R with datum outside (−1, 1)× R equal to JM .

We first establish an easier version of Theorem 1.2, in which the sticking size is proved to be at least of
the order of the oscillation (then, a refined estimate will lead to the proof of Theorem 1.2).
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Proposition 3.1. There exist Mo > 0, co ∈ (0, 1), depending on s, such that if M >Mo then

[−1, 1)× [coM,M ] ⊆ Ec
M(3.1)

and (−1, 1]× [−M,−coM ] ⊆ EM .(3.2)

Proof. We denote coordinates in R2 by x = (x1, x2). We take εo > 0, to be chosen conveniently small in
the sequel. Let t ∈ [0, ε2

o]. We considers balls of radius εoM with center lying on the straight line {x2 =
(1− t)M}. The idea of the proof is to slide a ball of this type from left to right till we touch ∂EM . We will
show that the touching point can only occur along the boundary {x1 = 1}. Hence, by varying t ∈ [0, ε2

o],
we obtain that [−1, 1)× [(1− ε2

o)M,M ] is contained in Ec
M . This would complete the proof of (3.1) (and

the proof of (3.2) is similar).
The details of the proof of (3.1) are the following. We fix t ∈ [0, ε2

o]. If x1 < −M − 2, then the
ball BεoM(x1, (1−t)M) lies in (−∞,−2)×R, and so its closure is contained in Ec

M . Hence, we consider ` >
−M − 2 such that BεoM(`, (1− t)M) ⊆ Ec

M for any x1 < ` and there exists q = (q1, q2) ∈ (∂EM) ∩
(∂BεoM(`, (1− t)M)). The proof of (3.1) is complete if we show that

(3.3) q1 > 1.

To prove this, we argue by contradiction. If not, then q1 ∈ [−1, 1), therefore, by the Euler-Lagrange
inequality (see Theorem 5.1 in [6]),

(3.4)

∫

R2

χEcM (y)− χEM (y)

|q − y|2+2s
dy 6 0.

Now we denote by z := (`, (1− t)M)) the center of the touching ball. We also consider the extremal point
of the touching ball on the right, that we denote by p := z + (εoM, 0). We claim that

(3.5) |q2 − p2| 6 8
√
εoM.

To prove this, we observe that, by construction, both q and p lie in [−1, 1] × R, hence |q1|, |p1| 6 1,
consequently

(3.6) |q1 − p1| 6 2.

Also, both q and p lie on the boundary of the touching ball, namely |q − z| = εoM = |p− z|, therefore

0 = |q − z|2 − |p− z|2 = |q|2 − 2q · z − |p|2 + 2p · z = (q − p) · (q + p− 2z)

= (q1 − p1)(q1 + p1 − 2z1) + (q2 − p2)(q2 + p2 − 2z2)

= (q1 − p1)(q1 − p1 + 2εoM) + (q2 − p2)(q2 − p2)

> −4(1 + εoM) + |q2 − p2|2.
This establishes (3.5), provided that M is large enough (possibly in dependence of εo).

Now we consider the symmetric ball to the touching ball, with respect to the touching point q. That is,
we define z̄ := z + 2(q − z) and consider the ball BεoM(z̄). We remark that

(3.7) BεoM(z) and BεoM(z̄) are tangent to each other at q.

We also claim that

(3.8) BεoM(z̄) ∩
{
x2 > z̄2 + 2ε2

oM
}
⊆ {x2 > M}.

To prove this, we observe that

−ε2
oM − 16

√
εoM + 2ε2

oM = ε2
oM

(
1− 16

ε
3/2
o

√
M

)
> 0,

if M is large enough. Hence, recalling (3.5),

z̄2 + 2ε2
oM = z2 + 2(q2 − z2) + 2ε2

oM = (1− t)M + 2(q2 − p2) + 2ε2
oM

> (1− ε2
o)M − 16

√
εoM + 2ε2

oM > M.

This proves (3.8).
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Figure 6. The partition of the plane needed for the proof of Proposition 3.1.

Now we decompose R2 into five nonoverlapping regions. Namely, we consider

R1 := BεoM(z),

R2 := BεoM(z̄) ∩
{
x2 > z̄2 + 2ε2

oM
}

and R3 := BεoM(z̄) ∩
{
x2 6 z̄2 + 2ε2

oM
}
.

Then we define D := BεoM(z) ∪BεoM(z̄), K the convex hull of D and R4 := K \D. Finally, we set R5 :=
R2 \K and consider the partition of R2 given by the regions R1, . . . , R5.

We consider the contribution to the integral in (3.4) given by these regions. The regions R1, R2 and R3

will be considered together: namely, R1 ⊆ Ec
M , and, by (3.8), also R2 ⊆ Ec

M . Therefore, by symmetry

(3.9)

∫

R1∪R2∪R3

χEcM (y)− χEM (y)

|q − y|2+2s
dy >

∫

R1∪R2

dy

|q − y|2+2s
−
∫

R3

dy

|q − y|2+2s
=

∫

R2

2 dy

|q − y|2+2s
.

Now, for y ∈ R2, we consider the change of variable ỹ = T (y) := (y − q)/(εoM). We have that

T (R2) = B1

(
q − z
εoM

)
∩
{
ỹ2 >

q2 − z2

εoM
+ 2εo

}

⊇ B1

(
q − z
εoM

)
∩ {ỹ2 > 3εo} ,

(3.10)

where we used again (3.5) in the last inclusion (provided that εo is sufficiently small and M is sufficiently
large, possibly in dependence of εo).

Now we claim that

(3.11) Bεo(5εo, 5εo) ⊆ B1

(
q − z
εoM

)
∩ {ỹ2 > 3εo} .

To prove this, it is enough to take η ∈ Bεo and show that

(3.12) (5εo, 5εo) + η ∈ B1

(
q − z
εoM

)
.

For this, we use (3.5) to observe that

(3.13) |q1 − z1|2 = |q − z|2 − |q2 − z2|2 > (εoM)2 − 64εoM.

Moreover, by (3.6),

q1 − z1 = q1 − p1 + p1 − z1 = q1 − p1 + εoM > εoM − 2 > 0.

Hence, (3.13) gives that

q1 − z1

εoM
=
|q1 − z1|
εoM

>
√

1− 64

εoM
> 1− 128

εoM
,
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if M is large enough. In particular

q1 − z1

εoM
− 5εo − η1 > 1− 128

εoM
− 6εo >

1

2
− 128

εoM
> 0,

provided that εo is small enough and M large enough (possibly depending on εo). Therefore
∣∣∣∣
q1 − z1

εoM
− 5εo − η1

∣∣∣∣ =
q1 − z1

εoM
− 5εo − η1 6

|q1 − z1|
εoM

− 4εo 6 1− 4εo.

In addition, by (3.5), ∣∣∣∣
q2 − z2

εoM
− 5εo − η2

∣∣∣∣ 6
|q2 − z2|
εoM

+ 6εo 6 7εo.

Therefore ∣∣∣∣
q − z
εoM

− (5εo, 5εo)− η
∣∣∣∣
2

6 (1− 4εo)
2 + (7εo)

2

= 1− 8εo + 16ε2
o + 49ε2

o < 1

if εo is small enough. This establishes (3.12) and therefore (3.11).
From (3.10) and (3.11), we see that

T (R2) ⊇ Bεo(5εo, 5εo)

and then

(3.14)

∫

R2

dy

|q − y|2+2s
=

1

(εoM)2s

∫

T (R2)

dỹ

|ỹ|2+2s
> 1

(εoM)2s

∫

Bεo (5εo,5εo)

dỹ

|ỹ|2+2s
.

Now, if ỹ ∈ Bεo(5εo, 5εo) then |ỹ| 6 εo + |(5εo, 5εo)| 6 10εo, and then (3.14) gives that
∫

R2

dy

|q − y|2+2s
> c̃

ε4s
o M

2s
,

for some c̃ > 0. By inserting this into (3.9) we conclude that

(3.15)

∫

R1∪R2∪R3

χEcM (y)− χEM (y)

|q − y|2+2s
dy > c̃

ε4s
o M

2s
.

Moreover (see e.g. Lemma 3.1 in [13] with R := εoM and λ := 1), we see that

(3.16)

∣∣∣∣
∫

R4

χEcM (y)− χEM (y)

|q − y|2+2s
dy

∣∣∣∣ 6
∫

R4

dy

|q − y|2+2s
6 C

ε2s
o M

2s
,

for some C > 0. Furthermore, the distance from q to any point of R5 is at least εoM , therefore R5 ⊆
R2 \BεoM(q), and

∣∣∣∣
∫

R5

χEcM (y)− χEM (y)

|q − y|2+2s
dy

∣∣∣∣ 6
∫

R2\BεoM (q)

dy

|q − y|2+2s
=

C̃

ε2s
o M

2s
,

for some C̃ > 0.
By combining the latter estimate with (3.15) and (3.16), we obtain that

∫

R2

χEcM (y)− χEM (y)

|q − y|2+2s
dy > 1

ε2s
o M

2s

(
c̃

ε2s
o

− C − C̃
)
> 0,

provided that εo is suitably small. This estimate is in contradiction with (3.4) and therefore the proof
of (3.3) is complete. �

The result in Proposition 3.1 can be refined. Namely, not only the optimal set EM in Proposition 3.1

sticks for an amount of order M is a box of side M , but it sticks up to an order of M
1+2s
2+2s from the origin,

as the following Proposition 3.2 points out. As a matter of fact, the exponent 1+2s
2+2s

is sharp, as we will
prove in the subsequent Proposition 3.3.
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Proposition 3.2. There exist Mo, Co > 0, depending on s, such that if M >Mo then

[−1, 1)× [CoM
1+2s
2+2s , M ] ⊆ Ec

M(3.17)

and (−1, 1]× [−M, −CoM
1+2s
2+2s ] ⊆ EM .(3.18)

Proof. We let β := 1+2s
2+2s

. We focus on the proof of (3.17) (the proof of (3.18) is similar). The proof is
based on a sliding method: we will consider a suitable surface and we slide it from left to right in order to
“clean” the portion of space [−1, 1)× [CoM

β,M ]. As a matter of fact, by Proposition 3.1, it is enough to
take care of [−1, 1)× [CoM

β, coM ], with co ∈ (0, 1).
For this we fix any

(3.19) t ∈ [CoM
β, coM ]

and, for any µ ∈ R, we define

Sµ := BM2β(µ−M2β, t) ∩ {|x2 − t| < 4Mβ}.
Notice that if µ < −1 then

Sµ ⊆ (−∞,−1)× {|x2 − t| < 4Mβ} ⊆ Ec
M .

Therefore we increase µ till Sµ touches ∂EM . This value of µ will be fixed from now on. We observe that
Proposition 3.2 is proved if we show that µ = 1. So we assume by contradiction that µ ∈ [−1, 1). By
construction, we have that

(3.20) Sµ ⊆ Ec
M

and there exists q ∈ (∂Sµ) ∩ (∂EM), with q1 ∈ [−1, 1). We claim that

(3.21) |q2 − t| 6 2Mβ.

To prove this, we observe that |q1 − µ + M2β| > M2β − |q1| − |µ| > M2β − 2. Moreover, q ∈ ∂Sµ ⊆
BM2β(µ−M2β, t), therefore

M4β >
∣∣q − (µ−M2β, t)

∣∣2 > (M2β − 2)2 + |q2 − t|2 >M4β − 4M2β + |q2 − t|2,
from which we obtain (3.21).

Now, using the Euler-Lagrange equation in the viscosity sense (see Theorem 5.1 in [6]), we see that

(3.22)

∫

Rn

χEcM (y)− χEM (y)

|q − y|2+2s
dy 6 0.

We first estimate the contribution to the integral above coming from BMβ(q). For this, we consider the
symmetric point of z := (µ − M2β, t) with respect to q, namely we set z′ := z + 2(q − z). We also
consider the ball B′ := BM2β(z′). Notice that BM2β(z) and B′ are tangent one to the other at q. We
define A1 := BM2β(z) ∩ BMβ(q), A2 := B′ ∩ BMβ(q) and A3 := BMβ(q) \ (A1 ∪ A2). Hence (see e.g.
Lemma 3.1 in [13], used here with R := M2β and λ := M−β), we obtain that

(3.23)

∣∣∣∣
∫

A3

χEcM (y)− χEM (y)

|q − y|2+2s
dy

∣∣∣∣ 6
∫

A3

dy

|q − y|2+2s
6 CM−β(1+2s).

Now we observe that

(3.24) A1 ⊆ Ec
M .

For this, let y ∈ A1. Then |y − q| < Mβ. Therefore, recalling (3.21),

|y2 − t| 6 |y2 − q2|+ |q2 − t| < Mβ + 2Mβ < 4Mβ.

Since also y ∈ BM2β(z), we obtain that y ∈ Sµ. Then we use (3.20) and we finish the proof of (3.24).
Then, we use (3.24) and a symmetry argument to see that

∫

A1∪A2

χEcM (y)− χEM (y)

|q − y|2+2s
dy =

∫

A1

dy

|q − y|2+2s
+

∫

A2

χEcM (y)− χEM (y)

|q − y|2+2s
dy > 0.
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This and (3.23) give that ∫

B
Mβ (q)

χEcM (y)− χEM (y)

|q − y|2+2s
dy > −CM−β(1+2s).

Consequently, by (3.22),

(3.25)

∫

Rn\B
Mβ (q)

χEcM (y)− χEM (y)

|q − y|2+2s
dy 6 −

∫

B
Mβ (q)

χEcM (y)− χEM (y)

|q − y|2+2s
dy 6 CM−β(1+2s).

Now we observe that

(3.26) {|x1 − q1| 6 16} \BMβ(q) ⊆ {|x1 − q1| 6 16} ×
{
|x2 − q2| >

Mβ

2

}
.

To prove this, let y ∈ {|x1 − q1| 6 16} \ BMβ(q) and suppose, by contradiction, that |y2 − q2| < Mβ/2.
Then

|y − q|2 6 162 +
M2β

4
< M2β.

This would say that y ∈ BMβ(q), which is a contradiction, and so (3.26) is proved.
By (3.26), we obtain that

∣∣∣∣∣

∫

{|x1−q1|616}\B
Mβ (q)

χEcM (y)− χEM (y)

|q − y|2+2s
dy

∣∣∣∣∣ 6
∫

{|x1−q1|616}×
n
|x2−q2|>Mβ

2

o
dy

|q − y|2+2s

6
∫ q1+16

q1−16

(∫

{|q2−y2|>Mβ/2}

dy2

|q2 − y2|2+2s

)
dy1 = CM−β(1+2s),

for some C > 0.
From this and (3.25), we obtain that

(3.27)

∫

{|x1−q1|>16}\B
Mβ (q)

χEcM (y)− χEM (y)

|q − y|2+2s
dy 6 CM−β(1+2s),

up to renaming C > 0.
Now we define H1 := {x1 − q1 < −16} and H2 := {x1 − q1 > 16}. Notice that H1 ⊆ {x1 < −15}

and H2 ⊆ {x1 > 15}. Therefore H1 ∩ {x2 > −M} ⊆ Ec
M , H1 ∩ {x2 < −M} ⊆ EM , H2 ∩ {x2 > M} ⊆ Ec

M

and H2 ∩ {x2 < M} ⊆ EM .
Then, we define, for any i ∈ {1, 2},

Hi,1 := Hi ∩ {x2 > 2q2 +M},
Hi,2 := Hi ∩ {x2 ∈ (M, 2q2 +M ]},
Hi,3 := Hi ∩ {x2 ∈ [−M,M ]},
Hi,4 := Hi ∩ {x2 < −M},

see Figure 7.
By construction, Hi,1 ⊆ Ec

M and Hi,4 ⊆ EM , therefore, by up/down symmetry,

(3.28)

∫

(H1,1∪H1,4)\B
Mβ (q)

χEcM (y)− χEM (y)

|q − y|2+2s
dy = 0 =

∫

(H2,1∪H2,4)\B
Mβ (q)

χEcM (y)− χEM (y)

|q − y|2+2s
dy.

Moreover, H1,3 ⊆ Ec
M and H2,3 ⊆ EM , therefore, by left/right symmetry,

(3.29)

∫

(H1,3∪H2,3)\B
Mβ (q)

χEcM (y)− χEM (y)

|q − y|2+2s
dy = 0.

Finally, we point out that H1,2 ∪H2,2 ⊆ Ec
M and (recalling (3.21) and (3.19)) that

BMβ(q) ⊆ {x2 < q2 +Mβ} ⊆ {x2 < t+ 3Mβ} ⊆ {x2 < M}.
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Figure 7. The geometry involved in the proof of Proposition 3.2.

Therefore
∫

(H1,2∪H2,2)\B
Mβ (q)

χEcM (y)− χEM (y)

|q − y|2+2s
dy =

∫

H1,2∪H2,2

dy

|q − y|2+2s

>
∫

{y1−q1∈(16,16+M), y2∈(M,2q2+M)

dy

|q − y|2+2s
.

(3.30)

Now we observe that if y1− q1 ∈ (16, 16 +M) and y2 ∈ (M, 2q2 +M), then |q− y| 6 CM , for some C > 0.
Then (3.30) implies that

∫

(H1,2∪H2,2)\B
Mβ (q)

χEcM (y)− χEM (y)

|q − y|2+2s
dy > cq2M

−1−2s,

for some c > 0. As a consequence of (3.21) and (3.19), we also know that q2 > t− 2Mβ > (Co − 2)Mβ >
CoM

β/2, if Co is taken suitably large. Hence we obtain

(3.31)

∫

(H1,2∪H2,2)\B
Mβ (q)

χEcM (y)− χEM (y)

|q − y|2+2s
dy > cCoM

β−1−2s,

up to renaming c > 0. Now we observe that

β − 1− 2s =
(1 + 2s)(1− 2− 2s)

2 + 2s
= −β(1 + 2s),

so we can write (3.31) as
∫

(H1,2∪H2,2)\B
Mβ (q)

χEcM (y)− χEM (y)

|q − y|2+2s
dy > cCoM

−β(1+2s).
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This, together with (3.28) and (3.29), gives that
∫

{|x1−q1|>16}\B
Mβ (q)

χEcM (y)− χEM (y)

|q − y|2+2s
dy > cCoM

−β(1+2s).

By comparing this inequality with (3.27), we obtain that

cCoM
−β(1+2s) 6 CM−β(1+2s),

which is a contradiction if Co is large enough. This completes the proof of Proposition 3.2. �
As a counterpart of Proposition 3.2, we show that the stickiness to the boundary of the domain does

not get too close to the origin, as next result points out:

Proposition 3.3. In the setting of Proposition 3.2, suppose that

(3.32) [−1, 1)× [bM
1+2s
2+2s , M ] ⊆ Ec

M ,

with p = (1, bM
1+2s
2+2s ) ∈ ∂EM , for some b > 0. Then b > Co, for some Co > 0, only depending on s,

provided that M is large enough.

Proof. For short, we set β := 1+2s
2+2s

. We remark that

(3.33) 1− β

1 + 2s
= 1− 1

2 + 2s
= β.

We argue by contradiction, supposing that

(3.34) b 6 Co

for some Co ∈ (0, 1) that we can take conveniently small in the sequel. By Lemma A.1 (used here
with T (x) := −x), we have that EM is odd with respect to the origin. This and (3.32) give that

(3.35) (−1, 1]× [−M, −bMβ] ⊆ EM .

Now we let L := M − bMβ and we consider the cube Q of side 2L that has the point p on its left side,
namely

Q := (1, 1 + 2L)× (M − 2L,M).

Notice that

(3.36) Q ⊆ EM ,

by the boundary datum of the problem. We also take the symmetric reflection ofQ with respect to {x1 = 1},
that is we set

Q′ := (1− 2L, 1)× (M − 2L,M).

We also set
G := (−1, 1)× (−3bMβ − 2, −bMβ − 1).

We claim that

(3.37) G ⊆ Q′.

Indeed, if x1 ∈ (−1, 1) and x2 ∈ (−3bMβ − 2, −bMβ − 1), then

1− 2L = 1− 2M + 2bMβ 6 1− 2M + 2Mβ < −1 < x1,

since M is large. Also
M − 2L = −M + 2bMβ < −3bMβ − 2 < x2,

using again that M is large. Accordingly, x1 ∈ (1− 2L, 1) and x2 ∈ (M − 2L,M), which proves (3.37).
Now we claim that

(3.38) G ⊆ (−1, 1]× [−M, −bMβ].

Indeed, if x2 ∈ (−3bMβ − 2, −bMβ − 1), then

−M < −3Mβ − 2 6 −3bMβ − 2 < x2,
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Figure 8. The geometry involved in the proof of Proposition 3.3.

for large M , and so x2 ∈ [−M, −bMβ], which proves (3.38).
From (3.35), (3.37) and (3.38), we obtain that

G ⊆ Q′ ∩ EM .
Using this and (3.36), by a symmetry argument we conclude that

(3.39)

∫

Q∪Q′

χEM (y)− χEcM (y)

|p− y|2+2s
dy >

∫

G

dy

|p− y|2+2s
.

Now we recall that p = (p1, p2) = (1, bMβ) and we observe that if y ∈ G then

|p2 − y2| = |bMβ − y2| > |y2| − bMβ

> bMβ + 1− bMβ = 1 > |p1|+ |y1|
2

> |p1 − y1|
2

.

Hence, |p− y| 6 C|p2 − y2|, for some C > 0 and thus (3.39) and the substitution t := p2 − y2 give
∫

Q∪Q′

χEM (y)− χEcM (y)

|p− y|2+2s
dy > C

∫

G

dy

|p2 − y2|2+2s

= C

∫ −bMβ−1

−3bMβ−2

dy2

|p2 − y2|2+2s
= C

∫ 4bMβ+2

2bMβ+1

dt

t2+2s
=

C

(2bMβ + 1)1+2s
,

(3.40)

up to renaming C.
Now we define

H := (−∞,−1)× (−M,M − 2L),

see Figure 8. By construction, H ⊆ Ec
M . We notice that the portion on the right of Q all belongs to EM ,

while the portion on the left of Q′ all belongs to Ec
M , that is

(−∞, 1− 2L)× (M − 2L,M) ⊆ Ec
M

and (1 + 2L,+∞)× (M − 2L,M) ⊆ EM .

Therefore, by symmetry, these contributions cancel and we have

(3.41)

∫

R2\(Q∪Q′)

χEM (y)− χEcM (y)

|p− y|2+2s
dy =

∫

{x2>M}∪{x2<M−2L}

χEM (y)− χEcM (y)

|p− y|2+2s
dy.

Now we observe that {x2 > M} ⊆ Ec
M and {x2 < M − 2L} \H ⊆ EM , therefore, by symmetry,

(3.42)

∫

{x2>M}∪{x2<M−2L}

χEM (y)− χEcM (y)

|p− y|2+2s
dy = −2

∫

H

dy

|p− y|2+2s
.
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Now we observe that if y ∈ H then |y2| > 2L−M and so

|y2 − p2| > 2L−M − bMβ = M − 3bMβ >M − 3Mβ > M

2

if M is large enough. Therefore

∫

H

dy

|p− y|2+2s
6 C

∫ 1

−∞



∫ M−2L

−M

dy2
(
|p1 − y1|2 +M2

) 2+2s
2


 dy1

= C (M − L)

∫ 1

−∞

dy1
(
|1− y1|2 +M2

) 2+2s
2

6 C (M − L)

(∫ −M

−∞

dy1

|1− y1|2+2s
+

∫ 1

−M

dy1

M2+2s

)

6 C (M − L)M−1−2s = CbMβ−1−2s 6 CMβ−1−2s,

for some C > 0 (possibly varying from line to line). Using this, (3.41) and (3.42), we obtain that

(3.43)

∫

R2\(Q∪Q′)

χEM (y)− χEcM (y)

|p− y|2+2s
dy = −2

∫

H

dy

|p− y|2+2s
> −CMβ−1−2s,

up to renaming C.
Now we use the Euler-Lagrange equation in the viscosity sense at p and we obtain that

∫

R2

χEM (y)− χEcM (y)

|p− y|2+2s
dy 6 0.

Combining this with (3.40) and (3.43), we obtain

0 > C

(2bMβ + 1)1+2s
− CMβ−1−2s.

That is, up to renaming constants,

(2bMβ + 1)1+2s > c∗M
1+2s−β,

for some c∗ > 0. Using this and (3.33), we conclude that

2bMβ + 1 > c
1

1+2s
∗ M1− β

1+2s = coM
β.

Now we multiply by M−β and we take M large enough, such that M−β 6 co/2, so we obtain

2b > −M−β + co >
co
2
.

This is in contradiction with (3.34), if we choose Co small enough. �

As a combination of Propositions 3.2 and 3.3, we have the optimal statement in Theorem 1.2.

4. Stickiness as s→ 0+

This section contains the asymptotic properties as s → 0 and the proof of Theorem 1.3. For this, we
recall that Σ has been defined in (1.3) as

Σ := {(x, y) ∈ R2 \B1 s.t. x > 0 and y > 0}
and Es is the s-minimizer in B1 with datum Σ outside B1.
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Proof of Theorem 1.3. First, we show that

(4.1) Es ⊆ {x+ y = 1}.
To prove it, we slide the half-plane ht := {x + y 6 t}. If t 6 −3, we have that ht lies below Σ ∪ B1 and
so ht ⊆ Ec

s. Then we increase t until ht∗ intersects Es, with t∗ ∈ [−3, 1]. Notice that (4.1) is proved if we
show that

(4.2) t∗ = 1.

We prove this arguing by contradiction. If not, there exists p ∈ B1 ∩ (∂Es) ∩ {x + y = t∗}. Hence, using
the Euler-Lagrange equation in the viscosity sense (see Theorem 5.1 in [6]) and the fact that ht∗ ⊆ Ec

s, we
obtain

0 >
∫

R2

χEcs(y)− χEs(y)

|p− y|2+2s
dy >

∫

R2

χht∗ (y)− χhct∗ (y)

|p− y|2+2s
dy = 0.

This shows that ht∗ must coincide with Ec
s. This is impossible, since Es is not a half-plane outside B1.

Hence, we have proved (4.2) and so (4.1).
By (4.1), we get that B√2/2 ⊆ Ec

s. So we can enlarge r ∈ [
√

2/2, 1] till Br touches Es. We remark that
Theorem 1.3 is proved if we show that this touching property only occurs at r = 1.

Thus, we argue by contradiction and we suppose that there exists

(4.3) r ∈ [
√

2/2, 1)

such that Br ⊆ Ec
s and there exists q ∈ (∂Br) ∩ (∂Es). Then, by the Euler-Lagrange equation, we have

that

(4.4)

∫

R2

χEcs(y)− χEs(y)

|q − y|2+2s
dy 6 0.

By construction,

(4.5) Es ⊆ {(x, y) ∈ R2 \Br s.t. x > 0 and y > 0}.
Also, 0 < q1, q2 < 1. Then we consider the translation by q: namely we define Fs := Es − q. It follows
from (4.5) that

(4.6) Fs ⊆ {(x, y) ∈ R2 \Br(−q) s.t. x > −1 and y > −1}.
Also, by (4.4),

(4.7)

∫

R2

χF cs (y)− χFs(y)

|y|2+2s
dy 6 0.

Now we define Dr := Br(q) ∪Br(−q) and we let Kr be the convex hull of Dr. Notice that

(4.8) Br ⊆ Kr.

We also define Pr := Kr \Dr. Since Br(−q) ⊆ F c
s , by symmetry we obtain that

(4.9)

∫

Dr

χF cs (y)− χFs(y)

|y|2+2s
dy > 0.

Moreover (see Lemma 3.1 in [13], used here with λ := 1) and (4.3),
∣∣∣∣
∫

Pr

χF cs (y)− χFs(y)

|y|2+2s
dy

∣∣∣∣ 6
C1r

−2s

1− 2s
6 C2

1− 2s
,

for suitable positive constants C1 and C2 that do not depend on s. Using this, (4.7) and (4.9) we obtain
that

0 >
∫

R2\Kr

χF cs (y)− χFs(y)

|y|2+2s
dy +

∫

Dr

χF cs (y)− χFs(y)

|y|2+2s
dy +

∫

Pr

χF cs (y)− χFs(y)

|y|2+2s
dy

>
∫

R2\Kr

χF cs (y)− χFs(y)

|y|2+2s
dy − C2

1− 2s
.

(4.10)
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Figure 9. The partition of the plane needed for the proof of Theorem 1.3.

Moreover, recalling (4.8) (and using again (4.3)), we have that
∣∣∣∣
∫

B2r\Kr

χF cs (y)− χFs(y)

|y|2+2s
dy

∣∣∣∣ 6
∫

B2r\Br

dy

|y|2+2s
6 C3,

for some C3 > 0 that does not depend on s. Hence (4.10) gives

(4.11) 0 >
∫

R2\B2r

χF cs (y)− χFs(y)

|y|2+2s
dy − C3 −

C2

1− 2s
.

Now we observe that Br(−q) ⊆ B2r, since |q| = r. Consequently, recalling (4.6),

Fs \B2r ⊆ {(x, y) ∈ R2 \B2r s.t. x > −1 and y > −1}.
That is, Fs \B2r ⊆ A1 ∪ A2 ∪ A3, where

A1 := {(x, y) ∈ R2 \B2r s.t. x > 0 and y ∈ (−1, 1)},
A2 := {(x, y) ∈ R2 \B2r s.t. x ∈ (−1, 1) and y > 0}

and A3 := {(x, y) ∈ R2 \B2r s.t. x > 1 and y > 1}.
On the other hand, F c

s \B2r ⊇ A′1 ∪ A′2 ∪ A′3 ∪ A′4, where

A′1 := {(x, y) ∈ R2 \B2r s.t. x < 0 and y ∈ (−1, 1)},
A′2 := {(x, y) ∈ R2 \B2r s.t. x ∈ (−1, 1) and y < 0},
A′3 := {(x, y) ∈ R2 \B2r s.t. x 6 −1 and y 6 −1},

and A′4 := {(x, y) ∈ R2 \B2r s.t. x > 1 and y 6 −1},
see Figure 9. After simplifying A1 with A′1, A2 with A′2 and A3 with A′3, we obtain

(4.12)

∫

R2\B2r

χF cs (y)− χFs(y)

|y|2+2s
dy >

∫

A′4

dy

|y|2+2s
.

Notice now that A′4 contains a cone with positive constant opening with vertex at the origin, therefore
∫

A′4

dy

|y|2+2s
> c1

∫ +∞

2r

dρ

ρ1+2s
=

c2

s r2s
> c3

s
,

where we have used again (4.3), and the positive constants c1, c2 and c3 do not depend on s. The latter
estimate and (4.12) give that ∫

R2\B2r

χF cs (y)− χFs(y)

|y|2+2s
dy > c3

s
.
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Figure 10. The proof of Lemma 5.1.

Therefore, recalling (4.11),

0 > c3

s
− C3 −

C2

1− 2s
.

This is a contradiction if s ∈ (0, so) and so is small enough. Hence, we have completed the proof of
Theorem 1.3. �

5. Construction of barriers that are piecewise linear

This part of the paper is devoted to the proof of Theorem 1.4. The argument will rely on the construction
of a series of barriers, and the proof of Theorem 1.4 will be completed in Section 8.

In this section, we construct barriers in the plane, which are subsolutions of the fractional curvature
equation when {x1 > 0}, which possess a “vertical” portion along {x1 = 0} and which are built by joining
linear functions whose slope becomes arbitrarily close to being horizontal (a precise statement will be given
in Proposition 5.3). For this scope, we start with a simple auxiliary observation to bound explicitly from
below the fractional curvature of an angle:

Lemma 5.1. Let ` > 0,

E1 := (−∞, 0]× (−∞, 0)

E2 := {`x2 − x1 < 0, x1 > 0}
and E := E1 ∪ E2.

Then, for any p = (p1, p2) ∈ ∂E with p2 > 0,

(5.1)

∫

R2

χE(y)− χEc(y)

|y − p|2+2s
dy > c(`)

|p|2s ,

for a suitable nonincreasing function c : [0,+∞)→ (0, 1).
More precisely, for large `, one has that c(`) ∼ c̄`−1, for some c̄ > 0.

Proof. Let δ := arctan(1/`) ∈
(
0, π

2

]
. By scaling, it is enough to prove (5.1) when

(5.2) |p| = 4.

Now, for any t > 0, let St be the slab with boundary orthogonal to the straight line {`x2 − x1 = 0}
of width 2t, having p on its symmetry axis (see Figure 10). For small t, the slab St does not contain the
origin, thus, the “upper” half of the slab is contained in Ec, while the “lower” half of the slab is contained
in E, namely ∫

St

χE(y)− χEc(y)

|y − p|2+2s
dy = 0.
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Enlarging t, the “lower” half of the slab is always contained in E. As for the “upper” half, we have that
the triangle T with vertices (0, 0), (− cos δ,− sin δ), (−1, 0) lies in E. Notice that

|T | = sin δ

2
.

Also, if y ∈ T then |y| 6 2 and so, recalling (5.2),

|y − p| 6 |p|+ 2 6 2|p|.
Consequently, ∫

T

χE(y)− χEc(y)

|y − p|2+2s
dy > |T |

22+2s |p|2+2s
=

sin δ

27+2s |p|2s ,

which gives the desired result. �

The next result is the building block needed to construct a barrier iteratively. Roughly speaking,
next result says that we can tilt a straight line towards infinity by estimating precisely the effect of this
modification on the fractional curvature.

Lemma 5.2. Let ` > q > 0 and δ := arctan(1/`) ∈
(
0, π

2

]
. Let e := (`− q, 1).

Let τ̄ ∈ C∞0 (B1(e)) with τ̄ = 1 in B1/2(e).
Let τo ∈ C∞(R) be such that

(5.3) τo(t) = 1 if t ∈
[
δ
2
, 3δ

2

]
and τo(t) = 0 if t ∈ R \

[
δ
4
, 7δ

4

]
.

For any x ∈ R2, let also α(x) ∈ [0, 2π) be the angle between the vector x− e and the x1-axis. Let

(5.4) τ(x) :=
(
1− τ̄(x)

)
τo
(
α(x)

)
.

For any θ ∈ R, let Rθ be the clockwise rotation by an angle θ, i.e.

Rθ(x) = Rθ(x1, x2) :=

(
cos θ sin θ
− sin θ cos θ

) (
x1

x2

)
.

Let also

Ψθ(x) := Rτ(x)θ x.

Let E ⊂ R2 be an epigraph such that

E ∩ {x1 < 0} = (−∞, 0)× (−∞, 0),

E ⊇ R× (−∞, 0),

E ∩ {x2 > 1} = {`x2 − x1 − q < 0} ∩ {x2 > 1}
and E ∩ {x1 > `− q} = {`x2 − x1 − q < 0} ∩ {x1 > `− q}.

Assume that, for any p ∈ ∂E ∩ {x2 > 0},

(5.5)

∫

R2

χE(y)− χEc(y)

|y − p|2+2s
dy > c

|p|2s

for some c ∈ (0, 1).
Then, there exist nonincreasing functions φ : [0,+∞) → (0, 1) and co : [0,+∞) → (0, c) such that for

any θ ∈ [0, φ(`)] the following claim holds true. Let F := Ψθ(E). Then, for any p ∈ (∂F ) ∩ {x2 > 0},

(5.6)

∫

R2

χF (y)− χF c(y)

|y − p|2+2s
dy > co(`)

|p|2s .

More precisely, for large `, one has that co(`) ∼ c̄min{c, `−1}, for some c̄ > 0.
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Proof. First we point out that

(5.7) |∇α(x)| 6 C

|x− e| ,

for some C > 0. Indeed, α(x) is identified by the two conditions

(5.8) |x− e| cosα(x) = |x1 − `+ q|
and |x − e| sinα(x) = |x2 − 1|. Assume also that sin2 α(x) > 1/2 (the case cos2 α(x) > 1/2 is similar).
Then we differentiate the relation (5.8) and we obtain

x− e
|x− e| cosα(x)− |x− e| sinα(x)∇α(x) =

x1 − `+ q

|x1 − `+ q| (1, 0).

Therefore√
2

2
|x− e| |∇α(x)| 6 |x− e| | sinα(x)| |∇α(x)| =

∣∣∣∣
x− e
|x− e| cosα(x)− x1 − `+ q

|x1 − `+ q| (1, 0)

∣∣∣∣ 6 2,

which proves (5.7).
Similarly, taking one more derivative, one sees that

(5.9) |D2α(x)| 6 C

|x− e|2 .

Now, by (5.4) and (5.7),

(5.10) |∇τ(x)| 6 C

(
χB1(e)\B1/2(e)(x) +

χR2\B1/2(e)(x)

|x− e|

)
.

Using (5.9), one also obtains that

(5.11) |D2τ(x)| 6 C

(
χB1(e)\B1/2(e)(x) +

χR2\B1/2(e)(x)

|x− e|

)
.

Let now

Φθ(x) := Ψθ(x)− x =

(
cos(τ(x)θ)− 1 sin(τ(x)θ)
− sin(τ(x)θ) cos(τ(x)θ)− 1

) (
x1

x2

)
.

We claim that

(5.12) |DΦθ(x)| 6 C (1 + `) θ,

for some C > 0. To prove it, we consider the first coordinate of Φθ(x), which is

(5.13)
(

cos(τ(x)θ)− 1
)
x1 + sin(τ(x)θ)x2,

since the computation with the second coordinate is similar. We bound the derivative of (5.13) by

(5.14)
∣∣ cos(τ(x)θ)− 1

∣∣+
∣∣ sin(τ(x)θ)

∣∣+ θ
(∣∣ sin(τ(x)θ)

∣∣+
∣∣ cos(τ(x)θ)

∣∣
)
|∇τ(x)| |x|.

Thus, we bound
∣∣ cos(τ(x)θ)− 1

∣∣ 6 Cθ2 and
∣∣ sin(τ(x)θ)

∣∣ 6 Cθ and we make use of (5.10), to estimate the
quantity in (5.14) by

(5.15) Cθ

(
1 +

χR2\B1/2(e)(x) |x|
|x− e|

)
.

Now we observe that |e| =
√

(`− q)2 + 1 6
√
`2 + 1, therefore

|x| 6 |x− e|+
√
`2 + 1

and so, if |x− e| > 1/2,
|x|
|x− e| 6 1 + 2

√
`2 + 1.

By inserting this information into (5.15) we bound the first coordinate of Φθ(x) by C (1 + `) θ. This
proves (5.12).
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Figure 11. The diffeomorphism of R2 in Lemma 5.2.

Similarly, making use of (5.11), one sees that

(5.16) |D2Φθ(x)| 6 C (1 + `) θ.

Notice also that, for any fixed x ∈ R2, we have that

(5.17) |Ψθ(x)| = |Rτ(x)θ x| = |x|,
therefore

lim
|x|→+∞

|Ψθ(x)| = +∞.

From this, (5.12), and the Global Inverse Function Theorem (see e.g. Corollary 4.3 in [19]), we obtain
that Ψθ is a global diffeomorphism of R2, see Figure 11.

As a consequence, using (5.12), (5.16) and the curvature estimates for diffeomorphisms (see Theorem 1.1
in [10]), we conclude that

(5.18)

∫

R2

χF (y)− χF c(y)

|y − p|2+2s
dy >

∫

R2

χE(y)− χEc(y)

|y − q|2+2s
dy − C (1 + `) θ,

with q := Ψ−1
θ (p), for any p ∈ (∂F ) ∩ {x2 > 0}.

Now we claim that

(5.19) if p ∈ {x2 > 0} then Ψ−1
θ (p) ∈ {x2 > 0}.

Suppose, by contradiction, that Ψ−1
θ (p) ∈ {x2 6 0}. Notice that τ vanishes in {x2 6 0}, therefore Ψθ is

the identity in {x2 6 0}. As a consequence p = Ψθ(Ψ
−1
θ (p)) = Ψ−1

θ (p) ∈ {x2 6 0}. This is a contradiction
with our assumptions and so it proves (5.19).

Using (5.5), (5.17), (5.18) and (5.19), we have that

(5.20)

∫

R2

χF (y)− χF c(y)

|y − p|2+2s
dy > c

|q|2s − C (1 + `) θ =
c

|p|2s − C (1 + `) θ > c

2 |p|2s ,

with q := Ψ−1
θ (p), for any p ∈ (∂F ) ∩ {x2 > 0} ∩Brθ , where rθ :=

(
c

2C (1+`) θ

) 1
2s

(we stress that rθ is large,

for small θ, according to the statement of Lemma 5.2).
Now we take p ∈

(
(∂F ) ∩ {x2 > 0}

)
\ Brθ and we observe that ((∂F ) \ Brθ) ∩ {x2 > 0} coincides with

a straight line of the form λ := {`θx2 − x1 − qθ = 0}, with `θ > `, |`θ − `| as close to zero as we wish for
small θ, and qθ := `θ − `+ q. The intersections of the straight line λ with {x2 = 8} and {x2 = 0} occur at
points x1 = 8`θ − qθ and x1 = −qθ, respectively.

Hence, we consider the triangle T with vertices (8`θ − qθ, 0), (8`θ − qθ, 8) and (−qθ, 0). We observe
that |T | = 32`θ 6 32(1 + `), for small θ. Moreover, if y ∈ T , then |y| 6 C(1 + `θ + qθ) 6 C(1 + `), up to
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renaming constants. Therefore, if p ∈ Bc
rθ

and y ∈ T ,

|y − p| > |p| − C(1 + `) > |p|
2
,

if θ is small. Consequently,

(5.21)

∫

T

dy

|y − p|2+2s
6 C(1 + `)

|p|2+2s
6 C(1 + `)

r2
θ |p|2s

.

Now we define F̃ := F ∪ T . By Lemma 5.1,
∫

R2

χF̃ (y)− χF̃ c(y)

|y − p|2+2s
dy > c(`θ)

|p− (−qθ, 0)|2s .

Using that `θ 6 3`
2

and that c(·) is nonincreasing, we see that c(`θ) > c
(

3`
2

)
. Moreover,

|p− (−qθ, 0)| 6 |p|+ qθ 6 |p|+ `+ 1 6 2|p|,
so we obtain that ∫

R2

χF̃ (y)− χF̃ c(y)

|y − p|2+2s
dy >

c
(

3`
2

)

22s |p|2s .

Exploiting this and (5.21), we obtain that, for any p ∈
(
(∂F ) ∩ {x2 > 0}

)
\Brθ ,∫

R2

χF (y)− χF c(y)

|y − p|2+2s
dy >

∫

R2

χF̃ (y)− χF̃ c(y)

|y − p|2+2s
dy −

∫

T

dy

|y − p|2+2s

>
c
(

3`
2

)

22s |p|2s −
C(1 + `)

r2
θ |p|2s

>
c
(

3`
2

)

21+2s |p|2s ,
(5.22)

for small θ. Then, (5.6) follows by combining (5.20) and (5.22). �
By iterating Lemma 5.2 we can construct the following barrier:

Proposition 5.3. Fix K > 0. Then there exist aK ∈ (0, 1), `K > K, qK > 0, cK ∈ (0, 1), a continuous
function uK : [0,+∞)→ [0,+∞) and a set EK ⊂ R2 with (∂EK) ∩ {x2 > 0} of class C1,1 and such that:

• uK(x2) = `K x2 − qK for any x2 ∈ [1,+∞),
• we have that

EK ∩ {x1 < 0} = (−∞, 0)× (−∞, 0),

EK ⊇ R× (−∞, 0),

EK ⊇ (0,+∞)× (−∞, aK ],

EK ∩ {x2 > 1} = {x1 > uK(x2), x2 > 1},
EK ∩ {x1 > `K − qK} = {x1 > uK(x2), x1 > `K − qK}

and ∫

R2

χEK (y)− χEcK (y)

|y − p|2+2s
dy > cK

|p|2s ,

for any p ∈ (∂EK) ∩ {x2 > 0}.
More precisely, for large K, one has that cK ∼ c̄`−1

K , for some c̄ > 0.
Moreover, one can also prescribe that

(5.23) qK 6 K−1.

Proof. We apply Lemma 5.2 iteratively for a large (but finite) number of times, see Figure 12.
We start with u0 := 0 and E0 := R2 \ {x1 6 0 6 x2}. By Lemma 5.1 (used here with ` := 0) we know

that ∫

R2

χE0(y)− χEc0(y)

|y − p|2+2s
dy > c

|p|2s ,
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Figure 12. The barrier of Proposition 5.3.

for some c > 0. Then we apply Lemma 5.2 and we construct a set E1 whose boundary coincides with {x2 =
0} when {x1 < 0} and with a straight line {`1x2− x1− q1 = 0} when {x2 > 4}, whose fractional curvature
satisfies the desired estimate (as a matter of fact, we can take the new slope `1 as the one obtained by φ(0)
in Lemma 5.2, thus `1 > 0).

Then we scale E1 by a factor 1
2

and we apply once again Lemma 5.2, obtaining a set E2 whose boundary
coincides with {x2 = 0} when {x1 < 0} and with a straight line {`2x2 − x1 − q2 = 0} when {x2 > 4},
whose fractional curvature satisfies the desired estimate. Notice again that `2 is obtained in Lemma 5.2
by rotating clockwise the straight line of slope `1 by an angle φ(`1) > 0, hence `2 > `1.

Iterating this procedure, we obtain a sequence of increasing slopes `j and sets Ej satisfying the desired
geometric properties. We stress that, for large j, the slope `j must become larger than the quantity K
fixed in the statement of Proposition 5.3. Indeed, if not, say if `j 6 `? for some `? > 0, at each step of the
iteration we could rotate the straight line by an angle of size larger than φ(`?), which is a fixed positive
quantity (recall that φ in Lemma 5.2 is nonincreasing): hence repeating this argument many times we
would make the slope become bigger than `?, that is a contradiction.

Thus, we can define jo to be the first j for which `j > K. The set Ejo obtained in this way satisfies the
desired properties, with the possible exception of (5.23). So, to obtain (5.23), we may suppose that qjo >
K−1, otherwise we are done, and we scale the picture once again by a factor µ := K−1q−1

jo
∈ (0, 1). In this

way, the geometric properties of the set and the estimates on the fractional curvature are preserved, but
the line {`jox2 − x1 − qjo = 0} is transformed into the line {`jox2 − x1 − q̃jo = 0}, with q̃jo := µqjo . By
construction, we have that q̃jo = K−1, which gives (5.23). �

6. Construction of barriers which grow like x
1
2

+s+ε0
1

In this section, we construct barriers in the plane, which are subsolutions of the fractional curvature

equation when {x1 > 0}, which possess a “vertical” portion along {x1 = 0} and which grow like x
1
2

+s+ε0
1 at

infinity (here, ε0 > 0 is arbitrarily small). This is a refinement of the barrier constructed in Proposition 5.3,
which grows linearly (with almost horizontal slope). Roughly speaking, the difference with Proposition 5.3
is that the results obtained there have nice scaling properties and an elementary geometry (since the
barrier constructed there is basically the junction of a finite number of straight lines) but do not possess
an optimal growth at infinity. As a matter of fact, the power obtained here at infinity is dictated by the
growth of the functions that are harmonic with respect to the fractional Laplacian (−∆)γ0 , where

(6.1) γ0 :=
1

2
+ s.
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As a matter of fact, this procedure provides a good approximation of the fractional mean curvature equation
at points with nearly horizontal tangent. Namely, we set

γ :=
1

2
+ s+ ε0 = γ0 + ε0 ∈

(
1

2
, 1

)
.

We will use the fact that γ > γ0 to construct a subsolution of the γ0-fractional Laplace equation. More
precisely, the main formula we need in this framework is the following:

Lemma 6.1. Let ε0 ∈ (0, 1− γ0). We have that

1

2

∫

R

(1 + t)γ+ + (1− t)γ+ − 2

|t|2+2s
dt > c?ε0,

for some c? > 0.

Proof. Let r > 0. By a Taylor expansion at r = 1, we have that

r
γ
γ0 = 1 +

γ (r − 1)

γ0

+
γ (γ − γ0) ξ

γ
γ0
−2

(r − 1)2

γ2
0

,

for some ξ on the segment joining r to 1. In particular, ξ 6 1 + r. Using this with r := (1± t)γ0+ , we obtain

(1± t)γ+ = 1 +
γ
(
(1± t)γ0+ − 1

)

γ0

+
γ (γ − γ0) ξ

γ
γ0
−2 (

(1± t)γ0+ − 1
)2

γ2
0

,

for some ξ ∈ [0, 2 + |t|]. Consequently, since

γ

γ0

− 2 =
ε0

γ0

− 1 < 0

we obtain that

ξ
γ
γ0
−2 > (2 + |t|)

γ
γ0
−2 > (2 + |t|)−2.

Accordingly,

(1± t)γ+ > 1 +
γ
(
(1± t)γ0+ − 1

)

γ0

+
γ (γ − γ0)

(
(1± t)γ0+ − 1

)2

γ2
0 (2 + |t|)2

,

and so

(1 + t)γ+ + (1− t)γ+ − 2 >
γ
(
(1 + t)γ0+ + (1− t)γ0+ − 2

)

γ0

+
γ (γ − γ0)

[(
(1 + t)γ0+ − 1

)2
+
(
(1− t)γ0+ − 1

)2]

γ2
0 (2 + |t|)2

.

Hence, we set

φ(t) :=

(
(1 + t)γ0+ − 1

)2
+
(
(1− t)γ0+ − 1

)2

|t|2s (2 + |t|)2
,

we use that γ = γ0 + ε0 > γ0 and we conclude that

(6.2)

∫

R

(1 + t)γ+ + (1− t)γ+ − 2

|t|2+2s
dt > γ

γ0

∫

R

(1 + t)γ0+ + (1− t)γ0+ − 2

|t|2+2s
dt+

ε0

γ0

∫

R
φ(t) dt.

Also, we know (see e.g. [15]) that (−∆)γ0tγ0+ = 0 for any t > 0, therefore, using this formula at t = 1 and
noticing that 1 + 2γ0 = 2s, we see that

∫

R

(1 + t)γ0+ + (1− t)γ0+ − 2

|t|2+2s
dt = 0.

Using this and (6.2), we obtain
∫

R

(1 + t)γ+ + (1− t)γ+ − 2

|t|2+2s
dt > ε0

γ0

∫

R
φ(t) dt,

which implies the desired result. �
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Figure 13. The sets involved in Section 6.

Throughout this section, we will consider m and ε0 (to be taken appropriately small in the sequel,
namely ε0 > 0 can be fixed as small as one wishes, and then m > 0 is taken to be small possibly in
dependence of ε0) and cm ∈ R, and let

(6.3) v(x1) :=
m (x1 + cm)γ+

γ
.

The parameter cm will be conveniently chosen in the sequel, see in particular the following formula (6.16),
but for the moment it is free. Also, given p := (p1, p2) with p1 > 1 − cm and p2 = v(p1), we consider the
tangent line at v through p, namely

(6.4) Λ(x1) := v′(p1)(x1 − p1) + v(p1) = m (p1 + cm)γ−1(x1 − p1) +
m (p1 + cm)γ

γ
.

We observe that the tangent line above meets the x1-axis at the point q = (q1, 0), with

(6.5) q1 := p1 −
v(p1)

v′(p1)
= p1 −

p1 + cm
γ

.

We also consider the region A which lies above the graph of v and below the graph of Λ and the region B
which lies above the graph of Λ and below the x1-axis, see Figure 13. More explicitly, we have

A := {(x1, x2) s.t. x1 > q1 and v(x1) < x2 < Λ(x1)}
and B := {(x1, x2) s.t. x1 < q1 and Λ(x1) < x2 < 0}.(6.6)

The first technical result that we need is the following:

Lemma 6.2. Let ε0 ∈ (0, 1− γ0). There exist c, c′ ∈ (0, 1) such that if m ∈ (0, cε0] then

(6.7)

∫

B

dy

|y − p|2+2s
−
∫

A

dy

|y − p|2+2s
> c′ ε0m

(p1 + cm)
1
2

+s−ε0
,

for any p := (p1, p2) with p1 > 1− cm and p2 = v(p1).

Proof. First of all, we observe that |y − p| > |y1 − p1|, therefore

(6.8)

∫

A

dy

|y − p|2+2s
6
∫

A

dy

|y1 − p1|2+2s
=

∫ +∞

q1

Λ(y1)− v(y1)

|y1 − p1|2+2s
dy1 =: H.

Recalling (6.3) and (6.4), we have that

H =

∫ +∞

q1

m (p1 + cm)γ−1(y1 − p1) + γ−1m (p1 + cm)γ+ − γ−1m (y1 + cm)γ+
|y1 − p1|2+2s

dy1

=
m (p1 + cm)γ

γ

∫ +∞

q1

γ (p1 + cm)−1(y1 − p1) + 1− (p1 + cm)−γ(y1 + cm)γ+
|y1 − p1|2+2s

dy1.
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Now we recall (6.5) and use the change of variable from the variable y1 to the variable t given by

(6.9) y1 + cm = (p1 + cm)(t+ 1).

In this way, we obtain that

H =
m

γ (p1 + cm)1+2s−γ

∫ +∞

− 1
γ

γt+ 1− (t+ 1)γ+
|t|2+2s

dt =
CAm

(p1 + cm)1+2s−γ ,

where

CA :=

∫ +∞

− 1
γ

γt+ 1− (t+ 1)γ+
|t|2+2s

dt.

Therefore, recalling (6.8), we conclude that

(6.10)

∫

A

dy

|y − p|2+2s
6 CAm

(p1 + cm)1+2s−γ .

Now we claim that

(6.11) if y ∈ B, then |y2 − p2| 6 m|y1 − p1|.
To prove this, we take y ∈ B. Then Λ(y1) < y2 < 0, therefore, since p2 > 0, we have

|y2 − p2| = p2 − y2 6 p2 − Λ(y1) = v(p1)−
(
v′(p1)(y1 − p1) + v(p1)

)
6 m(p1 + cm)γ−1|y1 − p1|.

Now we have that p1 + cm > 1, by our assumptions. Hence, since γ − 1 < 0, we conclude that |y2 − p2| 6
m|y1 − p1|, thus proving (6.11).

As a consequence of (6.11), we have that if y ∈ B then |y − p| 6 (1 + Cm)|y1 − p1|, for some C > 0,
and therefore

(6.12)

∫

B

dy

|y − p|2+2s
> (1− Cm)

∫

B

dy

|y1 − p1|2+2s
= (1− Cm) I,

up to renaming C > 0, where

I :=

∫

B

dy

|y1 − p1|2+2s
=

∫ q1

−∞

−Λ(y1)

|y1 − p1|2+2s
dy1.

Recalling the definition of H in (6.8), we have that

J := H − I =

∫ +∞

q1

Λ(y1)− v(y1)

|y1 − p1|2+2s
dy1 +

∫ q1

−∞

Λ(y1)

|y1 − p1|2+2s
dy1.

Accordingly, since v(y1) = 0 if y1 6 q1, we obtain that

J =

∫ +∞

−∞

Λ(y1)− v(y1)

|y1 − p1|2+2s
dy1 =

∫ +∞

−∞

v(p1)− v(y1)

|y1 − p1|2+2s
dy1,

where we have used (6.4) in the last identity and the integrals are taken in the principal value sense. Hence,
we use (6.3) and the substitution in (6.9), and we conclude that

J =
m

γ

∫ +∞

−∞

(p1 + cm)γ − (y1 + cm)γ+
|y1 − p1|2+2s

dy1 =
m

γ(p1 + c1)1+2s−γ

∫ +∞

−∞

1− (t+ 1)γ+
|t|2+2s

dt = − CBm

(p1 + cm)
1
2

+s−ε0
,

where

CB :=

∫ +∞

−∞

(t+ 1)γ+ − 1

|t|2+2s
dt.

From Lemma 6.1, we have that CB > c?ε0, for some c? > 0. As a consequence,

I = H − J =
(CA + CB)m

(p1 + cm)
1
2

+s−ε0
> (CA + c?ε0)m

(p1 + cm)
1
2

+s−ε0
,
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v

Figure 14. The barrier constructed in Proposition 6.3.

and so, by (6.12) ∫

B

dy

|y − p|2+2s
> (1− Cm)(CA + c?ε0)m

(p1 + cm)
1
2

+s−ε0
.

Putting together this and (6.10), we obtain that

∫

B

dy

|y − p|2+2s
−
∫

A

dy

|y − p|2+2s
>
[
(1− Cm)(CA + c?ε0)− CA

]
m

(p1 + cm)
1
2

+s−ε0
,

which implies the desired result. �

Now we are in the position of improving the behavior at infinity of the barrier constructed in Proposi-
tion 5.3. The idea is to “glue” the barrier of Proposition 5.3 with the graph of the “right” power function
at infinity. The construction is sketched in Figure 14 and the precise result obtained is the following:

Proposition 6.3. Let ε0 ∈ (0, 1 − γ0). There exists c > 0 such that if m ∈ (0, cε0], then the following
statement holds.

There exist am > 0, dm > 1 > αm > 0, cm ∈ R and a set Em ⊂ R2 with (∂Em) ∩ {x2 > 0} of class C1,1

and such that:

Em ∩ {x1 < 0} = (−∞, 0)× (−∞, 0),

Em ⊇ R× (−∞, 0),

Em ⊇ (0,+∞)× (−∞, am],

Em ∩ {αm 6 x1 6 dm} = {x2 < v′(dm)(x1 − dm) + v(dm), αm 6 x1 6 dm}
and Em ∩ {x1 > dm} = {x2 < v(x1), x1 > dm},

where v was introduced in (6.3). Moreover, there exist c′ ∈ (0, 1) and N > 1 such that

(6.13)

∫

R2

χEm(y)− χEcm(y)

|y − p|2+2s
dy > c′ ε0m

|p| 12+s−ε0
,

for any p ∈ (∂Em) ∩ {x1 >
dm
N
}, and

(6.14)

∫

R2

χEm(y)− χEcm(y)

|y − p|2+2s
dy > c′m

d1−γ
m |p|2s

,

for any p ∈ (∂Em) ∩ {x1 ∈
(
0, dm

N

]
}.

Proof. We use Proposition 5.3 with a large K. In this way, we may suppose that `K > K is as large
as we wish, while qK 6 K−1 is as small as we wish. We fix N > 0, to be chosen appropriately large
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(independently on K) and we set

dm := N2

and m := `−1
K

(
γ (dm + qK)

)1−γ
.

(6.15)

We stress that m > 0 is small when K is large, since

m 6 K−1
(
γ (N2 +K−1)

)1−γ
,

that is small when K is large (much larger than the fixed N). Hence Proposition 5.3 provides a set,
say Fm, whose boundary agrees with a straight line λm of the form x2 = `−1

K (x1 + qK) when x1 > αm, for
suitable qK ∈ [0, K−1] and αm > 0.

Now we join such a straight line with the function v defined in (6.3), at the point (dm, v(dm)), with βm :=
dm − αm suitably large. To this goal, we define

(6.16) cm := (γ − 1)dm + γqK .

Notice that

(6.17) dm + cm = γ(dm + qK).

This and (6.15) give that

v(dm) =
m (dm + cm)γ+

γ
=
m
(
γ(dm + qK)

)γ

γ
= `−1

K

(
γ (dm + qK)

)1−γ ·
(
γ(dm + qK)

)γ

γ
= `−1

K (dm + qK),

which says that v meets the straight line λm at the point (dm, v(dm)).
Also, by (6.15) and (6.17), we see that

v′(dm) = m(dm + cm)γ−1 = `−1
K

(
γ (dm + qK)

)1−γ ·
(
γ (dm + qK)

)γ−1
= `−1

K ,

therefore v and λm have the same slope at the meeting point (dm, v(dm)). Therefore, the set Em which
coincides with Fm when {x1 6 dm} and with the subgraph of v when {x1 > dm} satisfy the geometric
properties listed in the statement of Proposition 6.3, and it only remains to prove (6.13) and (6.14).

For this scope, we first consider the case in which p1 > dm. Then, we take Λ as in (6.4) and A and B as
in (6.6). Let also T be the subgraph of Λ. Then, by symmetry

∫

R2

χT (y)− χT c(y)

|y − p|2+2s
dy = 0.

Notice that T \ Em ⊆ A and Em \ T ⊇ B, therefore
∫

R2

χEm(y)− χEcm(y)

|y − p|2+2s
dy

=

∫

R2

χEm(y)− χEcm(y)− χT (y) + χT c(y)

|y − p|2+2s
dy

= 2

∫

R2

χEm\T (y)− χT\Em(y)

|y − p|2+2s
dy

> 2

∫

R2

χB(y)− χA(y)

|y − p|2+2s
dy

= 2

(∫

B

dy

|y − p|2+2s
−
∫

A

dy

|y − p|2+2s

)
.

Notice also that

(6.18) 1− cm = 1− (γ − 1)dm − γqK 6 1− γdm + dm 6 dm
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thanks to (6.16) and (6.15). Hence, in this case, p1 > dm > 1− cm, and so the assumptions of Lemma 6.2
are fulfilled. Therefore, by (6.7),

(6.19)

∫

R2

χEm(y)− χEcm(y)

|y − p|2+2s
dy > c′ ε0m

(p1 + cm)
1
2

+s−ε0
,

for some c′ > 0. Now we notice that, by (6.16) and (6.15),

p1 + cm = p1 + (γ − 1)dm + γqK 6 2p1 6 2|p|.
Using this and (6.19), we see that (6.13) holds true in this case.

Hence, it remains to prove (6.13) and (6.14) when p1 ∈ (0, dm). In this case, we use that, by Proposi-
tion 5.3, ∫

R2

χFm(y)− χF cm(y)

|y − p|2+2s
dy > c̄

`K |p|2s
,

for some c̄ > 0. Also Fm \ Em coincides with the portion comprised above the graph of v and below the
straight line λm, that is

G := {x1 > dm, v(x1) < x2 < v′(dm)(x1 − dm) + v(dm)},
while Em \ Fm is empty. Therefore

c̄

`K |p|2s
−
∫

R2

χEm(y)− χEcm(y)

|y − p|2+2s
dy 6

∫

R2

χFm(y)− χF cm(y)− χEm(y) + χEcm(y)

|y − p|2+2s
dy

= 2

∫

G

dy

|y − p|2+2s
6 2

∫

G

dy

|y1 − p1|2+2s

= 2

∫ +∞

dm

v′(dm)(y1 − dm) + v(dm)− v(y1)

|y1 − p1|2+2s
dy1.

(6.20)

Now, we distinguish the cases p1 ∈
(
0, dm

N

)
and p1 ∈

[
dm
N
, dm

)
.

If p1 ∈
(
0, dm

N

)
, we use (6.20) and observe that v(y1) > v(dm) if y1 > dm, to conclude that

c̄

`K |p|2s
−
∫

R2

χEm(y)− χEcm(y)

|y − p|2+2s
dy 6 2v′(dm)

∫ +∞

dm

y1 − dm
|y1 − p1|2+2s

dy1

6 2v′(dm)

∫ +∞

dm

dy1

(y1 − p1)1+2s
6 Cm (dm + cm)γ−1

(dm − p1)2s

6 Cm (dm + cm)γ−1

d2s
m

,

up to renaming constants. Therefore, recalling (6.15) and (6.17),
∫

R2

χEm(y)− χEcm(y)

|y − p|2+2s
dy > c̄ m

(
γ (dm + qK)

)1−γ |p|2s
− Cm

(dm + cm)1−γ d2s
m

=
m

(dm + cm)1−γ

(
c̄

|p|2s −
C

d2s
m

)
.

(6.21)

Now we observe that, when p1 6 dm
N

, we have that p2 6 1 + `−1
K

(
dm
N

+ qK
)
6 2 + dm

N
6 dm

N1/2 , and

so |p| 6 dm
N1/4 . Therefore

C

d2s
m

6 C

N s/2 |p|2s 6
c̄

2 |p|2s ,

if N is large enough (independently on m and K). This and (6.21) imply that
∫

R2

χEm(y)− χEcm(y)

|y − p|2+2s
dy > m c̄

2(dm + cm)1−γ|p|2s .

By recalling (6.17), we see that the latter estimate implies (6.14) in this case.
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p

α −c mdmm,p−cm

Figure 15. A power-like function tangent at p ∈ ∂Em, with p1 ∈
[
dm

N , dm
)
.

It remains to prove (6.13) when p1 ∈
[
dm
N
, dm

)
. In this case, we argue like this. For any p = (p1, p2) ∈ ∂Fm

with p1 ∈
[
dm
N
, dm

)
, we have p2 = v′(dm)(p1−dm)+v(dm), and we define vp the power function whose graph

passes through p and tangent to the line {x2 = v′(dm)(x1 − dm) + v(dm)} at p, see Figure 15. Explicitly,
we define

vp(x1) :=
mp (x1 + cm,p)

γ
+

γ
,

with mp := (γp2)1−γmγ(dm + cm)γ(γ−1)

and cm,p :=
γp2

m (dm + cm)γ−1
− p1.

We remark that

vp(p1) = p2 and v′p(p1) = v′(dm).

Since p2 < v(dm) = mγ−1(dm + cm)γ, we have that

(6.22) mp <
(
m (dm + cm)γ

)1−γ
mγ(dm + cm)γ(γ−1) = m.

Moreover p2 = v′(dm)(p1 − dm) + v(dm) = m (dm + cm)γ−1(p1 − dm) +mγ−1(dm + cm)γ, therefore

cm,p =
γm (dm + cm)γ−1(p1 − dm) +m (dm + cm)γ

m (dm + cm)γ−1
− p1

= γ(p1 − dm) + dm + cm − p1 = (1− γ)(dm − p1) + cm.

(6.23)

Hence, since p1 < dm,

(6.24) cm,p > cm.

Also, from (6.16) and (6.23),

(6.25) cm,p = (1− γ)(dm − p1) + (γ − 1)dm + γqK = −(1− γ) p1 + γqK .

Therefore, since p1 > dm
N

= N ,

(6.26) cm,p 6 −(1− γ)N + γqK 6 −(1− γ)N + 1 < −1 6 −αm,
provided that N is large enough.

Furthermore, using again (6.25),

(6.27) p1 + cm,p = γp1 + γqK >
γdm
N

= γN > 1.

In addition,

mp(p1 + cm,p)
γ−1
+ = v′p(p1) = v′(dm) = m(dm + cm)γ−1

+ ,
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therefore, by (6.17) and (6.25),

mp

m
=

(p1 + cm,p)
1−γ
+

(dm + cm)1−γ
+

=
(γp1 + γqK)1−γ

+

(γ(dm + qK))1−γ
+

=
(p1 + qK)1−γ

+

(dm + qK)1−γ
+

>
(
dm
N

)1−γ
+

(2dm)1−γ
+

=
1

(2N)1−γ .

(6.28)

Now we claim that

(6.29) if x1 > dm, then vp(x1) 6 v(x1).

To prove this, we use (6.18) and (6.24) to see that

x1 + cm,p > x1 + cm > dm + cm > 1,

therefore

ψ(x1) := γ
(
vp(x1)− v(x1)

)
= mp (x1 + cm,p)

γ −m (x1 + cm)γ.

Also, vp is concave, therefore

vp(dm) 6 vp(p1) + v′p(p1)(dm − p1) = p2 + v′(dm)(dm − p1)

= v′(dm)(p1 − dm) + v(dm) + v′(dm)(dm − p1) = v(dm).

As a consequence, ψ(dm) 6 0. Moreover, for any x1 > dm,

ψ′(x1) = mpγ (x1 + cm,p)
γ−1 −mγ (x1 + cm)γ−1 6 mγ

[
(x1 + cm,p)

γ−1 − (x1 + cm)γ−1
]
6 0,

thanks to (6.22) and (6.24). From these considerations, we obtain that ψ 6 0 in [dm,+∞), which
proves (6.29).

Also, by concavity,

if x1 ∈ [−cm,p, dm], then

vp(x1) 6 v′p(p1)(x1 − p1) + vp(p1) = v′(dm)(x1 − p1) + p2 = v′(dm)(x1 − dm) + v(dm).
(6.30)

Now we claim that

(6.31) the subgraph of vp is contained in Em.

To check this, let x = (x1, x2) be such that x2 < vp(x1). Then, if x1 < −cm,p then vp(x1) = 0 and so (6.31)
plainly follows. If x1 ∈ [−cm,p, dm], then (6.31) is implied by (6.26) and (6.30). Finally, if x1 > dm,
then (6.31) is a consequence of (6.29).

Hence, we define S := {x2 < vp(x1)}, we use (6.31) and Lemma 6.2 (which can be exploited in this
framework with the power-like function vp, thanks to (6.27)) and we obtain that

(6.32)

∫

R2

χEm(y)− χEcm(y)

|y − p|2+2s
dy >

∫

R2

χS(y)− χSc(y)

|y − p|2+2s
dy > c′ ε0mp

(p1 + cm,p)
1
2

+s−ε0
,

for some c′ > 0. Now we recall (6.25) and we see that p1 + cm,p 6 p1 6 |p|. Using this and (6.28) (notice
that N has now been fixed), we obtain (6.13) if p1 ∈

[
dm
N
, dm

)
as a consequence of (6.32).

This completes the proof of (6.13) in all cases and finishes the proof of Proposition 6.3. �

7. Construction of compactly supported barriers

In this section, we construct a suitable barrier for the fractional mean curvature equation in the plane
which is flat and horizontal outside a vertical slab, and whose geometric properties inside the slab are
under control. Roughly speaking, we will take the barrier constructed in Proposition 6.3 and a reflected
version of it and join it smoothly in the middle. The effect of this surgery is negligible at the points of the
barrier that are near the horizontal part, and give a bounded contribution in the middle.

This barrier is described in Figure 16 and the precise result obtained is the following:
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Figure 16. The barrier constructed in Proposition 7.1.

Proposition 7.1. Let ε0 ∈ (0, 1− γ0). There exists mε0 > 0 such that if m ∈ (0, mε0 ] then the following
statement holds.

There exist am > 0, Lm > Am > dm > 1, cm ∈ R, C? > 0 and a set Fm ⊂ R2 with (∂Fm) ∩ {x2 > 0} of
class C1,1 and such that:

Fm ∩ {x1 < 0} = (−∞, 0)× (−∞, 0),

Fm ⊇ R× (−∞, 0),

Fm ⊇ (0, Lm + 1)× (−∞, am],

Fm ⊆ {x2 6 C?mL
1
2

+s+ε0
m }

and Fm ∩ {dm < x1 < Lm} = {x2 < v(x1), dm < x1 < Lm},
where v was introduced in (6.3). In addition, one can suppose that

(7.1) Lm = 10Am > 2 +m−1 + e
1
am .

Moreover, the set Fm is even symmetric with respect to the vertical axis {x1 = Lm + 1}, and there exists
C ′ > 0 such that

(7.2)

∫

R2

χFm(y)− χF cm(y)

|y − p|2+2s
dy > 0,

for any p ∈ (∂Fm) ∩ {x1 ∈ (0, Am)}, and

(7.3)

∫

R2

χFm(y)− χF cm(y)

|y − p|2+2s
dy > − C ′m2s

L
1
2

+s−ε0
m

,

for any p ∈ (∂Fm) ∩ {x1 ∈ [Am, Lm + 1]}.
Proof. We let Em be the set constructed in Proposition 6.3. Let E ′m be the even reflection of Em with
respect to the vertical axis {x1 = Lm+1}. We take a smooth function w : [Lm, Lm+2]→ [v(Lm), CmLγm]
that is even with respect to {x1 = Lm + 1}, with w(Lm) = v(Lm) and such that its derivatives agree with
the ones of v at the point Lm. The set Fm is then defined as

(
Em ∩ {x1 6 Lm}

)
∪
{
x2 < w(x1), x1 ∈ (Lm, Lm + 2)

}
∪
(
E ′m ∩ {x1 > Lm + 2}

)
.

For completeness, let us describe the above function w explicitly. One takes an odd function τ ∈
C∞(R, [−1, 1]) such that τ = −1 in (−∞,−1] and τ = 1 in [1,+∞) and defines w by

w(x1) :=

(
1− τ(x1 − Lm − 1)

)
v(x1) +

(
1 + τ(x1 − Lm − 1)

)
v(2Lm + 2− x1)

2
.

Then w(Lm + 1 + x1) = w(Lm + 1 − x1), hence w is even with respect to {x1 = Lm + 1}. The set Fm
has the desired geometric properties, so it remains to prove (7.2) and (7.3). For this, we take Lm = 10Am
appropriately large. In particular, we suppose that Lm > cm + 2Am, and therefore, for any y1 ∈ [Lm,+∞)
and p1 ∈ (0, Am) we have that y1 + cm 6 2(y1 − p1), and so, by (6.3),

v(y1) =
m (y1 + cm)γ+

γ
6 2γm (y1 − p1)γ

γ
.
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We also notice that Em\Fm ⊆ {x1 > Lm, 0 < x2 < v(x1)}. Therefore, for every p ∈ (∂Fm)∩{x1 ∈ (0, Am)},
∫

R2

χEm(y)− χEcm(y)

|y − p|2+2s
dy −

∫

R2

χFm(y)− χF cm(y)

|y − p|2+2s
dy

= 2

∫

R2

χEm\Fm(y)− χFm\Em(y)

|y − p|2+2s
dy 6 2

∫

Em\Fm

dy

|y − p|2+2s

6 2

∫ +∞

Lm

v(y1) dy1

(y1 − p1)2+2s
6 Cm

∫ +∞

Lm

(y1 − p1)γ−2−2s =
Cm

(Lm − p1)1+2s−γ

6 Cm

L1+2s−γ
m

=
Cm

L
1
2

+s−ε0
m

,

(7.4)

up to changing the names of the constant C > 0 line after line. Hence, recalling (6.13),
∫

R2

χFm(y)− χF cm(y)

|y − p|2+2s
dy > c′ ε0m

|p| 12+s−ε0
− Cm

L
1
2

+s−ε0
m

> c′ ε0m

2 |p| 12+s−ε0

for any p ∈ (∂Fm)∩{x1 ∈
(
dm
N
, Am

)
}, as long as Lm is large enough (possibly in dependence of supq1∈(0,Am) |q|).

This establishes (7.2) if p ∈ (∂Fm) ∩ {x1 ∈
(
dm
N
, Am

)
}.

If instead p ∈ (∂Fm) ∩ {x1 ∈
(
0, dm

N

]
}, we use (7.4) and (6.14) to obtain that

∫

R2

χFm(y)− χF cm(y)

|y − p|2+2s
dy > c′m

d1−γ
m |p|2s

− Cm

L
1
2

+s−ε0
m

> c′N2sm

d1−γ
m d2s

m

− Cm

L
1
2

+s−ε0
m

=
c′N2sm

d
1
2

+s−ε0
m

− Cm

L
1
2

+s−ε0
m

> 0,

as long as Lm is large enough, and this proves (7.2) also in this case.
Now we prove (7.3). For this, we take p ∈ (∂Fm) ∩ {x1 ∈ [Am, Lm + 1)}. By (6.3), the curvature of Fm

at p is bounded (in absolute value) by CmLγ−2
m . Hence (see Lemma 3.1 in [13], applied here with λ := Lγ−1

m

and R := m−1L2−γ, so that λR = Lm
m

, and canceling the contribution coming from the tangent line) one
obtains that

(7.5)

∣∣∣∣∣∣

∫

BLm
m

(p)

χFm(y)− χF cm(y)

|y − p|2+2s
dy

∣∣∣∣∣∣
6 C

(
Lγ−1
m

)1−2s(
m−1L2−γ

m

)−2s
= Cm2sLγ−1−2s

m =
Cm2s

L
1
2

+s−ε0
m

,

for some C > 0, possibly varying from step to step.
Moreover, to compute the contribution coming from outside BLm

m
(p), we can compare the set Fm with

the horizontal line passing through p. Notice indeed that Fm\BLm
m

(p) = {x2 < 0}\BLm
m

(p). Thus, since p2

is controlled by CmLγm∣∣∣∣∣∣

∫

R2\BLm
m

(p)

χFm(y)− χF cm(y)

|y − p|2+2s
dy

∣∣∣∣∣∣
6 2

∫

{0<y2<CmLγm}\BLm
m (p)

dy

|y − p|2+2s

6 CmLγm

∫

{|y1−p1|>Lm}

dy1

|y1 − p1|2+2s
= CmLγ−1−2s

m =
Cm

L
1
2

+s−ε0
m

.

up to renaming C > 0. This and (7.5) imply (7.3), as desired. �
By scaling Proposition 7.1, one obtains the following result:

Corollary 7.2. Fix ε0 > 0 arbitrarily small. There exist an infinitesimal sequence of positive δ’s and
sets Hδ ⊆ R2, with (∂Hδ)∩{x2 > 0} of class C1,1, that are even symmetric with respect to the axis {x1 = 0}
and satisfy the following properties:

Hδ ∩ {x1 < −1} = (−∞,−1)× (−∞, 0),

Hδ ⊇ R× (−∞, 0),

Hδ ⊇ (−1, 1)× (−∞, δ
2+ε0
1−2s ]

and Hδ ⊆ {x2 6 δ}.
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Figure 17. The barrier constructed in Proposition 7.3.

Moreover,

(7.6)

∫

R2

χHδ(y)− χHc
δ
(y)

|y − p|2+2s
dy > 0,

for any p ∈ (∂Hδ) ∩ {x1 ∈
(
−1,−1 + 1

100

)
} and

(7.7)

∫

R2

χHδ(y)− χHc
δ
(y)

|y − p|2+2s
dy > −δ,

for any p ∈ (∂Hδ) ∩ {x1 ∈
[
−1 + 1

100
, 0
]
}.

Proof. We scale the set Fm constructed in Proposition 7.1 by a factor of order 1
Lm

(then we also translate

to the left by a horizontal vector of length 1) and take δ := 1

L
1
2−s−ε0
m

. Notice that δ is infinitesimal, due

to (7.1). Also, the estimates in (7.6) and (7.7) follow from the ones in (7.2) and (7.3), since the fractional
curvature scales by a factor proportional to L2s

m .
We also remark that the vertical stickiness of Fm in Proposition 7.1 was bounded from below by am,

and Lm > e
1
am , by (7.1). As a consequence, by scaling, the vertical stickiness of Hδ here is bounded by an

order of am
Lm
> 1

Lm logLm
. This quantity is in turn bounded by an order of δ

2
1−2s−2ε0

| log δ| , which we can bound

by δ
2+ε0
1−2s , up to renaming ε0. �

We observe that while in (7.6) we obtained that the fractional mean curvature of the set is nonnegative
near {x1 = ±1}, from (7.7) we can only say that the fractional mean curvature of the set near {x1 = 0}
is controlled by a small negative quantity (and this cannot be improved, since at the points in which the
set reaches its highest level the fractional mean curvature must be negative). By adding an additional
small contribution to the set in {|x1| ∈ (2, 3)}, we can obtain a complete subsolution, i.e. a set whose
fractional mean curvature is nonnegative. Such subsolution has the important geometric feature that the
points along {x1 = 0} detach from {x2 = 0}, see Figure 17. The precise statement goes as follows:

Proposition 7.3. Fix ε0 > 0 arbitrarily small. There exist C > 0, an infinitesimal sequence of positive δ’s
and sets Eδ ⊆ R2, with (∂Eδ)∩

(
(−3

2
, 3

2
)× (0,+∞)

)
of class C1,1, that are even symmetric with respect to

the axis {x1 = 0} and satisfy the following properties:

Eδ ∩ {x1 ∈ (−∞,−3) ∪ (−2,−1)} =
(
(−∞,−3) ∪ (−2,−1)

)
× (−∞, 0),

Eδ ∩ {x1 ∈ [−3,−2]} = [−3,−2]× (−∞, Cδ),
Eδ ⊇ R× (−∞, 0),

Eδ ⊇ (−1, 1)× (−∞, δ
2+ε0
1−2s ]

and Eδ ∩ {|x1| 6 1} ⊆ {x2 6 δ}.
Moreover, for any p ∈ (∂Eδ) ∩ {|x1| < 1},

(7.8)

∫

R2

χEδ(y)− χEcδ (y)

|y − p|2+2s
dy > 0.
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Proof. Let Hδ be as in Corollary 7.2. We define Eδ := Hδ ∪ F− ∪ F+, where F− := (−3,−2)× [0, Cδ) and
F+ := (2, 3) × [0, Cδ). Then Eδ satisfies all the desired geometric properties, and Eδ ⊃ Hδ. Therefore,
when p ∈ (∂Eδ) ∩ {|x1| ∈

(
1− 1

100
, 1
)
}, we have that (7.8) follows from (7.6). Moreover, when p ∈

(∂Eδ) ∩ {|x1| 6 1 − 1
100
}, we have that (7.8) follows from (7.7) and the fact that |F+| = |F−| = Cδ (and

one can choose C > 0 conveniently large). �
Remark 7.4. Concerning the statement of Proposition 7.3, by (7.8) (see in addition Lemma 3.3 in [13]),
we also obtain that

(7.9)

∫

R2

χEδ(y)− χEcδ (y)

|y − p|2+2s
dy > 0

for any p ∈ (∂Eδ) ∩ {|x1| < 1}.

8. Instability of the flat fractional minimal surfaces

With the barrier constructed in Proposition 7.3 we are now in the position of proving Theorem 1.4. For
this, we will take E and F as in the statement of Theorem 1.4.

Proof of Theorem 1.4. Let Eδ be as in Proposition 7.3. The idea is to slide Eδ (or, more precisely, E δ
C

) from

below. Namely, for any t > 0 we consider the set E(t) := E δ
C
− te2. For large t, we have that E(t) ⊆ E. So

we take the smallest t > 0 for which such inclusion holds. We observe that Theorem 1.4 would be proved
if we show that such t equals to 0.

Then suppose, by contradiction, that

(8.1) t > 0.

By construction,

(8.2) E(t) ⊆ E

and there exists a contact point between the two sets. From the data outside [−1, 1]×R, we have that all
the contact points must lie in [−1, 1]× R.

Furthermore,

(8.3) no contact point can occur in (−1, 1)× R.

To check this, suppose that there exists p = (p1, p2) ∈ (∂E(t)) ∩ (∂E) with |p1| < 1. Then, using the
Euler-Lagrange equation in the viscosity sense for E (see Theorem 5.1 in [6]) and (7.8) we have that

∫

R2

χE(y)− χEc(y)

|y − p|2+2s
dy 6 0 6

∫

R2

χE(t)(y)− χEc(t)(y)

|y − p|2+2s
dy.

Also, the opposite inequality holds, thanks to (8.2), and therefore E(t) and E must coincide. This would
give that t = 0, against our assumption. This proves (8.3).

As a consequence, we have that all the contact points lie on {±1} × R. Since both ∂E(t) and ∂E are
closed set, we can take the contact point with lower vertical coordinate along {x1 = ±1}, and we denote
it by x±o = (±1, x±o,2).

Now, for any k ∈ N (to be taken as large as we wish) and any h ∈ [0, 1/k] we consider the ball of
small radius r > 0 (smaller than the radius of curvature of E(t)) centered on the line {x2 = x±o,2 + h}
and we slide such ball to the left (towards {x1 = −1}) or to the right (towards {x1 = 1}) till it touches
either ∂E ∩ {|x1| < 1} or {x1 = ±1}, see Figure 18.

We claim that there exists a sequence k → +∞ for which there exists hk ∈ [0, 1/k] such that the sliding
of this ball (either to the right or to the left) touches ∂E ∩ {|x1| < 1}. Indeed, if not, we have that ∂E,
near {x1 = ±1}, stays above {x2 = x±o,2 + α}, for some α > 0. But this would imply that we can keep
sliding E(t) a little more upwards, in contradiction with the minimality of t.

Therefore, we can assume that, for a suitable sequence k → +∞, we have that there exist points xk =
(xk,1, xk,2) ∈ (∂E) ∩ {|x1| < 1} with xk,2 = x±o,2 + hk and hk ∈ [0, 1/k]. By construction, the points xk
must lie outside E(t), hence, if r is small enough, we have that |xk,1| → 1 as k → +∞.
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−1

E

E(t)

Figure 18. Sliding the balls from the barriers towards ∂E ∩ {|x1| < 1}.

Hence, we assume that xk ∈ (∂E)∩{|x1| < 1} and xk → xo := x−o as k → +∞ (the case in which xk → x+
o

is completely analogous). Then, by the Euler-Lagrange equation at the points xk (see Lemma 3.4 in [13]),
we obtain that

(8.4)

∫

Rn

χE(y)− χEc(y)

|xo − y|n+2s
dy 6 0.

On the other hand, by (7.9),

(8.5)

∫

R2

χE(t)(y)− χEc(t)(y)

|xo − y|2+2s
dy > 0.

Combining (8.2), (8.4) and (8.5), it follows that E(t) = E. Thus, from the values of Eδ and E out-
side {|x1| 6 1}, we conclude that t = 0. This is in contradiction with (8.1) and so the desired result is
proved. �

Appendix A. Symmetry properties and a variation on the proof of Lemma 6.1

Here we prove that the minimizers inherit the symmetry properties of the boundary data:

Lemma A.1. Let T : Rn → Rn be an isometry, with T (Ω) = Ω. Assume that there exists N ∈ N such
that TN(x) = x for every x ∈ Ω.

Let E ⊆ Rn be such that T (E) = E. Let E∗ be the s-minimal set in a domain Ω among all the sets F
such that F \ Ω = E \ Ω. Then T (E∗) = E∗.

Proof. We let

F (u) :=
1

2

∫∫

R2n\(Ωc)2

|u(x)− u(y)|2
|x− y|n+2s

dx dy.

We observe that
F (χE) = Pers(E,Ω).

Moreover, by Lemma 3 on page 685 in [20], we have that

F (min{u, v}) + F (max{u, v}) 6 F (u) + F (v),

and the equality holds if and only if either u(x) 6 v(x) or v(x) 6 u(x) for any x ∈ Ω.
We use the observations above with u := χE∗ and v := χT (E∗). Notice that, in this case, min{u, v} =

χE∗∩T (E∗) and max{u, v} = χE∗∪T (E∗). Hence, we obtain

(A.1) Pers
(
E∗ ∩ T (E∗),Ω

)
+ Pers

(
E∗ ∪ T (E∗),Ω

)
6 Pers(E∗,Ω) + Pers(T (E∗),Ω),

and the equality holds if and only if either χE∗(x) 6 χT (E∗)(x) or χT (E∗)(x) 6 χE∗(x) for any x ∈ Ω, that
is, if and only if

(A.2) either E∗ ∩ Ω ⊆ T (E∗) ∩ Ω or T (E∗) ∩ Ω ⊆ E∗ ∩ Ω.
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Now we observe that

Pers
(
T (E∗),Ω

)
= L

(
T (E∗) ∩ Ω,Rn \ T (E∗)

)
+ L

(
Ω \ T (E∗), T (E∗) \ Ω

)

= L
(
T (E∗) ∩ T (Ω),Rn \ T (E∗)

)
+ L

(
T (Ω) \ T (E∗), T (E∗) \ T (Ω)

)

= L
(
T (E∗ ∩ Ω), T (Rn \ E∗)

)
+ L

(
T (Ω \ E∗), T (E∗ \ Ω)

)

= L(E∗ ∩ Ω,Rn \ E∗) + L(Ω \ E∗, E∗ \ Ω)

= Pers(E∗,Ω).

Substituting this in (A.1), we obtain that

(A.3) Pers
(
E∗ ∩ T (E∗),Ω

)
+ Pers

(
E∗ ∪ T (E∗),Ω

)
6 2 Pers(E∗,Ω).

On the other hand,

(A.4) T (E∗) \ Ω = T (E∗) \ T (Ω) = T (E∗ \ Ω) = T (E \ Ω) = T (E) \ Ω = E \ Ω.

This says that E∗ ∩ T (E∗) and E∗ ∪ T (E∗) are admissible competitors for E∗ and therefore

Pers(E∗,Ω) 6 Pers
(
E∗ ∩ T (E∗),Ω

)
and Pers(E∗,Ω) 6 Pers

(
E∗ ∪ T (E∗),Ω

)
.

This implies that the equality holds in (A.3), and so in (A.1).
Therefore, (A.2) holds true. So we suppose that E∗∩Ω ⊆ T (E∗)∩Ω (the case in which T (E∗)∩Ω ⊆ E∗∩Ω

can be dealt with in a similar way). Then we have that E∗ ∩ Ω ⊆ T (E∗ ∩ Ω). By applying T , we
obtain T (E∗ ∩ Ω) ⊆ T 2(E∗ ∩ Ω), and so, iterating the procedure

E∗ ∩ Ω ⊆ T (E∗ ∩ Ω) ⊆ · · · ⊆ TN−1(E∗ ∩ Ω) ⊆ TN(E∗ ∩ Ω) = E∗ ∩ Ω.

This shows that E∗ ∩ Ω = T (E∗ ∩ Ω), that is E∗ ∩ Ω = T (E∗) ∩ Ω.
Also, by (A.4), E∗ \ Ω = T (E∗) \ Ω. Therefore E∗ = T (E∗), as desired. �
Now we give a different (and more general) proof of Lemma 6.1, according to the following result:

Lemma A.2. Let σ, σ0 ∈ (0, 1), with σ < 2σ0. Then, for any t > 0, we have

(A.5) (−∆)σ0tσ+ = −4 Γ(1 + σ) Γ(2σ0 − σ) sin
(
π(σ − σ0)

)
tσ−2σ0 ,

where Γ is the gamma function.
In particular,

• if σ = σ0, then, for any t > 0,
(−∆)σtσ+ = 0,

• if σ > σ0, then for any t > 0,
(−∆)σ0tσ+ < 0,

• if σ < σ0, then for any t > 0,
(−∆)σ0tσ+ > 0.

Proof. The proof is a modification of an argument given in [4]. In order to prove Lemma A.2, we will use
the Fourier transform of |t|q in the sense of distribution, where q ∈ C \ Z. Namely (see e.g. Lemma 2.23
on page 38 of [17])

(A.6) F (|t|q) = Cq |ξ|−1−q,

with

(A.7) Cq := −2Γ(1 + q) sin
πq

2
.

Notice that the map R 3 t 7→ |t|q is even, and so we can rewrite (A.6) as

(A.8) F−1(|ξ|q) = (2π)−1Cq |t|−1−q.

Moreover,

|t|σ +
1

σ + 1
∂t|t|σ+1 = 2tσ+.
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Therefore, taking the Fourier transform and using (A.6) with q := σ and q := σ + 1, we obtain that

2F (tσ+) = F (|t|σ) +
1

σ + 1
F
(
∂t|t|σ+1

)

= F (|t|σ) +
2iξ

σ + 1
F (|t|σ+1)

= Cσ |ξ|−1−σ +
2iξ

σ + 1
Cσ+1 |ξ|−2−σ.

So, multiplying the equality above by |ξ|2σ0 , we obtain that

2|ξ|2σ0F (tσ+) = Cσ |ξ|2σ0−σ−1 +
2iξ

σ + 1
Cσ+1 |ξ|2σ0−σ−2,

and so

(A.9) 2F−1
(
|ξ|2σ0F (tσ+)

)
= Cσ F−1(|ξ|2σ0−σ−1) +

2Cσ+1 i

σ + 1
F−1(ξ) ∗F−1(|ξ|2σ0−σ−2)

Now we claim that, for any test function g,

(A.10)
(
F−1(ξ) ∗ g

)
(t) = −i∂tg(t).

Indeed,
(
F−1(ξ) ∗ g

)
(t) = F−1 (ξFg(ξ)) (t)

=
1

2π

∫

R
dy

∫

R
dξ eiy·(t−ξ) y g(ξ) = − 1

2πi

∫

R
dy

∫

R
dξ ∂ξe

iy·(t−ξ) g(ξ)

=
1

2πi

∫

R
dy

∫

R
dξ eiy·(t−ξ) ∂ξg(ξ) =

1

2πi

∫

R
dy eiy·t F

(
∂ξg
)
(y)

=
1

i
F−1 (F (∂ξg)) (t) = −i ∂ξg(t),

which shows (A.10).
Using (A.10) into (A.9), we obtain that

2F−1
(
|ξ|2σ0F (tσ+)

)
= Cσ F−1(|ξ|2σ0−σ−1)− Cσ+1 i

σ + 1
· i ∂tF−1(|ξ|2σ0−σ−2)

= Cσ F−1(|ξ|2σ0−σ−1) +
Cσ+1

σ + 1
∂tF

−1(|ξ|2σ0−σ−2).

As a consequence, exploiting (A.8) with q := 2σ0 − σ − 1 and q := 2σ0 − σ − 2, we have that

2F−1
(
|ξ|2σ0F (tσ+)

)
= Cσ C2σ0−σ−1 |t|σ−2σ0 +

Cσ+1 C2σ0−σ−2

σ + 1
∂t|t|σ−2σ0+1

= Cσ C2σ0−σ−1 |t|σ−2σ0 +
σ − 2σ0 + 1

σ + 1
· Cσ+1C2σ0−σ−2 t |t|σ−2σ0−1.

This gives that, for t > 0,

2F−1
(
|ξ|2σ0F (tσ+)

)
=

(
Cσ C2σ0−σ−1 +

σ − 2σ0 + 1

σ + 1
· Cσ+1 C2σ0−σ−2

)
tσ−2σ0 .

So we obtain that, up to a dimensional constant, for any t > 0,

(A.11) (−∆)σ0(tσ+) =

(
Cσ C2σ0−σ−1 +

σ − 2σ0 + 1

σ + 1
· Cσ+1 C2σ0−σ−2

)
tσ−2σ0 .

Now, we observe that

(A.12) Cσ C2σ0−σ−1 = 4 Γ(1 + σ) Γ(2σ0 − σ) sin
(π

2
σ
)

sin
(π

2
(2σ0 − σ − 1)

)
.

Moreover,
Γ(2 + σ) = (1 + σ)Γ(1 + σ) and Γ(2σ0 − σ) = (2σ0 − σ − 1)Γ(2σ0 − σ − 1).
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As a consequence, recalling (A.7) and (A.12),

σ − 2σ0 + 1

σ + 1
· Cσ+1C2σ0−σ−2

=
σ − 2σ0 + 1

σ + 1
4 Γ(2 + σ) Γ(2σ0 − σ − 1) sin

(π
2

(σ + 1)
)

sin
(π

2
(2σ0 − σ − 2)

)

= −4 Γ(1 + σ) Γ(2σ0 − σ) sin
(π

2
(σ + 1)

)
sin
(π

2
(2σ0 − σ − 2)

)

= −Cσ C2σ0−σ−1 ·
sin
(
π
2
(σ + 1)

)

sin
(
π
2
σ
) · sin

(
π
2
(2σ0 − σ − 2)

)

sin
(
π
2
(2σ0 − σ − 1)

) .

Plugging this into (A.11), we get

(−∆)σ0(tσ+) = Cσ C2σ0−σ−1

(
1− sin

(
π
2
(σ + 1)

)

sin
(
π
2
σ
) · sin

(
π
2
(2σ0 − σ − 2)

)

sin
(
π
2
(2σ0 − σ − 1)

)
)
tσ−2σ0 .

Now, by elementary trigonometry, we see that

sin
(π

2
(σ + 1)

)
= cos

(π
2
σ
)

and sin
(π

2
(2σ0 − σ − 2)

)
= − cos

(π
2

(2σ0 − σ − 1)
)
.

Therefore,

1− sin
(
π
2
(σ + 1)

)

sin
(
π
2
σ
) · sin

(
π
2
(2σ0 − σ − 2)

)

sin
(
π
2
(2σ0 − σ − 1)

)

= 1 +
cos
(
π
2
σ
)

sin
(
π
2
σ
) · cos

(
π
2
(2σ0 − σ − 1)

)

sin
(
π
2
(2σ0 − σ − 1)

)

=
cos
(
π
2
σ
)

sin
(
π
2
σ
)
[

sin
(
π
2
σ
)

cos
(
π
2
σ
) +

cos
(
π
2
(2σ0 − σ − 1)

)

sin
(
π
2
(2σ0 − σ − 1)

)
]

=
cos
(
π
2
σ
)

sin
(
π
2
σ
) · sin

(
π
2
σ
)

sin
(
π
2
(2σ0 − σ − 1)

)
+ cos

(
π
2
σ
)

cos
(
π
2
(2σ0 − σ − 1)

)

cos
(
π
2
σ
)

sin
(
π
2
(2σ0 − σ − 1)

)

=
cos
(
π
2
σ
)

sin
(
π
2
σ
) · cos

(
π(σ − σ0) + π

2

)

cos
(
π
2
σ
)

sin
(
π
2
(2σ0 − σ − 1)

)

= −cos
(
π
2
σ
)

sin
(
π
2
σ
) · sin (π(σ − σ0))

cos
(
π
2
σ
)

sin
(
π
2
(2σ0 − σ − 1)

)

= − sin (π(σ − σ0))

sin
(
π
2
σ
)

sin
(
π
2
(2σ0 − σ − 1)

) .

Accordingly, up to a dimensional constant,

(−∆)σ0(tσ+) = −Cσ C2σ0−σ−1
sin (π(σ − σ0))

sin
(
π
2
σ
)

sin
(
π
2
(2σ0 − σ − 1)

)tσ−2σ0 .

So, recalling (A.12), we obtain that, for any t > 0,

(−∆)σ0(tσ+) = −4 Γ(1 + σ) Γ(2σ0 − σ) sin (π(σ − σ0)) ,

which shows (A.5).
We finish the proof of Lemma A.2 by noticing that

• if σ = σ0, then sin (π(σ − σ0)) = 0,
• if σ > σ0, then sin (π(σ − σ0)) > 0,
• if σ < σ0, then sin (π(σ − σ0)) < 0.

This implies the desired result. �



41

References

[1] L. Ambrosio, G. De Philippis and L. Martinazzi, Gamma-convergence of nonlocal perimeter functionals.
Manuscripta Math. 134, no. 3-4, 377–403 (2011).

[2] B. Barrios, A. Figalli and E. Valdinoci, Bootstrap regularity for integro-differential operators and its application
to nonlocal minimal surfaces. Ann. Sc. Norm. Super. Pisa Cl. Sci.(5) 13, no. 3, 609–639 (2013).

[3] J. Bourgain, H. Brezis and P. Mironescu, Limiting embedding theorems for W s,p when s ↑ 1 and applications. J.
Anal. Math. 87, 77–101 (2002).

[4] C.D. Bucur and E. Valdinoci, Nonlocal diffusion and applications, preprint.
[5] L. Caffarelli, D. De Silva and O. Savin, in progress.
[6] L. Caffarelli, J.-M. Roquejoffre and O. Savin, Nonlocal minimal surfaces. Commun. Pure Appl. Math. 63, no.

9, 1111–1144 (2010).
[7] L. A. Caffarelli and P. E. Souganidis, Convergence of nonlocal threshold dynamics approximations to front prop-

agation. Arch. Ration. Mech. Anal. 195, no. 1, 1–23 (2010).
[8] L. Caffarelli and E. Valdinoci, Uniform estimates and limiting arguments for nonlocal minimal surfaces. Calc.

Var. Partial Differential Equations 41, no. 1-2, 203–240 (2011).
[9] L. Caffarelli and E. Valdinoci, Regularity properties of nonlocal minimal surfaces via limiting arguments. Adv.

Math. 248, 843–871 (2013).
[10] M. Cozzi, On the variation of the fractional mean curvature under the effect of C1,α perturbations. Discrete Contin.

Dyn. Syst. 35, no. 12 5769–5786 (2015).
[11] J. Dávila, M. del Pino and J. Wei, Nonlocal Minimal Lawson Cones, preprint.
[12] S. Dipierro, A. Figalli, G. Palatucci and E. Valdinoci, Asymptotics of the s-perimeter as s ↘ 0. Discrete

Contin. Dyn. Syst. 33, no. 7, 2777–2790 (2013).
[13] S. Dipierro, O. Savin and E. Valdinoci, Graph properties for nonlocal minimal surfaces, preprint,

https://www.ma.utexas.edu/mp arc-bin/mpa?yn=15-51
[14] F. Duzaar and K. Steffen, Optimal interior and boundary regularity for almost minimizers to elliptic variational

integrals. J. Reine Angew. Math. 546, 73–138 (2002).
[15] R. K. Getoor, First passage times for symmetric stable processes in space. Trans. Am. Math. Soc. 101, 75–90 (1961).
[16] R. Hardt and L. Simon, Boundary regularity and embedded solutions for the oriented Plateau problem. Ann. of Math.

(2) 110, no. 3, 439–486 (1979).
[17] A. Koldobsky, Fourier analysis in convex geometry. Mathematical Surveys and Monographs 116. Providence, RI:

American Mathematical Society (AMS) (ISBN 0-8218-3787-7/hbk). vi, 170 p. (2005).
[18] V. Maz’ya and T. Shaposhnikova, On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings

of fractional Sobolev spaces. J. Funct. Anal., 195, no. 2, 230–238 (2002).
[19] R. S. Palais, Natural operations on differential forms. Trans. Amer. Math. Soc. 92, 125–141 (1959).
[20] G. Palatucci, O. Savin and E. Valdinoci, Local and global minimizers for a variational energy involving a fractional

norm. Ann. Mat. Pura Appl. (4) 192, no. 4, 673–718 (2013).
[21] O. Savin and E. Valdinoci, Γ-convergence for nonlocal phase transitions. Ann. Inst. H. Poincaré Anal. Non Linéaire
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