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Abstract

We investigate the longitudinal dynamics of semiconductor lasers using a

model which couples a hyperbolic linear system of partial di�erential equa-

tions nonlinearly with ordinary di�erential equations. We prove the global

existence and uniqueness of solutions using the theory of strongly continuous

semigroups. Subsequently, we analyse the long-time behavior of the solutions

in two steps. First, we �nd attracting invariant manifolds of low dimension

bene�tting from the fact that the system is singularly perturbed, i. e., the op-

tical and the electronic variables operate on di�erent time-scales. The �ow on

these manifolds can be approximated by the so-called mode approximations.

The dimension of these mode approximations depends on the number of criti-

cal eigenvalues of the linear hyperbolic operator. Next, we perform a detailed

numerical and analytic bifurcation analysis for the two most common con-

stellations. Starting from known results for the single-mode approximation,

we investigate the two-mode approximation in the special case of a rapidly

rotating phase di�erence between the two optical components. In this case,

the �rst-order averaged model unveils the mechanisms for various phenomena

observed in simulations of the complete system. Moreover, it predicts the

existence of a more complex spatio-temporal behavior. In the scope of the

averaged model, this is a bursting regime.
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1 Introduction

The dynamics of semiconductor lasers can be described by the interaction of two

physical variables: the complex electromagnetic �eld E, roughly speaking the light

amplitude, and the inversion (carrier density) n within the active zone of the device.

These variables are governed by a system of equations which �ts for most models of

moderate complexity into the form

_E = H(n)E

_n = "f(n)� g(n)[E;E]
(1.1)

if we neglect noise, and if the magnitude of E is moderate. System (1.1) is nonlin-

ear due to the n-dependence of the linear operator H. A characteristic feature of

semiconductor lasers is the large ratio between the average lifetime of carriers and

the average lifetime of photons expressed in the small parameter " in (1.1). Another

remarkable property of (1.1) is its symmetry with respect to rotation E ! Eei' for

' 2 [0; 2�) since g is a hermitian form. This implies the existence of rotating-wave

solutions (E = E0e
i!t; n = const) which are referred to as stationary lasing states

or on-states. The properties of these stationary states are obviously important from

the point of view of applications: their stability, domain of attraction, bifurcation

scenarios, whether they are excitable, etc. Another object of interest are modulated

waves, i. e., quasi-periodic solutions, branching from the stationary states. Lasers

exhibiting self-pulsations are potentially useful for, e. g., clock-recovery in optical

communication networks [9].

The particular form of the coe�cients H, f , and g depends on the complexity level

of the model. In the introduction, we start with a short survey about some laser

models and integrate the model considered in our paper into this hierarchy. Then,

we give an overview about the contents of this paper.

Laser Modeling

In the simplest case, one may consider the laser as a solitary point-like light source

with a given (n-dependent) frequency. This reduces E to a complex number and

H to a complex function of one real variable n. The resulting system of ordinary

di�erential equations is typically referred to as amplitude equations and exhibits

weakly damped oscillations. Hence, it is highly susceptible to external injection,

feedback or other perturbations. E. g., the addition of a saturable absorber (a

second component for n) leads to self-sustained oscillations and excitable behavior

[17]. System (1.1) subject to optical injection is studied in [48] and exhibits very

complex dynamical behavior including chaos.

A popular subject of research are laser diodes subject to delayed optical feedback.

The most popular models, e. g., the Lang-Kobayashi equations [26], still consider

the laser as a point-like light source but H(n) is now a delay operator, and E is

a continuous space dependent function. Then, system (1.1) is a delay-di�erential

equation and has an in�nite-dimensional phase space. The long-time behavior of
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this kind of systems can become arbitrarily complex [30]. However, the bifurcations

of the stationary states and the appearance and properties of modulated waves have

been investigated extensively numerically [40], and analytically in, e. g., [18], [43].

The model considered in our paper resolves the laser spatially in longitudinal di-

rection. In this case, the amplitude E is in L
2 , and the linear operator H is a

hyperbolic di�erential operator describing the wave propagation, its ampli�cation

and the internal refraction. We investigate an extension of the model proposed in

[6] by taking the nonlinear material gain dispersion into account [50]. On the other

hand, we treat the carrier density n as a piecewise spatially homogeneous quantity

such that n 2 R
m , and g(n) is a hermitian form. This treatment is particularly well

adapted to multi-section lasers which are composed of several sections with di�erent

parameters. Then, system (1.1) is a linear system of partial di�erential equations

for E which is nonlinearly coupled to a system of ordinary di�erential equations for

n. This system is not essentially more complicated than the delay-di�erential equa-

tions considered by the external feedback models from the functional analytic point

of view. Indeed, multi-section lasers are often constructed in a way such that one

section acts as a laser and the other sections give a �nely tuned delayed feedback.

However, the longitudinally resolved model allows us to study how the geometry

of the device in�uences the dominant eigenvalues and corresponding eigenspaces

(modes) of H and how these modes interact or compete.

Non-technical Overview

In chapter 2, we introduce the solution concepts for the hyperbolic system (1.1) and

prove the global existence and uniqueness of solutions. Uniqueness and existence

results for short time intervals are covered by the theory of C0 semigroups. An

a-priori estimate ensures the global existence of solutions. We permit discontinuous

inhomogeneous boundary conditions (optical inputs which are L1 in time) only in

this chapter.

In chapter 3, we reduce the in�nite-dimensional system (1.1) to a low-dimensional

system of ordinary di�erential equations. To this end, we treat (1.1) as a singularly

perturbed system by exploiting the smallness of ". The spectral properties ofH allow

for the application of theorems on the existence of invariant manifolds in the spirit

of [19]. Truncation of the higher order terms in the expansion of the center manifold

leads to the mode approximations. The dimension of these mode approximations

may depend on the number of critical modes of H (i. e., the number of components

of E we have to take into account). Each particular reduced model is valid only

within a �nite region of the phase space and the parameter space.

In chapter 4, we investigate the previously obtained mode approximations in the two

simplest and most generic situations. Firstly, we revisit the two-dimensional single

mode model introduced and studied numerically in [44]. It resembles the amplitude

equations but the coe�cient functions may be modi�ed due to the geometry of the

dominating mode. We consider the single mode system as a O(
p
")-perturbation

of a conservative oscillator, and obtain conditions implying that the stable periodic

solutions (self-pulsations) found in [44] are uniformly bounded for small ". Moreover,
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we provide an analytic formula for the location of the self-pulsation which is a good

approximation for small ".

Secondly, we analyse the situation where two modes of H are critical but have very

di�erent frequencies. In this case, the phase di�erence between the two components

of E rotates very fast. Hence, we can average the system with respect to this ro-

tation simplifying the system to a three-dimensional system. This system contains

two invariant planes governed by the single-mode dynamics. Moreover it is singu-

larly perturbed since the drift between these invariant planes is slow. We use this

time-scale di�erence and the knowledge about the single-mode equations to reduce

the model further and give a concise overview over the mechanisms behind various

phenomena observed in numerical simulations of system (1.1). In particular, we lo-

cate the stability boundaries of the single-mode self-pulsations, and detect a regime

of more complex spatio-temporal behavior. In the scope of the averaged model, this

is a bursting regime. This kind of solutions is observed frequently in the dynamics

of neurons (see [24] for a classi�cation of these phenomena).
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2 Traveling Wave Model with Nonlinear Gain Dis-

persion � Existence Theory

A well known model describing the longitudinal e�ects in narrow laser diodes is the

traveling wave model, a hyperbolic system of partial di�erential equations equations

and of ordinary di�erential equations [6], [29], [42]. This model has been extended

by adding polarization equations to include the nonlinear gain dispersion e�ects [2],

[6], [39], [50]. In this chapter, we introduce the corresponding system of di�erential

equations and prove global existence and uniqueness of mild and classical solutions

for the initial-boundary value problem. This extends the results for the traveling

wave equations of [20], [25]. In this chapter, we treat also inhomogeneous boundary

conditions whereas the other chapters will restrict to the autonomous system.

2.1 The Initial-Boundary Value Problem

Let  (t; z) 2 C
2 describe the complex amplitude of the optical �eld split into a

forward and a backward traveling wave. Let p(t; z) 2 C
2 be the corresponding

nonlinear polarization (see appendix A). Both quantities depend on time and the

one-dimensional spatial variable z 2 [0; L] (the longitudinal direction within the

laser). The vector n(t) 2 R
m represents the spatially averaged carrier densities

within the active sections of the laser (see Fig. 2.1). The initial-boundary value

z1

1

z2 z3 z4

l1 l2 l3

n1 n3

0 L

S1 S2 S3

Figure 2.1: Typical geometric con�guration of the domain in a laser with 3 sections. Two

of them are active (A = f1; 3g)

problem reads as follows:

@t (t; z) = �@z (t; z) + �(n(t); z) (t; z)� i�(z)�c (t; z) + �(n(t); z)p(t; z)

(2.1)

@tp(t; z) = (i
r(n(t); z)� �(z)) � p(t; z) + �(z) (t; z) (2.2)

d

dt
nk(t) = Ik �

nk(t)

�k
�
P

lk
(Gk(nk(t))� �k(nk(t)))

Z
Sk

 (t; z)� (t; z)dz

�
P

lk
�k(nk(t)) Re

�Z
Sk

 (t; z)�p(t; z)dz

�
for k 2 Sa (2.3)

accompanied by the inhomogeneous boundary conditions

 1(t; 0) = r0 2(t; 0) + �(t),  2(t; L) = rL 1(t; L) (2.4)
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and the initial conditions

 (0; z) =  0(z), p(0; z) = p0(z), n(0) = n0. (2.5)

The Hermitian transpose of a C 2 -vector  is denoted by  � in (2.3). We will de�ne

the appropriate function spaces and discuss the possible solution concepts in section

2.2. The quantities and coe�cients appearing above have the following sense (see

also table A.1):

� L is the length of the laser. The laser is subdivided into m sections Sk having

length lk and starting points zk for k = 1 : : :m. We scale the system such

that l1 = 1 and de�ne zm+1 = L. Thus, Sk = [zk; zk+1]. All coe�cients are

supposed to be spatially constant in each section, i. e. if z 2 Sk, �(z) = �k,

�(z) = �k, �(n; z) = �k(nk), �(n; z) = �k(nk). Moreover, we de�ne a subset

of active sections A � f1; : : :mg and consider (2.3) and the dynamic variable

nk only for active sections (k 2 A). Let ma := #A be the number of active

sections.

� � =

�
�1 0
0 1

�
, �c =

�
0 1
1 0

�

� �(n; z) = �k(nk) 2 C for z 2 Sk. The model we use throughout the work reads

�k(�) = dk + (1 + i�H;k)Gk(�)� �k(�) (2.6)

where dk 2 C , �H;k 2 R. For k 2 A, Gk : (n;1) ! R is a smooth strictly

monotone increasing function satisfying Gk(1) = 0, G0

k(1) > 0. Its limits are

lim�&nGk(�) = �1, lim�!1Gk(�) =1 where n � 0. Typical models for Gk

in active sections are

Gk(�) = gk log �, (n = 0) or (2.7)

Gk(�) = gk � (� � 1), (n = �1). (2.8)

Gk is identically zero for k =2 A. These sections are called passive.

� �(n; z) = �k(nk), 
r(n; z) = 
r;k(nk) for z 2 Sk, k 2 f1 : : :mg. For k =2 A,
we suppose �k = 0. Moreover, we suppose �k;
r;k : (n;1)! R to be smooth

and Lipschitz continuous. Let j�k(�)j be bounded for � < 1, and �k(1) = 0.

The variables and coe�cients, their physical meanings, and their typical ranges are

shown in Table A.1. The traveling wave model described in [6], [9], [8], [20], [37],

[51] can be obtained formally by �adiabatic elimination� of p(t; z), i. e. by replacing

@tp(t; z) by 0 in (2.2).

For convenience, we introduce the hermitian form

gk(�)

��
 

p

�
;

�
'

q

��
=

1

lk

Z
Sk

( �(z); p�(z))
�
Gk(�)��k(�)

1

2
�k(�)

1

2
�k(�) 0

��
'(z)
q(z)

�
dz (2.9)
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and the notations

k k2k =

Z
Sk

 �(z) (z)dz

( ; ')k =

Z
Sk

 �(z)'(z)dz

fk(�; ( ; p)) = Ik �
�

�k
� Pgk(�)

��
 

p

�
;

�
 

p

��
(2.10)

for � 2 [n;1) and  ; p 2 L
2([0; L]; C 2). Using these notations, (2.3) reads

d

dt
nk = fk(nk; ( ; p)) for k 2 A. (2.11)

2.2 Existence and Uniqueness of Classical and Mild Solutions

In this section, we treat the inhomogeneous initial-boundary value problem (2.1)-

(2.4) as an autonomous nonlinear evolution system

d

dt
u(t) = Au(t) + g(u(t)), u(0) = u0 (2.12)

where u(t) is an element of a Hilbert space V , A is a generator of a C0 semigroup

S(t), and g : U � V ! V is locally Lipschitz continuous in the open set U � V .

The inhomogeneity is included in (2.12) as a component of u. We will de�ne V , A

and g appropriately and prove the global existence of mild and classical solutions of

(2.12).

2.2.1 Notation

The Hilbert space V is de�ned as

V := L
2([0; L]; C 4)� R

ma � L
2
� ([0;1); C ) (2.13)

where L2
� ([0;1); C ) is the space of weighted square integrable functions. The scalar

product of L2
� ([0;1); C ) is de�ned by

(v; w)� := Re

Z
1

0

�v(x) � w(x)(1 + x2)�dx.

We choose the exponent � < �1=2 such that L1([0;1); C ) is continuously embedded
in L2

� ([0;1); C ). The complex plane is treated as two-dimensional real plane in the

de�nition of the vector space V such that the standard L
2 scalar product (�; �)V of

V is di�erentiable. The corresponding components of v 2 V are denoted by

v = ( 1;  2; p1; p2; n; a)
T .
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The spatial variable in  and p is denoted by z 2 [0; L] whereas the spatial variable
in a is denoted by x 2 [0;1). The Hilbert space H 1

� ([0;1); C ) equipped with the

scalar product

(v; w)1;� := (v; w)� + (@xv; @xw)�

is densely and continuously embedded into L
2
� ([0;1); C ). Moreover, its elements

are continuous [41]. Consequently, the Hilbert spaces

W := H
1([0; L]; C 2)� L

2([0; L]; C 2)� R
ma � H

1
� ([0;1); C )

WBC := f( ; p; n; a) 2 W :  1(0) = r0 2(0) + a(0);  2(L) = rL 1(L)g

are densely and continuously embedded in V . The linear functionals  1(0)�r0 2(0)�
a(0) and  2(L)�rL 1(L) are continuous fromW ! R. We de�ne the linear operator

A : WBC ! V by

A

0
BBBB@
 1

 2

p

n

a

1
CCCCA :=

0
BBBB@
�@z 1

@z 2

0
0
@xa

1
CCCCA . (2.14)

The de�nition of A and WBC treat the inhomogeneity � in the boundary conditions

as the boundary value at 0 of the variable a. We de�ne the open set U � V by

U := f( ; p; n; a) 2 V : nk > n for k 2 Ag,

and the nonlinear function g : U ! V by

g( ; p; n; a) =

0
BB@
�(n) � i��c + �(n)p
(i
r(n)� �)p+ � �
fk(nk; ( ; p))

�
k2A

0

1
CCA . (2.15)

The function g is continuously di�erentiable to any order with respect to all ar-

guments and its Frechet derivative is bounded in any closed bounded ball B � U

[20].

According to the theory of C0 semigroups we have two solution concepts [34]:

De�nition 2.1 Let T > 0. A solution u : [0; T ] ! V is a classical solution of

(2.12) if u(t) 2 WBC \ U for all t 2 [0; T ], u 2 C1([0; T ];V ), u(0) = u0, and

equation (2.12) is valid in V for all t 2 (0; T ).

The inhomogeneous initial-boundary value problem (2.1)-(2.5) and the autonomous

evolution system (2.12) are equivalent in the following sense: Suppose the inhomo-

geneity � 2 H
1([0; T ); C ) in (2.4).

Let u = ( ; p; n; a) be a classical solution of (2.12). Then, u satis�es (2.1)-(2.2), and
(2.5) in L

2 and (2.3), (2.4) for each t 2 [0; T ] if and only if a0j[0;T ] = �.

On the other hand, assume that ( ; p; n) satis�es (2.1)-(2.2), and (2.5) in L
2 and

(2.3), (2.4) for each t 2 [0; T ]. Then, we can choose a a0 2 H
1
� ([0;1); C ) such that

a0j[0;T ] = � and obtain that u(t) = ( (t); p(t); n(t); a0(t + �)) is a classical solution

of (2.12) in [0; T ].
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De�nition 2.2 Let T > 0, A a generator of a C0 semigroup S(t) of bounded oper-

ators in V . A solution u : [0; T ]! V is a mild solution of (2.12) if u(t) 2 U for all

t 2 [0; T ], and u(t) satis�es the variation of constants formula in V

u(t) = S(t)u0 +

Z t

0

S(t� s)g(u(s))ds. (2.16)

We prove in Lemma 2.3 that A generates a C0 semigroup in V . Mild solutions of

(2.12) are a reasonable generalization of the classical solution concept of (2.1)-(2.4)

to boundary conditions including discontinuous inputs � 2 L
2
� ([0;1); C ).

2.2.2 Global Existence and Uniqueness of Solutions for the Truncated

Problem

In order to prove uniqueness and global existence of solutions of (2.12), we apply

the theory of strongly continuous semigroups (see [34]).

Lemma 2.3 A : WBC � V ! V generates a C0 semigroup S(t) of bounded opera-

tors in V .

Proof:

We specify S(t) explicitly. Denote the components of S(t)( 0
1 ;  

0
2; p

0; n0; a0) by

( 1(t; z);  2(t; z); p(t; z); n(t); a(t; x)) and let t � L.

 1(t; z) =

�
 0
1(z � t) for z > t

r0 
0
2(t� z) + a0(t� z) for z � t

 2(t; z) =

�
 0
2(z + t) for z < L� t

rL 
0
1(2L� t� z) for z � L� t

p(t; z) = 0

n(t) = 0

a(t; x) = a0(x+ t).

For t > L we de�ne inductively S(t)u = S(L)S(t � L)u. This procedure de�nes a
semigroup of bounded operators in V properly since

k 1(t; �)k2 + k 2(t; �)k2 + ka(t; �)k2 � 2(1 + t2)��
�
k 0

1k+ k 
0
2k+ ka

0k
�

for t � L. The strong continuity of S is a direct consequence of the continuity in

the mean in L
2 . It remains to be shown that S is generated by A.

Let u = ( 0
1 ;  

0
2; p

0; n0; a0) satisfy limt!0
1
t
(S(t)u�u) 2 V , de�ne 't(z) := 1

t
( 1(t; z)�

 0
1(z)), '0 = limt!0 't, and Æ > 0 small. Firstly, we prove that u 2 WBC. 't coin-

cides with the di�erence quotient 1
t
( 0

1(z� t)� 0
1(z)) for t < Æ in the interval [Æ; L].

Thus, @z 
0
1 2 L

2([Æ; L]; C ) exists. Furthermore, 't(� + t) ! '0 in L
2([0; L � Æ]; C ).

Since 't(� + t) = 1
t
( 0

1(z) �  0
1(z + t)), @z 

0
1 exists also in L

2([0; L� Æ]; C ). Conse-
quently  0

1 2 H
1([0; L]; C ). The same argument holds for  0

2 2 H
1([0; L]; C ) and for

a0 2 H
1
� ([0;1); C ).

9



In order to verify that u satis�es the boundary conditions we write

't(z) =

8>><
>>:
z 2 [t; L] : �1

t

R z
z�t

@z 
0
1(�)d�

z 2 [0; t] : 1
t

�
r0
R t�z
0

@z 
0
2(�) + @za

0(�)d� �
R z
0
@z 

0
1(�)d�

�
+

+1
t
(r0 

0
2(0) + a0(0)�  0

1(0))

(2.17)

Consequently, the limit '0 is in L
2([0; L]; C ) if and only if r0 

0
2(0)+ a0(0)� 0

1(0) =
0. The same argument using 1

t
( 2(t; z) �  0

2(z)) leads to the boundary condition

rL 
0
1(L)�  0

2(L) = 0.

Finally, we prove that 1
t
(S(t)u� u) = Au for any u 2 WBC. Using the notation 't

introduced above, we have
R t
0
j't(z)j2dz ! 0 due to (2.17). Hence, 't ! �@z 0

1 on

[0; L]. Again, we can use the same arguments to obtain the limits @z 
0
2 and @xa

0. �

The operators S(t) have a uniform upper bound

kS(t)k � Ce
t (2.18)

within �nite intervals [0; T ]. In order to apply the results of the C0 semigroup theory

[34], we truncate the nonlinearity g smoothly: For any bounded ball B � U which

is closed w. r. t. V , we choose gB : V ! V such that gB(u) = g(u) for all u 2 B,

gB is continuously di�erentiable and globally Lipschitz continuous. This is possible

because the Frechet derivative of g is bounded in B and the scalar product in V is

di�erentiable with respect to its arguments. We call

d

dt
u(t) = Au(t) + gB(u(t)), u(0) = u0 (2.19)

the truncated problem (2.12). The following Lemma 2.4 is a consequence of the

results in [34].

Lemma 2.4 (global existence for the truncated problem)

The truncated problem (2.19) has a unique global mild solution u(t) for any u0 2 V .
If u0 2 WBC, u(t) is a classical solution of (2.19).

Corollary 2.5 (local existence) Let u0 2 U . There exists a tloc > 0 such that the

evolution problem (2.12) has a unique mild solution u(t) on the interval [0; tloc]. If

u0 2 WBC \ U , u(t) is a classical solution.

2.2.3 A-priori Estimates � Existence of Semi�ow

In order to state the result of Lemma 2.4 for (2.12), we need the following a-priori

estimate for the solutions of the truncated problem (2.19).

Lemma 2.6 Let T > 0, u0 2 WBC\U . If n > �1, suppose Ik�k > n for all k 2 A.
There exists a closed bounded ball B such that B � U and the solution u(t) of the
B-truncated problem (2.19) starting at u0 stays in B for all t 2 [0; T ].

10



Proof: Let u0 = ( 0; p0; n0; a0) 2 WBC\U . We choose nlow > n such that nlow < n0k
and Gk(nlow)� �k(nlow) < 0 for all k 2 A and de�ne the function

h(t) :=
P

2
k (t)k2 +

X
k2A

lk(nk(t)� nlow).

Let t1 > 0 such that the solution u(t) of (2.12) exists on [0; t1] and nk(t) � nlow.

Because of the structure of the nonlinearity g, u(t) is classical in [0; t1]. Hence, h(t)
is di�erentiable and

d

dt
h(t) � J �

X
k2A

lk�
�1
k nk +

P

2

mX
k=1

Re dkk k2k

� J � ~��1nlow � 
h(t),

due to (2.1), (2.3) and the supposition �k = 0 for k =2 A where


 := min

�
��1k ;�

P

2
Re dj : k 2 A; j � m

�
> 0

J :=
X
k2A

lkIk + sup
�
jr0z + a0(x)j2 � jzj2 : z 2 C ; x 2 [0; T ]

	
<1

~��1 :=
X
k2A

lk�
�1
k .

Consequently, h(t) � maxfh(0); 
�1J � 
�1~��1nlowg. Since h(0) = P
2
k 0k2 +P

k2A lkn
0
k � Lnlow, we obtain the estimate

0 � h(t) � M � � � nlow (2.20)

where

M := max

(

�1J;

P

2
k 0k2 +

X
k2A

lkn
0
k

)

� := min
�

�1~��1; L

	
.

Since nk(t) � nlow in [0; t1], the estimate (2.20) for h(t) and the di�erential equation

(2.2) for p lead to bounds for  , p and n in [0; t1]:

k (t)k2 �  2
max := 2P�1(M � � � nlow)

kp(t)k � kp0k+
p

2P�1(M � �nlow) (2.21)

nk 2 [nlow; nlow + l�1k M � l�1k �nlow].

The bounds (2.21) are valid for arbitrary nlow 2 (n;minf1; n0k : k 2 Ag) if nk(t) �
nlow for all k 2 A and t 2 [0; t1]. Due to the properties of Gk and �k (see section

2.1) and the supposition Ik�k > n, we �nd some nlow (su�ciently close to n) such

that

Ik >
nlow

�k
+
P�k(nlow)

lk

�p
2P�1(M � �nlow) + kp0k

�
S+

+
Gk(nlow)� �k(nlow)

lk
PS2

(2.22)

11



holds for all S � 0 and k 2 A. By choosing nlow according to (2.22), we ensure that
d
dt
nk(t) > 0 if nk(t) = nlow. Consequently, nk(t) can never cross nlow and the bounds

(2.21) are valid on the whole interval [0; T ] for nlow meeting (2.22). Therefore, we

can choose the ball B such that the bounds (2.21) are met by all u 2 B. �

Moreover, a solution u(t) starting at u0 2 WBC\U and staying in a bounded closed

ball B � U in [0; T ] is a classical solution in the whole interval [0; T ] because of the
structure of the nonlinearity g.

The bounds (2.21) do not depend on the complete WBC-norm of u0 but on its V -

norm and the L1 -norm of a0j[0;T ]. Hence, we can state the global existence theorem

also for mild solutions:

Theorem 2.7 (global existence and uniqueness)

Let T > 0, u0 = ( 0; p0; n0; a0) 2 U and ka0j[0;T ]k1 <1. If n > �1, let Ik�k > n

for all k 2 A. There exists a unique mild solution u(t) of (2.12) in [0; T ]. Further-
more, if u0 2 WBC \ U , u(t) is a classical solution of (2.12).

Corollary 2.8 (global boundedness) Let u0 = ( 0; p0; n0; a0) 2 U and ka0k1 <

1. There exists a constant C such that ku(t)kV � C.

Corollary 2.9 (continuous dependence on initial values)

Let T > 0, u0j = ( j; pj; nj; aj) 2 U , kajj[0;T ]k1 < 1 for j = 1; 2. There exists

a constant C(ku01kV ; ku02kV ; ka1j[0;T ]k1; ka2j[0;T ]k1; T ) such that ku1(t) � u2(t)kV �
C � ku01 � u02kV .

Therefore, the nonlinear equation de�nes a semi�ow S(t; u0) for t > 0. S is even

continuously di�erentiable with respect to its second argument in the following sense:

Corollary 2.10 (continuous di�erentiability of the semi�ow)

Let T > 0, u0 = ( 0; p0; n0; a0) 2 U , ka0j[0;T ]k1 <1. Let

MC;" :=
�
( ; p; n; a) 2 V : kaj[0;T ]k1 � C; k( ; p; n; a)kV < "

	
.

Then,

S(t; u0 + h0)� S(t; u0) = SL(t; 0)h0 + oC(kh0kV )

for all h0 2 MC;" for arbitrary C and su�ciently small ". SL(t; s) is the evolution

operator of the linear evolution equation in V

d

dt
v(t) = Av(t) +

@

@u
g(u(t))v(t), v(s) = v0.

This follows from the C0 semigroup theory [34] since we can choose a common ball

B for all u0 + h0, h0 2 MC;". This result extends to C
k smoothness (k > 1) since

the nonlinearity g is C1 with respect to all arguments.

The continuous dependence of the solution on all parameters within a bounded pa-

rameter region is also a direct consequence of the C0 semigroup theory. In order to

obtain a uniform a-priori estimate, we impose additional restrictions on the param-

eters: 1� jr0j > c > 0, Ik�k � n > c > 0, Re dk < �c < 0, gk > c > 0 for k 2 A and

a uniform constant c.

12



3 Model reduction � Mode Approximations

After showing that the initial-boundary-value problem has a smooth global semi�ow

S(t; u0), we focus on the long-time behavior of S. The goal of this chapter is to

construct low-dimensional ODE models approximating S(t; u0) for large t. These

mode approximations are often used to describe the long-time behavior of S [6], [8],

[9], [44]. A heuristic justi�cation for mode approximations was given in [9] for the

traveling wave equations without gain dispersion by exploiting the property that

the variables  (t; z) and n(t) operate on di�erent time scales. We show how these

models approximate the semi�ow on invariant manifolds of the system of partial

di�erential equations using singular perturbation theory. The basic idea for this

reduction was outlined already in [45] assuming a-priori that the phase space is

�nite-dimensional and the spectrum of H has a gap.

3.1 Introduction of the Singular Perturbation Parameter

This and the following chapter treat the autonomous system (2.1)-(2.3). Its bound-

ary conditions are

 1(t; 0) = r0 2(t; 0),  2(t; L) = rL 1(t; L) where r0rL 6= 0. (3.1)

The condition on the facette re�ectivities r0rL 6= 0 converts the semi�ow S(t; �)
locally into a �ow, i. e., kS(t; �)k exists for t � 0 until kS(t; �)k goes to in�nity.

However, small re�ectivities are possible and physically relevant.

We reformulate (2.1)-(2.3) to exploit its particular structure. The space dependent

subsystem is linear in  and p:

@t

�
 

p

�
= H(n)

�
 

p

�
. (3.2)

The linear operator

H(n) =

�
�@z + �(n)� i��c �(n)

� (i
r(n)� �)

�
(3.3)

acts from

Y := f( ; p) 2 H
1([0; L]; C 2)� L

2([0; L]; C 2) :  satisfying (3.1)g

into X = L
2([0; L]; C 4). H(n) generates a C0 semigroup Tn(t) acting in X. Its

coe�cients �, � and (for each n 2 R
ma ) �(n), 
r(n) and �(n) are linear operators

in L
2([0; L]; C 2) de�ned by the corresponding coe�cients in (2.1), (2.2). The maps

�; �;
r : R
ma ! L(L2([0; L]; C 2)) are smooth.

We observe that Ik and ��1k in (2.10) are approximately two orders of magnitude

smaller than 1 (see. Table A.1). Hence, we can introduce a small parameter " such

that (2.11) reads:

d

dt
nk = fk (nk; x) = "Fk(nk)� Pgk(nk)[x; x] (3.4)
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for x 2 X where the coe�cients in Fk are of order 1. Although " is not directly

accessible, we treat it as a parameter and consider the limit "! 0 while keeping Fk
�xed. The parameter " is a singular perturbation parameter for system (3.2), (3.4):

For " = 0, the set E = f(x; n) 2 X � R
ma : x = 0g consists of equilibria of (3.2),

(3.4). E is referred to as the slow manifold. Simultaneously, E is invariant for " > 0
and the slow motion on E is de�ned by d

dt
nk = "Fk(nk). The slow variable is n.

Since the semi�ow S(t; (x; n)) induced by system (3.2), (3.4) is smooth with respect

to (x; n), we can linearize system (3.2), (3.4) for " = 0 at each point (0; n) 2 E :

@tx = H(n)x

d

dt
N = 0.

(3.5)

Hence, the spectral properties of the operator H(n) determine whether x decays or

grows exponentially near (0; n) 2 E .
In section 3.2, we investigateH(n) and study its spectrum and the growth properties

of its C0 semigroup Tn(t). In section 3.3, we focus on the dynamics near compact

subsets of E where a part of the spectrum of H(n) is on the imaginary axis (near

critical n). We apply the results of singular perturbation theory [19] to �nd an

exponentially attracting invariant manifold in the environment of these subsets.

Along with (3.2), (3.4), it is convenient to introduce " as a dummy variable and

consider the extended system where (3.2), (3.4) are augmented by the equation

d

dt
" = 0. (3.6)

3.2 Spectral Properties of H(n)

At �rst, we consider the fast subsystem (3.2) treating n as a parameter. We drop

the corresponding argument in this section. As (3.2) is linear, we have to investigate

the spectrum of H and how it is related to the C0 semigroup T (t) generated by H.

See Figure 3.1 for a sample computation.

De�ne the set of complex �resonance frequencies�

W = fc 2 C : c = i
r;k � �k for at least one k 2 f1 : : :mgg � C

and the complexi�ed �gain curve� � : C nW ! L(L2([0; L]; C 2)) (see appendix A for

explanation and [50], [39] for details). For each � 2 C nW, �(�) is a linear operator
de�ned by

�(�) =
��

�� i
r + �
2 L(L2([0; L]; C 2)).

For � 2 C nW, the following relation follows from (3.3): � is in the resolvent set of

H if and only if the boundary value problem

(�@z + � � i��c + �(�)� �)' = 0 with b. c. (3.1) (3.7)
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Figure 3.1: Spectrum of H: (a) global view and (b) magni�ed view. The black circles in (a)

are the boundaries of the balls de�ned in (3.15), and (3.16). All other eigenvalues of H are

situated within the strip [�l;�u]. The shadowing around i
r � � indicates a sequence of

eigenvalues (not actually computed) accumulating to i
r��. The magni�ed view (b) shows

a typical situation for � > 0. Here two eigenvalues of H(n) are close to the imaginary axis.

has only the trivial solution ' = 0 in H 1([0; L]; C 2). The transfer matrix correspond-

ing to (3.7) is

Tk(z; �) =
e�
kz

2
k

�

k + �k + e2
kz(
k � �k) i�k (1� e2
kz)

�i�k (1� e2
kz) 
k � �k + e2
kz(
k + �k)

�
(3.8)

for z 2 Sk where �k = � � �k(�) � �k and 
k =
p
�2k + �2k (see [6], [20], [36] for
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details). Hence, the function

h(�) =
�
rL �1

�
T (L; 0;�)

�
r0
1

�
=
�
rL �1

� 1Y
k=m

Tk(lk;�)

�
r0
1

�
(3.9)

de�ned in C nW is the characteristic function of H: Its roots are the eigenvalues of

H and f� 2 C nW : h(�) 6= 0g is the resolvent set. Consequently, all � 2 C nW are

either eigenvalues or resolvent points of H, i. e., there is no essential (continuous or

residual) spectrum in C nW. We note that ReW � �1.
The following lemma provides an upper bound for the real parts of the eigenvalues.

Moreover, we derive a result about the spatial shape of an eigenvector corresponding

to an eigenvalue of H with nonnegative real part.

Lemma 3.1 Let � 2 C nW be in the point spectrum of H. Then, � is geometrically

simple. Denote its corresponding scaled eigenvector by ( ; p). Then, k k � 1=2,
and the following estimates hold:

Re� � �u := max
k=1:::m

�k � (Re �k + 4�k)

�k � 4�k
. (3.10)

If Re� � 0,

max
k=1:::m

lkgk

��
 

p

�
;

�
 

p

��
+Re dkk k2k � 0. (3.11)

Proof: Let ( ; p) be an eigenvector associated to �. Then,  is a multiple of

T (z; 0;�) ( r01 ), and p = � =(� � i
r + �). Thus, � is geometrically simple and

k k � kp(z)k (hence, k k � 1=2). Partial integration of the eigenvalue equation

(3.7) and its complex conjugate equation yields:

2Re� � 2 max
k=1:::m

(Re �k +Re�k(�)) . (3.12)

For Re� > ��k=2, we get Re�k(�) � 4�k + 4�k=�k Re�. For realistic parameter

values, we have �u > ��k=2 and 4�k=�k < 1 for all k implying (3.10). Estimate

(3.11) follows immediately from (3.12), the de�nition (2.9) of the hermitian form gk,

and p = � =(�� i
r + �). �

Next, we show how to split the spectrum of H into two parts for realistic parameter

values and in particular for small r0, rL (for possible ranges of parameters see Table

A.1). Figure 3.1 visualizes this splitting.

Lemma 3.2 Let us introduce Æ1 = jr0j2=(jr0j + j�1j), Æm = jrLj2=(jrLj + j�mj) and
%k =

p
�k�k. We denote by S the strip f� 2 C : Re� 2 [�l;�u]g � C where �l is

the minimum of the quantities

min
�
(2lk)

�1 log [Æk=3] ;�j�kj
	
� j�kj+Re �k � %k for k = 1 and m, (3.13)

min

�
�mj�kj;

� log(m + 1)

2lk
� j�kj

�
+Re �k � %k for k = 2 : : :m� 1. (3.14)

16



Then, � 2 C nW is in the resolvent set of H if � =2 S and

� =2 BR0

�
�1 �

i

2
�1(r

�1
0 + r0)

�
[ BRL

�
�m �

i

2
�m(r

�1
L + rL)

�
(3.15)

� =2 B%k (i
r;k � �k) (3.16)

where R0 = %1 + 1 and RL = %m + 1.

Proof: Relation (3.16) leads to j�k(�)j < %k. Thus, we can rewrite the condition

that � is less than (3.13)�(3.15) as conditions for �k:

Re�k < min
�
(2lk)

�1 log [Æk=3]� j�kj;�2j�kj
	
for k = 1 and m, (3.17)

Re�k < minf�mj�kj;� (2lk)
�1 log(m+ 1)� j�kjg for k = 2 : : :m� 1

(3.18)

�1 =2 B1

�
�
i

2
�1(r

�1
0 + r0)

�
(3.19)

�m =2 B1

�
�
i

2
�m(r

�1
L + rL)

�
. (3.20)

We have to prove that h(�) 6= 0 for � satisfying (3.17)�(3.20). To this purpose, we

de�ne the functions r1; rm : C ! C implicitly by the linear equations

(1;�r1(�)) � T 1
1 (l1; �)

�
r0
1

�
, (1;�rm(�)) � T 1

m(lm; �)

�
rL
1

�
. (3.21)

Firstly, we prove that (3.17) and (3.19) lead to jr1(�)j > 1. We choose for 
k in (3.8)

that branch of the square root which has negative real part. Hence, the function

�!
p
�2 + �21 is properly de�ned in C � := f� 2 C : Re � < �2j�1jg and continuous.

Condition (3.17) implies Re 
1 < Re�1 + j�1j, and j
1 + �1j > 3j�1j. From (3.21)

and (3.8) we obtain that jr1(�)j > 1 if

����r0 + i�1


1 + �1
+ e2
1l1

�
�21r0

(
1 + �1)2
�

i�1


1 + �1

����� >�����ir0�1
1 + �1
+

�21
(
1 + �1)2

+ e2
1l1
�
i�1r0


1 + �1
+ 1

����� . (3.22)

Estimating j�1=(
1 + �1)j < 1=3, jr0j < 1, and separating the terms with e2
1l1 ,

(3.22) follows from ����r0 + i�1


1 + �1

���� > 3 �
��e2
1l1�� . (3.23)

Condition (3.17) ensures that the right-hand-side of (3.23) is less than Æ1. Then,

the function z : � ! � +
p
�2 + �21 is properly de�ned in C � , maps C � into itself

and its inverse has a Lipschitz constant < 1. Therefore, (3.19) leads to 
1 + �1 =2
B1

�
�i�1r�10

�
, hence, the left-hand-side of (3.23) is larger than Æ1. Consequently,
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(3.17) and (3.19) lead to jr1(�)j > 1. Drawing the same conclusions for section Sm
and rL from (3.17) and (3.20), we obtain jrm(�)j > 1.

The characteristic function h(�) can be expressed by r1(�) and rm(�) as follows:

h(�) = (rm(�);�1)
2Y

k=m�1

Tk(lk; �)

�
r1(�)
1

�
= 0.

Condition (3.18) implies

j[Tk(lk; �)]11j > m �max fj[Tk(lk; �)]12j; j[Tk(lk; �)]21j; j[Tk(lk; �)]22jg

for each k 2 f2; : : :m� 1g. This ensures jM11j > 3maxfjM12j; jM21j; jM22jg for the
product matrix M =

Q2

k=m�1 Tk(lk; �). Consequently, h(�) 6= 0. �

We can omit condition (3.14) if there are less than 3 sections. If all �k = 0 for

k = f2 : : :m� 1g, we can replace (3.14) by Re� < Re �k � %k for k = 2 : : :m� 1.

Note that the lower bound of the strip S constructed in Lemma 3.2 is logarithmic

in jr0j and jrLj instead of � jr0j�1; jrLj�1 and has a moderate magnitude even for

small r0, rL. Thus, the strip S and the balls in (3.16) are separated for realistic

parameter values (see Fig. 3.1). This allows to construct spectral projections onto

H-invariant closed subspaces.

In order to simplify the notations in the next theorem we assume:

(H) The balls of (3.15) do not intersect with the balls of (3.16).

Theorem 3.3 lists the spectral properties of H under Assumption (H) and shows

that the growth properties of T (t) are determined by the eigenvalues of the non-

selfadjoint operator H at least in the dominant H-invariant subspace.

Theorem 3.3 (Spectral properties of H) Assume (H). There exists a X-auto-

morphism J with the following properties:

XP = J(f0g�L2([0; L]; C 2)) andXE = J(L2([0; L]; C 2)�f0g) are closedH-invariant

subspaces. HP = HjXP
is a bounded operator. For any 
P < mink=1:::m �k�%k there

exists a constant MP such that TP (t) = T (t)jXP
is bounded by

kTP (t)k �MP e
�
P t. (3.24)

The spectrum of HE = HjXE
is a countable set of geometrically simple eigenvalues

�j (j 2 Z) of �nite algebraic multiplicity. All but �nitely many �j are algebraically

simple. De�ning

�j :=
1

L

 
mX
k=1

�klk �
1

2
log(r0rL) + j�i

!
, (3.25)

we can number the sequence �j in a way such that

�j � �j = O(jjj�1) for jjj ! 1, (3.26)

counting algebraically multiple eigenvalues �j repeatedly. There exists a set of gen-

eralized eigenvectors bj = ('j; pj) corresponding to �j such that fJ�1bjg is an or-

thonormal basis of L
2([0; L]; C 2)� f0g.
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Proof: We introduce the parametric family of operators

H� =

�
�@z + � � i��c ��

�� (i
r � �)

�

for � 2 [0; 1]. The domain of H� is Y for all � 2 [0; 1]. All H� are generators of

C0 semigroups T�(t) : X ! X. The semigroups T�(t) depend continuously on � for

bounded intervals of t. The characteristic functions h�(�) are de�ned in C nW and

have the form (3.9) for all � where �k = �� �2�k(�)��k in (3.8). Moreover, we can

choose the strip S and the balls in (3.15) and (3.16) independent of � 2 [0; 1]. Thus,
the intersection R of the resolvent sets of all H� is nonempty and the resolvents

(�Id � H�)
�1 : X ! X depend continuously on � uniformly for compact subsets

R. Let 
 be a closed recti�able curve within R around the balls B%k (i
r;k � �k)
(k = 1 : : :m). De�ne the �-dependent spectral projection

P�x =
1

2�i

I



(�Id�H�)
�1xd� (3.27)

splitting X into the H�-invariant closed subspaces

X�;� = rgP� (3.28)

X+;� = kerP� (3.29)

and set XP = X�;1 and XE = X+;1. Then, H0 is decoupled. We have:

� X�;0 = f0g�L2([0; L]; C 2) and H�;0 := H0jX
�;0

= i
r��. Hence, specH�;0 =
W and H�;0 is bounded.

� X+;0 = L
2([0; L]; C 2) � f0g and H+;0 := H0jX+;0

= �@z + � � i� de�ned in

f 2 H
1([0; L]; C 2) :  satisfying (3.1)g. [20], [36], [37] have shown:

specH+;0 is a countable set of geometrically simple eigenvalues �0;j of �nite

algebraic multiplicity. All but �nitely many �0;j are algebraically simple. For

jjj ! 1, �0;j � �j = O(jjj�1) counting algebraically multiple �0;j repeatedly.

There exists a set of generalized eigenvectors '0;j = Lej associated to �0;j such

that L is a L2 -automorphism and fejg is an orthonormal basis of L2([0; L]; C 2).

Hence, all assertions of the theorem are valid at the point � = 0 for the X-

automorphism ( L 0
0 Id ). We have to con�rm that they are preserved along the path

to � = 1.

The projections P� and Q� = Id� P� are continuous in �. De�ne a su�ciently �ne

mesh f�l : l = 0 : : : lmax, �0 = 0, �lmax = 1g on [0; 1] such that kP�l � P�l�1k < 1
for all l 2 f1 : : : lmaxg. Then, Jl = Q�l�1 + P�l is an automorphism in X. The

concatenation JP =
Q1

l=lmax
Jl maps rgP0 = f0g � L

2([0; L]; C 2) onto XP . HP is a

bounded operator since its spectrum is in the interior of 
. We de�ne

Jx = JPx for x 2 f0g � L
2([0; L]; C 2). (3.30)
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Moreover, the resolvent of H� is a compact perturbation of the map ( ; p)! (0; (��
i
r+�)�1p). Thus, P� is a compact perturbation of ( 0 0

0 Id ), and the X-automorphism

JP is a compact perturbation of Id.

The spectrum of HP is discrete outside of W, it is located inside of 
 and can

accumulate only in points of W. Consequently, the growth of TP (t) = exp(HP t) in
XP is bounded according to (3.24).

The spectrum of HE is situated within the set C: the union of the strip S and the

balls (3.15). Hence, it is a countable set of eigenvalues �j which are the roots of

h = h1 within C. Therefore, the �j have �nite algebraic multiplicity. If ('; p) is
an eigenvector associated to �j, then ' is a multiple of T (z; 0;�) ( r01 ). Thus, all

eigenvalues are geometrically simple. De�ne

~h(�) = r0rLe
�2L�+2

Pm
k=1 �klk � 1.

The values �j (j 2 Z) are the simple roots of ~h which is �=L-periodic in Im�.

Asymptotically, we have

h�(�)� ~h(�) = O(j Im�j�1) for j Im�j ! 1 and � 2 C

uniformly for all � 2 [0; 1]. Hence, h�(�) � h0(�) = O(j Im�j�1) for all �. This

leads to the one-to-one correspondence of the roots of h� and h0 within C and the

convergence asserted in (3.26) since no root crosses the boundary of C for varying �

and h� is analytic in C.
Last, we de�ne how J maps L2([0; L]; C 2)�f0g onto XE. The one-to-one correspon-

dence between the eigenvalues �0;j and �j in C results in a one-to-one correspondence
between the sets of generalized eigenvectors f('0;j; 0)g on one hand, and bj = ('j; pj)
on the other hand. All �0;j and �j with large imaginary part are simple eigenvalues.

For su�ciently large jjj, we have 'j = T (z; 0;�) ( r01 ) implying the asymptotics

k'j � '0;jk = O(j Im�jj�1) = O(jjj�1) for jjj ! 1

in the L2 -norm. Consequently,

kbj � ('0;j; 0)k = O(jjj�1) for jjj ! 1. (3.31)

The set fbjg is !-linearly independent and satis�esX
j2Z

kbj � ('0;j; 0)k2 <1.

Therefore, there exists a X-automorphism JE mapping each ('0;j; 0) onto bj of the
form JE = Id�K where K is a compact linear operator [27].

We de�ne

Jx = JE(Lx1; 0) for x = (x1; 0) 2 L
2([0; L]; C 2)� f0g. (3.32)

(3.30) and (3.32) de�ne a linear map of Fredholm index 0 from X into X. It is

injective from f0g � L
2([0; L]; C 2) onto XP and it maps L2([0; L]; C 2) � f0g into

XE. Since JE is injective and XE \ XP = f0g, J is injective. Hence J is an

X-automorphism. �
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Remarks

� If Assumption (H) is not valid, we can choose the curve 
 around the balls

B%k (i
r;k � �k) (k = 1 : : :m) and the balls (3.15). This leads to the same

statements as in Theorem 3.3 but with a slightly di�erent decomposition X =
XP �XE: There exists a decomposition L2([0; L]; C 2) = U � V (dimV <1)

such that the X-automorphism J maps a subspace U � f0g onto XE and

V � L
2([0; L]; C 2) onto XP . Moreover, 
P = mink=1:::m(�k)� %1 � %m � 2.

� A remark about the structure of XP and HP : Let Æ > 0. There exists a

decomposition

XP = XP;f �
M
!2W

X!

where XP;f is spanned by generalized eigenvectors of HP (dimXP;f <1) and

the spectral radii of (H + !Id)jX!
are less than Æ for each ! 2 W.

� The number Re �0 is the asymptotic growth rate approached by the real parts

of the eigenvalues � of H for Im�!1.

Corollary 3.4 Let 
 > Re �0. Then, X can be decomposed into two T (t)-invariant
subspaces

X = X+ �X�

where X+ is at most �nite-dimensional and spanned by the generalized eigenvectors

associated to the eigenvalues of H in the right half-plane f� 2 C : Re� � 
g. The

restriction of T (t) to X� is bounded according to

kT (t)jX
�

k �M�e
�t

for t � 0 (3.33)

for any � 2
�
sup

�
Re spec

�
HjX

�

��
; 

�
and any norm which is equivalent to the

X-norm.

Remarks

� The growth rate � does not depend on the particular norm chosen for the

inequality (3.33) (as long as it is equivalent to the X-norm) but M� does. We

have to choose a norm such that the magnitude of "M� is small for realistic

values of the singular perturbation parameter ". The generalized eigenvectors

bj of H (see Theorem 3.3) induce an appropriate norm in the H-invariant

subspace XE. The original L2 -norm gives a constant M� of order
p
jr0rLj

�1

which can be very large.

� The eigenvalues of H can be computed numerically by solving the complex

equation h(�) = 0. The eigenvalues of HE form the sequence �j for � = 0,
� = 0 (see Theorem 3.3). We obtain the the roots of the actual characteristic

function h by following along the parameter path ��, �� for � 2 [0; 1].

� The simple eigenvectors corresponding to the eigenvalues of H are usually

referred to as the (longitudinal) modes of the laser.
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3.3 Existence and Properties of the Finite-dimensional Cen-

ter-unstable Manifold

The o�-state x = 0, nk = Ik�k is an equilibrium of system (3.2), (3.4) for " 6= 0. It
is located in E and asymptotically stable if all Ik�k are small due to the results of

section 3.2. However, we are not interested in the behavior of the semi�ow S(t; �)
in the vicinity of the o�-state but near the on-states. System (3.2), (3.4) has a

rotational symmetry. That is, if (x(t); n(t)) is a solution, then (ei'x(t); n(t)) is also
a solution for every ' 2 [0; 2�). Thus, we have the following class of rotating-wave
solutions:

De�nition 3.5 The solution (x(t); n(t)) of (3.2), (3.4) is an on-state if n(t) = n0
is constant in time and x(t; z) = ei!tx0(z) where x0 2 Y � X is referred to as the

amplitude and ! 2 R as the frequency of the on-state.

(ei!tx0(z); n0) is an on-state if i! is an eigenvalue of H(n0), x0 is a multiple of the

corresponding scaled eigenvector ( ; p) and if there exists a S > 0 such that

"Fk(n0;k) = S2Pgk(n0;k)[( ; p); ( ; p)] for all k 2 A.

See Lemma 3.1 for the necessary spectral properties of H. Lemma 3.1 shows also

that gk(n0;k)[( ; p); ( ; p)]) > 0 for at least one k. Therefore, the variation of the

parameter " a�ects the on-states (ei!tx0(z); n0) only by scaling the amplitude S =
kx0k. The frequency !, the geometric shape ( ; p) and n0 do not depend on ".

The scaling factor P in the carrier density equation (3.4) determines the typical

scale of kx0k. By choosing P = 1, we ensure that all on-states have an amplitude

of order O(
p
").

Subsequently, we are interested in the dynamics near the on-states. Hence, we may

restrict our analysis to solutions (x(t); n(t)) whose amplitude kxk does not exceed

the amplitude of the on-states signi�cantly

kx(t)k � C
p
" for some �xed C and all t � 0. (3.34)

That is, we focus on the dynamics of system (3.2), (3.4) near E . We should remark

that large-amplitude oscillations will not be detected due to this restriction.

We will now introduce some notation and formulate the conditions which are neces-

sary to apply the results of invariant manifold theory formulated in [10], [11], [19],

[47], [49].

The results of section 3.2 show that all eigenvalues of H(n) are in the left half-plane

if nk � 1 for all k 2 A. Then, Tn(t) decays in the whole space X. However, for

larger nk a �nite number of eigenvalues must cross the imaginary axis. This allows

for the following considerations. Let K � R
ma be a compact set with the following

properties:

(H1) K is simple, i. e., either a single point or homeomorphic to a closed ball.
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(H2) specH(n) can be split into two parts for all n 2 K:

specH(n) = �cu(n) [ �s(n) where

Re �cu(n) � 0

Re �s(n) < �
s

and the number q of elements of �cu(n) counted according to their algebraic

multiplicity is positive and �nite. Moreover, 
s > 0 is independent of n 2 K.

Consequently, q is also independent of n 2 K. Furthermore, (H1) and (H2) and the

results of section 3.2 imply that there exists an open neighborhood U of K which is

di�eomorphic to an open ball in R
ma such that:

� specH(n) can be split into �cu(n) and �s(n) for all n 2 U such that Re �s(n) <
�
s and Re�cu(n) > �
s.

� There exists a decomposition of X into H(n)-invariant subspaces

X = Xs(n)�Xcu(n)

associated to �cu(n) and �s(n) depending smoothly on n for all n 2 U . The

complex dimension of Xcu is q.

We introduce the according spectral projections for H(n) by Pcu(n) and Ps(n). Pcu
and Ps depend smoothly on n. The spectra of the restrictions of H(n) satisfy

Re (specH(n)jXcu
) > �
s

Re
�
specH(n)jXs

�
< �
s

for all n 2 U . Let B(n) : C q ! Xcu be a smooth basis of Xcu introducing C
q -

coordinates in Xcu.

Corollary 3.4 ensures that the semigroup Tn(t) generated by H(n) restricted to

Xs(n) has a decay rate 
s which is uniform for all n 2 U :

kTn(t)xk �Mse
�
stkxk for all n 2 U , x 2 Xs(n), t � 0.

We introduce coordinates x = B(n)xcu + xs decomposing X using the projections

Pcu and Ps. That is, xcu represents the critical-unstable part Pcux 2 Xcu in the basis

B, and xs is the stable part Psx. Then, a decomposition of (3.2), (3.4) by Pcu and

Ps implies that xcu 2 C
q , xs 2 Xs � X, and n 2 R

ma satisfy the system

d

dt
xcu = gcu(xcu; xs; n; ") (3.35)

= Acu(n)xcu + a11(xcu; xs; n; ")xcu + a12(xcu; xs; n; ")xs
d

dt
xs = gs(xcu; xs; n; ") (3.36)

= As(n)xs + a21(xcu; xs; n; ")xcu + a22(xcu; xs; n; ")xs
d

dt
n = f(xcu; xs; n; ") (3.37)
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where Acu; a11 : C
q ! C

q , a12 : X ! C
q , a21 : C

q ! X, a22 : X ! X, As : Y ! X

are linear operators de�ned by

Acu(n) = B�1HPcuB As(n) = HPs � 2
sPcu

a11(xcu; xs; n; ") = �B�1Pcu@nBf a12(xcu; xs; n; ") = B�1@nPcufPs

a21(xcu; xs; n; ") = �Ps@nBf a22(xcu; xs; n; ") = �Pcu@nPcufPs

fk(xcu; xs; n; ") = "Fk(nk)� Pgk(nk)[Bxcu + xs; Bxcu + xs] for k 2 A.

We introduced the term �2
sPcuxs which is 0 for xs 2 Xs arti�cially in (3.36).

System (3.35)�(3.37) couples an ordinary di�erential equation in R
ma , an ordinary

di�erential equation in C
q , and an evolution equation in X. The semi�ow induced

by (3.35)�(3.37) is properly de�ned as long as n(t) stays in the neighborhood U of

K. It has the invariant set S = f(xcu; xs; n) 2 C
q �X � R

ma : xs 2 Xs(n)g due to

d

dt
(Pcuxs) = (@nPcuf � 2
sId) (Pcuxs) . (3.38)

and is equivalent to S(t; �) in S. The right-hand-sides of (3.35)�(3.37) satisfy for all
n 2 U :

gcu(0; 0; n; 0) = 0 @ngcu(0; 0; n; 0) = 0

gs(0; 0; n; 0) = 0 @ngs(0; 0; n; 0) = 0

f(0; 0; n; 0) = 0 @nf(0; 0; n; 0) = 0

The linearization (3.5) of S(t; �) reads in the coordinates (xcu; xs; n; ") as follows (at
xcu = 0, xs = 0, n 2 U and " = 0):

d

dt
xcu = Acu(n)xcu

d

dt
xs = As(n)xs

d

dt
n = 0.

(3.39)

The operators Acu and As are the restrictions of H(n) onto its invariant subspaces

Xcu and Xs. Hence, the assertion (H2) about the spectrum of H ensures that

Re(specAcu(n)) � 0 and the C0 semigroup generated by As(n) decays with the rate


s in X for all n 2 K.
Exploiting that S(t; �) is locally a �ow, we de�ne:

De�nition 3.6 A manifoldM is called S-invariant relative to the bounded open set

N if for any m 2 M\N we have S(t;m) 2 M for all t 2 R satisfying S(t;m) 2 N .

The existence theorems for normally hyperbolic invariant manifolds stated in [10],

[11], [19], [49], [47] apply to the particular situation presented in this section:

Theorem 3.7 Assume (H1), (H2). Let k > 0 be an integer number. Let U 0 be a

su�ciently small open neighborhood of K and the numbers rcu > 0, rs > 0, "0 > 0
be su�ciently small. Then, there exists a manifold Ccu with the following properties:
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1. Ccu can be represented as the graph of a Ck
function xs = �(xcu; n; ") in D(�) =

f(xcu; n; ") : kxcuk < rcu; n 2 U 0; " 2 [0; "0)g .

2. Ccu is S-invariant relative to the open bounded set N = f(xcu; xs; n) : kxcuk <
rcu; kxsk < rs; n 2 U 0g if " < "0.

3. Let u 2 N be such that S(t; u) 2 N for all t � 0. Then, there exists a uc 2 Ccu
such that kS(t; u)� S(t; uc)k decays exponentially.

4. �(xcu; n; ") 2 Xs(n) \ Y for all (xcu; n; ") 2 D(�), the �ow on Ccu is C1
in

time, and is governed by

d

dt
xcu = Acu(n)xcu + a11(xcu; �; n; ")xcu + a12(xcu; �; n; ")�

d

dt
n = f(xcu; �(xcu; n; "); n; ").

(3.40)

5. For k � 3, � can be expanded to

�(xcu; n; ") = (O(kxcuk2) +O("))xcu. (3.41)

Proof:

Invariance and Representation

The statements 1�3 are a direct consequence of the results of [10], [11] except for

the higher order k > 1 of smoothness for �. Indeed, the situation is much simpler

than in [10], [11] since X is a Hilbert space, and the coordinates for the unperturbed

invariant manifold are global and known explicitly.

Firstly, we append the dummy equation (3.6) to (3.35)�(3.37) and (3.39) and extend

the semi�ow S(t; �) accordingly. Let S0 be the semi�ow induced by (3.39), (3.6).

Then, S(t1; �) is a C1 small perturbation of S0(t1; �) for any �nite t1. S0(t; �) has
the �nite-dimensional normally hyperbolic invariant manifold C0 = f(xcu; xs; n; ") :
xs = 0; n 2 Ug (see appendix B for the precise de�nition of normal hyperbolicity; its

conditions are satis�ed due to Re specAs(n) < �
s < Re specAcu(n) for all n 2 U

in (3.39)).

We choose an open bounded set ~N = f(xcu; xs; n; ") : kxcuk < rcu; kxsk < rs; n 2
U 0 � U; j"j < "0g and modify the right-hand-side of (3.39), (3.6) for u =2 ~N such that

C0 becomes compact. We can do so smoothly since X is a Hilbert space. If we choose
~N su�ciently small, the perturbation S0 ! S gets su�ciently small. According to

[10] (see appendix B), C0 persists under the perturbation S0 ! S. Denote the

perturbed manifold by ~Ccu. We can represent ~Ccu as a graph xs = �(xcu; n; ") in ~N
since it is a C1 small perturbation of C0. The same graph � is also the representation

of the manifold Ccu claimed in the theorem. N is the corresponding restriction of
~N .

Stability

Moreover, ~Ccu has a center-stable manifold Ccs in a su�ciently small rs-neighborhood

of ~Ccu (according to [10], see appendix B). Ccs is characterized as the set of all u which

25



stay in the neighborhood of ~Ccu for all t � 0. According to [11], Ccs is decomposed

into an invariant family of foliations (stable �bers) (see appendix B). This implies

statement 3.

Higher Orders of Smoothness

The only open question is the Ck smoothness of ~Ccu for k � 2. The unperturbed

manifold C0 is C1. Then, we may use exactly the procedure outlined in [49] to

�nd the higher order derivatives of � inductively (since X is a Hilbert space, ~Ccu is

compact and �nite-dimensional, and we have a global coordinate representation).

The domain of de�nition for � shrinks for increasing k.

Flow on Ccu
Due to (3.38), we have Ps(n)xs = 0 if (xcu; xs; n; ") 2 Ccu, i. e., xs = �(xcu; n; ") in
N . Hence, �(xcu; n; ") 2 Xs(n) for all (xcu; n; ") 2 D(�). The solutions in Ccu have

the form

(x(t); n(t)) = (B(n(t))xcu(t) + �(xcu(t); n(t); "); n(t))

where xcu and n satisfy the system

d

dt
xcu = gcu(xcu; �(xcu; n; "); n; ")

= Acu(n)xcu + a11(xcu; �; n; ")xcu + a12(xcu; �; n; ")�

d

dt
n = f(xcu; �(xcu; n; "); n; ").

Since � 2 C1 with respect to its arguments, d
dt
�(xcu(t); n(t); ") exists and is continu-

ous. Hence, all solutions in Ccu are classical solutions in the sense of De�nition 2.1,

and �(xcu; n; ") 2 Y = D(H(n)) = D(As(n)).

Expansion of �

The slow manifold E = f(x; n) 2 X � R
ma : x = 0g is invariant (and still slow) even

for " > 0. Hence, it is a subset of Ccu, i. e., �(0; n; ") = 0 for all n and ". Since

� 2 C1, we can write � as

�(xcu; n; ") = �(xcu; n; ")xcu (3.42)

where �(xcu; n; ") =
R 1

0
@xcu�(sxcu; n; ")ds is bounded and continuous in D(�). Fur-

thermore, we obtain

As� + a21xcu + a22� = @xcu� � (Acuxcu + a11xcu + a12�) + @n�f (3.43)

since Ccu = f(xcu; xs; n) 2 N : xs = �(xc; n; ")g is invariant with respect to S(t; �)
(note that � 2 Y = D(As(n))). Assume that � is su�ciently smooth. Then,

we can insert (3.42) into (3.43) and di�erentiate with respect to xcu in the point

xcu = 0, " = 0. We obtain As(n)�(0; n; 0) = �(0; n; 0)Acu(n). Hence, �(0; n; 0) = 0.
Di�erentiating (3.43) twice with respect to xcu in xcu = 0, " = 0, we compute

As(n)@xcu�(0; n; 0) = 2@xcu�(0; n; 0)Acu(n). Hence, @xcu�(0; n; 0) = 0 and we can

expand

�(xcu; n; ") = O(kxcuk2) +O(")

�(xcu; n; ") = (O(kxcuk2) +O("))xcu

if � is su�ciently smooth. �
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Remarks

� If a solution of (3.2), (3.4) stays in N for all t � 0, its long-time behavior can

be approximated by a trajectory on Ccu due to the exponential attractivity of
Ccu. Thus, it is su�cient to study the �ow of the �nite-dimensional system

(3.40).

� If Acu(n) has a strictly positive eigenvalue for all n 2 U 0, one component

of xcu will increase exponentially. Hence, most trajectories of (3.40) leave

D(�) directly. Consequently, we choose the set K 2 R
ma typically such that

Re�cu = 0 (see condition (H2)). That means, e. g., K is generically an isolated

point n0 (the threshold carrier density) if ma = 1. Then, the manifold Ccu is

a local center manifold according to [14], [47], and U 0 is a small neighborhood

of n0. If ma = 2, K is either a piece of a curve where one eigenvalue of H(n)
is on the imaginary axis and all other eigenvalues have negative real part, or

it is an intersection point of two of these curves.

� The rotational symmetry of the system is re�ected in � by

ei'�(xcu; n; ") = �(ei'xcu; n; ")

for all ' 2 [0; 2�). Thus, (3.40) is symmetric with respect to rotation of xcu:

if (xcu(t); n(t)) is a solution of (3.40) then, (ei'xcu(t); n(t)) is also a solution

for all ' 2 [0; 2�).

Mode approximation Consider solutions of the system (3.2), (3.4), (3.6) in the

cone kxk � C
p
" according to (3.34). Within this cone, we can scale up x to order

O(1) by setting the scaling factor P in the carrier density equation (3.4) to ":

Pnew = " xcu;new = xcu;old=
p
"

xnew = xold=
p
" �new(xcu;new; n; ") = �

�p
"xcu;new; n; "

�
xcu;new.

This scaling changes the carrier density equation to

d

dt
nk = "fk (nk; x) = "(Fk(nk)� gk(nk)[x; x]). (3.44)

The system (3.40) for the �ow on Ccu changes to:

d

dt
xcu = Acu(n)xcu + "a11(xcu; �; n)xcu + "a12(xcu; �; n)�

d

dt
n = "f(xcu; �(xcu; n; "); n)

(3.45)

where Acu; a11 : C
q ! C

q , a12 : X ! C
q are linear operators de�ned by

Acu(n) = B�1HPcuB a11(xcu; �; n) = �B�1Pcu@nBf

a12(xcu; �; n) = B�1@nPcufPs

fk(xcu; �; n) = Fk(nk)� gk(nk)[Bxcu + �; Bxcu + �] for k 2 A.
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Moreover, � changes such that its expansion (3.41) reads

�(xcu; n; ") = "�(xcu; n; ")xcu (3.46)

where � 2 C1 if � is su�ciently smooth. Inserting (3.46) into system (3.45), we

obtain that the expression �(xcu; n; ")xcu enters the system only with a factor "2 in

front of it. Hence, replacing � by 0 is a regular small perturbation of (3.45), i. e., it is

of order O("2) in the C1-norm. Moreover, the perturbation preserves the rotational

symmetry of system (3.45). The approximate system is called mode approximation

and reads

d

dt
x = Acu(n)x+ "a11(x; n)x (3.47)

d

dt
n = "f(x; n) (3.48)

where x 2 C
q , and the matrices Acu(n); a11(x; n) : C

q ! C
q are de�ned by

Acu(n) = B�1(n)H(n)Pcu(n)B(n)

a11(x; n) = �B�1(n)Pcu(n)@nB(n)f(x; n)

fk(x; n) = Fk(nk)� gk(nk)[B(n)x;B(n)x] for k 2 A.

The matrix Acu is a representation of H(n) restricted to its critical subspace Xcu(n)
in some basis B(n). The matrix Acu depends on the particular choice of the basis

B(n) but its spectrum coincides with the critical spectrum of H(n). The term "a11x

appears since the space Xcu depends on time t.

Any normally hyperbolic invariant manifold (e. g. �xed point, periodic orbit, in-

variant torus) which is present in the dynamics of (3.47), (3.48) persists under the

perturbation �. Hence, it is also present in system (3.45) describing the �ow on

the invariant manifold Ccu and in the semi�ow of the complete system (3.2), (3.4).

Furthermore, its hyperbolicity and the exponential attractivity of Ccu ensure its

continuous dependence on small parameter perturbations.
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4 Bifurcation Analysis of the Mode Approximations

The mode approximations derived in the previous chapter allow for detailed stud-

ies of their long-time behavior since they are low-dimensional ordinary di�erential

equations. Several analytic and computational results have been obtained previously

about the existence regions of self-pulsations ([6], [9], [44], [51]) and its synchroniza-

tion properties [8] using the single-mode approximation (see section 4.1).

The particular form of system (3.47), (3.48) depends on the set K of critical carrier

densities n chosen in the construction of the center-unstable manifold Ccu and its

properties (H1)�(H3). Practically, only few constellations for K are of interest and

have been observed during numerical simulations of the PDE ([35], [50]). We focus

on situations where the number of unstable eigenvalues of Acu is 0. Hence, Ccu is in
fact an exponentially attracting center manifold. Moreover, we restrict our interest

to cases where the number q of critical eigenvalues of H is less or equal to 2. The
case q = 2 is treated in the limit of two critical eigenvalues with very di�erent

frequencies. Furthermore, multi-section-lasers are currently designed such that they

consist of at most three sections and typically one but at most two of them active.

Thus, we restrict to the cases where the number of sections m = 3 and only one

equation for n1 (A = f1g) is present.
We obtain the coe�cients of (3.47), (3.48) in the following manner:

We compute the critical eigenvalues numerically by continuating the roots �j of

the characteristic function h(�) with respect to n (see section 3.2). If � 6= i
r;k �
�k for k 2 f1 : : :mg, the corresponding eigenvector xj = ( j; pj) and the adjoint

eigenvector x
y

j = ( yj ; p
y

j) have the form (see [8], [51] for the adjoint)

�
 j
pj

�
=

�
T (z; 0;�j) (

r0
1 )

�
�j�i
r+�

T (z; 0;�j) (
r0
1 )

� �
 
y

j

p
y

j

�
=

0
BB@
�
� j;2
� j;1

�
�

�

�
�pj;2
�pj;1

�
1
CCA . (4.1)

We do not consider the degenerate case where a critical eigenvalue has algebraic

multiplicity � 2. Hence, �j, xj and x
y

j depend smoothly on n. Moreover, we can

scale xj such that

(xyj; xj) = 1 (4.2)

for all n under consideration. Then, we can choose (xyj; �) for the components of

the spectral projector B�1Pcu in (3.47), (3.48) using the eigenbasis of HjXcu
for B.

Hence, Acu(n) is a diagonal matrix with �j(n) in the diagonal. Subsequently, we

refer to the components of B (which are eigenvectors of H) and xcu as modes of H.

4.1 The Single Mode Case

Firstly, we consider a multi-section laser with one active section (n = n1 2 R)

in the generic case where a single eigenvalue � of H(n) is on the imaginary axis

(q = 1). Thus, the set K of critical carrier densities consists of a single point
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n0 > 1. The mode approximation is valid in the vicinity of this point n0. We

introduce N = (n � n0)=(n0 � 1). The term a11 in (3.47) vanishes if we choose

the corresponding eigenvector ( ; p) according to (4.2). Moreover, we can decouple

the phase of the complex x in (3.47) due to the rotational symmetry of the system.

Hence, we have to analyse a two-dimensional system for S = jxj2 and N which reads

as follows:

_S = G(N)S (4.3)

_N = " (I �N � (1 +N)R(N)S) (4.4)

where the coe�cient functions are de�ned by

G(N) = 2Re�(N) (4.5)

(1 +N)R(N) = [g(N)� �(N) + Re(�(N; �(N)))] k (N)k21 (4.6)

and the current is adjusted to

I = (I1 � n0)=(n0 � 1)

Here, the de�nition for R exploits that the right-hand-side of (4.6) is zero at N = �1
(corresponding to n = 1). Moreover, we know that G(0) = 0. If � crosses the

imaginary axis transversally at n = n0, we have G
0(0) > 0. For typical parameter

situations, the functions G and R look like depicted in Figure 4.1. The long-time

behavior of (4.3), (4.4) has been investigated numerically by [44] using the models

G(N) = �N (4.7)

R(N) = 1 +
AW 2

(N �Nr)2 +W 2
(4.8)

for G and R where Nr represents the position of the peak in R visible in �gure

4.1, A its height, and W its half width at half maximum. The bifurcation diagram

of (4.3), (4.4) with respect to the primary bifurcation parameter Nr is reported

in [44]. It shows a family of periodic orbits with a fold (see also Fig. 4.2). The

stable branch of this type of periodic orbits is usually referred to as (single mode)

self-pulsations. The motion is actually quasiperiodic taking the rotational velocity

Im� into account.

We pointed out in chapter 3 that the mode approximation is only valid within a

bounded region of S. Hence, we have to perform a perturbation analysis for small

" to check if the amplitude of the periodic orbits of (4.3), (4.4) remains �nite for

" ! 0. Besides, the perturbation analysis results in approximations for the Hopf

points and the locations of the self-pulsations.

To this end, we transform (4.3), (4.4) into a small perturbation of a conservative
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Figure 4.1: Typical shape of G and R with respect to the unscaled variable n. The position

nr and the height of the peak in R relative to the zero of G are the mathematical parameters

determining the dynamics of system (4.3), (4.4) [44]. The dotted line is the function G

for the eigenvalue nearest to �. The models (4.7) and (4.8) �t the depicted functions with

Nr = �0:05, A = 1, W = 0:007, � = 4 (or yr = �0:83, w = 2 for Æ = 0:06, " = 1=300 in

the rescaled system (4.10), (4.11), respectively).

oscillator: We introduce the scaled parameters and coe�cient functions

Æ =
p
"I=� R(y; Æ; yr) = 1 +

Æ2Aw2

(y � yr)2 + Æ2w2

yr = Nr=Æ (4.9)

w = W=Æ2 r(y; Æ; yr) =
R(y; Æ; yr)

R(0; Æ; yr)

the new state space variables

x = logS � log

�
I

R(0; Æ; yr)

�
y = N=Æ,

and introduce a new time tnew =
p
�I"told. The transformed system reads

_x = y (4.10)

_y = 1� Æ=I � y � (1 + Æy)r(y; Æ; yr) exp(x) (4.11)

where Æ = O(
p
") is small. This scaling treats N and some of the original quantities

as naturally small, i. e. N = O(
p
"), Nr = O(

p
"), and W even O("). Other

parameters (I and A) are considered as positive and of order 1. System (4.10), (4.11)

is equivalent to (4.3), (4.4) in the invariant half-plane fS > 0g. The transformed
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system (4.10), (4.11) has exactly one equilibrium x = y = 0. Changing yr, a pair of
complex eigenvalues of its linearization at 0 crosses the imaginary axis transversally

at yr;� satisfying @yr(0; Æ; yr) = �Æ(1 + I�1) which amounts to [44]

yr;�

Æw
= �

Æ2w(1 + I�1)

2A

��yr;�
Æw

�2
+ 1

� ��yr;�
Æw

�2
+ 1 + A

�
. (4.12)

For �xed I > 0, A > 0 and w > 0, this equation has exactly two solutions yr;+ and

yr;� if the factor � in front of the right-hand-side is small. These Hopf points can

be approximated by

yr;� � �
�

2ÆAw2

1 + I�1

� 1

3

, yr;+ � �Æ3w2(1 + I�1)
1 + A

2A

by dropping terms of order �2=3 (for yr;�) or �
2 (for yr;+), respectively.
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Figure 4.2: Bifurcation diagram for the scaled single mode approximation (4.10), (4.11).

The parameters are as indicated in the caption of �gure 4.1, and I = 2. The picture shows

the two Hopf points yr;� and the family of periodic orbits with a fold at yr;f . We report

max y of the stable and unstable periodic orbits and of the critical energy level �s of the

conservative oscillator.

An important aspect is how the amplitude of the self-pulsations changes for Æ ! 0.
As the mode approximation is only valid within a bounded region of x (or S in

(4.3), respectively), we have to verify that the amplitudes of the self-pulsations

remain bounded for Æ ! 0.

Consider system (4.10), (4.11) as a perturbation of the conservative oscillator �x =
1� ex (see [33] for references about the close to conservative nature of single mode

models). The conserved quantity along the periodic orbits of the conservative oscil-

lator is

E(x; y) = y2=2 + ex � x� 1.

E(x; y) > 0 if (x; y) 6= 0, E(0; 0) = 0, E is strictly monotone in x2 + y2 and E !1
for x2 + y2 !1. This allows us to introduce polar coordinates:

�(x; y) =
p
E(x; y) =

p
y2=2 + ex � x� 1

'(x; y) = angle between (x; y) 2 R
2 n f0g and the ray fx = 0; y � 0g.

(4.13)
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PrPu

y

�r

�u

x

y = yr

Figure 4.3: Sketch of single mode system in the limit Æ ! 0. System (4.10), (4.11) is

discontinuous at the dotted line y = yr and it is in a sliding mode along the lower side of

the thick part of the line between Pr = (0; yr) and Pu = (� log(1 +A); yr). For y 6= yr the

vector �eld points along the level lines � = const.

Then, _' is uniformly positive for bounded �. Furthermore, let us introduce the

numbers

�r = yr=
p
2

�u =

r
�2r +

1

1 + A
+ log(1 + A)� 1.

(4.14)

The right-hand-side of system (4.10), (4.11) is a O(Æ)-perturbation of (y; 1�ex) (the
right-hand-side of �x = 1� ex) except in the vicinity of the line y = yr. In the limit

Æ ! 0, (4.10), (4.11) is discontinuous at y = yr and equal to �x = 1� ex outside of

this line (see Fig. 4.3). The region x 2 (� log(1 + A); 0) on the line y = yr plays

a special role since the sign of _y = 1 � (1 + A)ex opposes the sign of _y = 1 � ex.

The level line � = �r touches the line y = yr at the right end (x = 0; y = yr) of this
region. The level line �u crosses y = yr at the left end (x = � log(1 +A); y = yr) of
this region. The following Lemma 4.1 claims that the discontinuity at y = yr acts

as a small perturbation if x =2 [� log(1 + A); 0].

Lemma 4.1 Let x� have a positive non-small distance from [� log(1 + A); 0] and
y� = yr. Let A > 0, w > 0, yr < 0 be of order O(1). Denote the trajectory of system

(4.10), (4.11) through (x�; y�) by (x(t); y(t)) and the trajectory of �x = 1� ex through

(x�; y�) by (x0(t); y0(t)). Let the time interval [�T; T ] be su�ciently small such that

y0(t) � yr is only small in the vicinity of t = 0. Then, jx0(t) � x(t)j, jy0(t) � y(t)j
are of order O(Æ) for t 2 [�T; T ].

Proof: We have to compute the di�erence between (x(t); y(t) and x0(t); y0(t) only
in the vicinity of t = 0. Since x(t)�x0(t) =

R t
0
y(s)�y0(s) ds, it is su�cient to prove

that jy0(t)�y(t)j = O(Æ) for t in some interval around 0. Let �2
�
= y2r=2+e

x
��x��1.

The trajectory (x0; y0) has the form y0(x0) = �
p
2
p
�2
�
� ex0 + x0 + 1. Since _x is
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uniformly negative for y near yr, we can parametrize the trajectory (x(t); y(t)) also
with respect to x. We have

1

2
(y(x)2 � y0(x)

2) =

Z x

x
�

y(�)
dy(�)

d�
� y0(�)

dy0(�)

d�
d�

= �
Z x

x
�

AÆ2w2

(y(�)� yr)2 + Æ2w2
d� +O(Æ). (4.15)

The quantity @y(x)=@x is uniformly positive in the vicinity of (x�; y�) if x� > cu > 0,
and it is uniformly negative if x� < cl < � log(1 + A). Hence, we can estimate the

term (y(�)� yr)
2 from below by a(x� x�)

2 where a > 0. Then, the integral in the

right-hand-side of (4.15) is of order O(Æ). �

According to numerical observations, the stable periodic orbits of system (4.10),

(4.11) are only small in a very small parameter region near yr;+ (see Fig. 4.2). On

the other hand, the conservative oscillator �x = 1 � ex is not harmonic far away

from 0. Hence, we should not consider the self-pulsations as small perturbations of

harmonic oscillations expanding them near the Hopf points. Rather, we search for a

level line �s of the conservative oscillator where the stable limit cycles branch from

at Æ = 0.

The following Theorem 4.2 proves the existence of this level line �s and, hence, the

boundedness of the self-pulsations for Æ ! 0. Furthermore, its proof provides a for-

mula for �s which can be used for a zero-order approximation of the self-pulsations.

Theorem 4.2 Let R > 0 be su�ciently large, Æ0 > 0 be su�ciently small, and

yr < 0, A > 0, J > 0, w > 0 be of order O(1). Then,

1. system (4.10), (4.11) has a �rst return map rÆ(�) = � + g(�) to the ray R =
f' = 0g, such that the interval [0; R] is forward invariant for rÆ for all Æ 2
(0; Æ0).

2. jg(�)j is of order O(Æ) in any compact subset C of (0; �r) [ (�u;1).

3. There exists exactly one level line �s of �(x; y) within BR(0) such that an

isolated parametric family of stable limit cycles branches from �s for Æ 2 (0; Æ0).

Proof: Since _' is uniformly positive for bounded �, the system (4.10), (4.11)

induces a �rst return map to the ray R = f' = 0g. We denote this �rst return map

by rÆ : � 2 [0;1)! [0;1). rÆ is smooth for Æ > 0. It converges uniformly in each

compact subset of [0;1) n f�rg to

r0(�) =

(
� for � 2 Hc := [0; �r) [ (�u;1)

�u for � 2 (�r; �u] =: Hf

for Æ ! 0. We have to study the e�ect of the perturbation by Æ only where r0 is

critical i. e. in Hc. Let � : R ! R be a monotone increasing function de�ned by
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the equation �(x)2 = ex � x � 1. � is a di�eomorphism on R with �(0) = 0 and an

inverse function ~x(�) de�ned by

�2 = e~x(�) � ~x(�)� 1. (4.16)

Let C � Hc be compact, and � 2 C. For � 2 C we may formally expand

rÆ(�) = � + Æ
@

@Æ
rÆ(�)

����
Æ=0

+ o(Æ).

Hence, if @
@Æ
rÆ(�)jÆ=0 exists and changes its sign from + to � at �, the �xed point

r0(�) = � will persist for Æ > 0 and be stable and uniformly isolated for small Æ.

Consider

(rÆ(�)� �)=Æ = Æ�1
hp

E(x(T (�; Æ)); y(T (�; Æ)))�
p
E(x(0); y(0))

i
for � 2 C where T (�; Æ) is the time for the �rst return to R, and (x(t); y(t)) is the
trajectory inducing rÆ(�). The trajectory (x(t); y(t)) is a O(Æ)-perturbation of the

periodic solution of the conservative oscillator along the level line � according to

Lemma 4.1. We have

(rÆ(�)� �)=Æ =

= Æ�1
Z T (�;Æ)

0

d

dt

p
E(x(t); y(t))dt

= �
Z T (�;Æ)

0

1

2�

�
y2

I
+ y2ex

�
dt| {z }

S1(�;Æ)

�
Z T (�;Æ)

0

1

2�

ÆAw2yex

(y � yr)2 + Æ2w2
dt| {z }

S2(�;Æ)

+O(Æ)

The O(Æ) is uniform for � 2 C. Hence, g(�) = rÆ(�) � � is of order Æ in C. The

�rst part S1 is negative. For � 2 C, it can be approximated up to order O(Æ) by
replacing (x(t); y(t)) by the periodic orbit of the conservative oscillator:

S1(�; Æ) = �
2
p
2

�

�
I�1 + 1

� Z �

��

p
�2 � �2

�

�2 + ~x(�)
d� +O(Æ) (4.17)

Concerning S2, we consider � 2 C \ (0; �r) �rstly. The term S2 is of order O(Æ) if
� 2 C \ (0; �r). Therefore, rÆ(�) < � for � 2 C \ (0; �r) and su�ciently small Æ.

Thus, there is no �xed point of rÆ in C \ (0; �r). However, there must be an unstable

�xed point in (0; �r] n C for su�ciently small Æ > 0 since rÆ is smooth in � for Æ > 0
and lim�&�r r0(�) = �u > �r. Consequently, a family of unstable �xed points of rÆ
branches from �r. This implies that there is no isolated stable family of �xed points

of rÆ in (0; �r].

Consider � 2 C \ (�u;1) now. Then, _y 6= 0 at y = yr for su�ciently small Æ. Hence,

we can substitute dt by dy= _y near y = yr. Let (x(t�); yr), and (x(t+); yr) be the
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crossing points of the trajectory (x(t); y(t)) with fy = yrg (x(t�) < 0, x(t+) > 0).
We expand S2 with respect to Æ to obtain

S2(�; Æ) =
�Awyr

2

"
ex(t�)

�(t�)
p

(1� ex(t�))(1� (1 + A)ex(t�))
+

ex(t+)

�(t+)
p

(ex(t+) � 1)((1 + A)ex(t+) � 1)

#
+O(Æ).

(4.18)

The values x(t�) and �(t�) may be replaced by the corresponding values for the

periodic orbit of the conservative oscillator:

x(t�) = ~x
�
�
p
�2 � y2r=2

�
+O(Æ) and �(t�) = � +O(Æ).

The term S1(�; 0) is zero at � = 0 and decreases monotone and super-linearly for

� ! 1 whereas S2(�; 0) is a monotone increasing function with lim�&�u S2(�; 0) =
�1 and lim�!1 S2(�; 0) = 0. Thus, S1(�; 0) � S2(�; 0) has exactly one root �c
in (�u;1). The sign change at �c is from + to �. This situation persists for

S1(�; Æ)� S2(�; Æ). Consequently, there exists exactly one stable �xed point �c(Æ) �
�u of rÆ for su�ciently small Æ with �c(Æ)! �c for Æ ! 0. �

The statement of Theorem 4.2 in terms of the original system (4.3), (4.4) is:

Corollary 4.3 For " ! 0, there exists a family of uniformly bounded stable limit

cycles if Nr < 0 and the scaling of the parameters is Nr = O(
p
"), A = O(1) and

W = O(").

The following corollary is also an immediate consequence of Lemma 4.1 and the

argumentation in the proof of Theorem 4.2:

Corollary 4.4 Let (x(t; �); y(t; �)) be the trajectory for system (4.10), (4.11) induc-

ing the return map rÆ(�) (t 2 [0; T (�; Æ)], i. e., x(0; �) = x(T (�; Æ); �) = 0, y(0) =
�
p
2�). Denote the corresponding trajectory of the conservative oscillator �x = 1�ex

by (x0(t; �); y0(t; �)). Let � be in a compact subset of (0;1) n [�r; �u]. Then, the dis-
tance k(x(t; �); y(t; �))� (x0(t; �); y0(t; �))k is of order O(Æ) for all t 2 [0; T (�; Æ)].
The same holds for the time of the �rst return: T (�; Æ) = T (�; 0) +O(Æ).

Remarks

Location of the Fold Periodic Orbit There is always an unstable limit cycle

near the level line �r = �yr=
p
2 for su�ciently small Æ. However, the physically

relevant parameters do not re�ect this asymptotical behavior yet. Typically, the

Hopf point yr;� is of order O(1) for realistic Æ. Since the unstable periodic orbits

are located near � < �r and the self-pulsations branch from level lines � > �r, the

location of the fold of periodic orbits in phase space must be in the vicinity of the

level line �r. We can exploit this fact to obtain a crude heuristic approximation

of the fold in the parameter space. We insert the orbit of �x = 1 � ex along �r for
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(x(t); y(t)) into the term S2(�; Æ). Because S2 is of order Æ except in the vicinity of

(x = 0; y = yr), we only evaluate it around that point and substitute dt by dx=y:

S2(�r; Æ) = �
1

2�r

Z c

�c

ÆAw2ex

(y(x)� yr)2 + Æ2w2
dx+O(Æ)

where y(x) =
p
2
p
�2r � ex + x + 1 and c > 0 of order O(1). We expand this expres-

sion with respect to Æ and obtain

S2(�r; Æ) = �
p
2�

2

A
p
w

p
�yr

� Æ�1=2 +O(
p
Æ).

We equate the leading term of S2(�r; Æ) with S1(�r; 0) to get an approximation of

the location of the fold in parameter space:

S1(yr=
p
2; 0) = �

p
2�

2

A
p
w

p
�yr

� Æ�1=2 (4.19)

However, this approximation is only heuristic, since we do not know a priori whether

the fold periodic orbit is su�ciently close to the orbit of �x = 1� ex along �r to have
the same expansion. We plot the approximate fold location for a sample parameter

setting in the (A; yr)-plane and compare it to the numerical solution in Fig. 4.6.

The Corresponding Averaged Equation The proof of Theorem 4.2 approxi-

mates the �rst return map r(�) for � 2 Hc to �nd a periodic orbit and to show its

stability. Alternatively, we could employ �rst-order averaging. This would be only

formally correct since _�= _' does not have a uniform Lipschitz constant with respect

to ('; �) for Æ ! 0. However, the consideration of the return map in Theorem 4.2

has proved that the averaged equation

_� =
1

2�
g(�) (4.20)

approximates the �rst return-map for small Æ if � is in compact subsets of Hc (i. e.,

g(�) is of order o(1)). For � > �u, we may use the approximation g(�) = Æ(S1(�; 0)�
S2(�; 0)).

Location of the Self-Pulsation The critical level line �s is a zero-order ap-

proximation for the location of the stable limit cycle if yr = O(1). For simplic-

ity, we can replace the integral in S1 by its Taylor expansion [33] when solving

S1(�; 0)� S2(�; 0) = 0:

S1(�; 0) = �
�
I�1 + 1

� �
�� +

�

24
�3
�

which is very accurate within the interval [0; 4]. The third order term is important

since � is typically far away from 0. Then, the approximate equation for S1(�; 0) =
S2(�; 0) reads

�
I�1 + 1

Awyr

�
2�2 +

1

12
�4
�

=

�
1� A

e�x
�

r �1

�� 1

2

e�x
�

r � 1
+

�
1 + A

1�e�x
+
r

�� 1

2

1� e�x
+
r

(4.21)
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where x�r = ~x
�
�
p
�2 � y2r=2

�
. This equation is easy to solve for I or w with a

given �2. Figure 4.2 compares the extrema of the level lines computed with (4.21)

to extrema of the actual periodic orbits.
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4.2 Two modes with di�erent frequencies

Next, we consider a laser with one active section (n = n1 2 R) in the vicinity of

the situation where two eigenvalues �1(n) and �2(n) of H(n) cross the imaginary

axis transversally at the same n0. This case is observed frequently in numerical

computations using the full system (3.2), (3.4) [35], [50] even though it seems to

be non-generic at �rst sight. The reason is the following: A laser consisting of a

single DFB-section (i. e. m = ma = 1, � 6= 0) with zero facette re�ectivities (r0 =
rL = 0) is symmetric with respect to re�ection. Thus, if H(n) has the eigenvalue

� + i Im�, it has also the eigenvalue �� + i Im�. Typically, a pair of eigenvalues

becomes critical having the frequencies Im�1;2 � Im�1 � �1. The frequency region

(Im�1 � �1; Im�1 + �1) is usually referred to as the stopband of the active section.

Hence, a solitary section typically supports modes at both ends of the stopband.

This situation is slightly perturbed by the passive sections and the nonzero facette

re�ectivity prefering one of the two ends of the stopband. However, this preference

is usually small and may change for varying parameters (see Fig. 3.1 b for a typical

situation).

4.2.1 Motivation

For motivation, we present a result of numerical long-time computations for system

(3.2), (3.4) in Fig. 4.4 which has been obtained by [7] and [50].

The geometric con�guration for Figure 4.4 is the following: We have two DFB

sections S1 and S3 (i. e. �1; �3 6= 0) and a phase tuning section S2 (�2 = 0). S1 is
active, S3 acts as a re�ector. The parameter p = �2l2 Im d2 adjusts the phase of the

feedback from S3. Hence, p in�uences the behavior only modulo 2�.

Within this period, the authors of [7] choose a �ne mesh, start the simulation,

and wait until the system �settles� to some �nal state. The approximate limits

lim supt!1 j (t; 0)j2 and lim inft!1 j (t; 0)j2 are reported in Figure 4.4 A. Then,

they advance p to the next mesh point starting the computations from the previously

reported �nal state. The mesh is traversed in forward and in backward direction in

order to detect coexisting �nal states. If there are coexisting �nal states, the arrows

in Figure 4.4 A indicate how p was being changed. In this manner, the pseudo

bifurcation diagram of Figure 4.4 A is obtained which reports only stable limiting

states.

If lim supt!1 j (t; 0)j2 6= lim inft!1 j (t; 0)j2, the time pro�le of j (t; 0)j2 is sup-

posed to be (roughly) periodic. It is shown in Figure 4.4 C for these cases. For

orientation, we draw the root curves f(n; p) : �j(n; p) = 0g of the dominating eigen-

values of H in Figure 4.4 B. The dashed/solid pro�le of the lines indicates that �1
(solid) is at the low end of the stopband (i. e. Im�1 � Im�1 � �1) whereas �2 and
~�2 (dashed) are at the high end of the stopband (i. e. Im�2; Im ~�2 � Im�1 + �1).

We observe the following scenarios of interaction between modes at di�erent ends

of the stopband in Fig. 4.4:

(T1) There is no interaction visible at all if each of the modes has an on-state which

is stable in the sense of the single mode model. For p < p0, the on-state
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Figure 4.4: Pseudo bifurcation diagram for 3-section laser from [7], [50]: In Figure (A),

limsupt!1 j (t; 0)j2 and lim inft!1 j (t; 0)j2 are plotted over a �ne mesh in one period

of the parameter p = �2l2 Im d2. The arrows indicate the direction the mesh is traversed.

Figure (B) shows the root curves f(n; p) : �j(n; p) = 0g for the dominant eigenvalues of

H(n). In (C), we plot the time pro�le over one period of  (t; 0) for the non-stationary

scenarios in Figure (A). See text of section 4.2 for details. Device con�guration: n = n1

(A = f1g), �1 = �3 6= 0, �2 = 0.

corresponding to �2 is stable, and the on-state corresponding to �1 is unstable

(scenario (1) in Fig. 4.4 A). The situation is vice versa if p > p0 (scenario

(3)). Near p = p0, the transition between the two on-states is extremely slow

in time but sharp in the parameter space (scenario (2)).

(T2) The behavior changes if at least one of the modes has a self-pulsation in the

sense of the single mode model. There is a parameter region where the self-

pulsation corresponding to �1 is stable and coexists with the stable on-state

corresponding to ~�2 (scenario (6)) or with a stable self-pulsation corresponding
to �2 ((4) and (5)).
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(T3) In region (7), a regime is stable where modes from both ends of the stopband

contribute. The time pro�le of the solution (7) shows that the frequency of

the self-pulsation is overlapped with another very large frequency. This large

frequency is approximately Im�1 � Im�2.

The large frequency di�erence between the dominant eigenvalues Im�1 � Im�2 is a

characteristic feature for the situations described above. We exploit this character-

istic in the following paragraphs by considering the �rst order averaged equations

instead of the full two mode system. This approach has the advantage that we can

use the knowledge about the bifurcation diagram of the single mode case. Never-

theless, it predicts and explains the scenarios (T1)�(T3) accurately.

4.2.2 Derivation of the Averaged Two Mode Equation

System (3.47), (3.48) reads

_x1 = �1(n)x1 + "�1(n)f(n; x1; x2)x2

_x2 = �2(n)x2 + "�2(n)f(n; x1; x2)x1

_n = "f(n; x1; x2)

(4.22)

where (omitting the section index 1 and the n-dependence of some coe�cients)

�1(n) =
1

�2 � �1

�
@n� +

@n�� + i@n
r�(�1)

�2 � i
r + �

�
( y1;  2)1

�2(n) =
1

�1 � �2

�
@n� +

@n�� + i@n
r�(�2)

�1 � i
r + �

�
( y2;  1)1

f(n; x1; x2) = I � n� (n� 1)
�
R1(n)jx1j2 +R2(n)jx2j2+

+Re(R12(n)�x1x2)]

(n� 1)R1(n) = (g(n)� �(n) + Re�(�1(n))) k 1k2

(n� 1)R2(n) = (g(n)� �(n) + Re�(�2(n))) k 2k2

(n� 1)R12(n) =
h
2(g(n)� �(n)) + �(�1(n)) + �(�2(n))

i
( 1;  2)1.

The two amplitudes x1 and x2 and the coe�cients �j, �j and R12 are complex

quantities.

We rescale system (4.22) in a similar way as in section 4.1: Let Re�1(n1) = 0,
Re�01(n1) > 0, and Im�1(n) < Im�2(n) for all n under consideration. We introduce

Inew =
Iold � n1

n1 � 1
Æ =

s
I"

2�01(n1)
(4.23)

tnew =
p

2�01(n1)I"told Gj(y) = 2Æ�1Re�j((n1 � 1)Æy + n1)

y = Æ�1
n� n1

n1 � 1
Rj;new(y) = Rj;old((n1 � 1)Æy + n1)

'j(0) = 0 _'j = � Æ�1 Im�j((n1 � 1)Æy + n1)

�j = xje
i'j=I �j;new(y) = �j;old((n1 � 1)Æy + n1)
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for j = 1; 2. Denoting � = '1 � '2, the rescaled system reads

_�1 =
1

2
G1(y)�1 + Æ�1(y)f(y; �1; �2; �)e

i� �2 (4.24)

_�2 =
1

2
G2(y)�2 + Æ�2(y)f(y; �1; �2; �)e

�i� �1 (4.25)

_y = f(y; �1; �2; �) (4.26)

= 1� Æ=I � y � (1 + Æy)
�
R1(y)j�1j2 +R2(y)j�2j2+

+ Re
�
R12(y)��1�2e

i��
��

_� = Æ�1(Im�2 � Im�1). (4.27)

Introduction of time � = '1 � '2 transforms system (4.24)�(4.26) into a standard

form _x = "g(x; t) where a small " � (Im�2 � Im�1)
�1Æ is put in front of the

right-hand-side and g is 2�-periodic. The term ei('2�'1) changes to e�i� . The corre-

sponding �rst order averaged equation reads (with respect to time t, dropping terms

of order (Im�2 � Im�1)
�1Æ)

_s1 = G1(y)s1 (4.28)

_s2 = G2(y)s2 (4.29)

_y = 1� Æ=I � y � (1 + Æy) [R1(y)s1 +R2(y)s2] (4.30)

arg �j � const for j = 1; 2 (4.31)

in polar coordinates (sj = j�jj2). Equation (4.31) is decoupled from system (4.28)�

(4.30). Hence, we can continue our analysis using subsystem (4.28)�(4.30).

We note that the functions Rj and Gj have the same meaning for their respective

mode as G and R(�; Æ; yr) in the single mode case.

The functions Gj are the e�ective gain functions of their corresponding modes.

The function G1 has the root 0, and G
0

1(0) = 1. Moreover, we assume that G0

2(0) is
positive, not small and without loss of generality G0

2(0) � 1. Then, we can introduce
� = G0

2(0)
�1 � 1 and rescale s2;new = s�2;old. This scaling changes G0

2(0) to 1 and

equation (4.30) to

_y = 1� Æ=I � y � (1 + Æy) [R1(y)s1 +R2(y)s
�
2 ] . (4.32)

We take (4.31) into account only to interpret the long-time behavior of the averaged

system in terms of the original quantities. The following Lemma 4.5 summarizes

how standard averaging theory [21], [38] allows to lift results for (s1; s2; y) back to

(x1; x2; n).

Lemma 4.5 Denote the minimum of (Im�1(y)�Im�2(y))=Æ by �
�1
. Let (�1; �2; y) :

M! C
2 � R be a normally hyperbolic invariant manifold of system (4.28)�(4.31).

Let the �ow on M be governed by _m = F (m). Then, there exists a normally

hyperbolic invariant manifold of system (4.22) which is the transformation of a small

perturbation (~�1; ~�2; ~y) :M�S1 ! C
2�R of (�1; �2; y) of order O(�) in the following

sense:

j~�j(m;')� �j(m)j = O(�)

j~y(m;')� y(m)j = O(�)
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for j = 1; 2, all m 2 M, and ' 2 S1
. Moreover, (m;') 2 M � S1

satisfy the

equations

_m = F (m) + F1(m;')

_' = �Æ�1(Im�2(~y(m;'))� Im�1(~y(m;')))

where F1 is of order O(�). We obtain xj and n by setting '(0) = 0 and

xj(t) = ~�j(t)e
�i'j(t)

n(t) = (n1 � 1)Æ~y(t) + n1

'j(t) =

Z t

0

�Æ�1 Im�j(~y(s)) ds.

Proof: We imbed the non-averaged system (4.24)�(4.27) into a C 2�R�S1 -system

by leaving the initial condition on '2 � '1 free in S
1. The extended system has the

form

_u = f(u; ')

_' = ��1g(u)
(4.33)

where u 2 C
2 � R, ' = '1 � '2 2 S1 (f is 2�-periodic in '), and g is uniformly

positive and of order 1. Let ~f(u) be the average of f with respect to ': ~f(u) =
(2�)�1

R
S1
f(u; ') d'. After a near-identity change of coordinates u = v + �w(v; '),

we have

_v = ~f(v) + �f1(v; ')

_' = ��1g(v + �w(v; '))
(4.34)

where

w = g(v)�1
Z '

0

f(v; �))� ~f(v) d�

f1 = [Id + �@1w(v; ')]
�1

�
f(v + �w(v; '); ')� f(v; ')

�
� @1w(v; ') ~f(v)

�
.

Hence, f1 2 C1 is of order O(1). (4.34) is a regular perturbation of order O(�) of
the averaged system

_v = ~f(v)

_' = ��1g(v + �w(v; ')).
(4.35)

Consequently, ifM is a normally hyperbolic invariant manifold of _v = ~f(v),M�S1

is a normally hyperbolic invariant manifold of (4.35). This manifold persists under

the regular perturbation f1 implying the existence of a normally hyperbolic invariant

manifold ~M of (4.33) after transforming back from v to u. At the end, we choose

those trajectories where ' starts at 0. The manifold ~M is a small perturbation of

M as a graph, and the �ow on ~M is a regular perturbation of the �ow on M. �

Lemma 4.5 implies:
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� A hyperbolic equilibrium (s1 6= 0; s2 = 0; y = const) of (4.28)�(4.30) is a small

perturbation of the periodic orbit (x1 =
p
s1e

i�1�i'1(t); x2 = 0; n = const). We

have to take into account the particular structure of f1 and w in (4.34) to

obtain that the perturbation is actually 0 in this case.

� A hyperbolic equilibrium (s1 6= 0; s2 6= 0; y = const) is a normally hyperbolic

invariant 2-torus close to

(x1 =
p
s1e

i�1�i'1(t); x2 =
p
s2e

i�2�i'2(t); n = const).

This type of solutions is referred to as pulsations of mode beating type.

� A single-mode self-pulsation (s1(t); s2 = 0; y(t)) is a normally hyperbolic in-

variant 2-torus close to

(x1 =
p
s1(t)e

i�1�i'1(t); x2 = 0; n(t)).

� A hyperbolic periodic orbit (s1(t); s2(t); y(t)) is a normally hyperbolic invariant

3-torus close to

(x1 =
p
s1(t)e

i�1�i'1(t); x2 =
p
s2(t)e

i�2�i'2(t); n(t)).

Remark: The de�nition of normal hyperbolicity of an invariant manifold imposes

conditions on the rates of attraction and expansion normal to the manifold (see

appendix B). These rates have to be large compared to the � discussed in Lemma

4.5. Since the averaged system (4.28)�(4.30) will turn out to be singularly perturbed,

this imposes a restriction on the smallness of the singular perturbation parameter.

4.2.3 Dynamics in the Vicinity of the On-states

We note that system (4.28), (4.29), (4.32) has two invariant planes: S1 = fs2 = 0g
and S2 = fs1 = 0g. Between the invariant planes, the ratio r = s1=(s2+ s1) satis�es
the di�erential equation

_r = (G1(y)�G2(y))(r� r2). (4.36)

We can introduce the new variable x = log(s1+s2) and rewrite the equations (4.28),
(4.32):

_x = (rG1(y) + (1� r)G2(y)) (4.37)

_y = 1�
Æ

I
y � (1 + Æy) (rR1(y)e

x + (1� r)�R2(y)e
�x) . (4.38)

System (4.36), (4.37), (4.38) is equivalent to (4.28), (4.29), (4.32) in the invariant

subspace fs1 + s2 > 0g (s1 = rex, s2 = (1� r)�e�x). The invariant planes are now
S1 = fr = 1g and S2 = fr = 0g.
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Since G0

1(0) = G0

2(0) = 1, the long-time behavior of r is determined by G2(0) if y is
near 0 for all times i. e. if the on-states

O1 = (x = � logR1(0); y = 0; r = 1) 2 S1

O2 =

�
x =

1

�
log

�
1� Æ=I � y0

(1 + Æy0)R2(y0)

�
; y = y0; r = 0

�
2 S2

(4.39)

are stable with respect to x and y. In (4.39), y0 is the root of G2 near 0 which is

approximately�G2(0) ifG2(0) is small. Hence, we may use y0 as a control parameter

instead of G2(0).

The linearization of the right-hand-side of system (4.28), (4.29), (4.32) at O1 pos-

sesses the eigenvalue G2(0) corresponding to the eigenvector v1 transversal to S1.
At O2, the linearization has the eigenvalue G1(y0) corresponding to the eigenvector
v2 transversal to S2.
The following Theorem 4.6 shows the dynamics in the vicinity of y � 0 for y0 of

order o(Æ) if O1 and O2 are stable within their plane:

Theorem 4.6 Let the equilibria O1 and O2 be asymptotically stable with respect to x

and y i. e. within their corresponding invariant plane S1 and S2, respectively. Then,
for su�ciently small y0 there exists an exponentially attracting heteroclinic between

O1 and O2 which is tangent to v1 at O1 and tangent to v2 at O2. The zero-order

approximation for the motion of r on the heteroclinic is

r(t) =
1

1 + e�y0tr(0)
. (4.40)

Proof: The assumptions on the functions G1 and G2 imply that

G1(y)�G2(y) = y0 +O(y2) (4.41)

for small y0 and y. Hence, we can consider system (4.36), (4.37), (4.38) as a small

perturbation of the case G1 = G2 in the vicinity of y = 0 for small y0. For G1 =
G2 we obtain a line of equilibria E = f(x; y; r) : y = 0; 1 = rR1(0)e

x + (1 �
r)�R2(0)e

�x; r 2 [0; 1]g. The variable r is constant in time. Each of these equilibria

has the asymptotic decay rate

�r =
1

2
(Æ + Æ=I + r�R01(0)e

x + (1� r)�R02(0)e
�x)

normal to E . We assume that �0 and �1 are positive. Hence, �r is positive and has

a uniform distance from 0 for all r 2 [0; 1].

Consequently, (4.36), (4.37), (4.38) is a singular perturbation of the situation G1 =
G2. The slow manifold E is uniformly exponentially attractive, compact and over-

�owing invariant. Thus, it persists under the small perturbation G1 � G2. Denote

the unique center manifold of the perturbed system (which is (4.36), (4.37), (4.38))

by ~E . Since ~E is one-dimensional, it is a trajectory. It contains both equilibria O1

and O2 and is tangent to v1 at O1 and v2 at O2 since it is a center manifold. The

zero-order approximation for the �ow on ~E is (4.36). Inserting (4.41) and dropping

O(y2), we obtain _r = y0(r � r2). (4.40) is the explicit solution of this zero-order

approximation. �
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Remarks

� If we assume the parameters in Rj to be of similar magnitude as in section 4.1

(i. e. Aj = O(1), yr;j = O(1), w = O(1)), the asymptotic transversal decay

rate �r is of order O(Æ). Hence, the admissible magnitude for the perturbation

y0 is only o(Æ) for the application of Theorem 4.6.

� There exists a heteroclinic similar to ~E of Theorem 4.6 if both equilibria O1

and O2 are exponentially unstable within their invariant plane. However, ~E is

exponentially repelling in this case.

� The situation changes if the equilibria O1 and O2 have di�erent asymptotic

stability, say O1 is unstable and O2 is stable. The family of transversal �ows

(4.37), (4.38) undergoes a Hopf bifurcation for some r 2 (0; 1). In general, the

heteroclinic connection between O1 and O2 is split near this Hopf point. We

study this situation in the next section.

� Formula (4.40) is globally valid (i. e. for all y 2 R) if the functions Gj are

a�ne:

G1(y) = y

G2(y) = y � y0.

This implies trivial dynamics between S1 and S2: Either S1 or S2 is globally
attracting depending on the sign of y0. The other plane is globally repelling,

respectively.

� Interpretation of the results in terms of the original (non-averaged) quantities

of system (4.22): The family of equilibria E at y0 = 0 corresponds to a family

of invariant 2-tori with the radius pair s1 and s2 and the rotational velocities

Im�1(n1) and Im�2(n1). However, these tori are not normally hyperbolic.

Hence, we only know that the formerly stable on-state O1 undergoes an al-

most vertical torus bifurcation leaving O1 unstable if y0 approaches 0 from

above. Virtually at the same parameter value y0 = 0, the formerly unstable

on-state O2 gains stability through a vertical torus bifurcation. Near the torus

bifurcation parameter the transition between the two modes is very slow. This

scenario agrees precisely with the behavior observed in the simulations of sys-

tem (3.2), (3.4). It corresponds to scenario (T1) of section 4.2.1 and proves

that stable pulsations of mode beating type do not occur between two modes

with very di�erent frequencies if we have only one active section. The �rst-

order averaged model (4.36)�(4.38) is not able to resolve what happens in the

tiny parameter region near y0 = 0 (y0 = O(�), see Lemma 4.5).

4.2.4 Interaction Between a Self-pulsating Mode and an On-state �

Bifurcation Study for a Simple Model of G1 and G2

In this section, we present a simple mechanism for mode interaction between two

modes with di�erent frequencies explaining the phenomena (T2) and (T3) shown in
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section 4.2.1. We concluded in the previous section that we have trivial dynamics

between S1 and S2 if y is always near 0, or if G1(y)�G2(y) does not have any sign

changes. Hence, the mechanism for the mode interaction presented in section 4.2.1

must be the interplay between sign changes of G1(y) � G2(y) for di�erent y and a

self-pulsation within at least one of the invariant planes S1 and S2.
We pointed out in section 4.2.3 that system (4.36), (4.37), (4.38) is a singular per-

turbation of the situation G1 = G2. In order to keep the presentation concise, we

consider the following simpli�ed parameter situation:

Firstly, assume that there is a stable self-pulsation within S1 and a stable equilibrium
O2 within S2. We introduce the nonlinearity in G1(y)� G2(y) by a y2-term in G2.

The coe�cient in front of y2 is typically of order Æ after rescaling (4.23). Thus, we

introduce the parameters � and 
 and consider

G1(y) = y

G2(y) = y � Æ
�
�+ 
y2

�
.

We study the parameter points (�; 
) in the vicinity of � = 
 = 0. Secondly, we

set � = 1, R2(y) = 1 and drop the index 1 of R1 to reduce the consideration of

the fast subsystem exactly to the single-mode case studied in section 4.1. Moreover,

let the parameters of R1 be of similar magnitude as in section 4.1, i. e., A = O(1),
yr = O(1) (yr < yr;+), w = O(1). We shift x to xnew = xold + logR(0; r). This

modi�es (4.37) such that the system under consideration reads

_x = y � Æ(1� r)
�
�+ 
y2

�
%(r) (4.42)

_y = 1� Æ=Iy � (1 + Æy)
R(y; r)

R(0; r)
ex. (4.43)

_r = Æ(�+ 
y2)(r � r2) (4.44)

where

R(y; r) = 1 +
rAÆ2w2

(y � yr)2 + Æ2w2

%(r) = 1� r@rR(0; r)=R(0; r).

System (4.42)�(4.44) is singularly perturbed. Its slow variable is the ratio r. In the

singular limit � = 
 = 0, the phase space R3 is foliated by the planes r = const.
The fast subsystem

_x = y (4.45)

_y = 1�
Æ

I
y � (1 + Æy)

R(y; r)

R(0; r)
ex. (4.46)

is the single mode equation described in section 4.1 in each slice r. The variable

r acts as a parameter in the singular limit and changes the amplitude rA of the

Lorentzian curve R. We have shown in section 4.1 that the attraction rate of limit

cycles or equilibria of (4.45), (4.46) is of order Æ. Thus, if � and 
 are small, the

variable r is slow compared to this attraction rate.

For �
 > 0, we have trivial dynamics between S1 and S2 since _r has always the

same sign as � in this case. We consider the case �
 � 0 in the next sections.
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4.2.5 Geometric Shape of the Slow Manifold

Let � = 
 = 0. Then, r is constant in time. There is a family E of equilibria

(x = 0; y = 0) of the fast subsystem (4.45), (4.46) parametrized by r. This family
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Figure 4.5: Stable and unstable parts of the slow manifold. The relation between � and

max y is: max y =
p
2�. We denote the fold periodic orbit by Pf . It appears at rf . The

Hopf point is denoted by OH . The parameter values in (4.45), (4.46) are: yr = �0:5,
A = 1, Æ = 0:06, w = 2, I = 2.

undergoes a Hopf bifurcation if yr 2 (yr;�; yr;+). The Hopf parameter value is

(according to (4.12))

rh = �
1

A

(y2r + w2Æ2)2(1 + I�1)

w2Æ((1 + I�1)Æ(y2r + w2Æ2) + 2yr)
=

�y3r
2ÆAw2

�
1 + I�1

�
+O(Æ). (4.47)

E is split into a family of stable equilibria Es and unstable equilibria Eu at rh if

rh 2 (0; 1). Moreover, a branch P of periodic orbits of (4.45), (4.46) emerges at

OH = (x = 0; y = 0; r = rh). The self-pulsation in S1 is the other end of the branch

P. We show a numerically computed example of P in Fig. 4.5. In this case, the

Hopf bifurcation is unstable (subcritical) and the periodic branch has a fold Pf at

r = rf . This fold splits the branch P into an unstable part Pu and a stable part Ps.

Using the de�nition (4.13), ', � and r are cylindrical coordinates in the phase space

of system (4.42)�(4.44).

Furthermore, the analysis of section 4.1 has shown that the trajectories of the fast

subsystem (4.45), (4.46) are small perturbations of the level lines � = const on

time-scales of order O(1) in at least the following two constellations:

(C1) rA is su�ciently small. Then, (4.45), (4.46) is a small perturbation of the

weakly damped oscillator �x = 1� Æ=I _x� (1+ Æ _x)ex. Hence, all trajectories of
(4.45), (4.46) are perturbations of ordermaxfrA; Æg of the level lines � = const.
The fold point rf is of order

p
Æ according to (4.19).
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(C2) � has a positive distance from [�r; �u(r)] (see (4.14) where A has to be replaced

by rA). Within this region, Corollary 4.4 applies such that the trajectories of

(4.45), (4.46) are perturbations of order O(Æ) of the level lines � = const.

We exploit the proximity of the trajectories to level lines of � and the time-scale

di�erence between _' and _� to perform one more averaging step to eliminate the

rotation along ' in section 4.2.6. If (C1) and (C2) are violated (rA of order O(1)
and � in a small environment of [�r; �u(r)]), � may increase more rapidly ( _� may be

of order O(1) and strictly positive).
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Figure 4.6: Continuation of rh and rf with respect to yr. The Hopf line rh is given by

(4.47). The dotted line is the asymptotic approximation of the fold line according to equation

(4.19). The values yr;� are the Hopf parameters of the single-mode system in S1, yr;f is its

fold parameter. For yr = yr;d, the Hopf point rh becomes degenerate. The sketches beside

the bifurcation diagram show how the families E and P look like for (a) yr 2 (yr;d; yr;+),

(b) yr 2 (yr;�; yr;d), (c) yr 2 (yr;f ; yr;�). Fig. 4.5 corresponds to case (b). The parameters

A, w, Æ and I are as in Fig. 4.5

In order to obtain all possible constellations for E and P, we continuate the Hopf

parameter value rh (using (4.47)) and the fold parameter value rf (numerically, or

using (4.19)) with respect to yr. The bifurcation diagram Figure 4.6 was reported

in [44] for the unscaled single-mode system (4.3), (4.4).

Fig. 4.6 shows three possible generic constellations:

(a) For yr 2 (yr;d; yr;+), the Hopf bifurcation at rh is stable (supercritical) and the

entire family of periodic orbits is stable (P = Ps).

(b) For yr 2 (yr;�; yr;d), the Hopf bifurcation at rh is unstable (subcritical) and

the family of periodic orbits P has a fold at rf splitting it into a stable part

Ps and an unstable part Pu.

(c) For yr 2 (yr;f ; yr;�), E and P are not connected anymore. The complete line

of equilibria E is stable such that Theorem 4.6 applies locally around E . The
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family of periodic orbits is split by a fold at rf into a stable part Ps and an

unstable part Pu.

At yr = yr;d, the �rst Lyapunov coe�cient at the Hopf point rh vanishes such that we

have a generalized Hopf bifurcation (Bautin bifurcation) at this point. We observe

that the family of fold periodic orbits emerges there.

4.2.6 Averaging of the Rotation in the Fast Subsystem

We perform another averaging step within the fast subsystem to reduce the dimen-

sion of the system once more to a two-dimensional system. This allows for an easy

study of the bifurcation scenarios because the objects become much simpler (i. e.,

periodic solutions become �xed points, invariant tori become periodic solutions).

Thereafter, we have to investigate how the results obtained from the analysis of the

averaged system persist under the fast periodic perturbation.

Let us introduce the new variable z = log(r=(1�r)) 2 (�1;1) (r(z) = ez=(1+ez)).
Then, z satis�es the di�erential equation

_z = Æ(�+ 
y2). (4.48)

The variables z and r are equivalent between the invariant planes S1 and S2. In z, x,
y, the phase space of system (4.42), (4.43), (4.48) is the whole R3 , and the variables

z, � and ' are cylindrical coordinates in R3 . The limit r! 1 corresponds to z !1,

and r ! 0 corresponds to z ! �1. We de�ne the Hopf point of the fast subsystem

zh = log(rh=(1�rh)), and the fold point zf = log(rf=(1�rf )), respectively (see Fig.
4.5).

System (4.42), (4.43), (4.48) induces a �rst-return map (~z(z; �); ~�(z; �)) to the half-
plane f' = 0g for � � �l > 0. In the following Lemma 4.7, we exploit that �

and ' operate on di�erent time scales and write an approximate equation for the

�rst-return map. Beforehand, we introduce the following functions:

Let T (�) be the period of the periodic orbit of the conservative oscillator �x = 1� ex

along the level line � (�2 = ( _x)2=2 + ex � x � 1). Let Y 2(�) be the integral of ( _x)2

along this orbit. For simpler calculations, we can approximate T and Y 2 by their

Taylor series:

T (�) = 2� +
�

6
�2 +

�

240
�4 + : : :

Y 2(�) = 2��2 +
�

12
�4 + : : : .

(4.49)

Let ~�1(r; �) = � + g(r; �) be the �rst return map of the single mode system (4.45),

(4.46) with r as parameter. Then, we have g(r; 0) = 0. Moreover, we have obtained

an approximation of order O(Æ2) of g in section 4.1:

g(r; �)

Æ
=� (I�1 + 1)

Y 2(�)

2�

�
�rAwyr

2�

2
64
h
1� rA

e�x
�

r �1

i� 1

2

e�x
�

r � 1
+

h
1 + rA

1�e�x
+
r

i� 1

2

1� e�x
+
r

3
75+O(Æ)

(4.50)
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where x�r = ~x
�
�
p
�2 � y2r=2

�
and ~x is de�ned by (4.16). However, this approxi-

mation is valid only if the di�erence � � �u(r) is greater than 0 and of order O(1)
(�2u(r) = y2r + (1 + rA)�1 + log(1 + rA)� 1, see (4.14)).

Now, we can approximate the �rst-return map of system (4.42), (4.43), (4.48) to the

half-plane f' = 0g for � � �l > 0 with the help of the functions T , Y 2 and g:

Lemma 4.7 Let � � �l > 0 and z satisfy one of the following two conditions:

1. r(z)A is of order o(1).

2. � has a positive distance of order O(1) from [�r; �u(r(z))].

Let h =
p
�2 + 
2 and Æ be su�ciently small. In case 1, de�ne ~Æ = maxfÆ; r(z)Ag),

and, in case 2, let ~Æ = Æ. Then, we can approximate the �rst-return map of system

(4.42), (4.43), (4.48) to the half-plane f' = 0; � � �lg by

~z(z; �) = z + Æ(�T (�) + 
Y 2(�)) +O(hÆ~Æ) (4.51)

~�(z; �) = � + g(r(z); �) +O(hÆ). (4.52)

Proof: Let (z(t); �(t); '(t)) be the trajectory starting at (z = z�; � = �� � �l; ' =
0) and T (z�; ��; Æ; �; 
) the time for the �rst return. Denote the trajectory in the

singular limit � = 
 = 0 starting at the same point by (z�; �1(t); '1(t)) and its

�rst-return time by T (z�; ��; Æ; 0; 0), and the periodic orbit of �x = 1 � ex along the

level line �� by '0(t). We use the triangle inequality for these trajectories to prove

(4.51), (4.52).

According to section 4.2.5, we have �1(t) � �� = O(~Æ), '1(t) � '0(t) = O(~Æ) and
T (z�; ��; Æ; 0; 0)� T (��) = O(~Æ) if �� satis�es condition 1 or 2. Moreover, the right-

hand-side of (4.42), (4.43) is Lipschitz continuous with respect to r, and, hence, z

(uniformly with respect to Æ and h). Thus, we get �(t)��1(t) = O(hÆ), '(t)�'1(t) =
O(hÆ) and T (z�; ��; Æ; �; 
)�T (z�; ��; Æ; 0; 0) = O(hÆ) since _z is of order O(hÆ). This
implies (4.52), �(t)� �� = O(~Æ) and '(t)� '0(t) = O(~Æ). Since y(�; ') is Lipschitz
continuous with respect to its arguments, the �rst return map ~z is

~z(z�; ��) =

T (z
�
;�
�
;Æ;�;
)Z

0

Æ(�+ 
y2(�(t); '(t))) dt

=

T (�
�
)Z

0

Æ(�+ 
y2(��; '0(t))) dt+O(hÆ~Æ).

�

Lemma 4.7 implies for the variable r the �rst-return map

~r(r; �) = r + (Æ(�T (�) + 
Y 2(�) +O(hÆ~Æ))r(1� r). (4.53)
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Moreover, we observe that the �rst-order averaged equations for z and �

_z =
Æ

2�
(�T (�) + 
Y 2(�)) (4.54)

_� =
1

2�
g(r(z); �) (4.55)

have asymptotically (up to order O(~Æ)) the return map (4.51), (4.52) within the

region where the conditions 1 and 2 of Lemma 4.7 are satis�ed. Hence, within this

region we can consider the averaged equations (4.54), (4.55) instead of the �rst-

return map.

The averaged equation for r reads (according to (4.54))

_r =
Æ

2�
(�T (�) + 
Y 2(�))r(1� r). (4.56)

4.2.7 Discussion of the Two-dimensional System

We are now in the position to analyse the averaged system (4.55), (4.56) (or (4.54))

completely. We distinguish several cases depending on the geometric shape of the

root curve of g(r; �). This root curve coincides with the families of equilibria and

periodic orbits of the fast subsystem shown in Fig. 4.5 for a particular set of pa-

rameters. Hence, the curve f(r; �) : g(r; �) = 0g is depicted in Fig. 4.5, and we have

outlined in Fig. 4.6 how the shape of this curve may look like in principle. Since we

do not know the complete curve analytically, our bifurcation analysis is in part only

qualitative. The curve g(r; �) = 0 has several branches (denoted by Pu;s and Eu;s in
Fig. 4.5). We refer to the stability of these branches according to the stability of

the corresponding �xed point or periodic orbit in the fast subsystem.

Invariant Lines System (4.55), (4.56) has the invariant lines � = 0, r = 1 and

r = 0 (the planes S1 and S2 in system (4.42), (4.43), (4.44)). The direction of motion

is described correctly along � = 0 according to Theorem 4.6. The stability is also

described correctly if we are not in the vicinity of rh. Generally, we have perturbed

invariant curves ~Es (for r < rh) and ~Eu (for r > rh) in the vicinity of � = 0 which

are split near rh in system (4.42)�(4.44).

The motion near the invariant lines r = 0, r = 1 is described correctly, since the

approximation error for the motion of r is of order O(hÆ~Æ) � r(1� r) (see (4.53)).

Transition of Stability from or to Single-mode Planes � Parametric Fam-

ilies of Equilibria System (4.55), (4.56) has the equilibria O1 = (r = 1; � = 0)
and O2 = (r = 0; � = 0). If � > 0, O1 is stable along the line � = 0, and O2 is

unstable along � = 0 (vice versa if � < 0). O2 is stable along r = 0, and O1 is

unstable along r = 1 if yr > yr;� and stable if yr < yr;� (see Fig. 4.6). Moreover,

we have a �xed point P1 = (r = 1; � = �s) corresponding to the self-pulsation in

S1 where the stable branch of the root curve g(r; �) = 0 intersects the line r = 1
(i. e. g(1; �s) = 0). P1 is stable along r = 1. The stability transversal to r = 1 is
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determined by the linearization of (4.56). We obtain the following corollaries using

that @rg(r; �) > 0 for all r 2 [0; 1] and @�g(r; �) < 0 for (r; �) in the vicinity of P1:

Corollary 4.8 Consider � and 
 within a su�ciently small ball of radius h around

(0; 0) in the parameter plane of (�; 
). A line T of transcritical bifurcations through

(0; 0) tangent to f�T (�s)+
Y 2(�s) = 0g is the stability boundary for P1. For � > 0,

 < 0, P1 passes its stability to a �xed point Pr with r < 1 which becomes stable. For

� < 0, 
 > 0, P1 passes its instability to a �xed point Pr with r < 1 which becomes

unstable and separates the stable equilibrium O2 and the stable �xed point P1.

The stability follows immediately from the linear stability analysis at the �xed points

P1 and Pr, respectively.

Moreover, we can exploit that Y 2(�)=T (�) is monotone increasing and that the

equation g(r; �) = 0 is uniquely solvable w. r. t. r for all � 2 (0; �s) to obtain:

Corollary 4.9 Let � and 
 be within a su�ciently small ball of radius h around

(0; 0) in the parameter plane of (�; 
).

(1) Assume that the root curve of g connects P1 and the invariant line � = 0.
Then, for each pair (�; 
) with ��=
 2 (0; Y 2(�s)=T (�s)), we have exactly one

�xed point P with r 2 (0; 1) and � 2 (0; �s).

(2) Assume that the root curve of g connects P1 and another �xed point P 0

1 at

� = �i on the invariant line r = 1. Then, for each pair (�; 
) with ��=
 2
(Y 2(�i)=T (�i); Y

2(�s)=T (�s)), we have exactly one �xed point P with r 2 (0; 1)
and � 2 (�i; �s).

Case (1) corresponds to the shapes (a) and (b) of the root curves of g shown in

Fig. 4.6, case (2) corresponds to shape (c). However, Corollary 4.9 depends on

our speci�c choice of the nonlinearity of G1 � G2. A �xed point with r 2 (0; 1)
is hyperbolic if it is situated on the hyperbolic parts of the branches of the curve

g(r; �) = 0 (i. e., not in the vicinity of the fold Pf or the branch point OH as shown

in Fig. 4.5) since � is fast compared to r there.

The transcritical bifurcation and the family of �xed points branching from P1 persist

under the periodic perturbation to system (4.42), (4.43), (4.44) since P1 is located

within the region where Lemma 4.7 applies. Indeed, Corollary 4.8 follows directly

from the approximation of the �rst-return map (4.52), (4.53). We can use the

approximation (4.50) for g(r; �) to approximate the corresponding periodic orbits of

(4.42), (4.43), (4.44).

Stability near Supercritical Hopf Point The previous paragraph has shown

that �xed points of the averaged system (4.55), (4.56) with r 2 (0; 1) may change

their stability only near the degenerate points of the curve g(r; �) = 0, i. e. near the
branching point OH = (r = rh; � = 0) or near the fold Pf = (r = rf ; � = �f).

Firstly, let us consider the case (a) of Fig. 4.6 and � > 0: g(r; �) does not have
a fold, its branching point corresponds to a supercritical Hopf bifurcation, and its
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Figure 4.7: Comparison between the averaged approximations and the numerically computed

periodic solutions of system (4.42)�(4.44) for varying � between 0 and the transcritical

bifurcation value for 
 = �1:88 and 
 = 0:73: The dotted lines correspond to the predictions

solving g(r; �) = 0, �T (�)+
Y 2(�) = 0 using (4.49) and (4.50). The solid and dashed lines

show the numerically obtained periodic orbits of system (4.42)�(4.44) (solid means stable,

dashed unstable). We show the predicted maximum of the y-component (which corresponds

to
p
2� in the solution of (4.55), (4.56)) and r. Since r is not constant in time for the

numerical solutions of (4.42)�(4.44) we report ~r =
H
r) for comparison.

entire branch is stable for � > 0. According to Corollary 4.9, we obtain a family of

�xed points Pr = (r; �) on this branch for varying ratio ��=
. These �xed points

are stable if � is not small, i. e., Pr is not in the vicinity of OH.

For small � we can expand the function g(r; �) near OH dropping higher order terms

of �:

g(z; �) = Æ�(z � a�2)

where we use the coordinate z instead of r for convenience, shift z by zh (such that

OH = (z = 0; � = 0)), and assume a > 0 (supercriticality). Moreover, we drop all

terms of order O(�4) or greater in T (�) and Y 2(�) ending up with an approximation

for the vicinity of OH :

_� = �(z � a�2) (4.57)

_z = (�+ (
 + �=12)�2) = �(1� ��1�2) (4.58)

introducing the parameter � = �(
=� + 1=12)�1 > 0 and changing the time-scale

to tnew = Ætold. This system has an equilibrium at P = (z = a�; � =
p
�). The
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Jacobian of (4.57), (4.58)

JP =

�
�2a�

p
�

�2�=
p
� 0

�

has a pair of stable complex eigenvalues for su�ciently small �. Their decay rate is

a�.

In the case � < 0, the �xed points on the branch g(r; �) = 0 are saddles. We can

use the same asymptotic model near OH as for the case � > 0. The determinant of

the Jacobian det(JP ) = 2� is negative implying that the �xed points remain saddles

near OH .

Appearance of Limit Cycles near Fold Next, we consider the cases (b) and

(c) outlined in Fig. 4.6 for the shape of the curve g(r; �) = 0, and � > 0. Then, the
�xed point Pr = (r; �) on the stable branch of g(r; �) = 0 is stable for decreasing

��=
 (and �) until it approaches the vicinity of the fold point Pf = (rf ; �f). Due
to Corollary 4.9 the family continues through the fold point to the unstable branch

of g(r; �) = 0. For ��=
 < Y 2(�f )=T (�f) and � < �f , the �xed point is unstable in

both directions. Hence, the �xed point must loose its stability in the vicinity of the

fold through a Hopf bifurcation.

Again, we can expand the function g near Pf dropping higher order terms of �� �f :

g(z; �) = z � b � (� � �f )
2

where we use again the variable z shifted by zf (such that Pf = (0; �f)) and assume

b > 0 (fold turns to the right). Then, the �xed point P = (z; �) has the form

z = b(� � �f)
2 where Y 2(�)=T (�) = ��=
. The Jacobian in P is

JP =

�
�2b(� � �f ) 1

Æ(�T 0(�) + 
(Y 2)0(�)) 0

�

where �T 0(�)+
(Y 2)0(�) < 0. The eigenvalues become complex for � in a very small

neighborhood of �f (since Æ is small) and change their sign at � = �f implying a

Hopf bifurcation.

This situation has been studied extensively in e. g. [1] [3], [4], with special regard

to the slow-fast character of the system (z is slow, � fast in our case). It is typically

referred to as singular Hopf bifurcation since the branch of periodic solutions is

almost vertical. The small-amplitude periodic solutions are called Canard solutions

as they follow the unstable branch of g(r; �) = 0. Moreover, the stability and the

position of the Canard periodic orbits is di�cult to determine due to the verticality

of the branch.

There is no bifurcation near the fold Pf in the case � < 0: The determinant of JP is

negative, since �T 0(�) + 
(Y 2)0(�) > 0 for � � �f . Hence, the family of �xed points

consists of saddles along the entire curve g(r; �) = 0 (for � > 0).

The results of this paragraph imply the existence of a torus bifurcation in system

(4.42), (4.43), (4.44) near Pf for � > 0. The conditions of Lemma 4.7 are satis�ed
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Figure 4.8: Families of periodic orbits between the invariant planes r = 0 and r = 1. The

parameters are yr = �0:5, A = 1, I = 2, w = 2, Æ = 0:06.

if rA is of order o(1). Then, the averaged system is an approximation of order o(1).
We get a crude approximation of the torus bifurcation if we insert �f = �r = yr=

p
2

for the location of the fold in phase space (as in section 4.1) and obtain ��=
 =
Y 2(yr=

p
2)=T (yr=

p
2). Since the Hopf bifurcation in the averaged system is nearly

vertical, the torus bifurcation must be almost vertical, too. For � < 0, 
 > 0, we can
deduce that the family of saddle periodic orbits near g(r; �) = 0 continues through

the fold.

Note that the averaged system (4.55), (4.56) can not be used to determine the

behavior on the vertical branch from the torus bifurcation (neither the position

in phase space nor the normal hyperbolicity of the tori). The averaged equations

approximate system (4.42)�(4.44) up to order O(~Æ) whereas the parameter region

for the solutions of the vertical branch is exponentially small.

We computed the family of periodic orbits corresponding to �xed points along the

branch g(r; �) = 0 numerically for varying ��=
. The results are depicted in Fig.

4.8.

Continuation of the Families of Limit Cycles in Case (b) If the shape of

the root curve of g is as depicted in Fig. 4.6 (b), system (4.42)�(4.44) coincides with

the situation investigated in [23], [24]. The branch becomes a family of relaxation

oscillations after its vertical part for ��=
 2 (0; Y 2(�f )=T (�f)). These relaxation

oscillations pass periodically through the branch point OH = (r = rh; � = 0) of
g(r; �) along the invariant line � = 0 with increasing r and through the fold point

Pf = (rf ; �f ) with decreasing r (see Fig. 4.9 sketch (2a)). The trajectory is subject

to a delayed loss of stability near OH in each period of its oscillation. There must

exist corresponding oscillations in system (4.42)�(4.44) which are typically referred

to as subcritical elliptic bursting. The passage through OH is in fact a slow passage

through a Hopf bifurcation.

For this kind of �dynamic Hopf bifurcations�, it has been shown in [31] how the

location of the departure from � = 0 depends on the location of the approach to

� = 0 for analytical systems. In particular, it was demonstrated (also in [5]) that
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Figure 4.9: Bifurcation diagram for � and 
 for case (b) of Fig. 4.6. The crosses are

the numerically computed transcritical bifurcations of the self-pulsation in S1. (AUTO

cannot continuate transcritical bifurcations.) The dotted line T is the asymptotic line

�T (�s) + 
Y
2(�s) where g(1; �s) = 0 using the approximations (4.49), (4.50). The solid

line T2 is the numerically computed line of torus bifurcations. The dotted line nearby is

the approximation assuming that the fold Pf is at the level �r = yr=
p
2, and that the

torus bifurcation is at the fold. The dashed lines are the cuts through the parameter plane

presented in Fig. 4.8. The sketches below the diagram depict the averaged system (4.55),

(4.56) (as in Fig. 4.5). The fast motion of � is shown by double arrows and the slow drift

along the curve g(r; �) = 0 as simple arrows. Sketch (2a) corresponds to the subcritical

elliptic bursting.

the departure may be at a distance of order O(1) from rh (Slow Passage E�ect).

However, this e�ect is extremely sensitive to non-smooth perturbations [31] or noise

[5], [23]. Hence, it is not re�ected correctly in the averaged system where we have

always a delayed loss of stability.

Consequently, the torus corresponding to the oscillation of the averaged system does

not need to be a quantitatively good approximation of the bursting type solution.

A canonical model for systems like (4.42)�(4.44) and a shape of fg(r; �) = 0g as in
Fig. 4.6 case (b) has been derived in [23] by perturbation analysis in the vicinity of

the generalized Hopf point (see Fig. 4.6). The amplitude equations of [23] have the
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same structure as (4.54), (4.55). It was pointed out that this structure implies the

existence of subcritical elliptic bursting which is a frequently observed phenomenon

in the dynamics of neurons.

Continuation of the Families of Limit Cycles in Case (c) If the shape of

the root curve of g is as depicted in Fig. 4.6 (c), the family of periodic orbits of the

averaged system ends in a homoclinic bifurcation at the saddle P 0

1 (corresponding

to the unstable limit cycle in the invariant plane S1 of system (4.42)�(4.44)). Since,

the branch is nearly vertical with respect to the parameter ��=
, this homoclinic

bifurcation happens immediately nearby the Hopf bifurcation.

As in case (b) , the averaging approximation is not su�ciently precise to allow

conclusions about the behavior of system (4.42)�(4.44) in this tiny parameter region.

However, we know that the torus bifurcation exists, and that only O1 is stable for

��=
 less than the torus bifurcation value already at a very small distance.

4.2.8 Generalization and Interpretation of the Bifurcation Diagram re-

garding the Original Quantities

We can use the results of section 4.2.7 to explain the mechanisms behind the sce-

narios shown for motivation in section 4.2.1.

First, we want to mention that the procedure of the section 4.2.4�4.2.7 can be

generalized to arbitrary nonlinearities of G1(y)�G2(y) in (4.36) and to other shapes
of the manifold of periodic orbits P of (4.37), (4.38). If we consider the general fast

subsystem (4.37), (4.38) as a small perturbation of the conservative oscillator

_x = rG1(y) + (1� r)G2(y)

_y = 1� rex � (1� r)�e�x

with the conserved quantity �(r; x; y)2, the periodic orbits are approximately equi-

libria of an averaged equation _� = g(r; �) similar to (4.55). For each level line �, we

may de�ne the function

F (�) =
1

2�

Z T (�)

0

G1(y('(t)))�G2(y('(t))) dt (4.59)

which is assumed to be small compared to g. Then, we can study the general

averaged system

_� = ~g(�; r)

_r = F (�)r(1� r)
(4.60)

where ~g may di�er slightly from g because the level lines � can depend on r. We

obtain approximations for periodic orbits of the general system (4.36)�(4.38) and

their stability by investigating the equilibria of (4.60). In general, we can not expect

that equilibria of (4.60) are always unique (in contrast to Corollary 4.9). However,

we can conclude:
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Corollary 4.10 Let � be an arbitrary parameter, let P1 = (r = 1; � = �1) be a

self-pulsation in the invariant plane r = 1. P1 undergoes a transcritical bifurcation

at � = �0 if F (�; �) changes its sign in �1 at � = �0. P1 gains stability if the

sign-change is from � to +. It looses stability otherwise. We have a hyperbolic �xed

point (r(�); �(�)) for r < 1 and � � �0 if @r~g(1; �1) 6= 0 and @�F (�1) 6= 0.

This transcritical bifurcation is the mechanism for the appearance of the scenarios

(T2) and (T3) presented in section 4.2.1. The self-pulsation is actually an invariant

2-torus in the full two-mode model (4.22) as well as in the PDE system (3.2), (3.4).

However, this torus is invariant with respect to rotation x ! xei'. Hence, we may

eliminate this degree of freedom and treat the self-pulsation as a periodic orbit.

Then, the transcritical bifurcation of Corollary 4.8 or 4.10 is a torus bifurcation

from the self-pulsation. The emerging torus (an invariant 3-torus in the original

coordinates) is stable and visible in regime (T3) of section 4.2.1 and it is unstable

in scenario (T2). In (T2), the unstable torus separates the stable regions such that

stable on-states and self-pulsations at the di�erent ends of the stopband (i. e., in

the invariant planes r = 0 and r = 1) coexist.

The solutions of bursting type (i. e., relaxation oscillations in the averaged system

(4.55), (4.56)) would correspond to invariant 4-tori if they were persistent. However,
the bursting solution is known to be very sensitive to non-analytic perturbations.

But the bursting behavior, i. e., the slow drift back and forth between the two ends

of the stopband, must be also present in the full two-mode system (4.22) and, hence,

in the PDE system (3.2), (3.4).
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A Physical Interpretation of the Traveling-Wave

Equations � Discussion of Typical Parameter

Ranges

A.1 Physical Interpretation of the Model

System (2.1)-(2.3) is well-known as a traveling wave model describing longitudi-

nal dynamical e�ects in semiconductor lasers [29], [42], [50]. Results of numerical

computations have been presented in [6], [8], [9], [35], [50].

The traveling wave equations (2.1), (2.2) describe the complex optical �eld E in a

spatially modulated waveguide:

E(~r; t) = E(x; y) � ( 1(t; z)e
i!0t�

�
�
z +  2(t; z)e

i!0t+
�
�
z).

The complex amplitudes  1;2(t; z) are the longitudinally slowly varying envelopes

of E. The transversal space directions are x and y, z is the longitudinal direction,

and ~r = (x; y; z). For periodically modulated waveguides, � is longitudinal modu-

lation wavelength. The central frequency is !0=(2�), and E(x; y) is the dominant

transversal mode of the waveguide.

The equations (2.1), (2.2) for an uncoupled waveguide (� = 0) and a monochromatic

light-wave in forward direction ei!t 1(z) lead to a spatial shape of the power j 1j2

according to

@zj 1(z)j2 = (2Re�(z) + 2Re�(i!; z))j 1(z)j2 (A.1)

where

�(i!; z) =
�(z)�(z)

i! � i
r(z) + �(z)
. (A.2)

2Re�(i!; z)) is a Lorentzian intended to �t the gain curve of the waveguide material

(see Fig. A.1). Hence, system (2.1), (2.2) produces gain dispersion, i. e., the spatial

growth rate of the wave ei!t (z) depends on its frequency !. The variable p(t; z)
reports the internal state of the gain �lter. See [39], [50] for more details. The

Lorentzian gain �lter is also used by [2], [29], [32].

The equation (2.3) is a simple rate equation for the spatially averaged carrier den-

sity. It accounts for the current I, the spontaneous recombination �nk=�k, and the

stimulated recombination.

A.2 Scaling of the Variables

In order to obtain the dimensionless quantities used in (2.1)-(2.3) and their possible

ranges we have to scale the time t and the spatial variable z such that the coe�cient

in front of @z is �1. Moreover, z is scaled such that l1 = 1. The carrier density nk
in the section Sk is measured in multiples of the transparency carrier density (i. e.

such that Gk(1) = 0 for k 2 Sa). See Table A.1 for typical ranges of the quantities

and [20] for further explanations.
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Figure A.1: Shape of the Lorentzian 2Re�(i!) for ! 2 R and visualization of its parame-

ters (see Table A.1)

typical range explanation

 (t; z) C
2

optical �eld,

forward and backward traveling wave

i � p(t; z) C
2

nonlinear polarization

for the forward and backward traveling wave

nk(t) (n;1) spatially averaged carrier density in section Sk

Imdk R frequency detuning

Re dk < 0, (�10; 0) internal losses

�H;k (0; 10) negative of line-width enhancement factor

gk � 1 di�erential gain in active sections

�k (�10; 10) real coupling coe�cients for the optical �eld  

�k [0; 1) �k is maximum of the gain curve

�k O(102) half width of half maximum of the gain curve


r;k O(10) resonance frequency

Ik O(10�2) current injection in section Sk

�k O(102) spontaneous lifetime for the carriers

P (0;1) scale of ( ; p) (can be chosen arbitrarily)

r0, rL C , jr0j; jrLj < 1 facet re�ectivities

�(t) C optical input signal,

potentially discontinuous in time

Table A.1: Ranges and explanations of the variables and coe�cients appearing in (2.1)-

(2.8). See also [50], [39] to inspect their relations to the originally used physical quantities

and scales.
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B Normally Hyperbolic Invariant Manifolds

In this appendix, we give a general de�nition of normal hyperbolicity applying to

a general C1 smooth manifold which is invariant with respect to some semi�ow.

Subsequently, we state the theorems on existence and persistence of invariant man-

ifolds and invariant foliations for semi�ows in Banach spaces as they can be found

in [10], [11]. They are the basis for Theorem 3.7. However, we used the results on

the persistence of normally hyperbolic invariant manifolds also in the well-known

context [19], [49] of ordinary di�erential equations in chapter 4.

General Notation

Let X be a Banach space, and T (t; x) be a C1 semi�ow on X; that is T (t; x) is
continuous in t and x for t � 0, T (t; �) : X ! X is C1 and T (t+ s; x) = T (t;T (s; x))
for all t; s � 0 and x 2 X.

Let M � X be a C1 connected T -invariant manifold, i. e., T (t;M) � M for each

t � 0. Denote the tangent bundle on X restricted toM by TXjM and the linearized

semi�ow by DT (t) : TX ! TX.

De�nition B.1 M is said to be normally hyperbolic, if there exists a continuous

decomposition of TXjM into subbundles

T jM = Xc �Xs �Xu
for m 2M (B.1)

of closed subspaces (�bers) Xc;u;s(m) with the following properties:

1. Xc is the tangent bundle of M .

2. The subbundlesXc;u;s
are invariant underDT , i. e.: Letm 2M , m1 = T (t;m)

and t � 0. Then,

[DT (m)](t)jX�(m) : X
�(m)! X�(m1) for � = c; u; s

and [DT (m)](t)jXu(m) is an isomorphism from Xu(m) onto Xu(m1).

3. Xc;u;s
are distinguished by an exponential trichotomy, i. e., there exists a � < 1

and a t0 � 0 such that we have for all m 2M and t � t0

� inf
xu2Xu

kxuk=1

k[DT (m)](t)xuk > max
�
1; k[DT (m)](t)jXc(m)k

	
�minf1; inf

xc2Xc

kxck=1

k[DT (m)](t)xckg > k[DT (m)](t)jXs(m)k

Remark: We may replace the Banach space X by a smooth manifold in the �nite-

dimensional context [19].

The main statements of [10], [11] can be summarized as follows:
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Theorem B.2 (Persistence) Suppose M is a C1
compact connected normally hy-

perbolic invariant manifold with respect to T (t; �). Let t1 > 0 be �xed and N be a

�xed neighborhood of M .

Then, there exists a � > 0 such that if ~T (t; x) is a C1
semi�ow in X which satis�es

k ~T (t1; �)�T (t1; �)kC1(N) < �, then ~T has a C1
normally hyperbolic invariant manifold

~M which converges to M in the C1
topology if k ~T (t1; �)� T (t1; �)kC1(N) tends to 0.

Theorem B.3 (Center-stable and center-unstable manifolds)

Suppose M is a C1
compact connected normally hyperbolic invariant manifold with

respect to a C1
semi�ow T (t; �). Let t1 > t0 be �xed and N(") be a su�ciently small

tubular neighborhood of M .

T has unique C1
invariant manifolds W cs(") and W cu(") in N(") of M with the

following properties:

1. M = W cs(") \W cu(").

2. W cs(") and W cu(") are tangent to the center-stable vector bundle Xc�Xs
and

the center-unstable vector bundle Xc �Xu
of M , respectively.

3. T (t;W cs(")) \N(") � W cs("). T (t;W cs(")) converges to M as t!1, and

W cs(") = fx 2 N(") : T (kt1; x) 2 N(") for all k > 0.g

4. T (t1;W
cs(")) � W cs(");

5. T (t1; �) : W cu(") \ (T (t1; �))�1(W cu(")) ! W cu(") is a di�eomorphism. If we

de�ne T (�t; �) on W cu(") in this way, then T (�t;W cu(")) converges to M as

t!1 and

W cu(") = fx 2 N(") : for all k > 0, there exists a yk 2 N(")

satisfying T (kt1; yk) = xg

Theorem B.4 (Invariant foliations in center-stable manifold)

For small ", there exists a unique family of C1
submanifolds fW ss

m (") : m 2 Mg of

W cs(") satisfying:

1. For each m 2 M , M \ W ss
m (") = fmg, the tangent space TmW

ss
m (") = Xs

m

varies continuously with respect to m on M .

2. If m1; m2 2 M and m1 6= m2, then W ss
m1

(") \ W ss
m2

(") = ; and W cs(") =S
m2M W ss

m (").

3. For all m 2M , T (t1;W
ss
m (")) � W ss

T (t1;m)(").

4. For all m 2M and t > 0, T (t;W ss
m (")) \N(") � W ss

T (t;m)(").

5. For x 2 W ss
m (") and m 6= m1 2M , we have

kT (t; x)� T (t;m)k
kT (t; x)� T (t;m1)k

! 0 exponentially as t! +1.
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6. For x; y 2 W ss
m ("), kT (t; x)� T (t; y)k ! 0 exponentially as t!1.

Theorem B.5 (Invariant foliations in center-unstable manifold)

For small ", there exists a unique family of C1
submanifolds fW uu

m (") : m 2 Mg of

W cu(") satisfying:

1. For each m 2 M , M \W uu
m (") = fmg, the tangent space TmW

uu
m (") = Xu

m

varies continuously with respect to m on M .

2. If m1; m2 2 M and m1 6= m2, then W uu
m1

(") \ W uu
m2

(") = ; and W cu(") =S
m2M W uu

m (").

3. For all m 2 M , T (t1; �) : W uu
m (") \ T (t1; �)�1W uu

T (t1;m)(") ! W uu
T (t1;m)(") is a

di�eomorphism.

4. For x 2 W uu
m ("), if T (t; x) 2 N(") for all t 2 (0; t2) for some t2, then T (t; x) 2

W uu
T (t;m)(") for t 2 (0; t2).

5. For x 2 W uu
m (") and m 6= m1 2M , we have

kT (�t; x)� T (�t;m)k
kT (�t; x)� T (�t;m1)k

! 0 exponentially as t! +1.

6. For x; y 2 W uu
m ("), kT (�t; x)� T (�t; y)k ! 0 exponentially as t! +1.

The proofs of these theorems can be found in [10], [11] under the additional assump-

tion:

(H) The mapping ��
�
(� = c; u; s) from M � X ! L(X) de�ned by m ! ��

m

is C1 where ��
m are the invariant projections associated to the decomposition

(B.1).

This assumption is ensured by, e. g., M 2 C2. The authors of [10], [11] refer to [12]

for proofs where the assumption M is C2 can be relaxed to require only C1.
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