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Abstract
We study linear ill-posed inverse problems with noisy data in the framework of statisti-
cal learning. The corresponding linear operator equation is assumed to fit a given Hilbert 
scale, generated by some unbounded self-adjoint operator. Approximate reconstructions 
from random noisy data are obtained with general regularization schemes in such a way 
that these belong to the domain of the generator. The analysis has thus to distinguish two 
cases, the regular one, when the true solution also belongs to the domain of the genera-
tor, and the ‘oversmoothing’ one, when this is not the case. Rates of convergence for the 
regularized solutions will be expressed in terms of certain distance functions. For solutions 
with smoothness given in terms of source conditions with respect to the scale generating 
operator, then the error bounds can then be made explicit in terms of the sample size.

Keywords  Statistical inverse problem · Spectral regularization · Hilbert Scales · 
Reproducing kernel Hilbert space · Minimax convergence rates

Mathematics Subject Classification  Primary: 62G20 · Secondary: 62G08 · 65J15 · 65J20 · 
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1  Introduction

We consider learning in linear inverse problems in Hilbert space. Within the classical 
framework of supervised learning, we are given data 

{
(xi, yi)

}m

i=1
 which follow the model
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where  �i is the observational noise, and  m denotes the sample size. The function  g is 
unknown, belonging to some reproducing kernel Hilbert space, say H′ . The goal is to 
learn it from the given data. To be more precise, we assume that the random observa-
tions 

{
(xi, yi)

}m

i=1
 are independent and follow some unknown probability distribution  � , 

defined on the sample space Z = X × Y  . Further, we assume that the input space X is a Pol-
ish space, and that the output space Y is a real separable Hilbert space.

In inverse learning, the function g from  (1) is driven by some element  f in a Hilbert 
space H via a mapping A ∶ H → H

� as

In the present study, this mapping is assumed to be a bounded linear (smoothing) mapping, 
and it is also assumed to be injective to have the correspondence g to f unique. The unique 
solution of (2) is denoted by f� . Literature for this setup is scarce, and we mention (Blan-
chard & Mücke, 2018), and a related study Rastogi et al. (2020), in which the underlying 
mapping A is assumed to be non-linear.

Often the sought for element  f� is known to have additional features, as e.g. smooth-
ness and the standard approaches for reconstruction of an approximation of  f� do not take 
this into account. Therefore, we shall analyze such inverse learning problems in scales of 
Hilbert spaces. This topic has a long history within the classical setup of regularization 
theory, starting from (Natterer, 1984), see also the monograph (Engl et al., 1996, Chapt. 8). 
In most cases, the scale of Hilbert spaces is assumed to be a scale of Sobolev spaces, and 
the smoothing properties of the underlying operator A are measured with respect to this 
scale. This allows for a mathematical analysis, even if the singular value decomposition 
of  A cannot be used to design a regularization scheme. Also, solution smoothness, i.e., 
the smoothness of  f� is described by assuming that it belongs to some space within this 
scale. Recently, regularization in Hilbert scales gained interest in statistical inverse prob-
lems, especially for the Bayesian approach to such problems, where we mention the studies 
(Gugushvili et al., 2020), and more recently (Agapiou & Mathé, 2022). To the best of our 
knowledge, inverse learning problems in scales have not been studied, yet.

Here we highlight the following prototypical example.

Example  Let A ∶ L
2
0
(0, 1) → H

1
0
(0, 1) be the integration operator

where  H
1
0
(0, 1) denotes the Sobolev space of abs. continuous functions  g 

with  g(0) = g(1) = 0 , and  L2
0
(0, 1) consists of elements which integrate to zero, i. e., 

(Af )(1) = 0 . Thus, we are looking for finding the derivative of a given function, one of 
the most classical inverse problems. In the above formulation, the operator A is injective. 
Moreover, it is known that the Sobolev space H� ∶= H

1
0
(0, 1) is a reproducing kernel Hil-

bert space. Details are given in Blanchard and Mücke (2018). Therefore, a suitable scale 
of Hilbert spaces is the class of Sobolev spaces Hs

0
(0, 1), s ∈ [0, p] for some  p ≥ 1 . For 

such analysis to work we assume that the given operator A ‘fits the scale’, which will be 
expressed in terms of a link condition. For the above example, the operator A has step one, 
meaning that elements from L2

0
(0, 1) are mapped to H1

0
(0, 1) . Moreover, in this context, 

smoothness is also given relative to this scale, as e.g.,  f� ∈ H
s
0
(0, 1) for some 0 < s ≤ p . 

(1)yi = g(xi) + �i, i = 1,… ,m,

(2)A(f ) = g, for f ∈ H and g ∈ H
�.

(3)(Af )(x) ∶= ∫
x

0

f (t) dt, x ∈ (0, 1),
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This is significantly different from other works, where smoothness is relative to the under-
lying covariance operator, and hence cannot be verified.

Further examples of Hilbert Scales relevant for learning in Reproducing Kernel Hilbert 
Spaces can be find in Mücke and Reiss (2020).

More generally, in the present study we shall assume that there is an unbounded 
self-adjoint operator  L ∶ D(L) ⊂ H → H , which generates a scale of Hilbert 
spaces Hs ∶= D(Ls), s ≥ 0 . Both, the operator Eq. (2), and the solution smoothness are 
assumed to fit this scale by assumptions, made below.

We highlight one specific means of reconstruction, often called penalized least 
squares. In this standard approach the estimator  f

z,� is the minimizer of

where � is a positive regularization parameter which balances the error term and the pen-
alty ‖f‖2

H
 . This penalty will control the norm (in H ) of the minimizer, but it cannot incur 

additional properties. Here, we implement such additional properties by assuming that all 
considered minimizers  f

z,� , which are taken into account belong to D(L) . In the analysis 
of inverse problems this setup has a long history, starting from the above-mentioned study 
(Natterer, 1984), and it has since then been frequently considered both for linear (Böttcher 
et al., 2006; Mair, 1994; Mathé & Tautenhahn, 2006, 2007; Nair, 1999, 2002; Nair et al., 
2005; Neubauer, 1988; Tautenhahn, 1996), and for non-linear mappings A Hofmann and 
Mathé (2018, 2020). The additional information  f

z,� ∈ D(L) is taken into account by 
replacing the above minimization problem (4) by

with minimzer  f
z,� ∈ D(L) , and we may formally introduce u

z,� ∶= Lf
z,� ∈ H.

In the regular case, when  f� ∈ D(L) , then we let u� ∶= Lf� ∈ H . With this notation 
we can rewrite (2) as

Then the Tikhonov minimization problem (5) would reduce to the standard one

albeit for a different operator AL−1 . Accordingly, the error bounds relate as

Therefore, error bounds for u� − u
z,� in the weak norm (in H−1 ) yield bounds for  f� − f

z,� . 
The latter bounds (in the weak norm) are not known from previous studies. In the overs-
moothing cases, i.e., when  f� ∉ D(L) , then such one-to-one correspondence cannot be 
established, and additional efforts are required.

(4)
1

m

m�
i=1

��A(f )(xi) − yi
��2Y + �‖f‖2

H
,

(5)
1

m

m�
i=1

��A(f )(xi) − yi
��2Y + �‖Lf‖2

H
,

g = Af = AL−1u, u ∈ D(L).

(6)
1

m

m�
i=1

���(AL
−1)(u)(xi) − yi

���
2

Y
+ �‖u‖2

H
,

‖‖‖f� − f
z,�
‖‖‖H =

‖‖‖L
−1(u� − u

z,�)
‖‖‖H.
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For ‘classical’ inverse problems the fundamental features of regularization in Hilbert 
scales are known. The questions that we address here try to answer whether these fea-
tures retain in inverse learning.

–	 Do regularization schemes which are known to provide optimal rates of reconstruc-
tion (as the noise level tends to zero) have analogs here with similar results in inverse 
learning (as the sample size tends to infinity)?

–	 Are optimal rates of reconstruction obtained when the true solution does not belong 
to D(L) (oversmoothing case)?

–	 Will the use of a smoothness promoting operator L−1 delay saturation?

In order to answer these questions we shall discuss rates of convergence for general 
(spectral) regularization schemes in Hilbert scales, and under quite general noise condi-
tion, see Assumption 2. As mentioned before, in order to treat regularization in Hilbert 
scales we shall link the given operator A to the scale, which is done in Assumption 4. 
Then we pursue a novel approach. Instead of assuming smoothness of the sought for  f� 
we shall measure the violation of smoothness relative to a fixed benchmark smoothness, 
as this will be expressed in terms of a distance function, introduced in Definitions  6 
and 7, respectively. Later, in Sect. 4 we shall see how smoothness relative to the given 
Hilbert scale translates to the behavior of the distance function, and hence, which are 
the resulting convergence rates.

The paper is organized as follows. The basic definitions, assumptions, and notation 
required in our analysis are presented in Sect. 2. In Sect. 3, we discuss the bounds of the 
reconstruction error in the direct learning setting and inverse problem setting by means 
of distance functions. This section comprises of two main results: The first result is 
devoted to convergence rates in the oversmoothing case, while the second result focuses 
on the regular case. When specifying smoothness in terms of source conditions, and 
this program is performed in Sect. 4, then we can bound the distance functions, and this 
in turn yields convergence rates in terms of the sample size m. In case that both, the 
smoothness as well as the link condition are of power type we establish the optimality 
of the obtained error bounds in the regular case in Sect. 5. Proofs will be given in the 
appendices. Also, we recall and prove probabilistic estimates which provide the tools 
for obtaining the error bounds.

2 � Notation and assumptions

In this section, we introduce some basic concepts, definitions, notation, and assump-
tions required in our analysis.

We assume that X is a Polish space, therefore the probability distribution � allows for 
disintegration as

where �(y|x) is the conditional probability distribution of y given x, and �(x) is the mar-
ginal probability distribution. We consider random observations 

{
(xi, yi)

}m

i=1
 which follow 

the model y = A(f )(x) + � with centered noise � . We assume throughout the paper that the 
operator A is injective.

�(x, y) = �(y|x)�(x),
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Assumption 1  (The true solution) The conditional expectation w.r.t. � of y given x exists 
(a.s.), and there exists  f� ∈ H such that

The element  f� is the true solution which we aim at estimating.

Assumption 2  (Noise condition) There exist some constants M,� such that for almost 
all x ∈ X,

This is usually referred to as a Bernstein-type assumption.
We recall the unbounded operator  L ∶ D(L) ⊂ H → H , which is assumed to be 

unbounded and self-adjoint. By spectral theory, the operator  Ls ∶ D(Ls) → H is well-
defined for  s ∈ ℝ , and the spaces  Hs ∶= D(Ls), s ≥ 0 equipped with the inner prod-
uct  ⟨f , g⟩Hs

= ⟨Lsf , Lsg⟩H, f , g ∈ Hs are Hilbert spaces. For  s < 0 , the space  Hs is 
defined as completion of H under the norm ‖f‖s ∶= ⟨f , f ⟩1∕2s  . The collection 

{
Hs, s ∈ ℝ

}
 

of Hilbert spaces is called the Hilbert scale induced by L. The following interpolation ine-
quality is an important tool for the analysis:

which holds for any t < r < s , see e.g. (Engl et al., 1996, Chapt. 8).

2.1 � Reproducing Kernel Hilbert spaces and related operators

We start with the concept of reproducing kernel Hilbert spaces, see the seminal study 
(Aronszajn, 1950), which can be characterized by a symmetric, positive semidefinite ker-
nel and each of its functions satisfies the reproducing property. We consider vector-valued 
reproducing kernel Hilbert spaces, following (Micchelli & Pontil, 2005), which are the 
generalization of real-valued reproducing kernel Hilbert spaces.

Definition 1  (Vector-valued reproducing kernel Hilbert space) For a non-empty set X and 
a real separable Hilbert space (Y , ⟨⋅, ⋅⟩Y ) , a Hilbert space H of functions from X to Y is said 
to be the vector-valued reproducing kernel Hilbert space, if linear functional Fx,y ∶ H → ℝ , 
defined by

is continuous for every x ∈ X and y ∈ Y .

Definition 2  (Operator-valued positive semi-definite kernel) Suppose L(Y) ∶ Y → Y  is the 
Banach space of bounded linear operators. A function K ∶ X × X → L(Y) is said to be an 
operator-valued positive semi-definite kernel if 

∫Y

yd�(y|x) = g�(x) = A(f�)(x), for all x ∈ X.

�Y

⎛⎜⎜⎝
e‖y−A(f�)(x)‖Y

∕M −

���y − A(f�)(x)
���Y

M
− 1

⎞⎟⎟⎠
d�(y�x) ≤ �2

2M2
.

(7)‖f‖Hr
≤ ‖f‖

s−r

s−t

Ht
‖f‖

r−t

s−t

Hs
, f ∈ Hs,

Fx,y(f ) = ⟨y, f (x)⟩Y ∀f ∈ H,
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	 (i)	  K(x, x�)∗ = K(x�, x) ∀ x, x� ∈ X.

	 (ii)	  
N∑

i,j=1

⟨yi,K(xi, xj)yj⟩Y ≥ 0 ∀ {xi}
N
i=1

⊂ X and {yi}
N
i=1

⊂ Y .

For a given operator-valued positive semi-definite kernel K ∶ X × X → L(Y) , we can 
construct a unique vector-valued reproducing kernel Hilbert space (H, ⟨⋅, ⋅⟩H) of func-
tions from X to Y as follows: 

	 (i)	 We define the linear function 

 where Kxy ∶ X → Y ∶ x� ↦ (Kxy)(x
�) = K(x�, x)y for x, x� ∈ X and y ∈ Y .

	 (ii)	 The span of the set {Kxy ∶ x ∈ X, y ∈ Y} is dense in H.
	 (iii)	 Reproducing property

 in other words,  f (x) = K∗
x
f .

Moreover, there is a one-to-one correspondence between operator-valued positive semi-
definite kernels and vector-valued reproducing kernel Hilbert spaces, see (Micchelli & 
Pontil, 2005).

Assumption 3  The space H′ is assumed to be a vector-valued reproducing kernel Hilbert 
space of functions  f ∶ X → Y  corresponding to the kernel K ∶ X × X → L(Y) such that 

	 (i)	  Kx ∶ Y → H
� is a Hilbert–Schmidt operator for x ∈ X with 

	 (ii)	 For y, y� ∈ Y  , the real-valued function � ∶ X × X → ℝ ∶ (x, x�) ↦ ⟨Kxy,Kx�y
�⟩H� is 

measurable.

Example  In case that the set Y is a bounded subset of ℝ then the reproducing kernel Hilbert 
space becomes real-valued reproducing kernel Hilbert space. The corresponding kernel 
will then be symmetric, positive semi-definite K ∶ X × X → ℝ with the reproducing prop-
erty  f (x) = ⟨f ,Kx⟩H . In this case Assumption 3 simplifies to the condition that the kernel is 
measurable and 𝜅�2 ∶= supx∈X

‖‖Kx
‖‖2H� = supx∈X K(x, x) < ∞.

Now we introduce some relevant operators used in the convergence analysis. We intro-
duce the notation for the vectors x = (x1,… , xm), y = (y1,… , ym), z = (z1,… , zm) . The 
product Hilbert space Ym is equipped with the inner product ⟨y, y�⟩m =

1

m

∑m

i=1
⟨yi, y�i⟩Y , 

and the corresponding norm  ‖y‖2
m
=

1

m

∑m

i=1
��yi��2Y . We define the sampling opera-

tor S
x
∶ H

�
→ Ym ∶ g ↦ (g(x1),… , g(xm)) , then the adjoint S∗

x
∶ Ym

→ H
� is given by

We observe that under Assumption 3 we have

Kx ∶ Y → H ∶ y ↦ Kxy,

⟨f (x), y⟩Y = ⟨f ,Kxy⟩H, x ∈ X, y ∈ Y , ∀ f ∈ H,

𝜅�2 ∶= sup
x∈X

‖‖Kx
‖‖2HS = sup

x∈X

tr(K∗
x
Kx) < ∞.

S∗
x
y =

1

m

m∑
i=1

Kxi
yi.
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and

In particular, the canonical injection map  I� ∶ H
�
→ L

2(X, �;Y) is norm bounded by �′ , 
and so is the empirical version S

x
.

We denote the population operators  B� ∶= I�AL
−1 ∶ H → L

2(X, �;Y),   
T� ∶= B∗

�B� ∶ H → H,  L� ∶= A∗I∗� I�A ∶ H → H , and their empirical versions   
B
x
= S

x
AL−1 ∶ H → Ym, T

x
= B∗

x
B
x
∶ H → H, L

x
= A∗S∗

x
S
x
A ∶ H → H . The operators T�,  

T
x
, L�, Lx are positive, self-adjoint and depend on the kernel. Under Assumption  3, the 

operators B
x
, B� are bounded by � ∶= ��‖‖AL−1‖‖H→H

� and the operators L
x
, L� are bounded 

by  𝜅̃2 for  𝜅̃ ∶= 𝜅�‖A‖H→H
� , i.e.,  ‖‖Bx

‖‖H→Ym ≤ �,  ‖‖B�
‖‖H→L

2(X,�;Y) ≤ �,  ‖‖Lx‖‖L(H)
≤ �2 

and ‖‖L𝜈‖‖L(H)
≤ 𝜅̃2.

2.2 � Link condition

The subsequent analysis will frequently use the notion of an index function.

Definition 3  (Index function) A function � ∶ ℝ
+
→ ℝ

+ is said to be an index function if it 
is continuous and strictly increasing with �(0) = 0.

An index function is called sub-linear whenever the mapping  t ↦ t∕𝜑(t), t > 0, is 
nondecreasing. Further, we require this index function to belong to the following class of 
functions.

The representation � = �2�1 is not unique, therefore �2 can be assumed as a Lipschitz 
function with Lipschitz constant  1. We shall also rely upon the following important 
result for such Lipschitz continuous index functions �2 , needed in our analysis (Peller, 
2016, Corollary 1.2.2):

Example  Power-type functions  �(t) = tr with  r > 0 , and logarithmic func-
tions �(t) = tp log−�

(
1

t

)
, p, � ≥ 0 , are examples of functions in the class F .

The following assumption is used to relate smoothness in terms of the operator L to the 
covariance operator T�.

Assumption 4  (link condition) There exist a power q > 1 and an index function � , for 
which the function �2 is sub-linear. There is a constant 1 ≤ 𝛽 < ∞ such that

‖f‖2
L

2(X,�;Y)
= �X

‖f (x)‖2
Y
d�(x) = �X

��K∗
x
f��2Yd�(x) ≤ ��2‖f‖2

H
� ,

��Sxf��2m =
1

m

m�
i=1

��f (xi)��2Y =
1

m

m�
i=1

���K
∗
xi
f
���
2

Y
≤ ��2‖f‖2

H
� .

(8)

F = {� = �1�2 ∶ �1,�2 ∶ [0, �2] → [0,∞),�1 nondecreasing continuous sub-linear,

�2 nondecreasing Lipschitz, �1(0) = �2(0) = 0}.

‖‖�2(Tx) − �2(T�)
‖‖HS ≤ ‖‖Tx − T�

‖‖HS.
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The function t ↦ �(t) ∶= �q−1(t) belongs to the class F .

Only the left inequality will be used for the regular case. For the oversmoothing 
case, when we need to relate the effective dimensions we require the other side as well. 
Also, to show the optimality of the rates both side inequalities are used.

As shown in  Böttcher et  al. (2006), Assumption  4 implies the range iden-
tity R(L−q) = R(�q(T�)) . In the context of a comparison of operators we mention the 
well-known Heinz Inequality, see (Engl et al., 1996, Prop. 8.21). This asserts that for 
every exponent 0 < a ≤ 1 it holds true

Applying this to the above link condition we obtain the following:

Proposition 1  Under Assumption 4 we have

and

Moreover, we have that

Remark 1  It is heuristically clear that the function �2 cannot increase faster than linearly, 
because the operator T� = L−1L�L

−1 has L−2 in it. Therefore, requiring sub-linearity is not a 
strong restriction. More details will be given in Sect. 5.

Link conditions as in Assumption 4 imply decay rates for the singular numbers of 
the operators, known as Weyl’s Monotonicity Theorem  (Bhatia, 1997, Cor.  III.2.3). 
In our case, this yields that sj(�(T�)) = �(sj(T�)) ≍ sj(L

−1) . For classical spaces, as e.g. 
Sobolev spaces, when L ∶= (I + �)−1∕2 , then sj(L−1) ≍ 1∕j (one spatial dimension). For 
the above index function � this means that sj(T�) ≍ �−1(1∕j).

Example  (Finitely smoothing covariance operators) In case that the function  � , and 
hence its inverse are of power type then this implies a power type decay of the singular 
numbers of T� . In this case, the operator T� is called finitely smoothing.

Example  (Infinitely smoothing covariance operators) If, on the other hand, the func-

tion � is logarithmic, as e.g., �(t) =
(
log

1

t

)−
1

� , then sj(T�) ≍ e−j
� . In this case, the opera-

tor T� is called infinitely smoothing.

‖L−qu‖H ≤ ���q(T�)u��H ≤ �q‖L−qu‖H, u ∈ H.

(9)‖Gu‖H ≤ ‖Hu‖H, u ∈ H yields ‖Gau‖H ≤ ‖Hau‖H, u ∈ H.

‖‖‖L
−1u

‖‖‖H ≤ ‖‖�(T�)u‖‖H ≤ �
‖‖‖L

−1u
‖‖‖H, u ∈ H

‖‖‖L
−(q−1)u

‖‖‖H ≤ ‖‖‖�
q−1(T�)u

‖‖‖H ≤ �(q−1)
‖‖‖L

−(q−1)u
‖‖‖H, u ∈ H.

(10)
���𝜚(T𝜈)

�
T𝜈 + 𝜆I

�−1∕2���L(H)
≤ 𝜚(𝜆)√

𝜆
, 0 < 𝜆 ≤ 1.
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2.3 � Effective dimension

The concept of the effective dimension, as introduced in Zhang (2002), proved to be impor-
tant for deriving fast rates of convergence under Hölder’s source condition, see (Blanchard & 
Mücke, 2018; Caponnetto & De Vito, 2007; Guo et al., 2017), and also for general source con-
ditions, see (Lin et al., 2020; Shuai et al., 2020; Rastogi & Sampath, 2017). For the trace–class 
operator T� its effective dimension is defined as,

It is known that the function � → NT�
(�) is continuous and decreasing from ∞ to zero 

for 0 < 𝜆 < ∞ for an infinite dimensional operator T� (see for details Blanchard and Mathé, 
2012; Blanchard and Mücke, 2020; Lin et al., 2015; Shuai et al., 2020; Zhang, 2002). How-
ever, we shall use, and this follows from spectral calculus, that the function � ↦ �NT�

(�) is 
increasing.

We have the trivial bound

In the subsequent analysis, we shall need a relationship between the effective dimen-
sions NT�

(�) and NL�
(�) of the operators T� and L� , respectively. For this, the following 

assumption, introduced in Lin et al. (2015), will be used. There, it was shown that it is sat-
isfied for both moderately ill-posed and severely ill-posed operators.

Assumption 5  There exists a constant C such that for 0 < t ≤ ‖‖L𝜈‖‖L(H)
 we have

Proposition 2  Suppose Assumptions 4 and 5 hold true. Suppose that the function � from the 
link condition, Assumption 4, is such that the function t ↦

(
�2q

)−1
(t) is operator concave, 

and that there is some n ∈ ℕ for which the function t ↦ �−1(t)∕tn is concave. Then, there 
is C̃ for which we have that

Remark 2  For a power type function �(t) ∶= ta the above concavity assumptions hold true 
whenever 2aq ≥ 1 and n ≤ 1∕a ≤ n + 1 . In particular, the number n is uniquely determined.

2.4 � Regularization schemes

General regularization schemes were introduced and discussed in ill-posed inverse problems 
and learning theory (See Shuai & Pereverzev, 2013, Sect. 2.2 and Bauer et al., 2007, Sect. 3.1) 
for brief discussion). By using the notation from Sect. 2.1, the Tikhonov regularization scheme 
from (5) can be re-expressed as follows:

NT𝜈
(𝜆) ∶= Tr

(
(T𝜈 + 𝜆I)−1T𝜈

)
, for 𝜆 > 0.

NT�
(�) ≤ ‖‖‖(T� + �I)−1

‖‖‖L(H)
Tr
(
T�
) ≤ �2

�
.

t−1
∑

sj(L𝜈 )<t

sj(L𝜈) < C#
{
j, sj(L𝜈) ≥ t

}
.

NL𝜈

(
𝜆

𝜚2(𝜆)

)
≤ 2𝛽n+1�CNT𝜈

(𝜆), 0 < 𝜆 ≤ ‖‖T𝜈‖‖L(H)
.

f
z,� = argmin

f∈D(L)

���SxA(f ) − y��2m + �‖Lf‖2
H

�
,
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with minimizer given as

The following definition extends this by replacing the operator (T
x
+ �I)−1 by some opera-

tor function g�(Tx).

Definition 4  (Spectral regularization) We say that a family of functions g� ∶ [0, �2] → ℝ, 
0 < 𝜆 ≤ a , is a regularization scheme if there exists D,B, � such that

–	   sup
t∈[0,�2]

||tg�(t)|| ≤ D.

–	   sup
t∈[0,�2]

||g�(t)|| ≤ B

�
.

–	   sup
t∈[0,�2]

||r�(t)|| ≤ � for r�(t) = 1 − g�(t)t.

–	 For some constant �p (independent of � ), the maximal p satisfying the condition: 

 is said to be the qualification of the regularization scheme g�.

Definition 5  The qualification  p covers the index function � if the function  t → tp

�(t)
 is 

nondecreasing.

We mention the following result.

Proposition 3  Suppose  � is a nondecreasing index function and the qualification, 
say p ≥ 1 , of the regularization g� covers � . Then

Also, we have that

Most of the linear (spectral) regularization schemes (Tikhonov regularization, Landweber 
iteration or spectral cut-off) satisfy the properties of general regularization. Inspired by the 
representation for the minimizer of the Tikhonov functional (5) we consider a general regular-
ized solution in Hilbert scales corresponding to the above regularization g� in the form

where by spectral calculus the real-valued function g� is applied to the self-adjoint opera-
tor T

x
.

f
z,� = L−1(T

x
+ �I)−1B∗

x
y.

sup
t∈[0,�2]

||r�(t)||tp ≤ �p�
p

sup
t∈[0,�2]

||r�(�)||�(�) ≤ cp�(�), cp = max(� , �p).

sup
t∈[0,�2]

||r�(�)||�(� + �) ≤ 2pcp�(�).

(11)f
z,� = L−1g�(Tx)B

∗
x
y,
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3 � Convergence analysis

The analysis will distinguish between two cases, the ‘regular’ one, when  f� ∈ D(L) , and 
the ‘low smoothness’ case, when  f� ∉ D(L) . In either case, we shall first utilize the con-
cept of distance functions. This will later give rise to establish convergence rates in a 
more classical style.

For the asymptotical analysis, we shall require the standard assumption relating the 
sample size m and the parameter � such that

It will be seen, that asymptotically the condition (12) is always satisfied for the parameter 
which is optimally chosen under known smoothness.

Since the function NT�
(�) is decreasing in � , for � ≤ 1 we have that NT�

(1) ≤ NT�
(�) . 

Hence condition (12) yields that

Several probabilistic quantities will be used to express the error bounds. Precisely, for an 
index function � we let

and

In case that � (t) = tr we abbreviate � tr by �r and � t by � , not to be confused with the 
power. High probability bounds for these quantities are known, and these are given corre-
spondingly in Propositions 4 and 5 in Appendix C.

3.1 � The oversmoothing case

As mentioned before, we shall use distance functions, which measure the violation of a 
benchmark smoothness. Here the benchmark will be  f� ∈ D(L).

Definition 6  We define the distance function d ∶ [0,∞) → [0,∞) by

(12)NT𝜈
(𝜆) ≤ m𝜆 and 0 < 𝜆 ≤ 1.

(13)NT�
(1) ≤ m�.

(14)�� = �� (�) ∶=
‖‖‖‖‖

(
1

�

)
(T

x
+ �I)� (T� + �I)

‖‖‖‖‖L(H)

,

(15)� = �(�) ∶=
‖‖‖(L� + �I)−1∕2(L� − L

x
)
‖‖‖HS,

(16)� = � (�) ∶=
‖‖‖(T� + �I)−1∕2(T� − T

x
)
‖‖‖HS,

(17)� = � (�) ∶=
‖‖‖(T� + �I)−1∕2B∗

x
(S

x
Af� − y)

‖‖‖H.

(18)d(R) = inf
����f𝜌 − f

���H ∶ f = L−1v and ‖v‖H ≤ R
�
, R > 0.
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The distance function is positive, decreasing, convex and continuous for all 0 ≤ R < 1 . 
It tends to 0 as R → ∞ , see (Hofmann, 2006). Hence, the unique minimizer exists and will 
be denoted by  f R� .

Notice the following: If  f� ∈ D(L) then for some  R the minimizer  f R�  of the distance 
function will obey  f R� = f�.

Remark 3  In a rudimentary form, this approach was given in (Baumeister, 1987, Thm. 6.8). 
It was then introduced in regularization theory in Hofmann (2006). Within learning theory, 
such a concept was also used in the study (Smale & Zhou, 2003).

Theorem 1  Let z be i.i.d. samples drawn according to the probability measure � . Suppose 
the Assumptions 1–5 hold true. Let g� be a regularization with corresponding regularized 
solution  f

z,� (see (11)). Suppose that the qualification p of the regularization g� covers the 
function � (from Assumption 4) and that the functions �−1(t)∕tn , and 

(
�2q

)−1
(t) are concave, 

or operator concave, for some n ≥ 1 , respectively. Then for all 0 < 𝜂 < 1 , and for � satisfy-
ing the condition (12) the following upper bound holds true with confidence 1 − �:

where C depends on B, D, cp, �, n, �, C̃.

The bound from Theorem 1 is valid for all R ≥ � + �M∕NT�
(1) , and we shall now opti-

mize the bound from Theorem 1 with respect to the choice of R ≥ � + �M∕NT�
(1).

First, if  f� ∈ D(L) then there is R̄ ≥ 𝛴 + 𝜅M∕NT𝜈
(1) such that d(R̄) = 0 , and

where C depends on B, D, cp, �, n, �, C̃.
Otherwise, in the low smoothness case,  f� ∉ D(L) , we introduce the following function

which is non-vanishing decreasing function, and hence the inverse � −1 exists, and it is 
decreasing. Given 𝜆 > 0 , by letting R = R(�) solve the equation � (R) = �(�) we find that

where C depends on B, D, cp, �, n, �, C̃.
The above dependency � → R(�) can be made explicit when assuming that  f� has some 

smoothness measured in terms of a source condition, see Sect. 4, below. For Theorem 1 we 
get the error bound (19) but the parameter � has to obey (12).

3.2 � The regular case

Here we analyze the rates of convergence in the case when the underlying true solution  f� 
belongs to the domain of the operator L. Again, we shall choose a benchmark smoothness, 

‖‖‖fz,� − f�
‖‖‖H ≤ C{d(R) + 2R�(�)} log4

(
4

�

)
, R ≥ � + �M∕NT�

(1),

‖‖‖fz,𝜆 − f𝜌
‖‖‖H ≤ CR̄ 𝜚(𝜆) log4

(
4

𝜂

)
,

� (R) ∶=
d(R)

R
, R ≥ � + �M∕NT�

(1),

(19)‖‖‖fz,� − f�
‖‖‖H ≤ CR(�)�(�) log4

(
4

�

)
,
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here in the form of  f� ∈ D(Lq) for some q ≥ 1 . This benchmark smoothness is determined 
by the user. With respect to this benchmark we introduce the following distance function.

Definition 7  Given q ≥ 1 we define the distance function dq ∶ [0,∞) → [0,∞) by

Theorem 2  Let z be i.i.d. samples drawn according to the probability measure � . Suppose 
the Assumptions 1–4 hold true. Let g� be a regularization with corresponding regularized 
solution  f

z,� (see (11)). Let � be any index function, such that 1
2
 covers � . Suppose that the 

qualification p of the regularization g� covers the function �� (with � from Assumption 4). 
Then for all 0 < 𝜂 < 1 , and for � satisfying the condition (12), the following upper bound 
holds true with confidence 1 − �:

Consequently, we find that

and

where C depends on B, D, cp, � , and C� = 2�M + �.

The bound from Theorem 2 is valid for all R ≥ 1 , and we shall now optimize the bound 
from Theorem 2 with respect to the choice of R ≥ 1.

First, if  f� ∈ R(L−q) then dq(R̄) = 0 for some R̄ , we find that

Otherwise, in case that  f� ∉ R(L−q) we introduce the following function

(20)dq(R) = inf
����L(f − f�)

���H ∶ f = L−qv and ‖v‖H ≤ R
�
.

���� (T�)L
�
f
z,� − f�

����H ≤C� (�)

⎧
⎪⎨⎪⎩
dq(R) + R

�
�(�) +

1√
m

�
+ C�

�
NT�

(�)

m�

⎫⎪⎬⎪⎭
× log4

�
4

�

�
,

���fz,� − f�
���H ≤ C�(�)

⎧⎪⎨⎪⎩
dq(R) + R

�
�(�) +

1√
m

�
+ C�

�
NT�

(�)

m�

⎫⎪⎬⎪⎭
log4

�
4

�

�

���I�A(fz,� − f�)
���L2(X,�;Y)

≤C
√
�

⎧
⎪⎨⎪⎩
dq(R) + R

�
�(�) +

1√
m

�
+ C�

�
NT�

(�)

m�

⎫⎪⎬⎪⎭
× log4

�
4

�

�
,

���fz,𝜆 − f𝜌
���H ≤ C𝜚(𝜆)

⎧⎪⎨⎪⎩
R̄

�
𝜑(𝜆) +

1√
m

�
+ C�

�
NT𝜈

(𝜆)

m𝜆

⎫⎪⎬⎪⎭
log4

�
4

𝜂

�
.
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which is non-vanishing decreasing function, and hence the inverse  � −1
q

 exists and it 
is decreasing. We finally get the main result, by letting  R = R(�) solving the equa-
tion �q(R) = �(�) , and we find that

4 � Smoothness in terms of source‑wise representation

So far convergence results were established in terms of distance functions. We will now 
specify the smoothness of the true solution in terms of the bounded, injective and self-
adjoint operator L−1 . This is genuine for regularization in Hilbert scales.

Assumption 6  (General source condition) For an index function � , the true solution  f� 
belongs to the class �(�,R†) with

Notice that elements from �(�,R†) belong to the range of �(L−1) which coincides with 
the domain of �(L) , since L−1 was assumed to be bounded.

We aim at bounding the distance functions d(R) and dq(R) from the oversmoothing and 
regular cases, respectively.

For a better understanding, we shall highlight the obtained general bounds when the 
considered index functions are of power type, and we specify the function �(t) ∶= tr , which 
represents the smoothness, as well as �(t) = ta , representing the link, for this purpose. It 
will be seen that the index function t ↦ 𝜃(𝜚(t)), t > 0 is relevant in the subsequent corol-
laries, which here reads as 𝜃(𝜚(t)) = tar, t > 0 . Also, in the regular case with benchmark 
smoothness  f� ∈ R(L−q) , the function t ↦ �q

�
(t) appears, and this is required to be an index 

function. Within the power type context, this reads as r < q , and it simply means that the 
actual smoothness is not beyond the benchmark.

Finally, we emphasize that the rates will depend on the decay of the effective dimen-
sion of the covariance operator T� , which was introduced in Sect. 2.3. Therefore, we will 
highlight the obtained bounds under specified decay rates for the effective dimension 
in Sect. 4.3. The obtained overall rates will be highlighted in Tables 1 and 2, respectively.

4.1 � The oversmoothing case

Here the benchmark source condition  f� ∈ R(L−1) ( q = 1 ) is linear, represented by the 
identity function � ∶ t ↦ t , and we shall thus assume that the index function � is sub-lin-
ear. The obtained bounds will rely on the results from (Hofmann & Mathé, 2007, Theo-
rem 5.9). Under Assumption 6 we find that

(21)�q(R) ∶=
dq(R)

R
, R ≥ 1,

���fz,� − f�
���H ≤ C�(�)

⎧
⎪⎨⎪⎩
R(�)

�
�(�) +

1√
m

�
+ C�

�
NT�

(�)

m�

⎫
⎪⎬⎪⎭
log4

�
4

�

�
.

�(�,R†) ∶=
�
f ∈ H ∶ f = �(L−1)v and ‖v‖H ≤ R†

�
.
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In order to minimize the bound from Theorem 1, we balance d(R) = R�(�) , resulting in

Thus, for this value of R(�) under the condition (12), the bound (19) reduces to

The following corollary is the consequence of Theorem 1 which explicitly provide us with 
an error bound in terms of the sample size m.

Corollary 1  Suppose that the unknown  f� obeys Assumption 6 for a sub-linear function � . 
Under the same assumptions of Theorem 1 and with the a-priori choice of the regulariza-
tion parameter �∗ = �∗(m) from solving the equation NT�

(�∗) = m�∗ , for all 0 < 𝜂 < 1 , the 
following error estimates holds with confidence 1 − �:

where C depends on B, D, cp, �, n, �, C̃, M, � , and R†.

Evidently, the above parameter choice satisfies condition (12).

d(R) ≤ R

((
𝜄

𝜃

)−1
(
R†

R

))
, R > 0.

(22)R(𝜆) = R† 𝜃(𝜚(𝜆))

𝜚(𝜆)
, 𝜆 > 0.

(23)
‖‖‖fz,� − f�

‖‖‖H ≤ CR(�)�(�) log4(4∕�) ≤ CR†�(�(�)) log4(4∕�).

‖‖‖fz,� − f�
‖‖‖H ≤ C�(�(�∗)) log4

(
4

�

)
,

Table 1   (under Assumption 7, and for a ≤ 1

2
, aq ≤ p ): convergence rates of the regularized solution  f

z,�

Case Convergence rates Parameter �∗ = O(⋅) True Smooth. Conditions

Oversmooth. �
1√
m

� 2ar

b+1
�

1√
m

� 2

b+1
r ≤ 1 a ≥ 1

n+1

Regular �
1√
m

� r

q−1
�

1√
m

� 1

a(q−1)
r ≥ 1 q ≥ r +

b+1

2a

�
1√
m

� 2ar

2ar+b+1−2a
�

1√
m

� 2

2ar+b+1−2a r ≤ q ≤ r +
b+1

2a

Table 2   (under Assumption 8, and for a ≤ 1

2
, aq ≤ p ): convergence rates of the regularized solution  f

z,�

Case Convergence rates Parameter �∗ = O(⋅) True Smooth. Conditions

Oversmooth. (
logm

m

) ar

b+1
(

logm

m

) 1

b+1
r ≤ 1 a ≥ 1

n+1

Regular (
logm

m

) r

2(q−1)
(

logm

m

) 1

2a(q−1)
r ≥ 1 q ≥ r +

b+1

2a

(
logm

m

) ar

2ar+b+1−2a
(

logm

m

) 1

2ar+b+1−2a r ≤ q ≤ r +
b+1

2a
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4.2 � The regular case

In this case the benchmark is given by the index function �q , and we shall assume that the 
given smoothness, measured in terms of � , is such that the function �q∕� for 0 < t ≤ 𝜅2 , is 
an index function. However, the definition of the distance function R ↦ dq(R) is non-stand-
ard. The target norm is ‖‖‖L(f − f�)

‖‖‖H , and, in order to apply the result from (Hofmann & 
Mathé, 2007,  Theorem  5.9) we have to ‘rescale’ the given smoothness (in terms of the 
operator L−1 ) by factor L−1 . If Assumption 6 holds true with index function � , for which the 
quotient �q∕� is an index function, and so will be the function �q−1∕(�∕�) , then this results in 
the bound

According to Theorem 2 we balance

This yields

Inserting this bound into Theorem 2 we find that

provided that (12) holds.
The optimization of the bound in the inequality (25) depends on which term is dominant 

in the last two summands. Then we can balance the remaining (two) terms. This results in 
the following corollaries for the different choices of the regularization parameter:

Corollary 2  Suppose that the unknown  f� obeys Assumption 6 for an index function � , and 

that the related functions  �
q

�
(t) and  �

q

�
(�(t))

√
NT�

(t)

t
 are index functions. Under the same 

assumptions of Theorem  2, and for the a-priori choice of the regularization parame-
ter  �∗ = �−1

�
1√
m

�
 , for all  0 < 𝜂 < 1 , the following upper bound holds with confi-

dence 1 − �:

(24)dq(R) ≤ R

[(
𝜄q

𝜃

)−1
(
R†

R

)]q−1
, R > 0.

dq(R) = R�(�).

R(𝜆) = R† 𝜃(𝜚(𝜆))

𝜚q(𝜆)
, R > 0.

(25)

���fz,� − f�
���H

≤ C�(�)

⎧⎪⎨⎪⎩
R† �(�(�))

�(�)

�
1 +

1√
m�(�)

�
+ C�

�
NT�

(�)

m�

⎫⎪⎬⎪⎭
log4

�
4

�

�

= C�(�)

⎧⎪⎨⎪⎩
R† �(�(�))

�(�)
+

1√
m

⎛
⎜⎜⎝
R† �(�(�))

�q(�)
+ C�

�
NT�

(�)

�

⎞
⎟⎟⎠

⎫⎪⎬⎪⎭
log4

�
4

�

�

‖‖‖fz,� − f�
‖‖‖H ≤ C�(�(�∗)) log4

(
4

�

)
,



Machine Learning	

1 3

where C depends on B, D, cp, �, M, � , and R†.

Corollary 3  Suppose that the unknown  f� obeys Assumption 6 for an index function � , and 

that the related functions  �
q

�
(t) and  �

q

�
(�(t))

√
NT�

(t)

t
 are index functions. Under the same 

assumptions of Theorem 2, and for the a-priori choice of the regularization parameter �∗ 
as solution to the equation �

2(�(�∗))

�2(�∗)
�∗m = NT�

(�∗) , for all 0 < 𝜂 < 1 , the following upper 
bound holds with confidence 1 − �:

where C depends on B, D, cp, �, M, � , and R†.

Since by assumption the function  t ↦ �2(�(�∗))

�2(�∗)
 is an index function we will have that 

condition (12) holds for m large enough.

4.3 � Taking the behavior of effective dimension into account

Below, to be specific, we consider the following two behaviors of the decay of the effective 
dimensions of the covariance operator T� , say power-type and logarithmic type, known to 
hold true in many situations.

Assumption 7  (Polynomial decay) There exists some positive constant c > 0 such that

Assumption 8  (Logarithmic decay) There exists some positive constant c > 0 such that

Remark 4  We mention that a polynomial decay of the eigenvalues of the covariance opera-
tor T� yields a power-type behavior of the effective dimension, see (Caponnetto & De Vito, 
2007). In some situations this behavior is not evident. Shuai et al. (2020) showed that for 
Gaussian kernel K1(x, x

�) = xx� + e−8(x−x
�)2 with the uniform sampling on [0, 1], the effec-

tive dimension exhibits a log-type behavior (Assumption 8), on the other hand, the ker-
nel K2(x, x

�) = min{x, x�} − xt exhibits a power-type behavior (Assumption 7).

Below, we shall summarize the convergence rates under the specific behavior of the 
effective dimension, Assumptions 7 and 8, respectively, in the Tables 1 and 2. We con-
fine to the power type case, when both the link condition as well as the source condition 
are of power type, i.e., �(t) = ta and �(t) = tr for parameters a, r > 0 . The qualification of 
the regularization is denoted by p as before. Also, the benchmark smoothness is q, where 
either q = 1 (oversmoothing case) or q > 1 (regular case). Notice, that due to the sub-lin-
earity condition for �2 we must have that 0 < a ≤ 1∕2 . Also, throughout the analysis, we 
assume that the qualification covers the given smoothness, i.e., aq ≤ p . The bounds pre-
sented in the tables are consequences of Corollaries 1–3, respectively. Therefore, Assump-
tions 1–6 are assumed to be satisfied.

‖‖‖fz,� − f�
‖‖‖H ≤ C�(�(�∗)) log4

(
4

�

)
,

NT𝜈
(𝜆) ≤ c𝜆−b, for 0 ≤ b < 1, ∀𝜆 > 0.

NT𝜈
(𝜆) ≤ c log

(
1

𝜆

)
, ∀𝜆 > 0.
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The tables are structured as follows. In the first column we present the rates of conver-
gence �(m) for the error estimates of the form:

In the second column, the corresponding order of the regularization parameter choice �∗ in 
terms of m is indicated. In the third column, we highlight the smoothness of the true solu-
tion  f� . In fourth column, we emphasize additional constraints, specifically on the bench-
mark smoothness.

The first row corresponds to the oversmoothing case, and the last two rows correspond 
to the regular case. In the regular case, we observe that the validity of the rates of the 
convergence depends on the benchmark smoothness through aq. At the intersection point, 
when aq = ar +

b+1

2
 , both rates coincide. As we will see in the next section the rates of 

convergence in the regular case ( q > 1 ) are optimal provided that the benchmark smooth-
ness is chosen appropriately.

5 � Optimality of the error bounds

We shall discuss the optimality of the previously obtained error bounds, in the regular case, 
and we shall use the known optimality results from (Blanchard & Mücke, 2018). However, 
at present the smoothness is measured with respect to the operator T� , whereas in Blan-
chard and Mücke (2018) this was done with respect to the operator L� ∶= A∗I∗� I�A = LT�L . 
Therefore, the following ‘recipe’ will be used. 

1.	 Transfer smoothness as given in terms of L−1 to smoothness in terms of L� , and
2.	 Knowing the decay of the singular numbers of the operator T� inherent in Assumption 7, 

find the decay of the singular numbers of L�.

In order to keep the analysis simple and transparent, we confine to power type smooth-
ness 𝜃(t) = tr, 0 < r ≤ q in Assumption 6, as well as to power type link in Assumption 4 
with �(t) ∶= ta for some a > 0.

In the subsequent subsections, we shall sketch the proof of the lower bounds step by 
step, reaching the optimality assertion at the end. In order to get there, additional assump-
tions have to be made, a lifting condition (Assumption 9), and a singular number decay 
condition (Assumption 10).

5.1 � Relating smoothness

The link condition is crucial, and the subsequent arguments are of interpolation type, 
applying Heinz Inequality within the present context. To this end, we require that q is cho-
sen such that aq ≥ 1∕2 . In this case Assumption 4 yields, by applying Heinz Inequality (9) 
with exponent 1∕(2aq) ≤ 1 that

ℙ
z∈Zm

{‖‖‖fz,� − f�
‖‖‖H ≤ C�(m) log4

(
4

�

)}
≥ 1 − �.

‖‖‖I�AL
−1u

‖‖‖L2(X,�;Y)
=
‖‖‖T

1∕2
� u

‖‖‖H ≍1 ‖‖‖L
−

1

2a u
‖‖‖H, u ∈ H.
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1 Letting v ∶= L−1u we find that

First, we see from this that a < 1∕2 , because otherwise L� would be continuously invert-
ible. Also, the relation (26) would allow transferring smoothness r with respect to L−1 to L� 
as long as 0 < r ≤ 1

2a
− 1 . In order to treat higher smoothness (in terms of L−1 ) a lifting 

condition is unavoidable. This must be consistent with the link from (26). Thus we look for 
a factor z such that t(

1

2a
−1)z = tq , yielding z ∶= 2aq

1−2a
.

Assumption 9  (lifting condition) We have that

Remark 5  The strengthening of the original link condition, Assumption 4, towards a lifting 
condition has been discussed in more detail in Mathé (2019).

Having this lifting, and applying Heinz Inequality (9) (with exponent r/q) yields

and a source-wise representation as in Assumption 6 yields a corresponding source-wise 
representation with respect to the operator L� (with different constant).

5.2 � Relating effective dimensions

Here we shall use the following consequence of Assumption  4. Indeed, turning from 
squared norms to quadratic forms we see that

The Weyl Monotonicity Theorem  (Bhatia, 1997, Cor.  III.2.3) yields that 
then  sj(L−2q) ≍ sj(T

2aq
� ), j = 1, 2,… , or simplified that  sj(L−1) ≍ sa

j
(T�), j = 1, 2,… by 

spectral calculus. Here sj(L−1) and sj(T�) denote the singular numbers of the operators. Simi-

larly, we obtain from (26) that sj(L�) ≍ s
1−2a

a

j
(L−1) , and a fortiori that sj(L�) ≍ s1−2a

j
(T�).

5.3 � Lower bound

In order to show the optimality of the error bounds as discussed in Table 1, we shall assure 
that the decay of the effective dimension cannot be faster than asserted in Assumption 7.

(26)‖‖‖L
1∕2
� v

‖‖‖H = ‖‖I�Av‖‖L2(X,�;Y) ≍
‖‖‖L

−(
1

2a
−1)

v
‖‖‖H, v ∈ H.

‖L−qu‖H ≍
����L

aq

1−2a
� u

����H, u ∈ H.

(27)‖L−rv‖H ≍
����L

ar

1−2a
� v

����H, v ∈ H,

⟨L−2qu, u⟩≍⟨T2aq
� u, u⟩, u ∈ H.

1  We shall suppress the recalculations of the corresponding constants.
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Assumption 10  (decay of singular number) There is a constant c > 0 such that the sin-
gular numbers of the operator T� obey

Notice that this yields that N(�) ≥ c�−b , such that this is the limiting case for which 
Assumption 7 holds. Hence, the assumed decay of the singular numbers of T� is best possi-
ble by order. The following is reported in Blanchard and Mücke (2018) for the problem (2): 
Under smoothness  r with respect to the operator L� , and with the decay of the singular 

numbers sj(L�) not faster than  j−1∕b , the optimal rate is of the order 
�

1√
m

� 2r

2r+b+1 . In the pre-
sent context, we have to assign r ← ar

1−2a
 and b ←

b

1−2a
 . This yield a lower bound of the 

order

for the range ar

1−2a
≤ p.

This corresponds to the upper bound for a ≤ 1

2
, aq ≤ p ,  r ≤ q ≤ r +

b+1

2a
 , as discussed in 

the last row of Table 1, and it shows that the rate is of optimal order.

6 � Conclusion

We investigated regularization schemes in Hilbert scales for linear inverse (learning) 
problems. Regularized solutions are constructed under the requirement that these belong 
to D(L) , for the (unbounded) operator L, which generates the scale. Clearly, this may be 
extended to the case that the regularized solutions belong to D(Ls) for some s > 0 , simply 
be considering Ls as a generator of the (same) scale.

We draw the following conclusions. Some arguments consider the cases of power type 
conditions, and for this, we recourse to Tables 1 and 2 for details.

Optimal rates: In the regular case, we can achieve the optimal rates of convergence pro-
vided that the benchmark smoothness q is chosen in the appropriate region (see Sect. 5.3). 
In contrast, in the mis-specified case (oversmoothing) we can only prove sub-optimal rates 
of convergence. By now no techniques are known which are capable to improve the rates in 
this case.

Saturation effects: In case q = r , we observe from the above analysis that optimal rates 
can be proven for the range ar ≤ p , provided that the scheme has qualification p. For stand-
ard regularization schemes, this would hold for the range  ar

1−2a
≤ p , only. Hence, the satura-

tion effect is delayed here.
Convergence rates without source condition: Typically, rates of convergence are shown 

under smoothness in terms of source conditions. Here we establish error bounds by using 
the concept of distance functions, measuring the violation of a benchmark source condi-
tion. When specifying smoothness as a source condition, we use known bounds of the con-
sidered distance function. This provides us with convergence rates in terms of the sample 
size.

Source conditions: When studying kernel methods, the smoothness of the true solution 
is measured in terms of the source condition with respect to the covariance operator, and 

sj(T�) ≥ cj−1∕b, j = 1, 2,…

�
1√
m

� 2ar∕(1−2a)

2ar∕(1−2a)+b∕(1−2a)+1

=

�
1√
m

� 2ar

2ar+b+1−2a
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hence may hardly be checked. We consider source conditions in terms of the Hilbert scale. 
This has a clear meaning, and it is independent of the choice of kernel. However, the cho-
sen kernel comes into play when requiring the validity of a link condition.

A Proofs of Sect. 2

Proof (Proof of Proposition 1)  The first assertions are a consequence of Heinz Inequality (9) 
with a ∶= 1∕q < 1 . For the last one, we argue as follows. Since �2 is assumed to be sub-
linear. Hence we find that

which completes the proof. 	� ◻

For proving Proposition 2 we start with the following technical result.

Lemma 1  Suppose that the function � from the link condition, Assumption 4 is such that 
the function t ↦

(
�2q

)−1
(t) is operator concave, and that there is some n ∈ ℕ for which the 

function t ↦ �−1(t)∕tn is concave. Under Assumption 4 we have that

Proof  The proof is based on two consequences of Assumption 4, which, in terms of the 
partial ordering for self-adjoint operators in Hilbert space can be restated as

Since the operator concave function t ↦
(
�2q

)−1
(t) respects the partial ordering we obtain2 

that

Letting u ∶= Lv ∈ H , and since by construction T� = L−1L�L
−1 we deduce that

The sub-linearity of �2 implies that the function t ↦ �−1(t)∕t2 is non-decreasing, such that 
the operator �−1(�L−1)L2 is bounded, and hence the above inequality extends to v ∈ H . 
Next we apply the Weyl Monotonicity Theorem (Bhatia, 1997, Cor. III.2.3) to see that

����(T�)
�
T� + �I

�−1∕2���L(H)
=

1√
�

�����(T�)
�
�
�
T� + �I

�−1�1∕2����L(H)

≤ 1√
�

�����
2(T�)

�
�
�
T� + �I

�−1�����
1∕2

L(H)

≤ �(�)√
�
,

sj
(
T�
)

sj
(
�2(T�)

) ≤ �n−1sj
(
L�
) ≤ �2n

sj
(
T�
)

sj
(
�2(T�)

) , j = 1, 2,…

⟨(L−1)2qu, u⟩H ≤ ⟨�2q(T�)u, u⟩H ≤ ⟨(�L−1)2qu, u⟩H, u ∈ H.

⟨�−1(L−1)u, u⟩H ≤ ⟨T�u, u⟩H ≤ ⟨�−1(�L−1)u, u⟩H.

⟨�−1(L−1)L2v, v⟩H ≤ ⟨L�v, v⟩H ≤ ⟨�−1(�L−1)L2v, v⟩H, v ∈ D(L).

2  we use that 
(
�2q

)−1
(t2q) = (�)−1(t).
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Applying this theorem to the first inequality in Proposition 1 we also find that

To proceed we shall use the sub-linearity of the function �2 , and the concavity of the func-
tion �(t) ∶= �−1(t)∕tn . This yields that �(�t) ≤ ��(t), � ≥ 1 and overall, we find that

This, together with the inequalities (28) gives

and the proof is complete. 	�  ◻

Proof (Proof of Proposition 2)  Since the function t ↦ t∕�2(t) is assumed to be an index func-
tion, we find from Lemma 1 that the assertion

holds true. This yields

As a consequence of (Lin et al., 2015, Prop. 6) there is C̃ such that

This, together with (29), implies that

Since the function � ↦ �NL�
(�) is non-decreasing we continue to bound

(28)
sj
(
�−1(L−1)

)

s2
j
(L−1)

≤ sj
(
L�
) ≤ sj

(
�−1(�L−1)

)

s2
j
(L−1)

, j = 1, 2,…

sj
(
�−1(L−1)

) ≤ sj
(
T�
) ≤ sj

(
�−1(�L−1)

)
, j = 1, 2,…

sj
(
�−1(L−1)

)

s2
j
(L−1)

≤ sj
(
T�
)

sj
(
�2(T�)

) ≤ sj
(
�−1(�L−1)

)

s2
j
(�L−1)

= �n−2sn−2
j

(L−1)
sj
(
�−1(�L−1)

)

sn
j
(�L−1)

≤ �n−1
sj
(
�−1(L−1)

)

s2
j
(L−1)

.

sj
(
T�
)

sj
(
�2(T�)

) ≤ �n−1sj
(
L�
) ≤ �2n

sj
(
T�
)

sj
(
�2(T�)

) ,

�n+1
�

�2(�)
≤ sj(L�) implies � ≤ sj(T�)

(29)#

{
j, sj(L�) ≥ �n+1

�

�2(�)

}
≤ #

{
j, sj(T�) ≥ �

}
, � ≤ ‖‖T�‖‖L(H)

.

NL�
(�) ≤ C̃#

{
j, sj(L�) ≥ �

}
.

NL�

(
�n+1

�

�2(�)

)
≤C̃#

{
j, sj(L�) ≥ �n+1

�

�2(�)

}
≤ C̃#

{
j, sj(T�) ≥ �

}

=2C̃
∑

sj(T� )≥�
1

2
≤ 2C̃

∞∑
j=1

sj(T�)

� + sj(T�)
= 2C̃NT�

(�), � ≤ ‖‖T�‖‖L(H)
.



Machine Learning	

1 3

which completes the proof. 	� ◻

Proof (Proof of Proposition 3)  The first assertion is a restatement of (Mathé and Pereverzev, 
2003,  Proposition  3). For the second assertion, we stress that  (� + �)p ≤ 2p−1(�p + �p) , 
which follows from convexity. This yields

which implies the second assertion and completes the proof. 	�  ◻

B Proofs of Sect. 3

Proof (Proof of Theorem 1)  For the minimizer  f R�  of the distance function defined in (18), 
the error can be expressed as follows:

By using Proposition 1 the error for the regularized solution can be bounded as

We shall bound each summand on the right in (31). 

I1:	� By Lemma 2 we find that 

 with ��, � as in  (14),  (15) and  𝜐(t) ∶= t∕𝜚(t), t > 0 . From the estimates of Proposi-
tions 4, 5 we get with confidence 1 − �∕2 that 

(30)NL�

(
�

�2(�)

)
≤ �n+1NL�

(
�n+1

�

�2(�)

)
≤ 2�n+1C̃NT�

(�), � ≤ ‖‖T�‖‖L(H)
,

||r�(�)||�(� + �) ≤ ||r�(�)||(� + �)p
�(� + �)

(� + �)p

≤ 2p−1||r�(�)||(�p + �p)
�(�)

�p
≤ 2pcp�

p�(�)

�p
,

f� − f
z,� =L

−1
{
r�(Tx)L(f� − f R� ) + r�(Tx)Lf

R
� + g�(Tx)B

∗
x
(S

x
Af� − y)

}
.

(31)
‖‖‖f� − f

z,�
‖‖‖H

(32)

≤ ‖‖‖L
−1r�(Tx)L(f� − f R� )

‖‖‖H +
‖‖‖L

−1r�(Tx)Lf
R
�
‖‖‖H +

‖‖‖L
−1g�(Tx)B

∗
x
(S

x
Af� − y)

‖‖‖H
≤ d(R)

‖‖‖L
−1r�(Tx)L

‖‖‖L(H)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

I1

+
‖‖‖�(T�)r�(Tx)Lf

R
�
‖‖‖H

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
I2

+
‖‖‖�(T�)g�(Tx)B

∗
x
(S

x
Af� − y)

‖‖‖H
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

I3

.

���L
−1r�(Tx)L

���L(H)
≤ 1 + (B + D)

�
���� + ��(�)(�(�) + 1)

�√
�

�
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 For �(�) ∶= �

�2(�)
 , by using that � ↦ �NL�

(�) is an increasing function, and � ≤ �(�) , for � 
small enough, we get 

 This together with Proposition 2 implies that 

 Under the condition (12) from the estimates (13), (33), (34) we get with confidence 1 − �∕2 : 

 where C𝜅,𝜅̃ depends on 𝜅, 𝜅̃.

I2:	� By construction of  f R�  we have that  f R� = L−1v, ‖v‖H ≤ R . Using the fact that p cov-
ers � we bound 

I3:	� For the last summand we argue 

 where �1∕2 and � were as in (14) and (17).
Summarizing, using the estimates of Propositions 4, 5, and (35)–(37), we get with con-

fidence 1 − � that

For any parameter choice � satisfying the condition (12) using the inequality (13) we get 
that

(33)

���L
−1r𝜆(Tx)L

���L(H)
≤1 + (B + D)

�
(2𝜅 + 1)8 + 2(2𝜅 + 1)4(𝜚(𝜆) + 1)

×

⎛
⎜⎜⎝
𝜅̃𝜚(𝜆)

m𝜆
+

�
𝜅̃𝜚2(𝜆)NL𝜈

(𝜆)

m𝜆

⎞
⎟⎟⎠

�
log4

�
4

𝜂

�
,

�NL�
(�) ≤ �(�)NL�

(�(�)).

(34)�2(�)NL�
(�) ≤ NL�

(
�

�2(�)

)
≤ 2�n+1C̃NT�

(�).

(35)‖‖‖L
−1r𝜆(Tx)L

‖‖‖L(H)
≤1 + (B + D)𝛽n+1�CC𝜅,𝜅̃ log

4

(
4

𝜂

)
,

(36)
‖‖‖�(T�)r�(Tx)Lf

R
�
‖‖‖H ≤ R��‖‖�(Tx + �I)r�(Tx)‖‖L(H)

≤ 2R���(�).

(37)

‖‖‖�(T�)g�(Tx)B
∗
x
(S

x
Af� − y)

‖‖‖H
≤ �

1

2���
‖‖‖g�(Tx)�(Tx + �I)(T

x
+ �I)

1

2
‖‖‖L(H)

≤ �
1

2��� sup
t∈[0,�2]

�(t + �)(t + �)
1

2 ||g�(t)||

≤ �
1

2���

(
sup

t∈[0,�2]

�(t + �)(t + �)−
1

2

){
� sup

t∈[0,�2]

||g�(t)|| + sup
t∈[0,�2]

||tg�(t)||
}

≤ �
1

2���{B + D}�(�)�−
1

2 ,

(38)���f� − f
z,�
���H ≤ C

⎡⎢⎢⎢⎣
d(R) + �(�)

⎧⎪⎨⎪⎩
R +

�M

m�
+

�
�2NT�

(�)

m�

⎫⎪⎬⎪⎭

⎤⎥⎥⎥⎦
log4

�
4

�

�
.



Machine Learning	

1 3

and

This implies

provided that R ≥ � + �M∕NT�
(1) . Inserting the bound from inequality (39) into the esti-

mate (38) completes the proof. 	�  ◻

Proof (Proof of Theorem 2)  For the minimizer  f R�  of the distance function defined in (20), 
the error can be expressed as follows:

First, we estimate the error in the interpolation norm for some index function �:

 

I1:	� We bound 

I2:	� For the minimizer  f R� = L−qg of the distance function (20), we observe from Propo-
sition  1 that there is v ∈ H such that Lf R� = L−(q−1)g = �(T�)v, ‖v‖H ≤ R . Thus by 
assuming that the � = �1�2 (with �1 being sub-linear and �2 Lipschitz with constant 
one) we continue bounding 

 Then we get 

�M

m�
≤ �M

NT�
(1)

√
�2NT�

(�)

m�
≤ �.

(39)R +
�M

m�
+

√
�2NT�

(�)

m�
≤ 2R,

L(f� − f
z,�) = r�(Tx)L(f� − f R� ) + r�(Tx)Lf

R
� + g�(Tx)B

∗
x
(S

x
Af� − y).

(40)

‖‖‖� (T�)L(f� − f
z,�)

‖‖‖H ≤dq(R) ‖‖� (T�)r�(Tx)‖‖L(H)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

I1

+
‖‖‖� (T�)r�(Tx)Lf

R
�
‖‖‖H

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
I2

+
‖‖‖� (T�)g�(Tx)B

∗
x
(S

x
Af� − y)

‖‖‖H
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

I3

.

(41)
‖‖�(T�)r�(Tx)‖‖L(H)

≤ ‖‖�(T� + �I)r�(Tx)‖‖L(H)

≤ ��‖‖� (Tx + �I)r�(Tx)‖‖L(H)
≤ ��cp� (�).

r�(Tx)Lf
R
� = r�(Tx)�(T�)v

= r�(Tx)�2(Tx)�1(T�)v + r�(Tx)(�2(T�) − �2(Tx))�1(T�)v.
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 because of the qualification of the regularization.

I3:	� From the arguments used in (37), we get 

Overall, using Propositions 4–5 and (41)–(43) in (40) we obtain with confidence 1 − � 
that

The fact that NT�
(�) is decreasing function of � with the inequality (12) implies that

This, together with (44) yields the first result.
For the last two estimates in Theorem 2, by using Proposition 1 we get

and

(42)

‖‖‖� (T�)r�(Tx)Lf
R
�
‖‖‖H = ‖‖� (T�)r�(Tx)�(T�)v‖‖H

≤ ��
{‖‖� (Tx + �I)r�(Tx)�2(Tx)�1(T�)v

‖‖H
+ ‖‖� (Tx + �I)r�(Tx)(�2(T�) − �2(Tx))�1(T�)v

‖‖H
}

≤ R��
{‖‖� (Tx + �I)r�(Tx)�2(Tx)�1(Tx + �I)‖‖L(H)

×
‖‖‖‖‖

(
1

�1

)
(T

x
+ �I)�1(T� + �I)

‖‖‖‖‖L(H)

+�1(�
2)‖‖� (Tx + �I)r�(Tx)‖‖L(H)

‖‖T� − T
x
‖‖L(H)

}

≤ R��

{
��1 sup

t∈[0,�2]

{||r�(t)||�2(t)� (t + �)�1(t + �)
}

+�1(�
2)‖‖T� − T

x
‖‖L(H)

sup
t∈[0,�2]

{||r�(t)||� (t + �)
}}

≤ R2qcp� (�)�
�
{
��1�(�) + �1(�

2)‖‖T� − T
x
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These two upper bounds can now be estimated from the general bound by letting � ∶= � 
and � (t) ∶= t

1

2 , respectively. We also use that �2 is sub-linear, and this completes the proof. 	
� ◻

C Probabilistic bounds

In the following proposition, we present the standard perturbation inequalities in learn-
ing theory which measure the effect of random sampling in the probabilistic sense. The 
following two propositions can be proved using the arguments given in Step 2.1. of 
(Caponnetto and De Vito, 2007, Thm. 4).

Proposition 4  Suppose Assumptions 1–3 hold true, then for m ∈ ℕ and 0 < 𝜂 < 1 , each of 
the following estimate holds with the confidence 1 − �,

and

In the following proposition, the probabilistic estimate of the first term can be estab-
lished under the condition (12) on the regularization parameter � , and the sample size m. 
The last two estimates are obtained by using (Blanchard, 2019, Prop. A.2).

Proposition 5  Suppose Assumption 3 and the condition (12) hold true. Let � ∶ ℝ
+
→ ℝ

+ 
be a nondecreasing and sub-linear function, then for m ∈ ℕ and 0 < 𝜂 < 1 , each of the fol-
lowing estimates hold with the confidence 1 − �,

for 0 ≤ s ≤ 1 and
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Lemma 2  Suppose Assumption  4 holds true. Let g� be any regularization with residual 
function r� . Then for �(t) = t∕�(t) , we have that

Proof  For L
x
= A∗S∗

x
S
x
A and L� = A∗I∗� I�A with the fact that T

x
− T� = L−1

(
L
x
− L�

)
L−1 , 

the proof will be based on the following decomposition

and this yields the estimate

We observe that ‖‖g�(Tx)(Tx + �I)‖‖L(H)
≤ B + D . For the function  �(t) = t∕�(t) , we can 

bound I1 as

It remains to bound the second and third factors. From Proposition 1 we find that

Again, under Assumption 4 we find that

�� = �� (�) ∶=
�����

�
1

�
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(T
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�����L(H)
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��2
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which finally yields that I1 ≤ ����(B + D).
The terms I2, I3 can be bounded as

and

This complete the proof.
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