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Existence of solutions of a finite element

flux-corrected-transport scheme
Volker John, Petr Knobloch

Abstract

The existence of a solution is proved for a nonlinear finite element flux-corrected-
transport (FEM-FCT) scheme with arbitrary time steps for evolutionary convection-
diffusion-reaction equations and transport equations.

1 Introduction

This note considers the transient convection—diffusion—reaction equation

w—ecAu+b-Vut+cu=f in(0,7] xQ, (1)
u=u, onl0,T]xTp, 2)
0
56—2 = on [0,7] x Ty, (3)
uw(0,) =ug in€, (4)

where Q C R? d = 2,3, is a bounded polygonal or polyhedral domain with a Lipschitz-
continuous boundary OS2 that is composed of disjoint subsets I'p and I i, n is the outer unit
normal vector to 02, [0, T is a time interval, ¢ > 0 is a constant diffusivity, b : [0,7] —
Wte°(Q)%is a convection field, c : [0, T] — L>°(12) is a reaction coefficient, f : [0,7] —
L%(Q) is an outer source of the unknown quantity u, u, : [0,7] — HY?(I'p) and g :
[0,7] — L3*(T'y) are the boundary conditions, and uy € H3(€2) is the initial condition.
Without loss of generality, it can be assumed that

1
c—idivsz in[0,7] x €, (5)

which can be always achieved by a transform of variables u +— wexp(—«t) with £ > 0
sufficiently large. In addition, it is assumed that

I'p D00 :={x€0Q; b(z) n(x) <0}. (6)

The analysis of this paper also covers the case € = (. Since it is a first order partial differ-
ential equation, a boundary condition is prescribed only on 9€)~. We shall again consider a
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Dirichlet boundary condition so that the initial-boundary value problem consists of (1), (2),
with e = 0 and I'p = 9€2~. An important particular case for ¢ = 0 is the transport
equation, i.e., also c vanishes identically.

The considered classes of problems obey, under certain conditions on their data, maximum
principles. Often, these conditions are satisfied in applications. For a numerical method to
be physically consistent and to be accepted by practitioners, it is of importance that it sat-
isfies a discrete maximum principle (DMP). There are only very few finite element methods
that possess this property and are not excessively diffusive, among them FEM-FCT (flux-
corrected-transport) schemes, e.g., proposed in [11 2, [3]. In particular, a nonlinear FEM-FCT
scheme has been proven to compute very accurate solutions, see [4]. However, concerning
the solvability of the nonlinear problem, there is only one very recent result in [5]. It shows
the existence and local uniqueness of a solution for sufficiently small time steps. The anal-
ysis in [5] is based on the implicit function theorem for Lipschitz functions and utilizes tools
from non-smooth optimization. In the present note, a new result will be shown: the existence
of a solution for arbitrary time steps. The proof is based on a consequence of Brouwer’s
fixed-point theorem.

2 FEM-FCT schemes

For the discretization of ()—(4), the time interval is decomposed by 0 =ty < t; < --- <
tx = T with At;, = t, — t,._1. We consider conforming finite element spaces, where it
is assumed that the basis functions ¢, . .., N are nonnegative, as it is the case for stan-
dard piecewise linear or multilinear basis functions or for bases constructed using Bernstein
polynomials. Let the basis functions be numbered such that 1, ..., @, M < N, are as-
sociated with degrees of freedom that are not on the Dirichlet boundary so that they vanish
onI'p.

Using a one-step 6-scheme and the usual approach for deriving a Galerkin finite element
discretization leads for the time instant ¢;. to a discrete problem of the form

Uk_Uk—l
M—r— +OAPUR+ (1 -0 AU =0FF + (1—-0)F (@)
k

ub =ub(ty), i=M+1,... N, (8)

with U° = Ugand 6 € [0,1]. In (@), U* = (u}, ..., uk )T denotes the vector of unknowns
at t;, Uy and uf(tk) are the coefficients of finite element representations of the initial condi-
tion and the boundary condition at ¢*, respectively. Further, M = (m”);zll% is the mass

matrix, A* = (a;; (tk))éj% the stiffness matrix, and F* = (fi(t1), ..., far(tx))? the

right-hand side vector defined by

mij = (¢, 0i)a,  ai;(t) =alt)(ej, ), fi(t)=(f(t),)a+ (g(t), i)ry -

DOI 10.20347/WIAS.PREPRINT.2761 Berlin 2020



Existence of solutions of a finite element flux-corrected-transport scheme 3

Here, (-, -)q denotes the inner product in L?(£2) or L*(Q2)4, (-, )r,, is the inner product in
L*(T'y), and

a(t)(u,v) =€ (Vu, Vu)g + (b(t) - Vu,v)q + (c(t) u,v)gq.

It is well known that, if convection dominates diffusion, a stabilization has to be introduced,
e.g., see [6]. One possibility is to apply a FCT approach, e.g., see [1}, 12, 13]. To this end, one
extends the matrices A* to (ay;); j—1,....v by setting af; = a(tk)(goj, ©i), 4,5 =1,...,N,
Then, one introduces artificial d|ffu3|on matrices D = (dk )z b ’N possessing the entries

1j/j=1,.
df; = —max{aj;,0,af;} foralli # jand dj; = =3, d’“ In addition, one defines
the lumped mass matrix M, = (mg); 11 ’N with the entries m,; = 0 for all i # j and

(22

mk = Zjvzl m;;. Denoting L* := A% + D’“, (7 can be written in the form

k_ yrk—1
M, v-ur AtU +OLF U+ (1—0)LF 1 UF = 9FF + (1 — 0) FF1 + RF(UF, U
k

with

Uk - kal

ODF U + (1 — )DL Uk,
N + ( )

RF(U*, UF 1) = —(M — M)

Note that IL* has non-positive off-diagonal entries. The matrix D* has zero row sums and
hence (D* U); = Zjvzl df (uj — ), i=1,..., M, forany U = (uy,...,uy)". Since
also the matrix Ml — M}, has zero row sums, one deduces that

N
k(1Tk TThk— 1 _
(RF(U*, U => "k, i=1,...,M,
7=1
with so-called algebraic fluxes
P = = g (= k) g (5 — )
Y Aty 0N Aty PN ’

+9dfj(u§—uf)+( G)dkl(fl—uf’l).

Now the idea of flux correction is to limit those fluxes r - that would cause spurious oscilla-
tions. To this end, (R*(U*, U*~1)), is replaced by

N
(RE(UE,URY) =) abirl, ol €[01], af=af, ij=1,....N, (9

ij gis

where the limiters a ; depend on the solution. Then, the discrete solution at the time instant
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t;. satisfies the following system of (nonlinear) algebraic equations

N N
Z m; (uf )+ At 0 Z aU uj + Aty (1 —6) Z affl uf’l
Jj=1 j=1
N N
—Z(l—afj)mi]u—u +Z l—a m”(ufl—uk 1
j=1 j=1
N N
—I—Atké’z l—ozm d’C (uj Fub) 4+ At (1-0) Zl—a dkl(uf_l—uf_l)
7j=1
:AtkeferAtk(l— o) fF1,  i=1,...,M, (10)
uf =ul(ty), i=M+1,...,N, (11)

where [ = fi(ty).

3 Solvability of the nonlinear FEM-FCT scheme

For proving the solvability of the nonlinear problem, we shall use a consequence of Brouwer’s
fixed-point theorem, see [7, p. 164, Lemma 1.4].

Lemma 1 Let X be a finite-dimensional Hilbert space with inner product (-, -) x and norm
|- |lx. LetIl : X — X be a continuous mapping and B > 0 a real number such that
(Ilz,z)x > 0 forany x € X with ||z||x = B. Then there exists © € X such that
|z||x < B andIlz = 0.

Theorem 2 Foranyi,j € {1,...,N}, letaf; : RN — [0,1] be such that o ry; is a
continuous function of uf, ... u%. Let and (6) be satisfied and let the functions aij

satisfy (9). Then there exists a solution of the nonlinear problem (11).

Proof. For a vector U = (u1, ..., uy)", we set U = (uy,...,up)". On the other hand,
for a vector U = (us,...,up)", we set U = (ug,...,unr, uby g (), ub ()"
With this notation, we deflne an operator IT : RM — RM by

M M
E E k
Jj=1 Jj=1

N

+3 (1= afi(0) [Aty 0 df —my] (w; — wi) + gi(U),  i=1,...,M,

J=1
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wherefori=1,..., M

N
Z Mij U tk —FAtk(g Z 2] J k)—Zml uk—l
j=1

j=M+1 j=M+1
N N
+At (1 —0) Z afj ! uf_l + Z 1 —aj mij (uéC L yhh

N
AL (1=0) Y (1= afi(U)di " (uf™ —uf™") = At 0 fF = Aty (1-0) fi7

Then, U¥ € RY solves the algebraic problem ({0)—(T) if an only if 1 U* = 0 and u¥ =
ub(ty) fori = M +1,...,N. Thus, it suffices to show that the operator II satisfies the
assumptions of Lemmal([i]

Let (-, -) denote the Euclidean inner product in R* and || - || the corresponding norm. Then,
forany U € RM one has

fJ'fJ Zulmwuj—l—AtkHZulaqu

5,j=1 5,j=1

£ 3 (1= aly(U) [t Ol —mig i (u; — )

> (- af(U)) (At 0dl — my]ul(ty) (u; — ) + Z u; g:(U),

i=M+1 j=1

where we extended the matrix Ml to a symmetric N x /N matrix. In view of the symmetry of
M, D*, and the limiters, one has
N

Z (1= afi(U)) [Aty 0 df; — mi) s (uj — uy)

Q;
i,j=1 1 N
k k
ij=1
where we used that m;; > 0, dfj < 0fori # j, and afj € [0, 1]. The last property also
implies that the values g;(U) are bounded independently of U. Consequently,

M M
(Hﬁ,ﬁ) > Z w; mi; u; + Aty 0 Z uiafj u; — C4 ||[~JH — (Y
ij=1 ij=1

with some C', Cy > 0. Obviously, the matrix (1;;); j—1....a is positive definite. Moreover, in
view of (8) and (6), one has a(t)(v,v) > € |v]] forany v € H'(Q) withv = 0 on ' s0
that the matrix (af;); j—1.... 1 is positive semi-definite. This gives (I1 U,0) > Cs ||U|12-C,4
with some Cs, Cy > 0, which implies that (ITU, U) > 0if ||U|| > /2 C,/Cs. Since IT is
continuous, the statement of the theorem follows from Lemma[i} U
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Remark 3 If the problem is defined using data that do not satisfy some of the
assumptions (B) and (6), then the term Aty 0 Z%:l u; af; g in (11 U, U) may be negative
and has to be estimated from below by —Cs Aty ||U||2. This allows to prove the solvability
only for a sufficiently small time step Aty,.

4 Example of limiters o

i satisfying the assumptions of
Theorem 2

Let .7}, be a simplicial triangulation of {2 possessing the usual compatibility properties and
let the considered finite element space consist of continuous piecewise linear functions with
respect to .7},. Then, the basis functions 1, ..., @y are assigned to vertices x1, . . .
of 7, and satisfy @;(z;) = 0;;, 4,5 = 1,..., N.

y UN

We shall present a limiting strategy described in [2] which is motivated by [8] and utilizes an
explicit solution U* of the low order scheme

M, U* = (Mg — (1 - 0) AL L) UM 4+ (1 - 0) At FRL

To assure that ka satisfies the DMP, if the continuous solution satisfies a weak maximum
principle, the time step has to obey a CFL-like condition. Then, fori = 1, ..., IV, one defines
the local quantities

Pr= ) ()", Pr= ) ()
FES(3) jes(i)
ti= max af—ak, = min o —aF,
@ jestuiy 1Y @ jes@utsy 7
Rf . min (1, m) if 27 >0, R e min <1, At Pf) if P <0,
1 if P =0, 1 it P~ =0,

where (rf;)* = max{r}
respectlvely, and S( ) ={je{1,.

of TZJ,

Z]7

0} and (r};)~

the correction factors a - are defined by

k.

= min{r};,

L NI\{i}; 3T € % : v, x; € T} Finally,

_Jmin(Rf, R}) forrf >0,
| min(R;, RY) forrfj < 0.

0} are the positive and negative parts

(12)
J

This choice of o ; guarantees that the scheme (10)—(11) satisfies the DMP.

These limiters a . are clearly symmetric (if r

- # 0) with values in [0, 1] and the following

lemma shows that they also satisfy the contlnuny assumption from Theorem 2|

Lemma4 Foranyi,j € {1,..
nofuf, ...

a continuous functio

k
7uN.

DOI 10.20347/WIAS.PREPRINT.2761
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Proof. For U € RY, denote ®(U) = (af; r};)(U), i.e., we dropped the index k in U*.
Consider any U € RN, If }5(U) # 0, then the denominators in the formulas defining af;

k¥ is continuous at U. Consequently, also

do not vanish in a neighborhood of U and hence Qg5

ok vl is continuous at U. If r%(U) = 0, then
(o i) (U) = (ag i) (U))]
= (i) (U)] < [ri(U)] = [r5(U) = r5(U)] < C|JU - T

k .k

and hence again o} r;; is continuous at U. U
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