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Existence of solutions of a finite element
flux-corrected-transport scheme

Volker John, Petr Knobloch

Abstract

The existence of a solution is proved for a nonlinear finite element flux-corrected-
transport (FEM-FCT) scheme with arbitrary time steps for evolutionary convection-
diffusion-reaction equations and transport equations.

1 Introduction

This note considers the transient convection–diffusion–reaction equation

ut − ε∆u+ b · ∇u+ c u = f in (0, T ]× Ω , (1)

u = ub on [0, T ]× ΓD , (2)

ε
∂u

∂n
= g on [0, T ]× ΓN , (3)

u(0, ·) = u0 in Ω, (4)

where Ω ⊂ Rd, d = 2, 3, is a bounded polygonal or polyhedral domain with a Lipschitz-
continuous boundary ∂Ω that is composed of disjoint subsets ΓD and ΓN , n is the outer unit
normal vector to ∂Ω, [0, T ] is a time interval, ε > 0 is a constant diffusivity, b : [0, T ] →
W 1,∞(Ω)d is a convection field, c : [0, T ]→ L∞(Ω) is a reaction coefficient, f : [0, T ]→
L2(Ω) is an outer source of the unknown quantity u, ub : [0, T ] → H1/2(ΓD) and g :
[0, T ] → L2(ΓN) are the boundary conditions, and u0 ∈ H1

0 (Ω) is the initial condition.
Without loss of generality, it can be assumed that

c− 1

2
div b ≥ 0 in [0, T ]× Ω, (5)

which can be always achieved by a transform of variables u 7→ u exp(−κt) with κ > 0
sufficiently large. In addition, it is assumed that

ΓD ⊃ ∂Ω− := {x ∈ ∂Ω ; b(x) · n(x) < 0} . (6)

The analysis of this paper also covers the case ε = 0. Since it is a first order partial differ-
ential equation, a boundary condition is prescribed only on ∂Ω−. We shall again consider a
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Dirichlet boundary condition so that the initial–boundary value problem consists of (1), (2),
(4) with ε = 0 and ΓD = ∂Ω−. An important particular case for ε = 0 is the transport
equation, i.e., also c vanishes identically.

The considered classes of problems obey, under certain conditions on their data, maximum
principles. Often, these conditions are satisfied in applications. For a numerical method to
be physically consistent and to be accepted by practitioners, it is of importance that it sat-
isfies a discrete maximum principle (DMP). There are only very few finite element methods
that possess this property and are not excessively diffusive, among them FEM-FCT (flux-
corrected-transport) schemes, e.g., proposed in [1, 2, 3]. In particular, a nonlinear FEM-FCT
scheme has been proven to compute very accurate solutions, see [4]. However, concerning
the solvability of the nonlinear problem, there is only one very recent result in [5]. It shows
the existence and local uniqueness of a solution for sufficiently small time steps. The anal-
ysis in [5] is based on the implicit function theorem for Lipschitz functions and utilizes tools
from non-smooth optimization. In the present note, a new result will be shown: the existence
of a solution for arbitrary time steps. The proof is based on a consequence of Brouwer’s
fixed-point theorem.

2 FEM-FCT schemes

For the discretization of (1)–(4), the time interval is decomposed by 0 = t0 < t1 < · · · <
tK = T with ∆tk = tk − tk−1. We consider conforming finite element spaces, where it
is assumed that the basis functions ϕ1, . . . , ϕN are nonnegative, as it is the case for stan-
dard piecewise linear or multilinear basis functions or for bases constructed using Bernstein
polynomials. Let the basis functions be numbered such that ϕ1, . . . , ϕM , M ≤ N , are as-
sociated with degrees of freedom that are not on the Dirichlet boundary so that they vanish
on ΓD.

Using a one-step θ-scheme and the usual approach for deriving a Galerkin finite element
discretization leads for the time instant tk to a discrete problem of the form

M
Uk − Uk−1

∆tk
+ θAk Uk + (1− θ)Ak−1 Uk−1 = θ Fk + (1− θ) Fk−1 , (7)

uki = ubi(tk) , i = M + 1, . . . , N , (8)

with U0 = U0 and θ ∈ [0, 1]. In (7), Uk = (uk1, . . . , u
k
N)T denotes the vector of unknowns

at tk, U0 and ubi(tk) are the coefficients of finite element representations of the initial condi-
tion and the boundary condition at tk, respectively. Further, M = (mij)

i=1,...,M
j=1,...,N is the mass

matrix, Ak = (aij(tk))i=1,...,M
j=1,...,N the stiffness matrix, and Fk = (f1(tk), . . . , fM(tk))T the

right-hand side vector defined by

mij = (ϕj, ϕi)Ω , aij(t) = a(t)(ϕj, ϕi) , fi(t) = (f(t), ϕi)Ω + (g(t), ϕi)ΓN
.
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Here, (·, ·)Ω denotes the inner product in L2(Ω) or L2(Ω)d, (·, ·)ΓN
is the inner product in

L2(ΓN), and

a(t)(u, v) = ε (∇u,∇v)Ω + (b(t) · ∇u, v)Ω + (c(t)u, v)Ω .

It is well known that, if convection dominates diffusion, a stabilization has to be introduced,
e.g., see [6]. One possibility is to apply a FCT approach, e.g., see [1, 2, 3]. To this end, one
extends the matrices Ak to (akij)i,j=1,...,N by setting akij = a(tk)(ϕj, ϕi), i, j = 1, . . . , N .

Then, one introduces artificial diffusion matrices Dk = (dkij)
i=1,...,M
j=1,...,N possessing the entries

dkij = −max{akij, 0, akji} for all i 6= j and dkii = −
∑

j 6=i d
k
ij . In addition, one defines

the lumped mass matrix ML = (mL
ij)

i=1,...,M
j=1,...,N with the entries mL

ij = 0 for all i 6= j and

mL
ii =

∑N
j=1 mij . Denoting Lk := Ak + Dk, (7) can be written in the form

ML
Uk − Uk−1

∆tk
+ θLk Uk + (1− θ)Lk−1 Uk−1 = θ Fk + (1− θ) Fk−1 + Rk(Uk,Uk−1)

with

Rk(Uk,Uk−1) = −(M−ML)
Uk − Uk−1

∆tk
+ θDk Uk + (1− θ)Dk−1 Uk−1 .

Note that Lk has non-positive off-diagonal entries. The matrix Dk has zero row sums and
hence (Dk U)i =

∑N
j=1 d

k
ij (uj − ui), i = 1, . . . ,M , for any U = (u1, . . . , uN)T . Since

also the matrix M−ML has zero row sums, one deduces that

(Rk(Uk,Uk−1))i =
N∑
j=1

rkij , i = 1, . . . ,M ,

with so-called algebraic fluxes

rkij =− 1

∆tk
mij (ukj − uki ) +

1

∆tk
mij (uk−1

j − uk−1
i )

+ θ dkij (ukj − uki ) + (1− θ) dk−1
ij (uk−1

j − uk−1
i ) .

Now the idea of flux correction is to limit those fluxes rkij that would cause spurious oscilla-
tions. To this end, (Rk(Uk,Uk−1))i is replaced by

(R̃k(Uk,Uk−1))i =
N∑
j=1

αk
ij r

k
ij, αk

ij ∈ [0, 1], αk
ij = αk

ji , i, j = 1, . . . , N , (9)

where the limiters αk
ij depend on the solution. Then, the discrete solution at the time instant
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tk satisfies the following system of (nonlinear) algebraic equations

N∑
j=1

mij (ukj − uk−1
j ) + ∆tk θ

N∑
j=1

akij u
k
j + ∆tk (1− θ)

N∑
j=1

ak−1
ij uk−1

j

−
N∑
j=1

(1− αk
ij)mij (ukj − uki ) +

N∑
j=1

(1− αk
ij)mij (uk−1

j − uk−1
i )

+ ∆tk θ
N∑
j=1

(1− αk
ij) d

k
ij (ukj − uki ) + ∆tk (1− θ)

N∑
j=1

(1− αk
ij) d

k−1
ij (uk−1

j − uk−1
i )

= ∆tk θ f
k
i + ∆tk (1− θ) fk−1

i , i = 1, . . . ,M , (10)

uki = ubi(tk) , i = M + 1, . . . , N , (11)

where fk
i = fi(tk).

3 Solvability of the nonlinear FEM-FCT scheme

For proving the solvability of the nonlinear problem, we shall use a consequence of Brouwer’s
fixed-point theorem, see [7, p. 164, Lemma 1.4].

Lemma 1 Let X be a finite-dimensional Hilbert space with inner product (·, ·)X and norm
‖ · ‖X . Let Π : X → X be a continuous mapping and B > 0 a real number such that
(Πx, x)X > 0 for any x ∈ X with ‖x‖X = B. Then there exists x ∈ X such that
‖x‖X < B and Πx = 0.

Theorem 2 For any i, j ∈ {1, . . . , N}, let αk
ij : RN → [0, 1] be such that αk

ij r
k
ij is a

continuous function of uk1, . . . , u
k
N . Let (5) and (6) be satisfied and let the functions αk

ij

satisfy (9). Then there exists a solution of the nonlinear problem (10)–(11).

Proof. For a vector U = (u1, . . . , uN)T , we set Ũ = (u1, . . . , uM)T . On the other hand,
for a vector Ũ = (u1, . . . , uM)T , we set U = (u1, . . . , uM , u

b
M+1(tk), . . . , ubN(tk))T .

With this notation, we define an operator Π : RM → RM by

(Π Ũ)i =
M∑
j=1

mij uj + ∆tk θ
M∑
j=1

akij uj

+
N∑
j=1

(1− αk
ij(U)) [∆tk θ d

k
ij −mij] (uj − ui) + gi(U) , i = 1, . . . ,M ,
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where for i = 1, . . . ,M

gi(U) =
N∑

j=M+1

mij u
b
j(tk) + ∆tk θ

N∑
j=M+1

akij u
b
j(tk)−

N∑
j=1

mij u
k−1
j

+∆tk (1− θ)
N∑
j=1

ak−1
ij uk−1

j +
N∑
j=1

(1− αk
ij(U))mij (uk−1

j − uk−1
i )

+∆tk (1− θ)
N∑
j=1

(1− αk
ij(U)) dk−1

ij (uk−1
j − uk−1

i )−∆tk θ f
k
i −∆tk (1− θ) fk−1

i .

Then, Uk ∈ RN solves the algebraic problem (10)–(11) if an only if Π Ũk = 0 and uki =
ubi(tk) for i = M + 1, . . . , N . Thus, it suffices to show that the operator Π satisfies the
assumptions of Lemma 1.

Let (·, ·) denote the Euclidean inner product in RM and ‖ · ‖ the corresponding norm. Then,
for any Ũ ∈ RM , one has

(Π Ũ, Ũ) =
M∑

i,j=1

uimij uj + ∆tk θ
M∑

i,j=1

ui a
k
ij uj

+
N∑

i,j=1

(1− αk
ij(U)) [∆tk θ d

k
ij −mij]ui (uj − ui)

−
N∑

i=M+1

N∑
j=1

(1− αk
ij(U)) [∆tk θ d

k
ij −mij]u

b
i(tk) (uj − ui) +

M∑
i=1

ui gi(U) ,

where we extended the matrix M to a symmetric N ×N matrix. In view of the symmetry of
M, Dk, and the limiters, one has

N∑
i,j=1

(1− αk
ij(U)) [∆tk θ d

k
ij −mij]ui (uj − ui)

= −1

2

N∑
i,j=1

(1− αk
ij(U)) [∆tk θ d

k
ij −mij] (uj − ui)2 ≥ 0 ,

where we used that mij ≥ 0, dkij ≤ 0 for i 6= j, and αk
ij ∈ [0, 1]. The last property also

implies that the values gi(U) are bounded independently of U. Consequently,

(Π Ũ, Ũ) ≥
M∑

i,j=1

uimij uj + ∆tk θ
M∑

i,j=1

ui a
k
ij uj − C1 ‖Ũ‖ − C2

with someC1,C2 > 0. Obviously, the matrix (mij)i,j=1,...,M is positive definite. Moreover, in
view of (5) and (6), one has a(tk)(v, v) ≥ ε |v|21,Ω for any v ∈ H1(Ω) with v = 0 on ΓD so

that the matrix (akij)i,j=1,...,M is positive semi-definite. This gives (Π Ũ, Ũ) ≥ C3 ‖Ũ‖2−C4

with some C3, C4 > 0, which implies that (Π Ũ, Ũ) > 0 if ‖Ũ‖ ≥
√

2C4/C3. Since Π is
continuous, the statement of the theorem follows from Lemma 1. �
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Remark 3 If the problem (10)–(11) is defined using data that do not satisfy some of the
assumptions (5) and (6), then the term ∆tk θ

∑M
i,j=1 ui a

k
ij uj in (Π Ũ, Ũ) may be negative

and has to be estimated from below by −C5 ∆tk ‖Ũ‖2. This allows to prove the solvability
only for a sufficiently small time step ∆tk.

4 Example of limiters αkij satisfying the assumptions of
Theorem 2

Let Th be a simplicial triangulation of Ω possessing the usual compatibility properties and
let the considered finite element space consist of continuous piecewise linear functions with
respect to Th. Then, the basis functions ϕ1, . . . , ϕN are assigned to vertices x1, . . . , xN
of Th and satisfy ϕi(xj) = δij , i, j = 1, . . . , N .

We shall present a limiting strategy described in [2] which is motivated by [8] and utilizes an
explicit solution Ûk of the low order scheme

MLÛk =
(
ML − (1− θ) ∆tkLk−1

)
Uk−1 + (1− θ) ∆tk Fk−1 .

To assure that Ûk satisfies the DMP, if the continuous solution satisfies a weak maximum
principle, the time step has to obey a CFL-like condition. Then, for i = 1, . . . , N , one defines
the local quantities

P+
i :=

∑
j∈S(i)

(rkij)
+, P−i :=

∑
j∈S(i)

(rkij)
−,

Q+
i := max

j∈S(i)∪{i}
ûkj − ûki , Q−i := min

j∈S(i)∪{i}
ûkj − ûki ,

R+
i :=

{
min

(
1,

mL
ii Q

+
i

∆tk P+
i

)
if P+

i > 0,

1 if P+
i = 0,

R−i :=

{
min

(
1,

mL
ii Q

−
i

∆tk P−
i

)
if P−i < 0,

1 if P−i = 0,

where (rkij)
+ = max{rkij, 0} and (rkij)

− = min{rkij, 0} are the positive and negative parts
of rkij , respectively, and S(i) = {j ∈ {1, . . . , N}\{i} ; ∃ T ∈ Th : xi, xj ∈ T}. Finally,
the correction factors αk

ij are defined by

αk
ij :=

{
min(R+

i , R
−
j ) for rkij ≥ 0,

min(R−i , R
+
j ) for rkij < 0.

(12)

This choice of αk
ij guarantees that the scheme (10)–(11) satisfies the DMP.

These limiters αk
ij are clearly symmetric (if rkij 6= 0) with values in [0, 1] and the following

lemma shows that they also satisfy the continuity assumption from Theorem 2.

Lemma 4 For any i, j ∈ {1, . . . , N}, the function αk
ij defined in (12) is such that αk

ij r
k
ij is

a continuous function of uk1, . . . , u
k
N .
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Proof. For U ∈ RN , denote Φ(U) = (αk
ij r

k
ij)(U), i.e., we dropped the index k in Uk.

Consider any U ∈ RN . If rkij(U) 6= 0, then the denominators in the formulas defining αk
ij

do not vanish in a neighborhood of U and hence αk
ij is continuous at U. Consequently, also

αk
ij r

k
ij is continuous at U. If rkij(U) = 0, then

|(αk
ij r

k
ij)(U)− (αk

ij r
k
ij)(U)|

= |(αk
ij r

k
ij)(U)| ≤ |rkij(U)| = |rkij(U)− rkij(U)| ≤ C ‖U− U‖

and hence again αk
ij r

k
ij is continuous at U. �
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