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Near-real-time monitoring of global CO2 emissions
reveals the effects of the COVID-19 pandemic
Zhu Liu et al.#

The COVID-19 pandemic is impacting human activities, and in turn energy use and carbon

dioxide (CO2) emissions. Here we present daily estimates of country-level CO2 emissions for

different sectors based on near-real-time activity data. The key result is an abrupt 8.8%

decrease in global CO2 emissions (−1551 Mt CO2) in the first half of 2020 compared to the

same period in 2019. The magnitude of this decrease is larger than during previous economic

downturns or World War II. The timing of emissions decreases corresponds to lockdown

measures in each country. By July 1st, the pandemic’s effects on global emissions diminished

as lockdown restrictions relaxed and some economic activities restarted, especially in China

and several European countries, but substantial differences persist between countries, with

continuing emission declines in the U.S. where coronavirus cases are still increasing

substantially.
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Changes in human activities related to the COVID-19
pandemic1 affected global energy consumption and asso-
ciated CO2 emissions, but many details of these effects

remain unclear. In addition to the considerable differences2–4,
annual national inventories of energy and fuel use that have
historically been used to assess CO2 emissions lag reality by 1 or 2
years5–10, and are thus not yet available to assess the COVID-19
impacts. This has spurred various efforts for producing more
current estimates of emissions changes11,12. Initial reports based
on a limited sample of power plants and indirect satellite obser-
vations of atmospheric pollutants13,14 suggested an significant
drop in global emissions. The International Energy Agency (IEA)
used monthly projections of fossil fuel energy demand to estimate
a −5% decline in global CO2 emissions in January–April 2020
compared to the same period in 201911. Le Quéré et al. used
confinement index data under the assumption that emissions
reductions scaled according to mandated lockdown intensity and
estimated that daily emissions in April 2020 were 17% less than
mean daily emissions in 201912. Yet daily data with detail for all
sectors that capture the precise timing of changes in emissions in
different regions are lacking (see further discussion in Supple-
mentary Note 1).

Here, we present the estimates of daily, sector-specific,
country-level CO2 emissions from January 1st, 2019 to June 30th,
2020, constructed primarily from near-real-time activity data,
results of the international research initiative Carbon Monitor
(https://carbonmonitor.org/). These estimates provide a picture of
the daily, weekly, and seasonal dynamics of CO2 emissions before
and after the COVID-19 pandemic and the economic downturn
that it has triggered. For example, the emissions effects of major
holidays such as Christmas in the U.S. and Europe, the Spring
Festival in China, and Holi Festival in India are evident. Overall,
we find an 8.8% (1551 Mt CO2) decrease in global CO2 emissions
in the first half of 2020 related to the COVID-19 pandemic.

Results
Details of data sources and analytical methods are provided in
the “Methods” section. In summary, region- and sector-specific
estimates of daily CO2 emissions were calculated from hourly
datasets of electricity power production in 31 countries, daily
vehicle traffic in 416 cities worldwide, daily global passenger
aircraft flights and distance flown, monthly production data for
industry output in 62 countries, and fuel consumption data
combined with weather information for residential and com-
mercial building emissions in 206 countries (see “Methods” for
data sources). Our estimates cover fossil and industry sources
of global CO2 emissions, including process emissions from
cement production which were not considered in the IEA
assessment10,11.

Near-real-time daily emissions from January 1st, 2019 to June
30th, 2020. Figure 1 shows the substantial COVID-related
decreases in CO2 emissions between January 1st and June 30th
of 2020 as compared to 2019. In the aggregate, emissions were
8.8% lower (1551Mt CO2). The range of seasonal, weekly, and
daily variations in CO2 emissions in 2019 and January through
June of 2020 are remarkably large, as seen in Fig. 1a, b, mainly
related to heating and cooling demands inferred from heating and
cooling degree days (HDD15 and CDD) as well as to periodical
seasonal and weekend differences in activities and lower emis-
sions during holidays. For example, the lowest estimated daily
CO2 emissions in the U.S. was on Christmas Day of 2019, and the
lowest daily power-sector CO2 emissions in China was during the
Spring Festival of 2019. The Spring Festival vacations resulted in a
short-term emission drop of similar magnitude than the

abnormal impacts of the COVID during the climax of the
country’s COVID lockdown in March of 2020. Our monthly
averaged estimates of CO2 emissions obtained from daily data are
consistent with previous studies16 and further clarifies the mag-
nitude of the decline of global monthly CO2 emissions in Feb-
ruary 2019 from decreased energy demand during China’s Spring
Festival.

To distinguish the COVID-19 impacts from recurrent seasonal
variations and holiday impacts, we estimate the difference
between daily emissions in 2020 and the same period in 2019
(Fig. 1 and Supplementary Table S1). Globally, we find an 8.8%
(1551Mt CO2) decrease in CO2 emissions during the first half of
2020 as compared to the same period in 2019 (including the extra
leap day of emissions on February 29th of 2020; light blue vs. pink
curves in Fig. 1a). This total difference (1551Mt CO2) is the
largest ever decline in emissions over the first half year (Fig. 1c),
larger than for any recent economic downturn, and larger than
the annual decrease (790Mt CO2) during World War II, although
mean emissions were much larger than now at that time. Mean
daily emissions over the same period (January–June) were 88.4
Mt CO2 per day, which is 10% lower than the daily average
emissions in 2019 (98.2 Mt CO2 per day). The decline of daily
global emissions was the most pronounced in the month of April
(−16.9% compared with 2019), but emissions began to recover in
late April and May, as economic activities fully resumed in China
and parts of Europe (Fig. 1b). In June, power sector emissions
were only 1.1% lower in 2020 than 2019, compared to being 9.7%
lower in April. However, decreases in mobility-related emissions
seem to be more persistent: emissions from ground transporta-
tion (data updated to July 31st 2020) were 13.0% lower in July of
2020 than in 2019, though monthly decreases in April and May
were much larger (−38.6% and −32.6% respectively) but smaller
in June (−15.2%).

It is important to note that the first months of 2020 were
exceptionally warm across much of the northern hemisphere,
meaning that CO2 emissions during that period would have been
somewhat lower than in the same period in 2019 even without the
disruption in economic activities and energy production caused
by COVID-19 and related lockdowns. We made an attempt to
attribute the observed power emission reductions to the effects of
COVID-19 alone by removing the difference of daily CO2

explained by temperature variation between 2019 and 2020 in the
winter months (January–March), and comparing the CO2

emission in 2020 with the same period in 2019 (See “Methods”).
The results of this preliminary attribution analysis suggest that in
the winter months (January–March) of 2020, the COVID-19
explains 85% of the power sector reduction, the rest being
attributed to warm weather.

Daily CO2 emissions time series reveal that the different
timings of the reductions were synchronous with lockdown
measures. Figure 2 shows trends in daily CO2 emissions globally
and for 11 major regions. In the first half year of 2020, the most
pronounced decline occurred in U.S. (−338.3 Mt CO2, −13.3%),
followed by EU27 & UK (−205.7 Mt CO2, −12.7%), India
(−205.2 Mt CO2, −15.4%) and China (−187.2 Mt CO2, −3.7%),
with substantial but progressively decreases in Japan (−43.1 Mt
CO2, −7.5%), Russia (−40.5 Mt CO2, −5.3%) and Brazil (−25.9
Mt CO2, −12.0%). The sudden, large, and early drop of Chinese
emissions corresponds to the initial outbreak of COVID-19 and
to the country’s strict lockdown measures which were gradually
relaxed in March. China’s CO2 emissions then recovered quickly,
however. Monthly relative differences between 2020–2019 were
−18.4% in February, −9.2% in March, +0.6% (i.e., greater in
2020 than 2019) in April, and reached +5.4% in May, that is a
rebound above 2019 in the same month of the year. The quick
recovery of China’s emission has been reported by other studies
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Fig. 1 Effects of COVID-19 on global CO2 emissions. a Daily CO2 emissions in 2019 and 2020 (7-day running mean); b Global emissions aggregate
different timing of effects in different regions (7-day running mean); c COVID-19 causes the largest annual decrease of CO2 emission since 1900.
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and is consistent with calculation based on satellite observation17.
However, the monthly total CO2 emission is higher than that of
previous year since May 2020 does not necessarily mean the
economy has fully recovered. The rebound of economy is normal
especially in energy intensive industries, in which the industrial
activities and infrastructure construction has suspended during
the lockdown, and this could result in the shortage of industrial
products and rebound of production after the lockdown is
released. In other countries, there was no decrease in emissions
due to COVID-19 until late February or March, and the observed
drop was coincident with the spread of the virus and onset of

lockdowns, with greater decreases in March (U.S.: −14.1%, EU27
& UK: −8.3%, India: −16.9%, Russia: −4.9%, Brazil: −10.8%,
Japan: −4.7%) than in February (U.S.:+ 1.7%, EU27 & UK:
−6.2%, India: +6.4%, Russia: −1.0%, Brazil: −1.4%, Japan
−2.2%). In these countries, emissions decreases were the largest
in April (U.S.: −25.4%, EU27 and UK: −26.3%, India: −44.2%,
Russia: −10.9%, Brazil: −31.3%, Japan: −10.3%). Since May 2020,
lockdown restrictions in many of these countries began to ease
and emissions deficits became smaller but remained significant
(U.S.: −26.4% in May and −14.8% in June; EU27 & UK: −21.6%
in May and −6.9% in June; India: −27.6% in May and −15.0% in
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June; Russia: −8.4% in May and −5.1% in June; Brazil: −26.0% in
May and −12.6% in June; Japan: −17.2% in May and −7.6% in
June).

The decrease is mainly due to the ground transportation sector
(−18.6%) and domestic (−35.8%) and international aviation
(−52.4%) (Figs. 3, 4). Figure 3 shows the breakdown of daily
emissions changes by sectors. The largest contributions to the
global decrease in emissions in 2020 come from ground
transportation (−613.3 Mt CO2, 40% of the total decrease;
purple in Fig. 3a) and the power sector (−341.4 Mt CO2, 22% of
the total decrease; orange in Fig. 3a), with somewhat smaller
decreases from the industry sector (−263.5 Mt CO2, 17% of the
total decrease; warm orange in Fig. 3a) and the aviation sector
(including domestic aviation and international aviation, −200.8
Mt CO2, 13% of the total decrease; yellow in Fig. 3a), and
relatively small decreases in international shipping (−89.1 Mt
CO2, 6% of the total decrease; blue in Fig. 3a) in residential sector
emissions, which include residential, public and commercial
buildings (−42.5 Mt CO2, 3% of the total decrease; green in
Fig. 3a). Further details of these sectoral changes (Fig. 4) are
discussed below.

Power Generation. Estimates of power sector emissions rely on
near-real-time hourly or daily electricity data. Figure 4a shows
that in the first half year of 2020, global CO2 emissions from the
power sector declined by −5.0% (−341.4 Mt CO2), with a small
decline in China (−1.4%, −31.3 Mt CO2) and somewhat larger
decreases in the U.S. (−7.6%, −66.3 Mt CO2), India (−12.7%,
−83.6 Mt CO2) and the EU27 & UK (−19.3%, −98.5 Mt CO2)
(see also Supplementary Table S2). Some of the drop in China’s
power sector emissions was due to warmer winter temperatures
in 2020. The negligible differences in emissions during late Jan-
uary and early February of 2020 and 2019 are explained by the
different dates of China’s Spring Festival in the two years: 2019
emissions were low during that period due to the festival (Sup-
plementary Fig. S1). The decline of power generation in Qing
Ming Festival (April 5th) and the Labor Day holiday (May
1st–5th) are also visible in the results (Supplementary Fig. S1).

Industry and cement production emissions. Industry emissions
from steel, chemicals and other manufactured products from
fossil fuel combustion and the cement production process
represent on average 29% of the global CO2 emissions during a
normal year, with a much larger share of national emissions in

developing countries, e.g., 39 and 33% in China and India. In this
study, only emissions from direct fuel consumption and chemical
process emissions by the industry sector were considered whereas
electricity-related emissions for industry are counted with the
power generation sector. In the first half year of 2020, industry
emissions fell by −5.5% globally, incorporating substantial
decreases in the China (−2.1%, −40 Mt CO2), U.S. (−9.1%,
−36.5 Mt CO2), the EU27 & UK (−14.1%, −43.5 Mt CO2) and
India (−22.1%, −92.6 Mt CO2) (Fig. 4b and Supplementary
Table S3). However, Emissions from China’s steel production
(42% of the country’s industrial emissions from fuel combustion
in recent years) remained essentially the same as in 2019, with
slight increases in January and February (1.4% and 5.0%,
respectively) and a modest decrease in March (−1.7%) but
rebound in May (4.2%). Overall, despite COVID-19 lockdowns
around the world, emissions from China’s steel industry were
thus 2.2% higher in the first half year of 2020 than in 2019. In
contrast, cement industry emissions (22.2% of China’s industrial
emissions from fuel combustion in recent years) decreased sub-
stantially. We inferred a −4.8% of cement emissions during the
first half year of 2020, composed of a drop of −29.5% drop in
January and February combined, of −18.3% in March, but a surge
by +3.8%, +8.6% and +8.4% in April, May and June above 2019
values (based on official reports from National Bureau of
Statistics18).

Ground transportation emissions. Ground transportation (See
“Methods” for data and calculation process) represents 18% of
global CO2 emissions in recent years. Using TomTom congestion
level with daily transportation activity data for 416 global cities in
57 countries, we estimate that, in the first half year of 2020
ground transportation emissions decreased by −18.6% (−613.3
Mt CO2), and −17.8% (−685.5 Mt CO2) in the first 7 months of
2020 (Fig. 4c, Supplementary Fig. S2 and Supplementary
Table S4). As lockdowns began in China, monthly ground
transport emissions in January 2020 were lower by −18.6%
compared to 2019, by −53.8% decrease in February, and emis-
sions deficits in this sector were progressively reduced in March
(−25.0%), April (−16.1%), May (−10.8%), June (−5.9%), and
July (−4.2%) as restrictions were relaxed. As with other sectors,
the largest decreases in ground transport emissions in other
countries than China occurred later. Ground transportation
emissions in the EU27 & UK and India dropped by −16.7% and
−25.7% in March, respectively, with decreases reaching −31.9%
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and −65.6% in April, respectively, before shrinking somewhat in
May (−20.7% and −34.4%, respectively), June (−1.2% and
−16.7%, respectively), and July (−0.3% and −7.2% respectively).
In EU27 & UK, decreases in over the first seven months of 2020
were largest in Spain (−16.6%), Italy (−13.7%), France (−13.0%),
and the UK (−12.4%) (Supplementary Fig. S2). Even without
national restrictions to transportation in U.S., Brazil, and Japan,
ground transportation in those countries dropped by 24%,
−17.5%, and −7.7%, respectively, in the first 7 months of 2020.

Aviation and shipping emissions. Emissions from global avia-
tion decreased by −43.9% (−200.8 Mt CO2) and −46.7% (254.5
Mt CO2) during the first half year and the first 7 months of 2020
respectively, of which roughly 70% of the drop was related to
international flights (Fig. 4e, f and Supplementary Table S5).
Decreases in emissions from international flights are included in
our global estimates, but only domestic flight emissions were
attributed to different countries, based on the departure and
arrival country for each flight (See “Methods”). The total number
of flights and global aviation emissions show two big decreases,
one in Asia near the end of January and another coincident with
travel bans and lockdown measures in the rest of the world that
began in the middle of March. Global aviation emissions began

rebounding somewhat in late April and have slightly and gra-
dually increased throughout the end of July. However, interna-
tional flight emissions in July 2020 were still 72.0% lower than the
emissions in July 2019. Emissions from international shipping
were 25% lower in the first half year of 2020 than over the same
period in 2019.

Commercial and residential buildings. Due to COVID-19
pandemic, more people stayed at home. In this section, we ana-
lyze changes of emissions from residential fuel use, while the
change in electricity consumption by households and commer-
cial/public buildings was counted as part of the power sector
emissions. Obtaining daily emissions from this sector is more
uncertain than from other sectors, given that daily residential
natural gas consumption data is not available for all countries.
We looked at publicly available natural gas daily consumption
data by residential and commercial buildings for France (https://
www.smart.grtgaz.com/fr/consommation) during 2019 and 2020
as a case study to show the change in residential natural gas
consumption (see “Methods”). In this country, residential emis-
sions did not change from other factors than heating degree days
variations in 2020, even though most people were confined at
home. We extrapolated this behavior to other countries by
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assuming that emissions from fuel use (oil and gas) in residential
and commercial buildings varied only from population-weighted
heating degree days calculated from surface (2-m) air temperature
data for 206 countries19, taking into account country-specific
weekly cycles and holidays. Global heating demand in the first
seven months of 2020 was down by −2.1% compared to 2019,
owing to the abnormally warm northern-hemisphere winter
condition20, resulting in a proportional decrease in emissions
from this sector. We stress gain the fact that this estimate rests on
the assumption that residential and commercial fuel consumption
was driven mostly by temperature, with no substantial change in
the intrinsic fuel consumption of households and commercial
buildings during the lockdown period, an assumption which
remain to be tested as residential energy use data will be available
later this year.

Observation and verification from air quality data. Our esti-
mates of decreases in fossil and industry CO2 emissions are
consistent with observed changes in nitrogen dioxide (NO2)
emissions, which are also mainly produced by fossil fuel com-
bustion. For example, tropospheric NO2 column concentration
data from satellites21,22, and surface NO2 concentrations from air
quality stations show decreases (See “Methods”, Supplementary
Fig. S3 and Supplementary Table S6) consistent with our esti-
mates of reductions in fossil fuel and industry emissions. In
China, decreases in NO2 in the first four months of 2020 are
consistent with our calculated NO2 emission declines based on
near-real-time activity and emission data (See Methods and
Supplementary Table S6). Substantial and similar decreases in
NO2 occurred over the U.K., France, Germany, Italy, and the U.S.
Over India, the observed decline in NO2 was weaker, also con-
sistent with our emissions estimates.

Overall, NO2 declines over China in January and February are
the largest declines since the beginning of the OMI satellite record
in 2004. The consistent results from both ground-based and
satellite monitoring systems confirm the significant decline of the
NO2 concentrations due to COVID-19 (See “Methods”). Based
on the OMI satellite data, Over the U.K., France, Germany, and
Italy, NO2 decreased by a similar amount than in the U.S. Over
India, NO2 showed a weaker decline, also consistent with
satellite data.

Discussion
Our estimates of daily CO2 emissions reveal the effects of
COVID-19 on human energy use and CO2 emissions in the first
half year of 2020 with sectoral information of daily emission
estimates till the end of July, and how emissions decreases
developed in time across countries. The longer-term effects of the
pandemic on emissions remain uncertain, and depend upon
factors such as the efficacy and stringency of public health poli-
cies, the recovery of economies and human activities, and per-
sistent changes in human behavior. Nevertheless, our data
indicate a fast recovery in most countries by the end of June
except in the U.S., Brazil, and India where the number of COVID
cases continued to remain high. In China, we even observed a
rebound of emissions above the levels of 2019 as early as the
beginning of May.

If the pandemic remains under control in the next few months,
the decrease of annual emissions will be considerably less than
during the first half of the year. We estimate that total global CO2

emissions were 8.8% lower in the first half year of 2020 than in
2019. Based on an assumption that COVID-19 outbreaks will
fade everywhere in the second half of the year, the International
Monetary Fund predicted that global economic output (GDP)
will decrease by −3.0% in 20201,23. In comparison, our results for

June show that emissions nearly recovered in different countries
after lockdown measures were relaxed. For example, daily CO2

emissions rebounded in most countries since April or May, with
China’s emissions in May of 2020 exceeding its emissions in May
of 2019 by 5.4%. Yet decreases in emissions remain substantial
and even amplified in some countries that remained affected by a
high number of COVID cases. For example, U.S. emissions were
14.8% lower in June of 2020 than in June of 2019, even though
lockdowns were at the same time being relaxed throughout the
country.

We emphasized that the absolute decreases in CO2 emissions
are larger than any in history, including those that occurred
during the recent 2008–2009 global financial crisis. At face value,
an 8.8% relative reduction of emissions seems to be small when
compared to the magnitude and extent of the disturbance of
human activities that the COVID produced. This means that the
long-term emissions decreases needed in this century to achieve
low arming targets must be based on structural and transfor-
mational changes in energy production systems, de-carbonization
of transportation and improved building energy use efficiency,
that is an improvement of the carbon intensity of economies
rather than decreases of human activities.

Thus, as we continue to update daily emissions, it will be
possible to monitor subtle changes in activity and to detect slower
changes in behavior and infrastructure. For example, the longer-
term effects of the pandemic on transportation emissions may
reflect both a legacy decrease in activity (e.g., if more people
continue to work from home) and modal changes (e.g., if urban
commuters avoid mass transit), trends that we can now observe
over time. Similarly, the method we developed will allow us to
assess persistent changes in the carbon intensity of countries’
economies (CO2 emissions per unit GDP) as lockdown restric-
tions are relaxed, activities resume, and post-pandemic policies
are adopted. For example, given disproportionate impacts on
activities such as cement production, we already showed sub-
stantial reductions in the emissions per unit of GDP over in the
first half year of 2020 (−2.1% in China, −4.5% in EU, and −9.0%
in the U.S.). However, although numerous organizations and
some policy-makers have now emphasized the opportunity for a
Green Recovery that will both revive economies and advance
climate goals24,25, emissions could also rebound and exceed pre-
pandemic levels if recovery and stimulus rely on carbon-intensive
energy availability. And it is here that the value of near-real-time
monitoring to policy making becomes apparent: ambitious cli-
mate goals, such as limiting the increase in mean global tem-
peratures to 1.5 °C, leave no time for such a Carbon Rebound26. It
is thus critical that structural changes can be detected as soon as
possible, in order to identify and possibly modify policies that are
less effective. In the future, our near-real estimates of emissions
could shorten the response time of policy adjustments by roughly
a year (compared to annual emissions estimates). The detail and
timeliness of our emissions estimates will therefore facilitate more
agile and adaptive management of CO2 emissions during both the
pandemic recovery and the ongoing energy transition.

Methods
Annual total and sectoral emissions per country in the baseline year 2019.
The CO2 emissions and sectoral structure in 2018 for countries and regions are
extracted from EDGAR V5.07, and the emissions are scaled to the year 2019 based
on the growth rates from Liu et al.27 and studies by the Global Carbon Project28,29.
For countries with no current estimates of emission growth rates in 2019 such as
Russia, Japan, and Brazil, we assume their growth rates of emissions were 0.5%
based on the emission growth rates of the rest of world28.

We calculated CO2 emissions based on the methodology developed previously3:

Emis ¼
XXX

ADi;j;k � EFi;j;k: ð1Þ

i, j, k reflect the regions, sectors, and fuel types respectively. In our calculation,
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index i covers countries, index j covers four sectors that are power generation,
industry, transportation and household consumption, while k covers three primary
fossil fuel types which are coal, oil and natural gas. Emission factors can be further
separated into the net heating values for each fuel “v”, the energy obtained per unit
of fuel (TJ/t), the carbon content “c” (tC/TJ) and the oxidation rate “o”, which is
the fraction (in %) of fuel oxidized during combustion and emitted to the
atmosphere.

Emis ¼
XXX

ADi;j;k � vi;j;k � ci;j;k � oi;j;k
� �

: ð2Þ
Given the large uncertainty of CO2 emission in China4,30, we calculated China’s

CO2 emissions separately. For China, the energy consumption of coal, oil and gas
in 2000–2017 are based on energy balance tables from China Energy Statistical
Yearbook31. However, due to the 2 years lag of the publications of China Energy
Statistical Yearbook, we project the energy consumption of coal, oil and gas in 2018
and 2019 by multiplying the annual growth rates of coal, oil, and gas reported on
the Statistical Communiqué32. Country-specific emission factors are adopted in the
calculation, which are relatively lower to IPCC default emission factors3,33.

We assumed that the emission factors and the structure remain unchanged for
each country in 2020 when comparing with 2019. Thus, the rate of change of the
emission is calculated based solely on the change of the energy consumption data
in 2020 compared to the same period of 2019.

Based on the assumption of sectoral carbon intensity and energy structure
remaining unchanged from 2018, the EDGAR sectors were aggregated into several
main sectors, including power sector, ground transport sector, industry sector,
residential sector, aviation sector, and international shipping sector.

Power sector. For China, we used daily thermal generation data in China till May
24, 2020, and extend to the end of June by linear interpolation with daily coal
consumption of six power enterprises from the WIND (https://www.wind.com.cn/).
For India, daily total electricity generation data by production types are acquired
from Power System Operation Corporation Limited (https://posoco.in/reports/
daily-reports/), and we calculated the thermal production by aggregating the elec-
tricity produced by Coal, Lignite, and Gas, Naphtha and Diesel. For the U.S., we
calculated daily thermal production by summarizing the electricity produced by
coal, petroleum and gas of 48 states from the Energy Information Administration’s
Hourly Electric Grid Monitor (https://www.eia.gov/beta/electricity/gridmonitor/).
For EU countries and UK, electricity generation data by production types at
resolution of 1 h to 15 min are collected from ENTSO-E Transparent platform
(https://transparency.entsoe.eu/dashboard/show). Data of the 24 EU countries
(Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland,
France, Germany, Greece, Hungary, Italy, Ireland, Latvia, Lithuania, Netherlands,
Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden) and United King-
dom are available from the data platform. We remove the outliers and fill the N/A
values by using “interpolate()” function built in Python Pandas packages, then
aggregate the thermal production data into daily level. For Russia, hourly electricity
generation data are collected from the United Power System of Russia (http://www.
so-ups.ru/index.php). For Japan, we collect the hourly electricity generation data by
production types from OCCTO (Organization for Cross-regional Coordination of
Transmission Operators, https://www.occto.or.jp/) whose data are collected from
ten electricity providers in Japan (Hokkaido Electric Power Network, Tohoku
Electric Power Network, Tokyo Electric Power Company, Chubu Electric Power
Grid, Hokuriku Electric Power Company, Kansai Electric Power, Chugoku Electric
Power Transmission & Distribution, Shikoku Electric Power Company, Kyushu
Electric Power Transmission & Distribution, and Okinawa Electric Power Com-
pany). For Brazil, hourly electricity generation data by production types are
acquired from the Operator of the National Electricity System (http://www.ons.org.
br/Paginas/). We calculate the national emission changes based on the changes of
daily thermal production, or total electricity generation data when thermal pro-
duction data are not available (i.e., Russia).

For countries not listed above, we estimate the emission changes in 2020 based
on the start time of the national closures. Firstly, as the aforementioned countries
account for 74% of the global total emissions in the power sector, we disaggregate
the global power emissions in 2019 by the weight of the daily totals of emissions of
aforementioned countries into daily level, and then calculate the daily emissions of
the rest of the world by subtracting the daily totals of aforementioned countries
from daily global power emissions. Secondly, we collect the periods of national
closure from Wikipedia34 and related news. Based on the daily emission estimates
of the power sector in this study, we use the average emission change rate during
the lockdown period of the aforementioned countries with national closures, to
estimate the emission changes of countries in the rest of the world during their
national closures. Then we aggregate the daily emission changes of the rest of the
world and calculate the daily total reduction rate caused by closures compared with
the same day in previous year.

We have tried to correct the power generation data for the temperature effect,
i.e., power generation change caused by temperature change from year 2019 to year
2020. The temperature correction is conducted in two steps. Step 1: finding the
relationship between daily power generated and daily temperature. This was
achieved by establishing a linear regression between daily power generation data
and daily temperature data for each country. When a medium to strong correlation
between power generation and temperature is found (regression coefficient R2 > 0.5),

step 2 (temperature correction) is conducted subsequently. Step 2: We use the linear
regression coefficients and the temperature change between year 2020 and year 2019
(temperature difference on the same day of these 2 years) to calculate the corrected
power generation for year 2020.

Industry and cement production. For China, the industrial sector was divided
into four sub-categories including steel industry, cement industry, chemical
industry, and other industries, based on the structure of industrial emissions cal-
culations conducted by IEA10. For each category, the monthly production data was
obtained and the corresponding month-on-month growth rate was calculated
accordingly. Specifically, the production data was regarded as the emission esti-
mator i.e., activity while the emission factors were assumed the same as 2019 for
each industry. For the steel industry, we collected the global monthly crude steel
production data from the World Steel Association website (https://www.worldsteel.
org/) while the monthly production data of cement, chemicals as well as other
industries were referred to the National Bureau of Statistics website. For the latter
two multi-component categories, the production of sulfuric acid, caustic soda, soda
ash, ethylene, chemical fertilizer, chemical pesticide, primary plastic and synthetic
rubber was taken into account while 26 other industrial products including crude
iron ore, phosphate ore, salt, feed, refined edible vegetable oil, fresh and frozen
meat, milk products, liquor, soft drinks, wine, beer, tobaccos, yarn, cloth, silk and
woven fabric, machine-made paper and paperboards, plain glass, ten kinds of
nonferrous metals, refined copper, lead, zinc, electrolyzed aluminum, industrial
boilers, metal smelting equipment, and cement equipment were included in the
other industries sub-group. The calculation of growth rate for the steel and cement
industries was relatively straightforward, in that the 2020 and 2019 month-on-
month data were compared. In terms of the latter two multi-component groups,
the growth rates were evaluated based on the weighted contribution from each
product. Based on the emission distribution of these four industries in the
industrial sector in China in year 2019 and the growth rates obtained as stated
above, we finally estimated the monthly emission in the first half year of 2020.

For US, EU27 & UK, India, Russia, Japan, and Brazil, we use the cumulative
Industrial Production Index to estimate the growth rates of emissions in these
countries or regions, collected from the U.S. Federal Reserve Board (https://www.
federalreserve.gov), Eurostat (https://ec.europa.eu/eurostat/home), Japan Ministry
of Economy, Trade and Industry (https://www.meti.go.jp), Russia Federal State
Statistics Service (https://eng.gks.ru), India Ministry of Statistics and Programme
Implementation (http://www.mospi.nic.in) and Brazilian Institute of Geography
and Statistics (https://www.ibge.gov.br/en/institutional/the-ibge.htm) respectively.
However, the last observations in EU27 & UK and India were in May 2020. To
estimate the current growth in June 2020, for EU27 & UK and India, we adopt the
predicted results from Trading Economics (https://tradingeconomics.com). Based
on the growth rates, we calculate the monthly data of the industrial sector for 2019
and the first half year of 2020. The monthly industrial emissions are allocated to
daily emissions by daily thermal production data. We follow the same measure for
the power sector to calculate the emission from industry and cement production
for the rest of the world.

Ground transportation. We collected TomTom congestion global level data from
TomTom website (https://www.tomtom.com/en_gb/traffic-index/). The congestion
level (called X hereafter) represents the extra time spent on a trip, in percentage,
compared to uncongested conditions. TomTom congestion level data are available
for 416 cities across 6 continents and 57 countries at a temporal resolution of one
hour to 15 min. More than half of the cities reported by TomTom are in Europe
(228 cities from 30 countries, Russia not included) and North America (93 cities),
while 59 cities are from 13 countries in Asia (including Russia), 13 cities are from 5
countries in South America, and 23 cities are from Africa and Oceania. The list of
416 cities includes most of the major cities in these countries. Of note that a zero
congestion level means that the traffic is fluid, but rather than no cars and zero
emissions. It is thus important to identify the low threshold of emissions when the
congestion level is zero. We compared the time series of daily mean TomTom
congestion level with the daily mean car counts (called Q hereafter) on main roads
in Paris. The daily mean car counts were reported by the City’s service (https://
opendata.paris.fr/pages/home/). We used a sigmoid function to describe the rela-
tionship between X and Q (Supplementary Fig. S4):

Q ¼ aþ bXc

dc þ Xc
: ð3Þ

where a, b, c, and d are the regression parameters. It is shown that the regression
can reflect large drop down in the ground transportation due to the lockdown and
the recovery afterwards. We assume that the daily emissions were proportional to
this relative magnitude of daily mean car counts. Then, we applied the regression
built for Paris to other cities included in the TomTom dataset, assuming that the
relative magnitude in car counts (and thus emissions) follow the similar rela-
tionship with TomTom. We compared the time series of TomTom congestion level
in the first quarter of 2019 and 2020. The emission changes were first calculated for
individual cities, and then weighted by city emissions to aggregate to national
changes. The weighting emissions are taken from the gridded EDGARv4.3.2
emission map for the “road transportation” sector (1A3b) (https://edgar.jrc.ec.
europa.eu/) for the year 2010, assuming that the spatial distribution of ground
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transport does not change significantly within a country. However, during the
COVID-19 pandemic, the pattern of inner-city and inter-city ground transporta-
tion may change differently due to the lockdown measures. But this asymmetric
change of ground transportation may not be effectively captured by the TomTom
congestion level data, since they mainly represent the transportation conditions
within cities. For countries not included in the TomTom dataset, we assume that
the emission changes follow the mean changes of other countries. For example,
Cyprus, as an EU member country, is not reported in the TomTom dataset, and its
relative emission change was assumed to follow the same pattern of the total
emissions from other EU countries included in the TomTom dataset (which covers
98% of EU total emissions). Similarly, the relative emission changes of countries in
ROW but were not reported by TomTom were assumed to follow the same pattern
of the total emissions from all TomTom countries (which cover 85% of global total
emissions). The uncertainty in the TomTom-based Q, and thus emissions were
quantified by the prediction interval of the regression.

Aviation. CO2 emissions from commercial aviation are usually reconstructed from
bottom up emission inventories based on the knowledge of the parameters of
individual flights. We calculated the CO2 emissions from commercial aviation
following this approach. Individual commercial flights are tracked by Flightradar24
(https://www.flightradar24.com) based on reception of ADS-B signals emitted by
aircraft and received by their network of ADS-B receptors. As we do not have yet
the capability to convert the FlightRadar24 database into CO2 emissions on a
flight-by-flight basis, we compute CO2 emissions by assuming a constant (CO2

emission factor per km flown) across the whole fleet of aircraft (regional, nar-
rowbody passenger, widebody passenger, and freight operations). This assumption
is reasonable if the flight mix between these categories has not changed significantly
between 2019 and 2020.

The International Council on Clean Transportation (ICCT) published that CO2

emissions from commercial freight and passenger aviation resulted in 918 Mt CO2

in 201835 based on the OAG flight database and emission factors from the PIANO
database. IATA estimated a 3.4% increase between 2018 and 2019 in terms of
available seat kilometers36. In the absence of further information, we consider this
increase to be representative of freight aviation as well and use a slightly smaller
growth rate of 3% for CO2 emissions between 2018 and 2019 to account for a small
increase in fuel efficiency. The kilometers flown are computed assuming great circle
distance between the take-off, cruising, descent and landing points for each flight
and are cumulated over all flights. The FlightRadar24 database has incomplete data
for some flights and may miss altogether a small fraction of actual flights, so we
scale the ICCT estimate of CO2 emissions (inflated by 3% for the year 2019) with
the total estimated number of kilometers flown for 2019 (67.91 million km and
apply this scaling factor to 2020 data. Again, this assumes that the fraction of
missed flights is the same in 2019 and 2020, which seems reasonable. As the
departure and landing airports are known for each flight, we can classify the km
flown (and hence the CO2 emissions) per country, and for each country between
domestic or international traffic. The daily CO2 emission was computed as the
product of distance flown, by a CO2 emission factor per km flown.

International shipping. We obtained daily emissions in 2019 based on the
assumption that monthly variation is flat in shipping CO2 emissions. In addition,
we assume that the change in shipping emissions is linearly related to the change in
ship’s volume. We estimated the change of shipment by the first half year by -25%
compared to the same period of last year according to the report37.

Residential and commercial buildings. The calculation of emissions was per-
formed in three steps: (1) Calculation of population-weighted heating degree days
for each country and for each day based on the ERA5 reanalysis of 2-m air
temperature, (2) Using the EDGAR estimates of 2018 residential emissions as the
baseline. For each country, the residential emissions were split into two parts, i.e.,
cooking emissions and heating emissions, according to the EDGAR guidelines. The
emissions from cooking were assumed to remain stable, while the emissions from
heating were assumed to depend on and vary by the heating demand. (3) Based on
the change of population-weighted heating degree days in each country, we scaled
the EDGAR 2018 residential emissions to 2019 and 2020. Since the index of
heating degree days are daily values, we can get daily emission updates for the
residential sources globally. Note that the effect of increased time spent in
households on residential buildings and decreased time in commercial and public
buildings was not accounted for, since we did not have fuel consumption data for
urban areas and building types. Our estimates of residential emissions changes are
consistent with those obtained from the City of Paris, based on individual elec-
tricity use (https://data.enedis.fr/) and population surveys (Y. Françoise pers.
comm.).

We test this assumption by analyzing daily natural gas consumption by
commercial and residential buildings in four countries (France, Italy, Belgium, and
Spain) for which data was publicly available from national operators. The gas data
were converted to CO2 emissions using emission factors that account for gas
heating content. After removing the effect of temperature using a piecewise linear
model, there was no evidence of any substantial difference (either positive or
negative) between the calculated emissions and the emissions modeled based on

temperature in these countries, suggesting that—despite up to 90% of the
population being confined at home in these countries—there was little difference in
emissions from residential and commercial buildings. Any decreases in fuel use of
commercial buildings may have been compensated by increases in fuel use in
households.

Uncertainty estimates. We followed the 2006 IPCC Guidelines for National
Greenhouse Gas Inventories to conduct an uncertainty analysis of the data. First,
the uncertainties were calculated for each sector (See Supplementary Table S7 for
uncertainty ranges of each sector):

Power sector: the uncertainty is mainly from inter-annual variability of coal
emission factors and changes in mix of generation fuel in thermal production.
The uncertainty of power emission from fossil fuel is within (±14%) with the
consideration of both inter-annual variability of fossil fuel based on the UN
statistics and the variability of the mix of generation fuel (the ratio of electricity
produced by coal to thermal production).
Industrial sector: The uncertainty of CO2 from industry and cement production
comes from monthly production data. CO2 from industry and cement
production in China accounts for more than 60% of world total industrial
CO2, and the uncertainty of emissions in China is 20%. Uncertainty from
monthly statistics was derived from 10,000 Monte Carlo simulations to estimate
a 68% confidence interval (1 sigma) for China. We calculated the 68%
prediction interval of the linear regression models between emissions estimated
from monthly statistics and official emissions obtained from annual statistics at
the end of each year to deduce the one-sigma uncertainty involved when using
monthly data to represent the change for the whole year. The squared
correlation coefficients are within the range of 0.88 (e.g., coal production) and
0.98 (e.g., energy import and export data), which indicates that only using the
monthly data can explain 88 to 98% of the whole year’s variation3; the
remaining variation is not covered but reflects the uncertainty caused by the
frequent revisions of China’s statistical data after they are first published.
Ground transportation: The emissions from the ground transportation sector
are estimated by assuming that the relative magnitude in car counts (and thus
emissions) follow a similar relationship with TomTom congestion index in
Paris. The uncertainty in emissions were quantified by the prediction interval of
the regression. Applying such a regression to all the 416 cities across the world
might introduce additional uncertainties when other cities have a different
relationship between Q and TomTom congestion level, but this uncertainty is
not quantified in this study due to the lack of similar car counts data for a wide
range of cities across different countries.
Aviation: The uncertainty in the aviation sector comes from the difference in
daily emission data estimated based on the two methods. We calculate the
average difference between the daily emission results estimated based on the
flight route distance and the number of flights and then divide the average
difference by the average daily emissions estimated by the two methods to
obtain the uncertainty in CO2 from the aviation sector.
Shipping: We used the uncertainty analysis from IMO as our uncertainty
estimate for shipping emissions. According to the Third IMO Greenhouse Gas
study 201438, the uncertainty in shipping emissions was 13% based on bottom-
up estimates.
Residential: The 2-sigma uncertainty in daily emissions is estimated as 40%,
which is calculated based on a comparison with daily residential emissions
derived from real fuel consumption in several European countries, including
France, Great Britain, Italy, Belgium, and Spain.

The uncertainty in the emission projection for 2019 is estimated as 2.2% by
combining the reported uncertainty of the projected growth rates and the EDGAR
estimates in 2018.

Then, we combine all the uncertainties by following the error propagation
equation from the IPCC. Equation 4 is used to derive the uncertainty of the sum
and could be used to combine the uncertainties of all sectors:

Utotal ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPðUs � μsÞ

p
P

μs
�� �� ; ð4Þ

where Us and μs are the percentage and quantity (daily mean emissions) of the
uncertainty of sector s, s respectively. Equation 5 is used to derive the uncertainty of
the multiplication, which in turn is used to combine the uncertainties of all sectors
and of the projected emissions in 2019:

Uoverall ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiX

U2
i

q
: ð5Þ

Satellite observation and data sources. To validate the response of the atmo-
sphere, including CO2 concentration and air quality, to the decreased fossil fuel
burning and transportation, we collected NO2, aerosol optical depth (AOD) and
column-averaged dry air mole fraction of CO2 (XCO2) data from satellites (NO2

from OMI, AOD from MODIS, and XCO2 from GOSAT) and surface daily average
nitrogen dioxide (NO2, μg/m3), carbon monoxide (CO, μg/m3) from 1600 air
quality monitoring sites (China and US, Supplementary Fig. S3) in to investigate
the impact of COVID-19 on air quality and atmospheric CO2.
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Surface air quality data in China were collected from the daily report by the
Ministry of Ecology and Environment of China (http://www.mee.gov.cn/).
Measurements of daily average nitrogen dioxide (NO2, μg/m3), carbon monoxide
(CO, μg/m3), and particulate matter smaller than 2.5 μm (PM2.5, μg/m3) from
1580 sites used to estimate pollution changes between the first quarters of 2019 and
2020. Surface air quality data in the U.S. is downloaded from the Air Quality
System operated by the U.S. Environmental Protection Agency (https://www.epa.
gov/aqs). Measurements of daily maximum 1-h NO2 (ppb), daily maximum 8-h
CO (ppm), and daily average PM2.5 (μg/m3) from 983 sites are used. For March
2020, data availability is limited in the U.S. with 20 sites for NO2, 31 for CO, and
309 for PM2.5. Sites with missing data for NO2/CO (PM2.5) at over 20 (5) days in
any months will be excluded.

We obtained monthly NO2 data from the Ozone Monitoring Instrument
(OMI) provided by Tropospheric Emission Monitoring Internet Service, which
has a spatial resolution of 0.125° × 0.125° and a temporal coverage from October
2004 to March 2020. We only included the data from January 2013 to May 2020
in the work (Supplementary Figs. S5–S8). For AOD, we chose daily Level 2
MOD 04 data from MODIS39 and then calculated the monthly averaged AOD
from January 2013 to March 2020. Only “good” and “very good” data (in
AOD_550_Dark_Target_Deep_Blue_Combined_QA_Flag 2 and 3) were kept
in the calculation (Supplementary Fig. S9). At last, we calculated the monthly
XCO2 data with a resolution of 2.5° × 2.5° from the Greenhouse Gases Observing
Satellite “IBUKI” (GOSAT). Because of the delay in the data processing at
National Institute for Environmental Studies (NIES), we used a bias-uncorrected
version V02.81 for the period of January 2013 to May 2020. With the consideration
of the focus on an abnormal event due to COVID-19, the bias-uncorrected data is
proper for this study.

All of the monthly averaged data were re-gridded to 1° × 1°. We focused on four
emitting regions, China, U.S., EU4 (UK, France, Germany, and Italy), and Indian,
and then calculated the country level monthly averaged NO2, AOD, and XCO2

values.
Surface air pollution in China was significantly reduced during the epidemic

period (Supplementary Fig. S3). A deep reduction of NO2 by 31.7% was observed
on January 24th 2020, one day after the lockdown for many provinces
(Supplementary Fig. S3b). The reduction rates were 13.7% for PM2.5 and 16.5% for
CO on the same day. A clear rebound (U shape) could be found for all pollution
after the spring festival (February 5th) in 2019. However, such recovery was
missing in 2020 due to the lockdown, leading to a decreasing trend all through the
first quarter. On average, pollution concentrations decreased by 23.0% for NO2,
15.4% for PM2.5, and 12.5% for CO during January–March 2020 relative to the
same period in 2019.

Pollution level in the U.S. was also reduced by the epidemic but with smaller
magnitude compared to that in China. Surface PM2.5 decreased in all first three
months in 2020 relative to 2019 with the largest reduction of 20.6% in March. NO2

also exhibited large reductions of 9.0% in March 2020 compared to 2019, however,
such reduction seemed affected by the limited site numbers (only 20). For example,
one site in Salt Lake, Utah reported >200 ppb (normally <40) NO2 during March
20–23, 2020. Such episodes were likely caused by fires but weakened the reduction
rate of NO2 after Middle March (Supplementary Fig. S3e).

Changes of CO were also limited in the U.S., with opposite signs in January and
March. Such tendencies could also be biased due to the limited site numbers
(only 31).

The observed tropospheric nitrogen dioxide (NO2) column concentration data
from satellite observation and surface air quality data from ground monitoring
networks have exhibited a decrease (Supplementary Table S6) consistent with
reduction of fossil carbon fuels emissions.

In China, January, February, March, April, and May 2020 decreased by −32.3%,
−34.2%, −4.53%, −3.6%, −12.6%, respectively compared to 2019. Overall, NO2

decreased over China by −20.2% from January to May 2020 compared to 2019. In
the US, the decrease of NO2 first started in February and continued to decrease at
least until March 2020. Compared to the same period of the year in 2019, NO2 over
the U.S. decreased by −23.1% and −14.3% in February and March 2020,
respectively (Supplementary Table S6). For the UK, France, Germany, and Italy, we
observe similar NO2 decreases than over the U.S. India had weaker decline in NO2

than other regions.
The decline rate of NO2 (−20.2%) based on atmospheric observations can be

used to check the consistency of the decrease of NO2 emission from the inventory,
and given the NO2 is mainly contributed by fossil fuel combustion with life time
short than one day, the temporal change of NO2 emission can could verify the
decrease of the fossil fuel combustion and the associated CO2 emissions. For China
where the most significant decrease of tropospheric NO2 column concentration
observed, the inventory-based estimates40 of power generation (−6.8%),
transportation (−37.2%), and industry (−8.1%) are adopted with result of weight
mean −23.9% NO2 emission in first quarter of 2020 when comparing with 2019.
These three sectors together account for 96% of China’s total NO2 emissions. The
−23.4% decline of the NO2 emissions from our bottom-up inventory is consistent
with the satellite observed −26% decrease of column NO2, and with the −23%
decrease of near surface concentrations at the 1680 ground-based stations. For US,
the inventory-based estimates of power generation (−4.9%), transportation
(−2.7%), and industry(−2.2%) are adopted with result of −2.6% NO2 emission in
first quarter of 2020 when comparing with 2019, slightly smaller than −4.8%

tropospheric NO2 column concentration, but difference with the site observation
data (−9.0% in March and +0.3% for first quarter), which may be affected by site
numbers (only 20 sites in the U.S.). We calculated 1° × 1° monthly mean of NO2,
AOD, and XCO2 from OMI, MODIS, and GOSAT, respectively (Supplementary
Table S6).

Here we conservatively considered uncertainty of monthly XCO2 as 1.5 ppm.
To estimate the uncertainty of changes of 2020 compared to 2019 from January to
May, we input above uncertainties of monthly means and run Monte Carlo
simulations of 10,000 trials to calculate the 68% confidence intervals (i.e., one
sigma range) which are shown in Supplementary Table S6.

Data availability
All data generated or analyzed during this study are included in this article (data
available at https://www.carbonmonitor.org or https://www.carbonmonitor.org.cn).

AOD from MODIS: https://ladsweb.modaps.eosdis.nasa.gov/missions-and-
measurements/products/MOD04_L2/

NO2 from OMI: http://www.temis.nl/airpollution/no2col/no2regioomimonth_qa.php
XCO2 from GOSAT: https://data2.gosat.nies.go.jp/GosatDataArchiveService/usr/

download/DownloadPage/view

Code availability
All code generated during and/or analyzed during the current study are available from
the corresponding author upon reasonable request
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