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Abstract: We investigate a distributed optimal control problem for a nonlocal phase field model
of viscous Cahn-Hilliard type. The model constitutes a nonlocal version of a model for two-species
phase segregation on an atomic lattice under the presence of diffusion that has been studied in a series
of papers by P. Podio-Guidugli and the present authors. The model consists of a highly nonlinear
parabolic equation coupled to an ordinary differential equation. The latter equation contains both
nonlocal and singular terms that render the analysis difficult. Standard arguments of optimal control
theory do not apply directly, although the control constraints and the cost functional are of standard
type. We show that the problem admits a solution, and we derive the first-order necessary conditions
of optimality.
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1. Introduction

Let Q c R? denote an open and bounded domain whose smooth boundary I" has the outward unit
normal n;let 7 > 0 be a given final time, and set Q := QX (0,7) and £ :=T' X (0,7). We study in
this paper distributed optimal control problems of the following form:
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(CP) Minimize the cost functional
J(u, p, i) = &flp—lezdxdt + &fl,u—,uglzdxdt + @fwdxdr (1.1)
2 Jo 2 Jo 2 Jo

subject to the state system

(1+2g() 0 +ug (P dp—Au=u ae. in Q, (1.2)
0 + Blpl + F'(p) =ug'(p) a.e.in Q, (1.3)
Opu=0 a.e. onZ, (1.4)

pG0)=po, wu(,0)=py, a.e. in, (1.5)

and to the control constraints
ue€Uyg:={ueHOT;L*(Q) : 0<u <ty ae in Q and llullgorzq) < R} (1.6)

Here, S1,62,53 > 0 and R > 0O are given constants, with 8, +5,+83 > 0, and the threshold function
Umax € L7(Q) is nonnegative. Moreover, po, o € L*(Q) represent prescribed target functions of the
tracking-type functional J. Although more general cost functionals could be admitted for large parts of
the subsequent analysis, we restrict ourselves to the above situation for the sake of a simpler exposition.

The state system (1.2)—(1.5) constitutes a nonlocal version of a phase field model of Cahn—Hilliard
type describing phase segregation of two species (atoms and vacancies, say) on a lattice, which was
recently studied in [18]. In the (simpler) original local model, which was introduced in [25], the
nonlocal term B[p] is replaced by the diffusive term —Ap. On the other hand, it is important from the
point of view of applications to have a nonlocal operator (see, e.g., the Introduction of [18]). Indeed,
terms of double integral type are more natural in the free energy, whereas squared gradients can be
seen as limiting situations of nonlocal contributions.

The local model has been the subject of intensive research in the past years; in this connection, we
refer the reader to [4-7,9-12]. In particular, in [8] the analogue of the control problem (CP) for the
local case was investigated for the special situation g(p) = p, for which the optimal boundary control
problems was studied in [14].

The state variables of the model are the order parameter p and the chemical potential . While
o can be interpreted as a volumetric density, the chemical potential u plays as the coldness in the
entropy imbalance (see [25, formulas (2) and (24)]). Hence, we must have 0 < p < 1 and u > 0
almost everywhere in Q. The control function u on the right-hand side of (1.2) has the meaning of
a microenergy source. We remark at this place that the requirement encoded in the definition of U,
namely that # be nonnegative, is indispensable for the analysis of the forthcoming sections. Indeed, it
is needed to guarantee the nonnegativity of the chemical potential .

The nonlinearity F is a double-well potential defined in the interval (0, 1), whose derivative F”’ is
singular at the endpoints p =0 and p=1:e.g., F = F| + F,, where F, is smooth and

Fi(p) = ¢ (p log(p) + (1 — p) log(1 — p)), with aconstant ¢ > 0. (1.7)
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The presence of the nonlocal term B[p] in (1.3) constitutes the main difference to the local model
and introduces some difficulties in the mathematical analysis due to the lack of compacness and less
regularity for the solution. Simple examples are given by integral operators of the form

Blpl(x, ) = f K(t, 5, %,y) p(y, 5) dy dis (1.8)
Qx(0,1)

and purely spatial convolutions like

Blpl(x, 1) = fQ K(ly — x) (. 1) dy, (1.9)

with sufficiently regular kernels.

Optimal control problems of the above type often occur in industrial production processes. For
instance, consider a metallic workpiece consisting of two different component materials that tend to
separate. Then a typical goal would be to monitor the production process in such a way that a desired
distribution of the two materials (represented by the function pg ) is realized during the time evolution
in order to guarantee a wanted behavior of the workpiece; the deviation from the desired phase distri-
bution is measured by the first summand in the cost J. The third summand of J represents the costs
due to the control action u; the size of the factors §; > O then reflects the relative importance that the
two conflicting interests “realize the desired phase distribution as closely as possible” and “minimize
the cost of the control action” have for the manufacturer.

The state system (1.2)—(1.5) is singular, with highly nonlinear and nonstandard coupling. In par-
ticular, unpleasant nonlinear terms involving time derivatives occur in (1.2), and the expression F’(p)
in (1.3) may become singular. Moreover, the nonlocal term B[p] is a source for possible analytical
difficulties, and the absence of the Laplacian in (1.3) may cause a low regularity of the order parameter
©o. We remark that the state system (1.2)—(1.5) was recently analyzed in [18] for the case u = 0 (no
control); results concerning well-posedness and regularity were established.

The mathematical literature on control problems for phase field systems involving equations of
viscous or nonviscous Cahn—Hilliard type is still scarce and quite recent. We refer in this connection
to the works [2,3,16,17,21,28]. Control problems for convective Cahn—Hilliard systems were studied
in [29,30], and a few analytical contributions were made to the coupled Cahn—Hilliard/Navier—Stokes
system (cf. [19, 20, 22, 23]). The very recent contribution [13] deals with the optimal control of a
Cahn—Hilliard type system arising in the modeling of solid tumor growth.

The paper is organized as follows: in Section 2, we state the general assumptions and derive new
regularity and stability results for the state system. In Section 3, we establish the directional differen-
tiability of the control-to-state operator, and the final Section 4 brings the main results of this paper,
namely, the derivation of the first-order necessary conditions of optimality.

Throughout this paper, we will use the following notation: we denote for a (real) Banach space X
by || - |lx its norm and the norm of X X X X X, by X’ its dual space, and by (-, :)x the dual pairing
between X’ and X. If X is an inner product space, then the inner product is denoted by (-,-)x. The
only exception from this convention is given by the L? spaces, 1 < p < oo, for which we use the
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abbreviating notation || - ||, for the norms. Furthermore, we put
H:=L[*Q), V:=H(@Q), W:={weH Q): dw=0 a.e onT}

We have the dense and continuous embeddings W c V.Cc H = H' c V' ¢ W', where (u,v)y = (u,v)y
and (u,w)w = (u,w)yg forallue H,veV,and we W.

In the following, we will make repeated use of Young’s inequality

1
ab<5a2+5b2 forall a,beR and § > 0, (1.10)

as well as of the fact that for three dimensions of space and smooth domains the embeddings V C
LP(Q), 1 < p<6,and H*(Q) C Co(ﬁ) are continuous and (in the first case only for 1 < p < 6)
compact. In particular, there are positive constants K;, i = 1,2,3, which depend only on the domain
Q, such that

Ivlle < Kilvlly Yvev, (1.11)
Ivwlla < Vs lwlls < Kalvlly wlly  Yv,w eV, (1.12)
IVl < E3||V||H2(Q) Vv e H Q). (1.13)
We also set for convenience
0, =Qx(0,) and Q' :=Qx(,T), forte(0,T). (1.14)

Please note the difference between the subscript and the superscript in the above notation.

About time derivatives of a time-dependent function v, we point out that we will use both the
notations 0,v, Gtzv and the shorter ones v;, vy .

2. Problem statement and results for the state system
Consider the optimal control problem (1.1)—(1.6). We make the following assumptions on the data:
(A1) F =F,+ F,, where F, € C}0,1) is convex, F, € C*[0, 1], and
11{13 Fi(r) = —oo, 1ri/nllFi(r) = +o0. 2.1
(A2) poeV, F'(py) € H, up € W, where uy >0 a.e.in Q,
inf{op(x): x€Q} >0, supf{pp(x): xeQ}<1. (2.2)

(A3) g€ C%0,1] satisfies g(p) > 0 and g”(p) < 0 for all p € [0,1].

(A4) The nonlocal operator B: L'(Q) — L'(Q) satisfies the following conditions:
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(i) Forevery t € (0,T], we have
B[vllp, = Blwllg, whenever v|p, = w|p,. (2.3)
(ii)) Forall p € [2,+c0], we have B(LP(Q,)) c LP(Q,) and
I1BVIllrgy < Cayp (1 + IVllzrcoy) (2.4)
for every v € LP(Q) and t € (0, T].

(iii) For every v,w € L'(0,T; H) and ¢ € (0, T], it holds that

f IB[VI(s) — Blwl(s)llsds < CBf lv(s) = w(s)lly ds . (2.5)
0 0
(iv) It holds, for every v € L*(0,T;V) and t € (0, T], that

IVBIVIllz20.0m < Ce(1 + 1VIIz200.4v))- (2.6)

(v) Forevery ve H'(0,T; H), we have 9,B[v] € L*(Q) and

10:BIV]llr20) < Cp(1 + 10:vll120))- 2.7

(vi) B is continuously Fréchet differentiable as a mapping from L*(Q) into L*(Q), and the Fréchet
derivative DB[v] € L(L*(Q), L*(Q)) of B at v has for every v € L*>(Q) and ¢ € (0, T] the following
properties:

IDBVIW)llzr) < Colwllerg,y YweLP(Q), VYpel[2,6], (2.8)
IVDBVIW)lg) < Crlwlizony, Ywe L0, T;V). (2.9)
In the above formulas, Cp, and Cp denote given positive structural constants. We also notice

that (2.8) implicitely requires that DB[v](w)|p, depends only on w|p, . However, this is a consequence
of (2.3).

The statements related to the control problem (CP) depend on the assumptions made in the Intro-
duction. We recall them here.

(AS) J and U,y are defined by (1.1) and (1.6), respectively, where

Bi,B2, B3>0, Bi+B+B3>0, and R>0. (2.10)

Po-to € LX(Q),  Umyx € L(Q) and  up >0 ae.in Q. (2.11)
RemMark 1: In view of (2.8), for every ¢ € [0, T] it holds that
IB[v] - B[W]||L2(Q,) < Cgllv- W||L2(Q,) Yv,we LZ(Q), (2.12)
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that is, the condition (2.9) in [18] is fulfilled. Moreover, (2.4) and (2.6) imply that B maps L*(0,T;V)
into itself and that, for all € (0,7] and v e L*(0,T;V),

| fQ VBV - Vvdxds| < Co(1 + IWEag,0));

which means that also the condition (2.10) in [18] is satisfied. Moreover, thanks to (2.8) and (2.9),
there is some constant Cz > 0 such that

IDBVIWl20syy < Colwliposy, Y7 eLXQ), Ywe LX0,T;V). (2.13)

RemMArk 2: We recall (cf. [18]) that the integral operator (1.9) satisfies the conditions (2.3) and
(2.4), provided that the integral kernel k belongs to C!(0,+c0) and fulfills, with suitable constants
C,>0,C,>0,0<a<2,0<p<3,the growth conditions

k(I < Cir®, K@< Cor?, Yr>0.

In this case, we have 2« < 3 and thus, for all v,w € L'(0,T;H) and t € (0,T],

fo I1B[VI(s) — Bwl(s)lls ds

d 6 1/6
cr [([ ][ o= = wonna] ax) “as
0 Jalda
Cs‘fo(‘[g‘(fg |y—x|_2“dy)l/2||v(s)—w(s)IIHrdx)%ds

C4f v(s) = w(s)llu ds,
0

IA

IA

IA

with global constants C;, 3 < i < 4; the condition (2.5) is thus satisfied. Also condition (2.6) holds
true in this case: indeed, for every 7 € (0,7] and v € L*(0,T;V), we find, since 68/5 < 3, that

2
||VB[V]||i2(O,t;H) < C2f ‘fb’_xrﬁh’(% S)ldy dxds
0, JQ

_ 5/3
Cs f ( f [y = 22 dy) " lIv(9)IE dx ds
0 JQ

!
< ¢ f IR ds.
0

Finally, since the operator B is linear in this case, we have DB[V] = B for every v € L?(Q), and thus
also (A4)(v) and (2.8)—(2.13) are fulfilled. Notice that the above growth conditions are met by, e. g.,
the three-dimensional Newtonian potential, where k(r) = ¢/r with some ¢ # 0.

IA

A

We also note that (A2) implies uy € C (ﬁ), and (A1) and (2.2) ensure that both F(py) and F’(p)
are in L*(Q), whence in H. Moreover, the logarithmic potential (1.7) obviously fulfills the condition
(2.1) in (A1).
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We have the following existence and regularity result for the state system.

THeorREM 2.1:  Suppose that (A1)—(AS) are satisfied. Then the state system (1.2)—(1.5) has for
every u € U,y a unique solution (p, 1) such that

p e H*0,T; H)yn W0, T; L~ (Q)) n H'(0, T; V), (2.14)
e W, T; H)yn H'(0,T; V) N L0, T; W) c L*(Q). (2.15)
Moreover, there are constants 0 < p, < p* <1, u* >0, and K; > 0, which depend only on the given
data, such that for every u € U,y the corresponding solution (p, ) satisfies
O<p.<p<p <1, O0<pu<y’, ae in Q, (2.16)
||/1||W1~°°(0,T;H)QH1(O,T;V)ﬂLD"(O,T;W)ﬁL‘X’(Q)

+ ol mnwt=o.r:e=@)na 01v) < K. (2.17)

Proor: In the following, we denote by C; > 0, i € N, constants which may depend on the data
of the control problem (CP) but not on the special choice of u € U,y. First, we note that in [18,
Thms. 2.1, 2.2] it has been shown that under the given assumptions there exists for © = 0 a unique
solution (p, 1) with the properties

O<p<l1l, u=0, ace.in Q, (2.18)
p € L*0,T;V), dp<LQ), (2.19)
ueHYO,T;H)yNnL (0, T; V)N L2(Q) N L*(0, T; W>'*(Q)). (2.20)

A closer inspection of the proofs in [18] reveals that the line of argumentation used there (in partic-
ular, the proof that u is nonnegative) carries over with only minor modifications to general right-hand
sides u € U,q. We thus infer that (1.2)—(1.5) enjoys for every u € U,y a unique solution satisfying
(2.18)—(2.20); more precisely, there is some C; > 0 such that

el 0,750 L2 0.73v)nL= @20 w232 @) + lolleo.rv)y + 10pllso) < C1 Y u € Uy (2.21)
Moreover, invoking (2.18), and (2.4) for p = +c0, we find that
IBlplllze) < C2 Y u € Uy,

and it follows from (2.21) and the general assumptions on py, g, and F, that there are constants p., p*
such that, for every u € Uy,

0<p. < inffpg(x): x€Q} < supfpp(x): xeQ} < p" <1,
F'(p) + Blp]l —ug'(p) < 0 if 0 <p<p,,
F'(0) + Blpl —ug'(p) = 0 if p* <p < 1.
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Therefore, multiplying (1.3) by the positive part (o — p*)* of p — p*, and integrating over Q, we find
that

0= f B (o — p°)* dxdt + f (F'(0) + Blp] — g (0)(p - p')* dxdt
0 0
1
25 f |o(t) — p)*| dx,
Q

whence we conclude that (o — p*)* = 0, and thus p < p*, almost everywhere in Q. The other bound
for p in (2.16) is proved similarly.

It remains to show the missing bounds in (2.17) (which then also imply the missing regularity
claimed in (2.14)—(2.15)). To this end, we employ a bootstrapping argument.

First, notice that (A3) and the already proved bounds (2.21) and (2.16) imply that the expressions
1g'(p)d,p and (1 + 2g(p)) O, are bounded in L*(Q). Hence, by comparison in (1.2), the same holds
true for Au , and thus standard elliptic estimates yield that

el 20wy < C3 YV u € Uy (2.22)

Next, observe that (A1) and (2.16) imply that ||[F’(p)||z~9) < Cs,and comparison in (1.3), using (A3),
yields that

l0ipllz=p) < Cs Y u € Uyg. (2.23)

In addition, we infer from the estimates shown above, and using (2.6), that the right-hand side of the
identity

Vo, = =F"(p)Vp = VBlp] + g'(p) Vu + ug"(p) Vp (2.24)

is bounded in L*(Q), so that
looll20rv)y < Cs Y u € Uy. (2.25)

We also note that the time derivative 8,(—F’(p) — B[p] + ug’(p)) exists and is bounded in L*(Q)
(cf. (2.7)). We thus have

loullizgy < C7 Yu € Uyg. (2.26)

At this point, we observe that Eq. (1.2) can be written in the form
adu+pda—Au=>b, with a:=1+2g(p), b:=u+ug(p)op,

where, thanks to the above estimates, we have, for every u € Uyq,

llall =gy + 10:all =gy + 1bll =0y < Cs, (2.27)
1874l 20, = 218" )07 + &' (P)pullizg) < Co, (2.28)
10:bll120) = llus + 18" (0)p: + .Ug”(P)P;Z +ug (PPl < Cio. (2.29)
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Since also uy € W, we are thus in the situation of [15, Thm. 3.4], whence we obtain that d,u €
L>0,T; H)NL*(0,T;V) and u € L*(0,T; W). Moreover, a closer look at the proof of [15, Thm. 3.4]
reveals that we also have the estimates

WOl L c0,7: 002200,y + il 75w) < Cii. (2.30)

This concludes the proof of the assertion. m|

ReMArk 3: From the estimates (2.16) and (2.17), and using the continuity of the embedding V C
L°(Q), we can without loss of generality (by possibly choosing a larger K7 ) assume that also

max ||F® o) + max ||g®? ooy + IVl o0 7160003
max IIF™(0)lI (0) Osi§3”g 0z Q) Vil (0,T;L5(Q)3)

+ 10ll200.7:v) + IBlRlE 01020000 0)nr2071:v) < KT Y € Uyg . (2.31)

According to Theorem 2.1, the control-to-state mapping S : U,y > u — (o, u) is well defined. We
now study its stability properties. We have the following result.

THEOREM 2.2:  Suppose that (A1)—(AS5) are fulfilled, and let u; € Uy, i = 1,2, be given and
(ois i) = S(uy), i = 1,2, be the associated solutions to the state system (1.2)—(1.5). Then there exists
a contant K3 > 0, which depends only on the data of the problem, such that, for every t € (0,T],

llo1 _p2||H1(O,t;H)ﬂL°°(0,t;L6(Q)) + ||y _/~12||H1(O,I;H)ﬂL“’(O,t;V)ﬂLZ(O,I;W)

< K5 lluy = woll 2,y - (2.32)

Proor: Taking the difference of the equations satisfied by (o;, i;), i = 1,2, and setting u := u; —u,,
p=p1 —p2, L= M — o, we first observe that we have almost everywhere in Q the identities

(1 +2g(p1) 0 + g'(p1) 0p1 1 — Apr + 2(g(p1) — g(02)) Oz

=u — (g(P1) =& P))dp1 12 — & (P2) 2 Oip (2.33)
dp + F'(p1) — F'(p2) + Blp1] — Blp:]
=g (ou + (&) — &) 2, (2.34)
as well as
Oat=0 a.e.onX u-0) =p-0)=0 ae. in Q. (2.35)

Let ¢ € (0, T] be arbitrary. In the following, we repeatedly use the global estimates (2.16), (2.17),
and (2.31), without further reference. Moreover, we denote by ¢ > 0 constants that may depend on
the given data of the state system, but not on the choice of u;,u, € U,q; the meaning of ¢ may change
between and even within lines. We establish the validity of (2.32) in a series of steps.
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Step 1:  To begin with, we first observe that

(1 + 280pada + 8 @odon = (5 + se0)i)

Hence, multiplying (2.33) by u and integrating over Q, and by parts, we obtain that

1 3
fg(i + 8O0 dx + | [VuPdxds < Y I, (2.36)
O j=1

where the expressions [;, j = 1,2,3, defined below, are estimated as follows: first, we apply (A3),
the mean value theorem, and Holder’s and Young’s inequalities, to find, for every y > 0 (to be chosen
later), that

!
1= =2 [ (g(01) — §(p2)) sz pdeds < ¢ [ 1041a()lo 1) llo ()l dis
O 0

! c t
< Vf (I ds + ;f 18:u2(S)II () ds, (2.37)
0 0

where it follows from (2.31) that the mapping s +— ||é‘,,u2(s)||%, belongs to L'(0, T). Next, we see that
L= f (u=(g'(p1) = &' (02))0p1 p2) dx s

<c | (ul+|oDluldxds < c (u? +,02 +,u2) dxds. (2.38)
O O

Finally, Young’s inequality yields that

I; = —f g () 2 prpdxds < yfp?dxds + gf wdxds. (2.39)

Combining (2.36)—(2.39), and recalling that g(p;) is nonnegative, we have thus shown the estimate

1 !
5 el + (1 =) f lu(s)lly ds <y f p; dxds + ¢ f w’ dxds
0 i

t

+e(1+y7) fo (W), + (1 + 182(IE o) ds. (2.40)

Next, we add p on both sides of (2.34) and multiply the result by p,. Integrating over Q,, using the
Lipschitz continuity of F’ (when restricted to [p.,p*]), (2.12) and Young’s inequality, we easily find
the estimate

2 1 2 ¢ 2, .2
(I=vy) | prdxds + <llp@®lly; < = | (" +p)dxds. (2.41)
o 2 v Jo,
Therefore, combining (2.40) with (2.41), choosing y > 0 small enough, and invoking Gronwall’s
lemma, we have shown that

||M||L°°(0,t;H)mL2(0,t;V) + “p”H](O,t;H) < C||“||L2(o,z;H) Yie(0,T]. (2.42)
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Step 2: Next, we multiply (2.34) by plp| and integrate over Q,. We obtain

1 3
7 @I < > 1 (2.43)

J=1

where the expressions J;, 1 < j < 3, are estimated as follows: at first, we simply have

Ji ( F'(p1) + F'(p2) + p2(8'(p1) = &' (p))) plol dx ds

<6f lo()II3 ds. (2.44)

Moreover, invoking (2.42), Holder’s inequality, as well as the global bounds once more,

v f ng (pnploldxds < f l()lls lo(1l2 lo(s)lls ds
f lo(s)I} ds + ¢ f (I o)l ds
< fo )3 ds + cllol 2 ) IR 0,
< fo t||p(s)||§ ds + cllolCg WIS o

t
Sf oI ds + ¢ llullyzg gy, - (2.45)
0

In addition, condition (2.5), Holder’s inequality, and (2.42), yield that

P f (Blp11 - Blpa])p lol dxds

IA

6f0 o)l llo()ll2 1Blp11(s) = Blp21(s)lle ds

!
< ¢ sup [lo(s)ll3 ”p”L‘X’(O,t;H)f llo()lle ds
0<s<t 0
1
< < sup oI} + ¢l (2.46)
0<s<t

Combining the estimates (2.43)—(2.46), and invoking Gronwall’s lemma, we can easily infer that

||p||L"°(O,t;L3(Q)) <c ||M||L2(o,z;H) forall r € (0,T]. (2.47)

Step 3: With the above estimates proved, the road is paved for multiplying (2.33) by u,. Integration
over Q, yields that

1 5
(1+ 2800 dxds + S IVHOI < ) IK (2.48)
O j:1
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where the expressions K;, 1 < j < 5, are estimated as follows: at first, using the global bounds and
Young’s inequality, we have for every y > 0 (to be specified later) the bound

K := —f g ()0 prup,dxds < yf wrdxds + Ef wdxds
t t y t

IA

c
y f i dxds + ;||u||§2(o,t;m. (2.49)

t

Next, thanks to the mean value theorem, and employing (2.31) and (2.47), we find that

Ky := =21 (gp1) — 8(02) Opa iy dxds < ¢ | |pl |0zl || dx ds
0 o}
!
<c f o()II3 1022 ()le et ($)]l2 d's
0
c !
S 'yf #[2 d.xds + ’;”p“iw((),t;lﬁ(g))f ||at#2(s)||%/ ds
t 0
C
<y f u ds + ;||u||§2(0’t;m. (2.50)

Moreover, we infer that
c
K; := f up,dxds < yf ui dxds + ;”“”i%o,z;m’ (2.51)

as well as, invoking the mean value theorem once more,

Kii=— | (&' (o) =8 (p2)) 0ip1 popydxds < Cf lol|ud dx ds
O: O

IA

c
YI I’L? d'x ds + ; ”ulliz(o,t;H) > (2'52)

and, finally, using (2.42) and Young’s inequality,

Ks:= _f g (02) o pr pr dx ds < cf lo: Il dx ds
, o

IA

c
y‘[ /‘ltz dde + ; ||p||i1l(0’t;H)

IA

c
y f uidxds + ;||u||§2(o’t;m. (2.53)

Now we combine the estimates (2.48)—(2.53) and choose y > 0 appropriately small. It then follows
that

||M||H1(0,z;H)mL°°(0,z;V) <c ||M||L2(o,z;H)- (2.54)
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Finally, we come back to (2.33) and employ the global bounds (2.16), (2.17), (2.31), and the esti-
mates shown above, to conclude that

1Al 20,0 < C(||,Ut||L2(o,t;H) + ez, + oell 200,000
+ lloll2mm + ||u||L2(O,t;H)) + cllp Ouallzz 0.

< cllull2my » (2.55)

where the last summand on the right-hand side was estimated as follows:

! !
 bF10F dxds < ¢ fo 1042 N ds < ¢ o1l i fo 1042 ds < ¢l -

Invoking standard elliptic estimates, we have thus shown that

el 20wy < € llulli2qo.s:m) - (2.56)

Step 4: It remains to show the L*(0, t; L%(Q))—estimate for p. To this end, we multiply (2.34) by
plol* and integrate over Q,. It follows that

1
A oIS < (2.57)

\MW
=

1

where quantities L;, 1 < j < 3, are estimated as follows: at first, we obtain from the global estimates
(2.17) and (2.31), that

Lii= | (CF @0+ F(pa) 41l () = g () plol' duds < ¢ fo ()l ds . (2.58)

Moreover, from (2.54) and Holder’s and Young’s inequalities we conclude that
73
Li= [ gonpbltdxds < ¢ [ Ol ds
O

<c ||IJ||L°°(0 V) ||p||L5(0 t L6(Q)) c ||/’t||L°°(() V) +c ”p”LS(O £L5(Q))

IA

cllullagm + € f llo()IIg ds . (2.59)
0

Finally, we employ (2.5) and (2.42) to infer that

L3Z

(B[Pl] — BlpaD plol* dxds < fo IB(011(s) = Blp21(s)lls llo(s)llg d's

IA

¢ sup IIP(S)||6f lo()ll ds < = sup oG + ¢ lleell$sqq, .z - (2.60)

0<s<t O<S§l‘

Combining the estimates (2.57)—(2.60), and invoking Gronwall’s lemma, then we readily find the esti-
mate

||P||L°°(0,t;L6(Q)) <c ”u”Lz(O,t;H)’

which concludes the proof of the assertion. O
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3. Directional differentiability of the control-to-state mapping

In this section, we prove the relevant differentiability properties of the solution operator S. To this
end, we introduce the spaces

X :=H'0,T;H) N L*(Q),
Y = H'(0,T;H) x (L°°(0, T:H)NL*0,T; V)),
endowed with their natural norms
el x := Nl oy + Nulliog) Yu € X,
lGo, tilly = llollg oy + llsorm + 2oy Y (o.p) €Y,

and consider the control-to-state operator S as a mapping between U,q C X and Y. Now let u € U,y
be fixed and put (o, ) := S(u). We then study the linearization of the state system (1.2)—(1.5) at u,
which is given by:

(I +2geNn + 28 P&+ g@p,n +ug’ P pé + ug'pé

—-An=h a.e.in Q, (3.1

&+ F'(0)E+DBpl§) =g’ ()& + g'(p)n a.e.in O, (3.2)
Onn=0 a.e.on X, (3.3)

n(0)=£&0)=0 a.e.in Q. (3.4)

Here, h € X must satisfy u + Ah € Uy, for some A > 0. Provided that the system (3.1)—(3.4) has
for any such & a unique solution pair (£,7), we expect that the directional derivative 6S(u; h) of S at
u in the direction & (if it exists) ought to be given by (&,7). In fact, the above problem makes sense
for every h € L*(Q), and it is uniquely solvable under this weaker assumption.

THeOREM 3.1:  Suppose that the general hypotheses (A1)—(A5) are satisfied and let h € L*(Q).

Then, the linearized problem (3.1)—(3.4) has a unique solution (¢,n) satisfying

£e HYW(0,T; H)Nn L0, T; L°(Q)), (3.5)
neHY0,T;H)NnL>0,T;V)n L*0,T;W). (3.6)

Proor: We first prove uniqueness. Since the problem is linear, we take # = 0 and show that
(&é,m) = (0,0). We add n and £ to both sides of equations (3.1) and (3.2), respectively, then multiply
by 1 and &, integrate over Q,, and sum up. By observing that

(1 +2¢@)nm + & @l = d,[(z + s@)nl],

and recalling that g > 0, we obtain

1 f 1 :
—f|?7(t)|2dX+fll?](é‘)llzvdS+—flé(t)lzdx+ 17 dxds < ) Hj,
2 Ja 0 2 Ja o) =1
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where the terms H; are defined and estimated as follows. We have
!
H, = —f 28, éndxds < Cf [z, ()13 [1EC)I2 [117()Ml6 s
s 0

1 ! t
S5fIIU(S)llédS+CfIIﬁ,(S)Ilzvllf(S)H%ds,
0 0

and we notice that the function s — ||/7,(s)||%, belongs to L'(0,T), by (2.30) for zz. Next, we easily
have the estimate

H, := , m-1g'©@p.é-ng &) ndxds

1
<— | |&Pdxds+c f (&P + InP*) dxds .
4 Jo, 0

Finally, recalling (2.8), it is clear that
H; = . (€ +ng"(p)—F'(p) & — DBlpl&) + &' (p)n) & dxds

1
<— | EPdxds+c | (€F +nP) dxds. (3.7)
4 Jo, o
Therefore, it suffices to collect these inequalities and apply Gronwall’s lemma in order to conclude that
¢&=0and n=0.

The existence of a solution is proved in several steps. First, we introduce an approximating problem
depending on the parameter € € (0, 1). Then, we show well-posedness for this problem and perform
suitable a priori estimates. Finally, we construct a solution to problem (3.1)—(3.4) by letting & tend
to zero. For the sake of simplicity, in performing the uniform a priori estimates, we denote by ¢ > 0
different constants that may depend on the data of the system but not on € € (0, 1); the actual value of ¢
may change within formulas and lines. On the contrary, the symbol ¢, stands for (different) constants
that can depend also on &. In particular, c, is independent of the parameter ¢ that enters an auxiliary
problem we introduce later on.

Step 1:  We approximate p and 7 by suitable p?,u® € C*(Q) as specified below. For every
g€ (0,1), it holds that

P <p°<p™in @ and  ||ofllz=0) + Il 0, 1:3@)nee0) < C (3.8)
for some constants p.., 0" € (0,1) and C* > 0; as € \, 0, we have

p°—=p, pi = p, U —u, inLP(Q), forevery p < +oo and a.e. in Q,
and u® — u, in L*(0, T; L} (Q)). (3.9

In order to construct regularizing families as above, we can use, for instance, extension outside Q and
convolution with mollifiers.
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Next, we introduce the approximating problem of finding (&%, 7°) satisfying

&+ F' ()& +DBIpl€") =g’ E +gP)n° ae.in Q, (3.10)
(1 +2g" Ny + 8 @) pr 0

+2¢8' @) ;& +ug" () p, & +ug' (& —An° =h a.e.in Q, (3.11)
onn® =0 a.e.on X, (3.12)
7°(0) = &0)=0 a.e.in Q. (3.13)

In order to solve (3.10)—(3.13), we introduce the spaces
V:=HxV and H :=HXH,

and present our problem in the form

d
d—t(f,n)+ﬂg(§,77)=f and  (£,7)(0) = (0,0),

in the framework of the Hilbert triplet (V, H,V’). We look for a weak solution and aim at applying [1,
Thm. 3.2, p. 256]. To this end, we have to split A° in the form Q° + R®, where Q° is the uniformly
elliptic principal part and the remainder R® satisfies the requirements [1, (4.4)—(4.5), p. 259]. We
notice at once that these conditions are trivially fulfilled whenever

R = (R, RS) € LIL*(0,T; H),L*(0,T; H)), (3.14)

(RE(w, w) v + RE(v, w) w) dx ds
o

<Cge | (WP +WP)ds, (3.15)

for some constant Cg-, and every v,w € L*(0,T; H) and ¢t € [0, T]. In order to present (3.10)—(3.13)
in the desired form, we multiply (3.11) by a® := 1/(1 + 2g(p®)) and notice that

- a’*An® = —div(a®Vn®) + Va® - Vi°.
As a® > a:=1/(1 +2supg) and Va® is bounded, we can fix a real number 4° > 0 such that

f (@ (OIVw)* + (Va®(t) - Vw)w + 2°|w*) dx > %nwnzv (3.16)
Q

forevery w € V and ¢ € [0, T]. Next, we replace £ in (3.11) by using (3.10). Therefore, we see that
a possible weak formulation of (3.10)—(3.12) is given by

fg EOvdx + vy @), wiy + v (Q D&, 1°)(1), (v, W)y

+ fg (RIE, 1))y + REE, ) () w)dx = fg a®(t) h(H) wdx
fora. a. t € (0,T) and every (v,w) € V, (3.17)

AIMS Mathematics Volume 1, Issue 3, 225-260



241

where the symbols (:,-) stand for the duality pairings and Q° and R? have the meaning explained
below. The time-dependent operator Q°(¢) from V into V’ is defined by
V'<Q8(t)(">9 \;l\/), (V’ W)>(V
= f(f/v +a*(t) Vw - Vw + (Va®(t) - Vi) w + A Www) dx (3.18)
Q
for every (b, w), (v,w) € V and ¢ € [0, T]. By construction, the bilinear form given by the right-hand

side of (3.18) is continuous on V X V, depends smoothly on time, and is “V -coercive uniformly with
respect to ¢ (see (3.16)). The operators

R € L(L*(0,T;H),L*(0,T; H))

account for the term A°np® that has to be added also to the right-hand side of (3.11) and for all the
contributions to the equations that have not been considered in the principal part. They have the form

(RE(w, w)(1) = ai (t)v + a5 (t)w + a5 (t)(DB[p]l(v))(t) (3.19)

for (v, w) € L*(0, T; H), with some coefficients afj € L*(Q). Therefore, by virtue of (2.8), we see that

(RE(v, w) v + RE(v, w) w) dx ds
Oy

<c | (W +wP)dxds + cIDBIRIW)II,

(@0
O

<c | WP+ wPdxds,
o

for every (v,w) € L*(0,T;H) and every t € [0,T]. Thus, the conditions (3.14)—(3.15) are fulfilled,
and the result of [1] mentioned above can be applied. We conclude that the Cauchy problem for (3.17)
has a unique solution (£%,7°) satisfying

&, n°) e H'(0, T; V)N L*0,T;V), i.e.,
&£ eH'(0,T;H) and n°e€ H'(O,T;V)NL*0,T;V).

On the other hand, this solution has to satisfy
@m°,w) + f‘a‘9 Vr® - Vwdx = ftps wdx a.e.in (0,T), forevery we V,
Q Q

for some ¢, € L*(Q). From standard elliptic regularity, it follows that ¢ € H'(0,T; H) N L*(0,T; W).

In the next steps, besides of Young’s inequality, we make repeated use of the global estimates (2.16),
(2.17), and (2.31), for p and u, without further reference.

Step 2:  For convenience, we refer to Eqs. (3.10)—(3.12) (using the language that is proper for
strong solutions), but it is understood that they are meant in the variational sense (3.17). We add &°
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and 7° to both sides of (3.10) and (3.11), respectively; then, we multiply the resulting equalities by &7
and 7r°, integrate over Q,, and sum up. By observing that

(L+ 28N n° + &0 pf I = 8,[(3 + g(0”) In° P,

and recalling that g > 0, we obtain

1 1 f 2
5 [eoraxs [ efarass s [wrordxe [roikds< Y
Q o Q 0 j=1

where the terms /; are defined and estimated as follows. In view of (2.8), we first infer that

Li= | (& -F'®& -DBRIE) +Hg" P E + 8 B)n) & dxds
O

1
< - | 1€Pdxds+c f (1€ + In°[*) dx ds .
4 (o O
Next, we have

hi= fQ (0 ~Tig" B)P, & — g @& + h)if dxds

1
< — | EPdxds+c | (€ + ) dxds +c.
4 Jo, )

Finally, by virtue of the Holder and Sobolev inequalities, we have
t
I3: = —f 28'(P)py & n°dxds < Cf llt7 (O3 11E° ()12 177 (s)l6 s
O 0

1 ! !
SEfIIns(S)IlzvdHCIIqu(S)H%IIfs(S)Ilids.
0 0

At this point, we recall all the inequalities we have proved, notice that (3.8) implies that the function
S ||/1f(s)||§ is bounded in L'(0, T), and apply the Gronwall lemma. We obtain

1t 0,70y + 117N 220,71 20,7:v) < € (3.20)

Step 3: We would now like to test (3.10) by (£%)°. However, this function is not admissible,
unfortunately. Therefore, we introduce a suitable approximation. To start with, we consider the Cauchy

problem
E+bE+LE) =" and £(0)=0, (3.21)

where we have set, for brevity,
b:=F'(p)-ug’(), L:=DB[p], and f°:=g(@)n". (3.22)

By (3.10), € := &° is a solution belonging to H'(0, T; H) . On the other hand, such a solution is unique.
Indeed, multiplying by & the corresponding homogeneous equation (i.e., f° is replaced by 0), and
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invoking (2.8) and Gronwall’s lemma, one immediately obtains that & = 0. We conclude that & := &°
is the unique solution to (3.21).

At this point, we approximate &° by the solution to a problem depending on the parameter ¢ €
(0, 1), in addition. Namely, we look for £ satisfying the parabolic-like equation

;9(5 _ 5A§8(5 + b5 686 + L(égS(S) — fs’ (323)

complemented with the Neumann boundary condition d,£%° = 0 and the initial condition £°(0) = 0.
In (3.23), b° is an approximation of b belonging to C*(Q) that satisfies

I°|l1o) < ¢, and b’ — b a.e.in Q as 6 \, 0. (3.24)

This problem has a unique weak solution & € H'(0,T; V’)NL*(0,T; V), as one easily sees by arguing
as we did for the more complicated system (3.10)—(3.13) and applying [1, Thm. 3.2, p. 256].

We now aim to show that &*° is bounded. To this end, we introduce the operator As € L(V,V’)
defined by

(Asv,w) = f(dVv-Vw+vw)dx for every v,we V,
Q

and observe that A is an isomorphism. Moreover, Eq. (3.23), complemented with the boundary and
initial conditions, can be written as

P+ AT = 7= = (14 D) EP + LEP) and  £7(0) = 0. (3.25)

Now, by also accounting for (2.9), we notice that £, &, b°¢*°  and L(£%), all belong to L*(0,T;V).
Hence, f* € L*(0,T;V), so that Asf® € L*©0,T;V’), and we can consider the unique solution
% e H'(0,T; V)N L*0,T;V) to the problem

P4 ALY = Asf? and %(0) = 0.
Now, A;'¢% satisfies
(A5107) + As(AF1L7) = A AGf™ = £ and (A7'£)(0) =0,

so that a comparison with (3.25) shows that & = A3/, by uniqueness. Since ¢*° € L*(0,T;H),
and A;'(H) = W by elliptic regularity, we deduce that & € L¥(0, T; W). Therefore, £ is bounded,
as claimed.

Consequently, (£°)° is an admissible test function, since it clearly belongs to the space L*(0,T;V).
By multiplying (3.23) by (£°)° and integrating over Q,, we obtain that

1 3
— f €@ dx + 56 | €1 Ve P dxds = ) K,
6 Ja o) =

where the terms K; are defined and estimated as follows. First, recalling (3.24), we deduce that

K= - f B EP (7)Y dxds < ¢ | |€°1°dxds.
t Qt
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On the other hand, Holder’s inequality, and assumption (2.8) with p = 6, imply that
Ky:=- f LE) (€7) dxds < cILE% s, €Y o,
< sy 167 g, = © fQ E9° dxds.

Finally, also invoking Sobolev’s inequality, we see that
!
K= f fP(E°Y dxds < Cf”778(5)”6||(§86(S))5||6/5 ds
O 0

< cfo|In€<s)||6||§85(s)||2dsscfolln“:(s)llv(l +1IE2()g) ds .

Collecting the above estimates, and noting that the function s — [[7°(s)||y is bounded in L'(0,T) by
(3.20), we can apply the Gronwall lemma to conclude that

||§86||L°°(0,T;L6(Q)) <c. (3.26)

At this point, we quickly show that &% converges to & as 6 \, 0, at least for a subsequence. Indeed,
one multiplies (3.23) first by £, and then by &%, and proves that

5
NE N a0, 71 nL=0.7:v) S Ces

uniformly with respect to §. Then, by weak compactness and (3.24) (which implies convergence of b°
to b in LP(Q) for every p < +00), it is straightforward to see that £%° converges to a solution & to the
problem associated with (3.21). As 5 = &%, we have proved what we have claimed. This, and (3.26),
yield that

€N 0,728 < € (3.27)

Step 4: At this point, we can multiply (3.11) by r? and integrate over Q,. By recalling that g > 0,
we obtain

3
{ _
el dxds + = f Ve (0))> dx < § L
O ' 2 Ja j=1 ’

where each term L; is defined and estimated below. First, by taking advantage of (3.27) and (3.8)
for u?, we have

!
Li:=- f 28'(B) i £ f dxds < f ()l 11678 s ()l s
1 0

IA

! 1 T
Cfllﬂf(s)||3||77f(s)||2ds <7 |T7f|2dXdS+Cf k(I3 ds
0 [0} 0

1
- f1* dxds + c.
4 Jo,

IA
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Next, using (3.8) for p? and (3.20), we obtain that

1 1
L, := —f g Wiy dxds < — e dxds+c | ffPdxds <~ | InfPdxds+c.
0 4 Jo, o 4 Jo,

Finally, in view of (3.20), we have

Ly:= | (-ug"(P)p & —pg' ()& + h)nydxds
o

1 1

< — | WfPdxds+ cf (€7 + 1€ + V) dxds < — | InfPdxds+c.
4 Jo, o 4 Jo,

By collecting the above estimates, we conclude that

7 20,70 + 1IN0y < €. (3.28)

As a consequence, we can estimate An® in L*(Q), just by comparison in (3.11). Using standard elliptic
regularity, we deduce that

20wy < - (3.29)

Step 5: At this point, we are ready to prove the existence part of the statement. Indeed, the esti-
mates (3.20) and (3.27)—(3.29) yield that

£ — ¢ weakly starin H'(0, T; H) N L®(0, T; L5(Q)),
n® —n weakly star in H'(0,T; H) N L>(0,T; V)N L*0,T; W),

as € \| 0, at least for a subsequence. By accounting for (3.9) and the Lipschitz continuity of g and g’,
it is straightforward to see that (&, ) is a solution to problem (3.1)—(3.4). This completes the proof. O

We are now prepared to show that § is directionally differentiable. We have the following result:

THEOREM 3.2:  Suppose that the general hypotheses (A1)—(AS) are satisfied, and let u € U,y be
given and (p,11) = S(u). Moreover, let h € X be a function such that u + Ah € Uy for some A > 0.
Then the directional derivative 6S(u;h) of S at u in the direction h exists in the space (M,|| - |ly),
and we have 6S(u; h) = (¢,1), where (£,n) is the unique solution to the linearized system (3.1)—(3.4).

Proor: We have i + Ah € U,y for 0 < 1 < A, since U,y is convex. We put, for any such A4,
' =u+Ah, (4Lt =Swh), yi=p'-p-2A =ut-u-am.

Notice that (p*, ') and (p, ) fulfill the global bounds (2.16), (2.17), and (2.31), and that (y*,z!) € Y
for all 4 € [0, ﬁ] . Moreover, by virtue of Theorem 2.2, we have the estimate

A - A — *
llo —P||H1(o,z;H)an(o,z;Lﬁ(Q)) + |u _:u”Hl(O,t;H)ﬂL“’(O,t;V)OLZ(O,t;W) < K2 /l”h”Lz(O,t;H)- (3.30)
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We also notice that, owing to (2.16) and the assumptions on F' and g, it follows from Taylor’s theorem
that

|F' (oY) - F'(®) - AF" @) < cly'| + clp* -] ae. in Q, (3.31)
20" — 8@) - 18’ P)| < cy| + c|p'=p ae.in 0, (332)
80" - g @ - 18" Pé| < || + et -5 aeinQ, (333)

where, here and in the remainder of the proof, we denote by c¢ constants that may depend on the
data of the system but not on 4 € [0, Z]; the actual value of ¢ may change within formulas and
lines. Moreover, by the Fréchet differentiability of B (recall assumption (A4)(vi) and the fact that, for
v,v € L*(Q), the restrictions of B[v] and DB[v](v) to Q, depend only on vlp, ), we have (cf. (3.30))

1Blp"] - BIp) = A DBIAN@)lgy < llyllizy + R(Allg,). (3.34)

with a function R : (0,4+00) — (0, +o0) satisfying lim,\oR(0)/o = 0. As we want to prove that
oS (u; h) = (€,1), according to the definition of directional differentiability, we need to show that

o 1S@+ Ah) = S@) - 1€ mlly

0=~
A0 A
_ }lim ||y/1||H1(O,T;H) + ||Z/l||L°°(O,T;H)0L2(O,T;V) . (3'35)
N0 A

To begin with, using the state system (1.2)—(1.5) and the linearized system (3.1)—(3.4), we easily
verify that for 0 < A < A the pair (z%, y") is a strong solution to the system

(1+28@)z' + & @p + Hg @)y - A
=-2(g(0") - ¢®@) (1! - 1) - 2, (s0") - 2(P) - 2¢' P)E)
- 15, (g0) - @) - 18" P)%) — (') - ¢ @) (p! - 7,)
- (1 -B) @Y - g @)p + &N (ol -p)] aein Q, (3.36)
v = =(F(0) = F'(p) ~ AF"@)¢) - (Blp"] - Blp] ~ ADBIPI(&)
+ 8@ + (g 0) - g @) - 18" (P))

+H' -A) (g -g@) aeing, (337)
0zt =0 a.e.on X, (3.38)
Z2(0)=y'(0)=0 a.e.in Q. (3.39)

In the following, we make repeated use of the mean value theorem and of the global estimates
(2.16), (2.17), (2.31), and (3.30), without further reference. For the sake of a better readability, we will
omit the superscript A of the quantities y', z! during the estimations, writing it only at the end of the
respective estimates.
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Step 1: Let ¢ € (0, T] be fixed. First, observe that

1 _ _ o
0(5 +8@)) = A +28@E) 2z + £,
Hence, multiplication of (3.36) by z and integration over Q, yields the estimate
1 7
f (5 + 8(B())e(r) dx + f IVz dxds < cz I, (3.40)
Q 2 t le

where the quantities /;, 1 < j <7, are specified and estimated as follows: at first, Young’s inequality
shows that, for every y > 0 (to be chosen later),

I = —fﬁg’(ﬁ)y,zdxds < yf yidxds + )E/f Zdxds. (3.41)

Moreover, we have, by Holder’s and Young’s inequalities and (3.30),

L:= -2 fQ (80" — @) (1 - 1) zdxds

IA

Cfo llo(s) = B(Mls Ity (5) = E(9)lla llz(9)ll ds

IA

1= 1= 2 C 4
cllo” = Pllz=©srs@y I = Bl o.nm 2l < Y1000, + ;/1 . (3.42)

Next, we employ (3.32), the Holder and Young inequalities, and (3.30), to infer that

= =2 | F{s") - 80 - A/ @) cdeds

IA

¢ | mI( + o' = pP) el dxds
Qi

Cj; Il ()Ml (Ily(S)IIzIIZ(S)II3 + ||PA(S)—/_J(S)Hé”Z(S)Hz) ds

IA

IA

! c ! _ f _ _
7f (I ds + ;f I (DI 1y (s)ll7 ds + Cf (I eI ds + cllo” = Pl
0 0 0

<y fo (o) ds + 1+ 5) fo EORAOIE + L) ds + ¢ 2, (3.43)

where we observe that, in view of (2.17), the mapping s — ||ﬁ,(s)||%/ belongs to L'(0,T). Likewise,
utilizing (2.17), (3.33), (3.30), and the Holder and Young inequalities, it is straightforward to deduce
that

i - [ BR (g0 - ¢®) - A" @) zdxds < ¢ [ (bl+lo! =) Eldxds

t t

IA

!
cf (y2 +z2)dxds + cf ||PA(S)—/_)(s)llillz(s)llzds < cf (y2+Z2)dxds +cAt. (3.44)
f 0

t
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In addition, arguing similarly, we have

i - [ B(g6-¢®) (ol -p)zdxds
!
< CI " (s) = P($)ll6 10} (5) = P (Il lz(s)ll3 ds
0
! c
< C||,0/l —/_3||L°°(o,z;L6(Q)) ||/O/1 —/_3||H1(o,z;H)||Z||L2(o,z;V) < Yf ||Z(S)||%/ ds + ;/14, (3.45)
0
as well as
toi= - [ B -7 (€0 - @)zdxds < [ W -allp! ~pldras
¢ O
!
< Cf () = Pl ' (5) = ()l ()2 ds < Cf Zdxds + cA*. (3.46)
0 O

Finally, we find that

hi= - [ (@ -B)¢w(p!-p)zdxds

t

IA

Cfo " () = E($)lls llo7 () = B9l llz()ll3 ds

IA

!
_ _ C
el = Fllimomm 110" = Pl o Illzonm < ¥ f O ds + S2L 34T
0

In conclusion, combining the estimates (3.40)—(3.47), and choosing y = é we have shown that

!
% I, + % fo |2 )|f} ds < % fQ | VY dxds + c 2t
!
e o [ (1+IRGR) (@l Il )ds. (348)

Step 2: Let t € (0, T] be fixed. We add y to both sides of (3.37), multiply the resulting identity by
v;, and integrate over Q; to obtain

6
1
fty?dxds + Syl < D i, (3.49)

J=1

where the terms J;, 1 < j < 6, are specified and estimated as follows: at first, we have, for every
v > 0 (to be specified later),

J, :=fyytdxds < 7fyfdxds + Ef Y dxds. (3.50)
1 4 Y !
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Then, we employ (2.17), (2.31), (3.30), and (3.31), as well as Holder’s and Young’s inequalities, to
obtain the estimate

J22

- f (F'(0") =~ F'() ~ AF"()¢) y, dxds < c f (M1 + 10" = BF) vl dxds

Qt t

IA

! _ c c
c f (I + [lo'(s) = BOIE) Iy()ll2ds <y f yidxds + = f ydrds + 2 A%
0 O 1
(3.51)

By the same token, this time invoking (3.33), we find that
Jy = f 7(s0Y) — ¢ ® — Ag"P)E) yidxds < yf V2dxds + ff YVdxds + <24, (3.52)
t Qt y Qt y

Moreover, we obviously have

Jy ::fg’(ﬁ)zy,dxds < yfy,zdxds + ;f Zdxds. (3.53)
t Qt t

Also, using (3.30) and the global bounds once more, we obtain that

Js 1= . W' - g EH - g @)y dxds

< Cfotll,ul(S) — 1(s)lls I () = p()Il3 Iy ()ll2 ds < VfQ yidxdx + 5/14- (3.54)
Finally, invoking (3.34) and Young’s inequality, we have the estimate
o= = [ (Bo'1- B1p) - ADBIpY®) v dxds
< ||Blo"1 = Blp] = ADBIBIE) 2 o, illz2(0,

C C 2
<y f y2dxds + ;||y||§2(Qt) +2 (R(AlAl2g)) - (3.55)

Thus, combining the estimates (3.49)—(3.55), and choosing y = %, we have shown that, for every
t € (0, T], we have the estimate

1 1 ! 2
7 | DiPdxds + Syl < c( f Iy ()IF ds + 2% + (R(A11All2p))) ) . (356)
O 0

Step 3: We now add the estimates (3.48) and (3.56). It follows that, with suitable global constants
c1 >0 and ¢, > 0, we have for every ¢ € (0, T] the estimate

et + s + Ol +
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! _ 2 2
<A ZO) + o f (1 + EGR) (I, + [l ) ds. (3.5)
0
where we have defined, for A > 0, the function Z by
Z) = 2* + (RQAAl20)* - (3.58)

Recalling that the mapping s ||/7,(s)||%, belongs to L'(0, T'), we conclude from Gronwall’s lemma
that, for every ¢ € (0,771,

T

||y/l||:1(0,t;H) + ||Z/1||i°°(0,t;H)mL2(O,t;V) < a1 Z(d)exp (Czﬁ (1 + ”ﬁ’(s)”%’) ds) <czZ@. (3.59)

Since limy\o Z(2)/A> = 0 (recall (3.34)), we have finally shown the validity of (3.35). This
concludes the proof of the assertion. O

We are now in the position to derive the following result.

CoroLLARY 3.3:  Let the general hypotheses (A1)—(AS) be fulfilled and assume that u € U, is
a solution to the control problem (CP) with associated state (o,u1) = S(u). Then we have, for every
LS q/[ad,

,Blf(ﬁ—pg)fdxdt +,82f(/_1—,uQ)77dxdt +,83fﬁ(v—ﬁ)dxdt >0, (3.60)
Q Q Q

where (€,1) denotes the (unique) solution to the linearized system (3.1)—(3.4) for h=v —u.

Proor: Let v € U,y be arbitrary. Then h = v — u is an admissible direction, since u + Ah € Uy
for 0 < A < 1. For any such 1, we have

0 < JW + Ah, S(u + Ah)) — J(u, S(u))
B A
< J@ + Ah,S(u + Ah)) — J(u, S(u + Ah)) N J(w,S(u + Ah) — J(u, S(u))
< 1 1 .

It follows immediately from the definition of the cost functional J that the first summand on the
right-hand side of this inequality converges to fQ Bsuhdxdt as A\, 0. For the second summand,
we obtain from Theorem 3.2 that

. Jw,S(u+ Ah) — J(u, S(n))
lim
N0 A

- i fQ(ﬁ—pg)fdxdt s L@—ﬂg)ndxdt,

whence the assertion follows. O
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4. Existence and first-order necessary conditions of optimality

In this section, we derive the first-order necessary conditions of optimality for problem (CP). We
begin with an existence result.

THEOREM 4.1:  Suppose that the conditions (A1)—(AS) are satisfied. Then the problem (CP) has a
solution u € Uy .

Proor: Let {u,},an C U, be a minimizing sequence for (CP), and let {(0,,u,)}env be the se-
quence of the associated solutions to (1.2)—(1.5). We then can infer from the global estimate (2.17) the
existence of a triple (&, p, 1) such that, for a suitable subsequence again indexed by 7,

u, — it weakly starin H'(0,T; H) N L*(Q),
pn — p weakly starin H*(0,T; H) N W0, T; L™ (Q)) N H'(0,T; V),
u, — i weakly starin W0, T; H)yn H'(0,T; V)N L0, T; W).

Clearly, we have that u € U 4 and, by virtue of the Aubin-Lions lemma (cf. [24, Thm. 5.1, p. 58]) and
similar compactness results (cf. [27, Sect. 8, Cor. 4]),

pn — p strongly in L*(Q), 4.1)
whence also p, < p < p* a.e.in Q and
Blp,] = Blp] strongly in L*(Q),
®(p,) — D(p) strongly in L*(Q), for ® € {F’,g,g'},
thanks to the general assumptions on B, F and g, as well as the strong convergence
w, = i strongly in C°([0, T1; C°(Q)) = C°(Q). 4.2)
From this, we easily deduce that
8(0n) Oty — g(P) Ot weakly in L'(Q),
tin 8 (Pn) B,pn — 1 g (P)0,p  weakly in L'(Q).

In summary, if we pass to the limit as n — oo in the state equations (1.2)—(1.3), written for the
triple (u,, pus ), We find that (o, u) satisfies (1.2) and (1.3). Moreover, g € L*(0,T; W) satisfies
the boundary condition (1.4), and it is easily seen that also the initial conditions (1.5) hold true. In
other words, we have (p, ) = S(u), that is, the triple (&, p, ) is admissible for the control problem
(CP). From the weak sequential lower semicontinuity of the cost functional J it finally follows that i,
together with (o, ;) = S(u), is a solution to (CP). This concludes the proof. O

We now turn our interest to the derivation of first-order necessary optimality conditions for problem
(CP). To this end, we generally assume in the following that the hypotheses (A1)—(AS) are satisfied and
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that u € U, is an optimal control with associated state (p, (1), which has the properties (2.16)—(2.31).
We now aim to eliminate ¢ and n from the variational inequality (3.60). To this end, we employ the
adjoint state system associated with (1.2)—(1.5) for u, which is formally given by:

~(1+2¢@)p—&g@p.p—Ap—8® q=pH—pup) in Q, (4.3)

~q:+ F"'(0)q—11g"(0)q+ 8 ©) (1, p —Hp) + DBIpl"(q) = fi(p — po) in O, (4.4)
Ohp =0 on Z, 4.5
p(T)=¢q(T)=0 1in Q. (4.6)

In (4.4), DB[p]" € L(L*(Q),L*(Q)) denotes the adjoint operator associated with the operator
DBIp] € L(L*(Q), L*(Q)), thus defined by the identity

fDB[ﬁ]*(v)wdxdt = vaB[ﬁ](w)dxdt Vv,we L*Q). 4.7)
0 (¢

As, for every v € L*(Q), the restriction of DB[p](v) to Q, depends only on Vlg, , it follows that, for
every w € L*(Q), the restriction of DB[p]*(w) to Q' = Q x (t,T) (see (1.14)) depends only on wlor .
Moreover, (2.8) implies that

IDBIPT W)ll2y < Colwllzgy ¥ w € LAQ). (4.8)
We also note that in the case of the integral operator (1.9) it follows from Fubini’s theorem that
DB[p]* = DB[p] = B.

We have the following existence and uniqueness result for the adjoint system.

THEOREM 4.2:  Suppose that (A1)—(AS) are fulfilled, and assume that u € U,q is a solution to the
control problem (CP) with associated state (p,i1) = S(u). Then the adjoint system (4.3)—(4.6) has a
unique solution (p, q) satisfying

peHYO,T;H)NnL (0, T;V)NL*0,T;W) and qe H'(0,T;H). 4.9)

Proor:  Besides of Young’s inequality, we make repeated use of the global estimates (2.16)—
(2.17) and (2.31) for p and u, without further reference. Moreover, we denote by ¢ different positive
constants that may depend on the given data of the state system and of the control problem; the meaning
of ¢ may change between and even within lines.

We first prove uniqueness. Thus, we replace the right-hand sides of (4.3) and (4.4) by 0 and prove
that (p,q) = (0,0). We add p to both sides of (4.3) and multiply by —p,. At the same time, we
multiply (4.4) by ¢. Then we add the resulting equalities and integrate over Q' = Q X (t,T). As g is
nonnegative, and thanks to (2.8), we obtain that

1 1
Ipdxds + 3 IpO; + 3 f (P dx
o' Q
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< ft(—p -&©p,p—8&® q) pdxds
+ f ((ug"()— F"(p) g +ug () p. — DBIpl(q)) gdxds — f g O K, pgdxds
o o
1
<~ | Ipldxds+c | (P> +q¢*)dxds+c | [@llpllgldxds.
2 Qt Qt Qt

The last integral is estimated as follows: employing the Holder, Sobolev and Young inequalities, we
have

T T
flﬁtllpllqlddeSf IIﬁt(S)IlgIIP(S)Ilﬁllq(S)IlzdsS6f(IIﬁ,(S)Ilzvllp(S)II2v+IIq(S)IIi)dS-
[0 t t

As the function s +— ||z, (s)II}, belongs to L'(0,T), we can apply the backward version of Gronwall’s
lemma to conclude that (p, g) = (0,0).

The existence of a solution to (4.3)—(4.6) is proved in several steps.

Step 1: We approximate p and & by functions p?, u® € C*(Q) satisfying (3.8)—(3.9) and look for
a solution (p?, ¢°) to the following problem:

—(1+280") py =& @ p, P° = Ap° =8PV ¢° = Pt — o) in Q, (4.10)
—q; — A"+ F'(P) ¢° — 118" () 4" + &' (0°) (i p° — u° pr) + DBIpI"(¢°)

=pi(o—pg) n Q, 4.11)

Onp® =0hg® =0 on X, (4.12)

P’ =¢*T)=0 in Q. (4.13)

We prove that this problem has a unique solution satisfying
p°,¢° € H'(O,T;H)Nn L0, T; V)N L*0,T; W). (4.14)
To this end, we present (4.10)—(4.12) as an abstract backward equation, namely,
d
- (P°, 4@ + A°(@) (p°, ¢°)@) + (R°(p®, ")) = f*(1), (4.15)
in the framework of the Hilbert triplet (V,H,V’), where

V:=VxV and H:=HxH.

Notice that (4.15), together with the regularity (4.14), means that

_((pf’ C]}E)(t), (V, W))?—{ + ag(t; (ps’ qg)(t)7 (V, W)) + ((Rs(p87 qs))(t)’ (V, W))?—{ = (fg(t)’ (V, W))?—{
for every (v,w) € Vanda.a.t € (0,T), (4.16)
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where a®(t;-,-) is the bilinear form associated with the operator A*(¢) : V — V’; moreover, (-, )y
denotes the inner product in H (equivalent to the usual one) that one has chosen, the embedding
H c V’ being dependent on such a choice. In fact, we will not use the standard inner product of H,
which will lead to a nonstandard embedding H c V”. We aim at applying first [1, Thm. 3.2, p. 256],
in order to find a unique weak solution, as we did for the linearized problem; then, we derive the full
regularity required in (4.14). We set, for convenience,

u . HgP)
v e M YT T a0

and choose a constant M, such that

= @ 1" g'(p°),

Pe < ME’ |lr//€| < Msa |V‘;Ds| < M.c;’ and |ng| < Mg’ a.e.in Q

Moreover, we introduce three parameters A%, A7, 45, whose values will be specified later on. In order
to transform our problem, we compute p? from (4.10) and substitute in (4.11). Moreover, we multiply
(4.10) by ¢.. Finally, we add and subtract the same terms for convenience. Then (4.10)—(4.11) is
equivalent to the system

&

=P =@ APT+ AT T = AT P =0 8PP, P =08 (P)G° = e ot — o),
—q; —eAG" + Y, A"+ 54" - 54°+ F'(0)g° —ug" (p) ¢° + &' (0°) i p°
+y:. (8@ p, P°+8® q° +B(u—up) + DBIp]"(¢°) = Bi(p — po) -

By observing that
— s Ap® = —div(e,Vp®) + Vi, - Vp©,

and that the same holds true with . in place of ¢., we see that the latter system, complemented with
the boundary condition (4.12), is equivalent to

- fQ PO vdx + a5 (0, v) + fg (RS °))(0) v dx = fQ 0o B - 1100 v dx
- fg g wdx + ax(t; (p°(1), ¢° (), w) + fg R(P°, g N wdx
- - [ 0BG -0 dr+ [ Bip-poXtywds
for every (v,w) € V and a.a. t € (0, T), where the forms a; are defined below and the operators ﬂf

account for all the other terms on the left-hand sides of the equations. We set, for every ¢ € [0, T] and
vw,v,weV,

aji(t;v,v) == f(gog(t) V- Vv + (Ve (t) - VD) v+ AT Dv)dx,
Q

as(t; (0, w), w) := fg(s VW - Vw = (1) VD - Vw = (Vg o(2) - V) w + A5 Www)dx.
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Now, we choose the values of A7 and of the further parameter A° in such a way as to guarantee some
coerciveness. Putting a := 1/(1 + 2 sup g), we have that

as(t;v,v) = f (@ |Vv[* = M |V V] + 25 v?) dx > f (Vv = 2|V - f—a v+ 2507 dx.
Q Q

2
Therefore, the choice A7 := 5 + ]g—a yields

ai(t;v,v) = %IIVII%, forevery ve V and r € [0, T].
Next, we deal with a5. We have, for every v,w € V and t € [0, T7],
as(t; v, w), w) > j‘(eslel2 — M |Vv||Vw| — M |VV||w| + /lng) dx
Q

2 2
> f (elVWP = 1V — 22 Vo2 — 22 Vv = £ jw® + A5w?) dx
Q

2
- f (EIVWP + (25 = £w? — 22 [Va?) dx,
Q

and the choice A5 := ¢ leads to

2

. 2 2
as(t; v, w),w) > —[wlly — f VIl -

N M

2
Ms
&

Therefore, if we choose A¢ such that A° % — > % , then we obtain

e
Aai(t;v,v) + a5t (v, w), w) 2 (VI + W)
for every (v,w) € V and ¢ € [0, T]. Hence, if we define a® : [0,T] XV XV — R by setting
a’(t; (0, w), (v, w)) := Ajai(h,v) + a5(t; (0, W), w),
then we obtain a time-dependent continuous bilinear form that is coercive on V (endowed whith its
standard norm), uniformly with respect to ¢t € [0,7]. Moreover, a® depends smoothly on 7, and
(4.10)—(4.12) is equivalent to
- f (°p{ @) v + gi () w) dx + a°(t; (p*(1), ¢° (1)), (v, W)
Q
+ f {7 RI(DP, ¢ N v + (R5(P®, ) (@) whdx
Q
= f ((A° s = Y )(0) Bo(lt — 1)) v + B1 (P — po) (1) w) dx
Q

for every (v,w) € V and a.a. t € (0,T). Therefore, the desired form (4.16) is achieved if we choose
the scalar product in H as follows:

(D, W), (v, W)y 1= f(/l’s Pv+ww)dx forevery (0, W), (v,w) € H.
Q
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Notice that this leads to the following nonstandard embedding H c V" :

v {0, W), v, W)y = (O, W), (v, W)y = LvD, )y + vi(P, W)y

for every (0,w) € H and (v,w) € V, provided that the embedding H C V’ is the usual one, i.e.,
corresponds to the standard inner product of H. As the remainder, given by the terms R} and K7,
satisfies the backward analogue of (3.14)—(3.15) (see also (4.8)), the quoted result of [1] can be applied,
and problem (4.10)—(4.13) has a unique solution satisfying

(r°.q°) € H'(O,T; V)N L*0,T;V).
Moreover, if we move the remainder of (4.15) to the right-hand side, we see that
d
== (0", q) + A", ") € L0, T3 H).

Therefore, by also accounting for (4.13), we deduce that (p?, ¢°) € H'(0, T; H) as well as A°(p?, ¢°) €
L*(0,T;H). Hence, we have that p®, ¢° € L*(0,T; W), by standard elliptic regularity.

Step 2: We add p® to both sides of (4.10) and multiply by —p?. At the same time, we multiply
(4.11) by ¢°. Then, we sum up and integrate over Q'. As g > 0, we easily obtain that

1 1
Sl + [ i drdss s [P dsve | [weF drds
Qt Q 13
<c Pl |pfldxds + ¢ lg°| |pfldxds + ¢ lg°1* dx ds
o' o o

+c | Wilp°llg®ldxds + | IDBIpI (g")lg°| dxds + clIp°Ilja g + ¢ -
0 o'

Just two of the terms on the right-hand side need some treatment. We have

T
qullpgllqgldxdssf ez ()Ml [P ()le lg®(s)ll> d's
o t

T T
SCI IIPE(S)IIZVdHCI IlE NG (9)Il5 ds
t t

and we observe that the function s — ||,uf(s)||§ belongs to L'(0,T), by (3.8). Moreover, the Schwarz
inequality and (4.8) immediately yield that

IDBIPY (¢l l¢°| dxds < Cplig°ll}2 g, -
Ql
Therefore, we can apply the backward version of Gronwall’s lemma to obtain that

12
P et 0,7:m0=0.7:v) + 1 I o.7:00) + € / g°ll 20,y < €. 4.17)

By comparison in (4.10), we see that Ap® is bounded in L*(Q). Hence,
Pl 20,:w) < € (4.18)
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Step 3: We multiply (4.11) by —¢° and integrate over Q'. We obtain
¢ dxds + = f Vg" (O dx
QI 2 Q
T
lg°llg;1dxds + Cf I (D13 1P ()6 llgy ()l d's
o t
lpillgrldxds + | IDB[p]"(¢")llg;1dxds.
o o'

Thanks to (4.8) once more, we deduce that

1

2], g dxds + = f Vg (1)) dx

P drds +.c f EOIR P SIR ds + ¢ f PP dxds.
Thus, (3.8) and (4.17) imply that

12
g 20,y + € / gl 7;v) < cC. 4.19)

Step 4: Now, we let € tend to zero and construct a solution to (4.3)—(4.6). By (4.17)—(4.19) we
have, at least for a subsequence,

pE—p weakly starin H'(0, T; H) N L*(0,T; V)N L*(0,T; W),
q° > q weakly in H'(0,T; H),
eq® —> 0 strongly in L*(0,T; V),

for some pair (p,q) satisfying the regularity requirements (4.9). By accounting for (3.9) and the
Lipschitz continuity of g and g’, it is straightforward to see that (p, g) is a solution to problem (4.3)—
(4.6). This completes the proof. O

CoroLLARY 4.3: Suppose that (A1)—(AS) are fulfilled, and assume that u € U,q is an optimal control
of (CP) with associated state (p,p) = S(u) and adjoint state (p,q). Then it holds the variational
inequality

f(p +Bsu)(v—u)dxdt >0 VveUy. (4.20)
Q

Proor:  We fix v € U, and choose h = v — u. Then, we write the linearized system (3.1)—(3.4)
and multiply the equations (3.1) and (3.2) by p and ¢, respectively. At the same time, we consider
the adjoint system and multiply the equations (4.3) and (4.4) by —n and —&, respectively. Then, we
add all the equalities obtained in this way and integrate over Q. Many terms cancel out. In particular,
this happens for the contributions given by the Laplace operators, due to the boundary conditions (3.3)
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and (4.5), as well as for the terms involving DB[p] and DB[p]*, by the definition of adjoint operator
(see (4.7)). Thus, it remains

fQ(2g’(7>)ﬁ,np + (1 +2g@)m p+ (1 +2g(p)n p,) dxdt
+L(ﬁ1g’(ﬁ)§p +ug"(p,Ep+ug (P& p+HE ()& p)dxdt
+fQ(§-‘,q+§q,)dxdt

= [[(©-Dp-paG-pn-pG-p)©)dva

Now, we observe that the expression on the left-hand side coincides with

anI{u £ 2P np + g P)Ep+éq)dxd.

Thus, it vanishes, due to the initial and final conditions (3.4) and (4.6). This implies that

f(ﬁl(ﬁ—pg)n+,6’2(ﬁ—,uQ)§)dxdt:f(v—ﬁ)pdxdt.
0 0
Therefore, (4.20) follows from (3.60). O

ReMARrk 4: The variational inequality (4.20) forms together with the state system (1.2)—(1.5) and
the adjoint system (4.3)—(4.6) the system of first-order necessary optimality conditions for the control
problem (CP). Notice that in the case 85 > 0 the function —B;'p is nothing but the L*(Q) orthogonal
projection of u onto U,q.
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